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Université Bordeaux 1.
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L-functions (Definition)

Initially, an L function is just a Dirichlet generating series

L(s) =
∑

n>1

a(n)n−s, a(n) ∈ C,

converging for Re(s) sufficiently large, where the complex numbers a(n)
encode some arithmetic information. The goal is twofold

• Combinatorially, to understand arithmetic relations between the a(n), like

a(n) =
∑

d|n

u(d)v(n/d) translating to La = Lu × Lv,

a(mn) = a(m)a(n) translating to L(s) =
∏

p `p(s).

• Analytically, to estimate
∑

n<x a(n) as x gets large, from a study of the
singularities of L.
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L-functions (Assumptions)

We assume that

• L extends to a meromorphic function on the entire complex plane C, with
finitely many poles,

• a completed function L∗(s) = Asγ(s)L(s) satisfies a functional equation

L∗(s) = εL∗(w − s),

for some sign ε ∈ C∗ and weight w ∈ Z>0.

Under these two assumptions, we can efficiently approximate L(s0) for any
fixed s0 ∈ C.

Generalizations are allowed, for instance L∗(s) = εL̂∗(w − s), involving a dual
function L̂∗, as well as vector-valued L-functions with ε ∈ GLn(C).
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Expectations

Then we expect

• some recurrence relations between the a(n), for instance an Euler product

L(s) =
∏

p prime

`p(p
−s),

for some local factors `p(X) ∈ C(X),

• interesting special values of L (or its derivatives) at special points, e.g. at
integer points or w/2. In particular L functions should encode deep
arithmetical information, some of which would surface in the special
values.

• a Riemann Hypothesis to hold: L(s) 6= 0 for Re s > w/2,

Most special values and Riemann Hypotheses are still wide open problems.
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A first example (1/5)

The prototypical example is

ζ(s) =
∑

n>1

n−s =
∏

p prime

(
1 − p−s

)−1
,

which in a sense is misleading since it apparently encodes no information: we
are studying the trivial sequence a(n) = 1. But all prime numbers are hidden
in ζ, as is apparent from the Euler product.
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A first example, continued (2/5)

The logarithmic derivative yields a natural formula

ζ ′(s)

ζ(s)
=

∑

n>1

a(n)n−s

which is instrumental in the proof of the Prime Number Theorem:

card {p 6 x : p prime} ∼
x

log x
, x → +∞.

The more we know about ζ, in fact about its complex zeroes (yielding
singularities of ζ ′/ζ), the more we can refine this estimate, in the sense of
giving sharp numerical or asymptotic bounds.

Analogously, a large body of conjectures and algorithms rely on a Riemann
Hypothesis to find many primes (or dually many friable numbers) in relevant
sets.
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A more general example (3/5)

Let α ∈ C be an algebraic number and K = Q(α) a number field. Each
element of K is an algebraic number, root of a non-zero polynomial in Z[X].
The ones which are roots of monic integer polynomials form a subring
ZK ⊂ K. For a maximal ideal p of ZK , the field ZK/p is finite and we may
define Np := card(ZK/p), then let

ζK(s) =
∏

p

(
1 − Np

−s
)−1

, Re s > 1.

For K = Q, ZK = Z, p = (p) is generated by a bona fide prime number and ζK

is nothing but Riemann’s zeta again

ζQ(s) = ζ(s) =
∑

n>1

n−s.
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A more general example, continued (4/5)

This ζK is an L-function in our sense. (A nice one combinatorially because the
ideals of the ring ZK factor nicely into products of maximal ideals.) Almost all
special values are conjectural but an important special case is known,
exhibiting the kind of link we expect between special values and deep
arithmetic information: the unit group Z∗

K of invertible elements is an abelian
group of the form Z/wZ ⊕ Zrand it holds

ζK(s) ∼ −
hR

w
sr, as s → 0,

where R is a suitable volume again associated to the unit group Z∗
K and h is

an interesting integer. Actually the cardinality of a very interesting abelian
group, used for instance to solve diophantine equations or construct
extensions L/K with nice properties.
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An example from arithmetic geometry (5/5)

Let Y 2 = X3 + aX + b be a plane model for an elliptic curve E, where a, b ∈ Z.
We define an L function L(E, s) by letting the local factor `p at p encode the
cardinalities of the E(Fpk), with some extra care for a finite set of bad primes
p | 4a3 + 27b2 6= 0.

The work of Wiles (et al.) provides the analytic continuation of L(E, s) and the
functional equation. The special value at the central point s = w/2 = 1 is
predicted by Birch and Swinnerton-Dyer’s conjecture, again relating the order
of vanishing at s with the rank of an abelian group, here E(Q), and the full
leading term with deep invariants of E.

In this setting, and contrary to the previous case of ζK(s), the local factors
have great practical significance. Current public key cryptosystems (for
authentication in low-cost embedded systems, e.g. cell phones) exploit the fact
that the finite groups E(Fpk) are easy to compute, but difficult to handle: no
good algorithm to solve discrete logarithm problems is known in this context.
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Natural algorithmic or computational questions

• In a given natural setting, how fast can we compute the coefficients a(n)?

• In a given natural setting, how fast can we compute the local factors `p?

• For given s0 ∈ C, how fast can we approximate L(s0) to a given accuracy?

• Can we decide whether L(s0) = 0? More generally, compute the order of
vanishing of L at s0?

• Given a formula for all but finitely many local factors and a black box
approximating numerically s 7→ L(s) for given s, can we compute the
missing ones? Actually, conjecturing a suitable but indeterminate
functional equation exists, can we guess the correct numerical
parameters from attempted numerical computations? Recognize them
algebraically in closed form?

• Given a conjectural equality L(k)(s0) = special value, where the right
hand side involves arithmetic invariants, how fast can we compute the
latter to check for approximate equality? In fact, is there an algorithm to
compute them at all, however impractical?
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Nice features of a computational approach (1/2)

• Conjectures are there to be tested !

• Often a conjectural computation yields an independently checkable
(hence now fully proven) result.
From variations on the L(E, s) and ζK(s) examples, suitable special
values conjecturally give numerical approximations to algebraic objects of
interest: for instance a rational point P in E(Q), or an algebraic α such
that K(α)/K has nice properties. Once such a P or α is produced, we
can check it satisfies expected properties, then use it in subsequent
computations.

• Computational bounds, given by asymptotically sub-optimal constructions
but with tight explicit constants, often yield superior bounds in ranges of
practical interest.
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Nice features of a computational approach (2/2)

Perhaps more importantly, computational motivations provide a whole array of
new interesting mathematical questions. Compare the simple (( Provide an
effective construction for this )) with

• At what cost (time, memory, randomness,. . . ) can we compute this?

• How can conditional intermediate results be exploited to yield a proven
final answer?

• More generally, to improve practical computations, how to degrade
pessimistic theorems and proven bounds in favor of probabilistic models,
and still obtain a proven result when (or possibly if ) the computation
stops?
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Some theorems (1/3)

Theorem (Schoof, 1985). Let E be an elliptic curve. Local factors `p of

L(E, s) can be computed in polynomial time (log p)O(1), and so can cardE(Fp).

Theorem (Couveignes – Edixhoven – de Jong, 2005). Expand the q-series

q
∏

(1 − qn)24 =:
∑

n τ(n)qn. For p prime, the integer τ(p) can be computed in

polynomial time (log p)O(1). (And so can τ(n) if the factorization of n is
known.)

This result generalizes to arbitrary newforms f =
∑

af (n)qn, and the
computation of the Fourier coefficients af (p) and af (n).
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Some theorems (2/3)

Theorem (Lenstra, 1992). Let K = Q(α) be a number field, generated by an
algebraic number α with P (α) = 0, P ∈ Z[X] of degree n. In the formula

ζK(s) ∼ −
hR

w
sr,

all terms on the right hand side are computable, in fact in deterministic
exponential time expO(n log ‖P‖∞). Both Z∗

K and the interesting group whose
h is the cardinality can be computed in the same time bound.

Theorem (Buchmann, Cohen – Diaz y Diaz – Olivier, 1990–1994). A
randomized algorithm exists for the above task which, assuming a suitable
Riemann Hypothesis and good distribution of friable integers in relevant sets
(proven for n = 2 only), succeeds in expected sub-exponential time.

Unfortunately, if the Riemann Hypothesis is false, the result may be wrong.
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Some theorems (3/3)

Theorem (Belabas – Gangl, Groenewegen, 1998–2004). In the conjectural
asymptotic equality around −1

ζK(s) ∼ ±
h2R2

w2
(s + 1)r2 , s → −1,

the integer h2 is computable. (And so is the RHS if K is totally real, since in
that case R2 = 1.) Actually, h2 is the cardinality of a very interesting abelian
group, which can likewise be computed.

The complexity of the algorithm is unknown, at least (and conjecturally at
most) exponential time. No suitable Riemann Hypothesis is conjectured that
would speed it up.
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