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Abstract. Van Hoeij’s algorithm for factoring univariate polynomials over
the rational integers rests on the same principle as Berlekamp-Zassenhaus, but
uses lattice basis reduction to improve drastically on the recombination phase.
His ideas give rise to a collection of algorithms, differing greatly in their effi-
ciency. We present two deterministic variants, one of which achieves excellent
overall performance. We then generalize these ideas to factor polynomials over
number fields.
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Introduction

Until 2000, the two main algorithms able to factor a polynomial P over Q[X]
were Berlekamp-Zassenhaus algorithm [5, 31], which starts by factoring P over
Qp[X] for a suitable prime number p and tries to recombine the p-adic factors,
and Lenstra-Lenstra-Lovàsz algorithm, based on their celebrated LLL lattice re-
duction algorithm [20]. While the latter is polynomial-time and the former expo-
nential in the worst case1, the former performs far better on average, in practice.

Lately, van Hoeij [30] published an algorithm which, while following Berlekamp-
Zassenhaus argument, uses lattice basis reduction to guess the correct recombi-
nation. The main idea is as follows: assume that P is integral and monic, then
Newton sums of an integral factor of P are easily bounded integers. Provided the
p-adic accuracy pa is large enough, they are small compared to the Newton sums
of non-integral modular factors lifted from Z/pa to Z. Finding a valid recombi-
nation is thus reduced to finding simultaneous small values of linear forms with
integer coefficients, or alternatively solving a knapsack problem, one of the very
situations where the LLL algorithm is known to be of interest. At the time of this
writing, none of the algorithms derived from van Hoeij’s ideas has been proven to
run in polynomial time. On the other hand, after three years of experimentations,
no practical bad case is known either.

In the first section, we recall the details of van Hoeij’s algorithm over Q. The
second section describes tunings and our experiments with this algorithm. The
third section presents a generalization to number fields.

Our implementations are part of the PARI library [23]. All timings were ob-
tained with PARI-2.2.6 configured to use GMP-4.1 as its multiprecision kernel,
on a 1GHz Athlon under Linux (lucrezia.medicis.polytechnique.fr), and
are given in seconds.

1. Details of van Hoeij’s method

For the basic terminology about the LLL algorithm we refer the reader to [9, 25].
The term quality ratio denotes the real number 1/4 < α ≤ 1 used to check the
Lovàsz condition Bi ≥ (α−µ2

i,i−1)Bi−1, which determines the frequency of swaps
in LLL; higher quality ratios mean smaller basis vectors, at the expense of higher
running times. We let γ(α) := (α − 1/4)−1 ≥ 4/3. We refer the reader to van
Hoeij’s original paper [30] for further details and examples.

1An irreducible polynomial P can have as much as Ω(deg(P )) factors over Qp, so that
recombination takes time 2Ω(deg(P )).
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1.1. The knapsack. Let K be a field and G ∈ K[X] a polynomial. Its k-th
Newton sum is Sk(G) :=

∑
l α

k
l , where the αl run through the roots of G in

an algebraic closure of K, repeated according to their multiplicity. It follows
that Sk(GH) = Sk(G) + Sk(H), for G, H ∈ K[X]. Furthermore, as a symmetric
function of the roots, Sk(G) belongs to K. If G is monic with algebraic integer
coefficients, then Sk(G) is an algebraic integer. If G has complex coefficients, let
Broot(G) be an upper bound for the modulus of the roots of G; then

(1) |Sk(G)| ≤ deg G ·Broot(G)k.

Let P ∈ Z[X], which we assume monic for simplicity. Let p a prime not
dividing the discriminant disc(P ) of P , and let (Gi), 1 ≤ i ≤ n, be the monic
irreducible p-adic factors of P in Zp[X]. We are looking for the vectors (εi) such
that Pε :=

∏
i G

εi
i has integer coefficients. If the coefficients of the Gi are known

to the precision pa, i.e. modulo paZp, this means that the coefficients of
∏

i G
εi
i

do not vary with a when a is large enough. As a consequence, the Newton sums
Sk(Gε) =

∑
i εiSk(Gi) are close to a multiple of pa. More precisely, we are looking

for {0, 1} vectors (εi) such that

(2)
n∑

i=1

εiSk(Gi) + λpa + µ = 0,

for a small µ which is estimated from (1). (λ is likewise estimated; this estimation
is not needed in the absolute setup, but is required over number fields.) Identity
(2) is a knapsack problem and the set of rational integer vectors (εi) solution of
(2) for all k is a sublattice LQ of Zn. Solving our initial problem amounts to find
a basis of this sublattice.

1.2. Solving the knapsack problem. To achieve this, van Hoeij applies an
iterative process. Let
(3)

M =

(
CIdn 0

S paIdN

)
, where S is a lift of

Si1G1 . . . Si1Gn
...

. . .
...

SiN G1 . . . SiN Gn

 mod pa,

{i1, . . . , iN} ⊂ {1, . . . , n} and C ≥ 1 is a suitable integer constant. Let q be
the standard Euclidean form over Rn+N . Then we are looking for vectors of the
lattice (Im M, q) of norm smaller than some bound B. We now compute an LLL
reduced basis of this lattice, and discard part of this basis by using the following
classical

Lemma 1.1. Let (bi) be a basis of the lattice (Λ, q) and let (b∗i ) be its Gram-
Schmidt orthogonalization. Let B ≥ 0 such that q(b∗j) > B for j > j0. If v ∈ Λ
satisfies q(v) ≤ B, then v belongs to the subspace generated by (b1, . . . , bj0).

Using an LLL-reduced basis guarantees that bi and b∗i have roughly the same size
and that the size of the b∗i does not decrease too fast, so that we may in fact
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expect that the last ones have large norm. More precisely, let α be the chosen
quality ratio and γ := (α− 1/4)−1 ≥ 4/3; then we have

q(b∗j) ≤ q(bj) ≤ γi−1q(b∗i ), for all 1 ≤ j ≤ i.

After a number of such reduction/elimination steps, let L ⊃ LQ be our lattice
(initially, L = Zn). If L = LQ, then its Hermite Normal Form (HNF) basis
satisfies the condition:

(4) it has entries in {0, 1}, with a single 1 in each row.

To check whether we are done, we compute the HNF basis of L. If condition (4)
is satisfied, we presumably have found a factorization of P , which is checked as
in the usual Berlekamp-Zassenhaus process: multiply the factors, lift the result,
and finally try to divide P by the putative factors after various preliminary, less
expensive, checks, like the “d − k tests” of §2. If all divisions are exact, then
L = LQ; the factors are irreducible since they correspond to a basis of LQ.

1.3. Truncation. A major practical improvement, also proposed by van Hoeij,
is to replace p-adic values Sk(Gi) truncated to precision pa by twice-truncated
integer approximations T a,b(Sk(Gi)), defined by

T a,b(x) :=
x− (x mod pb)

pb
mod pa−b,

where x is known to precision pa and b < a. Note that x mod y is to be understood
as: the integer congruent to x modulo y which belongs to the interval ]−y/2, y/2].
In effect, instead of looking for linear combinations smaller than some bound, we
find combinations of leading p-adic digits which are close to 0:

Lemma 1.2 ([30, Lemma 2.6]). Assume |Sk(G)| < pb/2 for any divisor G of P
in Z[X], and let a ≥ b. If G :=

∏
i∈I Gi ∈ Z[X] for some subset I of {1, . . . , n},

then T a,b(Sk(G)) = 0 and∣∣∣∑
i∈I

T a,bSk(Gi)
∣∣∣ ≤ |I|/2 ≤ n/2.

The bound is independent of p, a and b; it only depends on the number of
modular factors. The lattice to be LLL-reduced has entries of the order of pa−b

where b < a is essentially a free parameter, speeding up reduction as it increases.
The downside is that we do not exploit fully the system rigidity since we use a
subset of the available p-adic digits, possibly requiring more LLL reductions.

1.4. Comments. The precise choice of the matrix M , depends on the choice
of the subset of Newton sums (Sik). Repeating this process while varying the
Newton sums and/or the precision b, which can be set independently for different
sums, is expected to decrease quickly the size of the lattice under consideration.
Unfortunately, we cannot prove this, nor that the algorithm terminates when
specified in this form. (Van Hoeij proves that his algorithm must terminate as the
p-adic precision a goes to infinity, but does not give an explicit bound.) Aborting
the sequence of LLL reductions and finishing by an exhaustive enumeration of
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the lattice small vectors is a theoretical solution, but amounts to (part of) a näıve
recombination, and is exponential in the worst case.

2. Tuning van Hoeij’s algorithm

In this section, we describe two variants of van Hoeij’s algorithm which we have
experimented with. The first one, originating in [4], turns out to be unsatisfactory
in large dimensions, while we found the second to be very efficient. As the
original algorithm, both variants are heuristic. Although we can not even prove
it terminates in the form specified below, we conjecture the second one runs in
polynomial time (see Remark 2.5).

2.1. The “d − k” tests. Van Hoeij’s idea can be used to speed up näıve re-
combination, and is related to the d − 1 and d − 2-tests of [1], though easier to
implement and less memory-hungry. In fact, it provides an efficient “d− k-test2”
for any k ≥ 1: assume the modular factors are lifted to precision pa, and let b < a
minimal such that

• |Sk(G)| < pb/2 for any divisor G of P .
• (for efficiency) pa−b can be represented as a machine integer.

Precompute si,k := T a,b(Sk(Gi)) for all modular factors Gi. Using Lemma 1.2,
check that

|
∑
i∈I

si,k mod pa−b| ≤ |I|/2

before trying the putative factor
∏

i∈I Gi.

2.2. Root bounds. Let ρ be the largest modulus of the roots of P , and Broot

be an upper bound for ρ. In van Hoeij’s method, the bound (1) increases as
Bk

root with the trace index k, contrary to the fixed factor bound in Zassenhaus’s
algorithm. So it is important to make the most of lower degree traces, as we shall
in §2.4, and to derive sharp bounds for ρ.

Let P = a0X
h + · · · + ah, where a0ah 6= 0; Cauchy’s method bounds ρ by the

unique positive root of

|a0|Xh −
∑
i<h

|ah−i|X i

which is easy to approximate by dichotomy, and is sharp up to a factor 21/h − 1,
where P = (X +ρ)h realizes the worst case (see Birkhoff [6]). All a priori bounds
we are aware of (see e.g. [29], [15], [16, 4.6.2–Exercises 19,20]) use the absolute
values of the coefficients ai, hence are at least as large as Cauchy’s bound.

Improved bounds are obtained by using a few Graeffe iterations before using
Cauchy’s method, as suggested in [8, 11]. In fact, arbitrarily tight bounds may
be obtained in this way (see [14]), but these are expensive.

2The d− k tests defined in [1] for k = 1, 2 check the coefficient of degree d− k of a potential
factor of degree d. Van Hoeij’s test checks the Newton sums instead of the symmetric functions
of the roots. It is linear in the modular factors.
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2.3. Strategy A: decreasing dimension. In this section, we build a decreasing
sequence of lattices Lk ⊃ LQ, embedded in Zrk where rk := dim Lk, instead of
remaining embedded into Zn. The dimension of the matrices fed to LLL decreases
rapidly (it is of dimension rk +N instead of remaining of dimension n+N), which
induces faster LLL reductions. The lattice Lk is represented by a basis, given by
the columns of a matrix MLk

.
For a m× n matrix M = (mi,j) with real coefficients, we write

‖M‖2 :=
(∑

i,j

|mi,j|2
)1/2

and define an ad hoc norm by supx∈{0,1}n‖Mx‖2. The square of this norm is

bounded by n‖M‖2
2, but more sharply by

‖M‖2 :=
∑

i

max
(∣∣ ∑

j,mi,j>0

mi,j

∣∣2, ∣∣ ∑
j,mi,j<0

mi,j

∣∣2)
In the description below, the subscript k has been dropped, and we assume the
p-adic truncation T a,b operates coordinatewise.

Algorithm 2.1 (SearchTrueFactors: project lattice)
Input: a list of n modular factors known to precision pa, positive integers tried and
N . Assume all combinations with (strictly) less than tried factors have already been
tried. N is the number of new traces to include in each run.

Output: the factors over the rationals.

Initialization: Let s = N , r = n, ML the identity n × n matrix, Broot a bound for
the modulus of the largest complex root of P .

For k = 1, . . . repeat the following steps:

(1)Compute Btrace := deg(P )Bs
root an upper bound for Sk(Pε) if Pε | P in Q[X]

and k ≤ s.
(2)[invert ML (n by r matrix)] Using a modular algorithm, compute a left inverse

M−1
L of ML.

(3)[compute bound for Bi = |b∗i |2]: Let

C :=

⌈√
Nn2

/
(4‖M−1

L ‖2)

⌉
, and Blat := C2‖M−1

L ‖2 + Nn2/4.

(4)[build the LLL input matrix]: Let S0 be the N × n matrix of traces of degree
s−N + 1, . . . , s. Then let M be an (r + N) square matrix, as in (3), where
C is as above and S := T a,b(S0×ML) (of dimension N × r). In other words,
S gives the truncated traces of the p-adic polynomials which form our basis
for L. See below for how to choose b.

(5)[lattice reduction]: LLL-reduce in place the (r + N) by (r + N) matrix M ,
of rank r + N . As a byproduct, we obtain the norms of the Gram-Schmidt
vectors associated to the LLL-reduced basis: let Bi, 1 ≤ i ≤ r + N be the
squared norm of the i-th orthogonal vector.

(6)Let r′ the smallest index such that Bi > Blat for all i > r′. If r′ = 1, return
“irreducible”.



A RELATIVE VAN HOEIJ ALGORITHM OVER NUMBER FIELDS 7

(7)[update ML]: let U the r × r′ matrix whose entries are those of the upper
left part of the new M , divided by C (exact division). If U does not have
maximal rank, replace it by its integral image (the non-zero columns of its
HNF).

(8)Replace ML by ML × U ; ML is now of dimension n× r′, of rank r′.
(9)if r′ > n/tried, goto step 11.

(10)[check]: put ML in HNF. If condition (4) is satisfied, check whether ML yields
a valid factorization as in Berlekamp-Zassenhaus. If so, abort the algorithm
and return the factors.

(11)increase s by N , replace r by r′.
(12)if k gets too large, abort the algorithm and switch to Berlekamp-Zassenhaus

to finish the recombination.

Proof. First ML admits a left inverse in Step 2, since it has maximal rank by
induction. It remains to prove that, in Step 5, to each true rational factor cor-
responds a vector x such that |Mx|2 ≤ Blat. As in van Hoeij’s paper, we know
that to each rational factor corresponds v ∈ {0, 1}n ∩ LQ and w ∈ ZN such that
|S0v + pb−aw|2 < Nn2/4. Since LQ ⊂ L, v = MLv′ for v′ ∈ Zr and in fact
v′ = M−1

L v, which does not depend from the chosen left inverse. We choose for x
the block vector ( v′

w ), and we obtain |Mx|2 ≤ Blat.
The validity of the algorithm now follows as in van Hoeij’s argument. Note

that we only include the last step to ensure that the algorithm terminates: it
is expected that ‖M−1

L ‖ remains small in Step 2, and that we eventually find
sufficiently small vectors in Step 5. �

We used the following strategy for the values of (a, b): a is the p-adic precision
to which the factors are known, and b is implicitly defined by the parameter
δ := logp‖(S0 ×ML) mod pa‖∞ − b.

• the initial value pδ is chosen to have about three times as many bits as
the number n of modular factors (at least 32 in any case).

• if pb < 2Btrace, then we increase a and lift all factors and cached Newton
sums to a higher accuracy.

• If the new rank r′ of the matrix ML is not smaller than r, increase δ so
that pδ has two more bits per modular factor.

This algorithm has a major drawback: if ‖M−1
L ‖ increases, we are helpless.

We can try and find a better inverse, but this involves further LLL reduction
and becomes very slow. This unfortunate situation actually occurs when the
dimension gets large or ML diverges from some “optimal” path. Hence the need
to stick to relatively high accuracy: at least 3 bits per factor as described above.
This value was determined experimentally so as to perform sensibly for n ≤ 128,
say. It can be reduced if n is smaller; and, unfortunately, has to be increased if it
gets larger. Even so, for larger n this variant is not practical: our implementation
never succeeded in factoring a polynomial with more than 512 modular factors
and few true factors.

As proposed by van Hoeij, it is possible to compute different traces to different
p-adic precision, or to vary N , the number of traces added in each step, or to
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use small random linear combinations of traces. But it does not really improve
the situation here: the precision has to be kept high to prevent ‖M−1

L ‖ from
increasing.

2.4. Strategy B: decreasing b. In this variant, we apply the p-adic truncation
operator T a,b to the lattice basis, LLL-reduce the approximate basis and apply
the LLL base change matrix to the original basis. We then iterate the process
on better and better approximations of that same lattice, whose bases are closer
and closer to being LLL reduced. In this process, the parameter b decreases
until pb drops below 2Btrace. In effect, it is as if we had performed a single LLL
reduction on the lattice without applying the truncation operator at all. Since
we add p-adic digits incrementally, the bulk of the reduction work operates on
small integers.

This is an exact version of Schnorr-Euchner floating point LLL-reduction [27],
which should perform particularly well on our class of lattices. Namely, short
vectors are actually short, with very small entries when expressed in the initial
basis, hence they should be detected in the lattice built from the higher digits
of the basis vectors. Assuming the parameter b decreases by a fixed amount δ,
we expect fewer LLL runs than the worst case (a− bmin)/δ before finding a truly
LLL-reduced basis, and that entries collapse as soon as we find it. In fact, instead
of mechanically letting b run through the arithmetic progression a−kδ, we update
b in terms of the current input lattice basis, so that δ significant p-adic digits are
fed to the algorithm, without “leading zeroes”.

This is a special case of van Hoeij’s method, designed to avoid precision guesses
which were the downfall of Strategy A. Low values of δ can reliably be used: if
we fail to discard extraneous basis vectors in the initial LLL run because of
insufficient reduction, we detect them later, using the same traces. Since we
restart from an already somewhat reduced basis, we expect smaller entries. Also,
for a given group of traces, we can use low quality ratios in all LLL runs but the
last, when b = bmin, speeding up the intermediary reductions. In short, due to its
stability, Strategy B takes full advantage of each computed trace, without having
to pay for it.

Algorithm 2.2 (SearchTrueFactors: decreasing b)
Input: a list of n modular factors known to precision pa, positive integers tried and
N , a positive real number BitsPerFactor. Assume all combinations with (strictly)
less than tried factors have already been tried. N is the number of new traces to
include in each run. BitsPerFactor determines the amount of information fed to
each LLL run

Initialization: Let s := N , C :=
⌈√

Nn/4
⌉
, CML := C times the n × n identity

matrix, Broot a bound for the modulus of the largest complex root of P , and Blat :=
C2n + Nn2/4.
Repeat the following steps:

(1)Compute Btrace := nBs
root. Let bmin :=

⌈
logp(2Btrace)

⌉
.

(2)If a ≤ bmin, increase a and lift all modular factors and cached Newton traces.
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(3)Choose a p-adic precision and build the initial LLL input matrix M , as per
Subpart 2.3 .

(4)[lattice reduction]: LLL-reduce in place the matrix M .
(5)Let r the smallest index such that Bi > Blat for all i > r. If r = 1, return

“irreducible”.
(6)[update CML]: let CML the n × r matrix whose entries are those of the

upper left part of the new M (after the LLL reduction).
(7)[iterate] If b > bmin, decrease b and update M as per Subpart 2.4, then go to

Step 4. Otherwise, continue to Step 8.
(8)If CML does not have maximal rank, replace it by its integral image. Finish

with this group of N traces as in Strategy A, and return to Step 1 to feed
more traces.

Subpart 2.3 (Initialize M)
sets up the knapsack lattice (caches Newton sums and compute initial basis) and
outputs a suitably truncated basis:

(1)Set ML := CML/C (exact division), r := dim ML (upper bound for the
number of true factors). Let S0 be the N × n matrix of traces of degree
s−N + 1, . . . , s. Set S1 := (S0 ×ML) mod pa.

(2)[choose p-adic precision] Set δ so that

pδ ≈ ‖S1‖∞/2r·BitsPerFactor.

Set b := a− δ. If b < bmin, set b = bmin and δ := a− b. The parameter δ is
the number of new p-adic digits we input to each LLL run. It is chosen so that
we input roughly BitsPerFactor bits of information per modular factor.

(3)Let M be the (n + N) square matrix(
CML 0

T a,b(S1) pa−bIdN

)
Subpart 2.4 (Update M)
computes a suitable truncation of the new knapsack lattice basis:

(1)Set ML := CML/C (exact division), and S1 := (S0 ×ML) mod pa.
(2)Set b := min(b,

⌈
logp‖S1‖∞

⌉
). Decrease b by δ; if b < bmin, set b := bmin.

(3)Let M the (n + N)× r matrix(
CML

T a,b(S1)

)
Remark 2.5. As specified above, Algorithm 2.2 may not terminate. To make it
rigorous, one may add the following statement to Step 8: if s > n, increase the p-
adic precision a and restart. Termination now follows from van Hoeij’s proof [30,
Lemma 2.10].

We conjecture that parameters a and N polynomially bounded in terms of
the input size can be chosen so as to guarantee that the algorithm terminates
in a single LLL run on the non-truncated lattice (with b = 0). It would then
be easy to turn Algorithm 2.2 into a rigorous polynomial time algorithm. This
variant would remain practical by providing the theoretically required information
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incrementally and decomposing this huge LLL reduction into many smaller ones:
introducing a decreasing truncation parameter b as above, but also increasing
successively N then a (initially chosen according to heuristics, not to worst case
bounds). We would expect the process to stop long before the theoretical bounds
are reached.

Remark 2.6. The original factorization algorithm of Lenstra-Lenstra-Lovàsz [20]
admits analogous practical variants. It is obviously possible to decompose its
single lattice basis reduction into many smaller ones, in particular by using lower
p-adic accuracies and feeding p-adic digits incrementally as above. This may
detect factors at low precision. On the other hand, it seems likely that van
Hoeij’s algorithm will succeed sooner: it looks for a base change matrix with
{0, 1} coefficients, whereas [20] looks for large coefficients of a rational factor and
will need to reach the theoretical bounds before yielding a proven irreducibility
result for instance.

2.5. Experiments.

2.5.1. Tunings. Strategy A, for those polynomials where it succeeds, was con-
sistently much slower than Strategy B, once good parameters for B had been
chosen. Mixing strategies and composing incremental reduction and dimension
decrease became pointless since low precision LLL runs become cheap as soon as
the lattice rank really decreases (see §2.5.3). So we now focus on strategy B.

We use the tuning parameters

N = 1, and BitsPerFactor = 0.5

which performed best on average. Other values of BitsPerFactor between 0.25
and 0.75 give only slightly worse timings (about 20% variation); increasing N , on
the other hand, results in much slower LLL runs. In the following experiments, we
disabled the “power tests” that speed up the factorization of P (Xm) by recursively
factoring P , then Q(Xk) for certain Q | P and k | m. The general strategy is
to first try a näıve recombination of all sets of factors with 3 elements or less
(our examples were chosen so that it never succeeds), then switch to van Hoeij’s
method.

2.5.2. Timings. Columns Deg, Dig and n give respectively the degree of the cor-
responding polynomial, the number of decimal digits of its largest coefficient, and
the number of p-adic factors; columns Lift, Knap give respectively the setup time
— small prime factorization and Hensel lifting —, and the total recombination
time using Strategy B.
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Pol. Deg Dig n mod p Lift Knap. Total
P4 462 756 42 2.2 13.8 0.4 16.5
P5 64 40 32 0.0 0.1 0.1 0.2
P7 384 57 76 1.2 1.6 1.7 4.5
P8 972 213 54 14.6 15.4 0.6 30.7

M12,5 792 2813 72 14.7 65.6 16 96.5
M12,6 924 3937 84 26.7 131 76 208
S7 128 87 64 0.1 0.3 1.2 1.7
S8 256 188 128 0.6 1.4 26 28.5
S9 512 402 256 4.6 8.5 718 731
S10 1024 854 512 40.3 78.2 30065 30186
S6S7 192 127 96 0.3 0.7 7.2 8.2
S7S9 640 490 320 8.4 15.2 2268 2292
S8S9 768 590 384 14.1 27.8 5867 5910

The polynomials P4 to P8 come from Zimmermann [32]; P4 has two factors of
degree 66 and 396, P5 to P8 are irreducible. M12,5 and M12,6 are the 5th and 6th
resolvents of the polynomial f with Galois group M12 from van Hoeij’s paper [30,
§3.2]; M12,5 is irreducible whereas M12,6 has two factors of degree 132 and 792;
these polynomials are non-monic. St denotes the Swinnerton-Dyer polynomial
corresponding to the t first primes.

Remark 2.7. The Swinnerton-Dyer polynomials SP are typical building blocks
for polynomials which are hard to factor (näıve recombination takes exponential
time). They are defined inductively:{

S∅(X) := X
SP∪{n}(X) := ResY ((X + Y )2 − n, SP(Y )) if P is a list of integers

The polynomial SP has degree 2|P|, at least 2|P|−1 modular factors, and is irre-
ducible over Q provided the elements of P are multiplicatively independent.

Our implementation could be improved in numerous ways: in particular, poly-
nomial arithmetic in PARI does not support the FFT or subquadratic division
(integer arithmetic does), and we use an all-integral LLL for lack of a stable
floating point or divide and conquer implementation in huge dimensions, as in
Koy-Schnorr [17, 18].

But it is already plain that van Hoeij’s method is a major breakthrough: in
many of the cases previously considered to be very difficult, Hensel lifting now
dominates the running times. For instance, the polynomial P8 was impossible to
factor three years ago. Abbott, Shoup and Zimmermann [1] eventually managed
to prove its irreducibility using sophisticated implementations and huge tables
to prune the recombination tree in Zassenhaus algorithm (recombination took of
the order of one hour of CPU time).

2.5.3. Number of LLL reductions. The following example is typical of the collapse
in entry size expected from Strategy B, and always observed in practice. Let

P := SP(X)SQ(X)SR(X + 1),
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with

P = {2, 3, 5, 7, 11, 13, 17, 19, 23},
Q = {2, 5, 7, 11, 13, 17, 19,−2,−3}
R = {2, 3, 7,−11, 13, 17, 5,−7}

be a “random” product of perturbated Swinnerton-Dyer polynomials. It has
degree 29 + 29 + 28 = 1280, at least 28 + 28 + 27 = 640 modular factors, and 3
true factors of degree 29, 29 and 28. Using Beauzamy’s bound, we can choose
pa = 223543 throughout.

s initial r δ successive b # LLL runs Time
1 640 42 543, 501 , 3 2 7266
2 634 41 543, 502 , 4 2 6155
3 604 39 543, . . . , 387, 5 5 28879
4 522 34 543, . . . , 271, 6 9 45949
5 380 25 543, . . . , 218, 7 14 23976
6 215 14 543, . . . , 363, 9 13 2094
7 93 7 543, . . . , 480, 10 10 75
8 29 5 543, . . . , 533, 11 3 1
9 8 5 543, 538, 12 2 0
10 4 5 543, 13 2 0

In the “successive b” column, b0, . . . , b denotes the uneventful sequence b0, b0 −
δ, b0 − 2δ, . . . , b. Roughly 31h54min were needed to recover the correct factoriza-
tion, among which all but 11 minutes were spent in the LLL reductions depicted
above. There were 62 LLL runs in total, only 11 of which took more than 1h; the
two most expensive runs took place when s = 3 for about 3h each.

3. A variant over number fields

In this section, a finite extension K of Q (a number field) is given and let
d = [K : Q] and OK its ring of integers. For basic number fields algorithms
(e.g. decomposition of primes, “polynomial reduction” algorithms, ideal arith-
metic), the reader is referred to [9, 24, 25]. For a fractional ideal x ⊂ K, Nx
denotes the absolute norm of x. By abuse of notation, we write Nx for N(x) if
x ∈ K.

3.1. Representation of elements in K. By the primitive element theorem, we
can write K = Q(α), where h(α) = 0 with h ∈ Z[Y ], of degree d. We choose
α ∈ OK, i.e. h monic, so that Z[α] is a submodule of OK of finite index. To
describe the algorithm at the right level of generality, we fix henceforth an order
O, such that Z[α] ⊂ O ⊂ OK, a basis (ωi) of O and a denominator f ≥ 1 such
that any z ∈ OK can be represented as

z =
1

f

d∑
i=1

ziωi, where zi ∈ Z.
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In particular, we do not insist that O be maximal (= OK) nor f minimal (= the
exponent of the additive group OK/O), in order to avoid having to compute an
integral basis3 for K.

The precise choices depend on the given field and how much initialization time
we allow. To keep initializations to a minimum, we can take O = Z[α], ωi = αi−1,
and compute a simple multiple f of the index. For instance we can take for f any
multiple of the largest integer f0 such that f 2

0 divides disc(h), e.g disc(h) itself
after weeding out some prime divisors found through partial factorization (see [2]
for a less näıve approach using reduced discriminants).

On the other hand, we get smaller bounds, hence better running times in our
factorization algorithms, if O is as large as possible and f is somewhat minimal.
Optimally, we can afford to compute OK and take O = OK, hence f = 1. Also,
we will see that the basis (ωi) should be LLL-reduced for the quadratic form T2,
to be defined in §3.3. We shall not dwell further on this particular optimization
problem, and take (O, f, (ωi)) for granted.

3.2. Factorization in K[X]. Let P be a polynomial with coefficients in K. For
simplicity, we assume that P is monic and has coefficients in Z[α], which is
achieved by a change of variables. We shall further assume that P has no square
factors, which is achieved by square free factorization.

As any other factoring algorithm over Q, van Hoeij’s method can be used to
factor P over K, using Trager’s method: we factor the norm

Pλ := ResY (P (X − λY ), h(Y )) ∈ Q[X],

where the coefficients of P are lifted from K := Q[Y ]/(h) to Q[Y ] and λ is a
small rational integer chosen so that Pλ is squarefree. Each Q-factor G of Pλ is
divisible by a unique K-factor of P , which is extracted as gcd(G(X + λY ), P )
over K[X]. Assuming efficient modular implementations for the initial resultants
and final gcds, the main bottleneck with this reduction to the absolute case is
the recombination phase during the factorization of Pλ. Van Hoeij’s algorithm is
very suitable for this kind of polynomials, and Galois resolvents in general, since
it is not too sensitive to the size of coefficients, besides the Hensel lifting phase,
and is able to cope with the huge number of modular factors which are often
intrinsic to the method.

We shall describe an application of van Hoeij’s ideas to the direct factorization
in K[X], which is in general superior to the norm approach since the number
of modular factors over K is smaller than over Q, possibly by a factor of d,
without increasing too much the cost of the other steps. We follow roughly the
approach of Roblot [26], himself following Lenstra [19], with various improve-
ments. (Namely, using an arbitrary order instead of OK, faster reconstruction
through better bounds and reduction heuristics, and van Hoeij’s knapsack.)

3While well understood (it amounts to factoring h over Qp for all primes p whose square
divides disc(h)), this process remains time-consuming and involves factoring the discriminant
of h. See [7, 13].
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3.3. L2 bounds. It is classical to measure the size of an element x ∈ OK in terms
of the quadratic form T2(x) :=

∑
σ|xσ|2, where σ runs through the d embeddings

of K into C and xσ := σ(x).
We first recall standard upper bounds on the coefficients of a monic factor

G = Xk +
∑

i<k giX
i of P in K[X]. We derive a uniform bound on the coefficients

of G by

Lemma 3.1. Let G =
∑

i≤k giX
i be a monic divisor of P as above. Then all the

gi are integral and we have

T2(gi) ≤
∑

σ

B(i, P σ)2,

where B(i, Q) is any bound for the modulus of the i-th coefficient of a factor of
Q ∈ C[X].

Proof. Let P = GH in K[X], then

cont(P ) = cont(G)cont(H),

where cont(A) denotes the fractional ideal generated by the coefficients of A ∈
K[X]. Since P ∈ OK[X] is monic, we have cont(P ) = OK. Since G is monic, so
is H, and their contents both contain OK. It follows that cont(G) = cont(H) =
OK, hence all gi belong to OK. The T2 bound is straightforward since, for each
embedding σ : K → C, the polynomial Gσ divides P σ in C[X]. �

We take for B(i, Q) the minimum of Beauzamy’s and Mignotte’s bound (cf. [3,
21]), computed using numerical approximations to evaluate the embeddings σ.
For later reference, we also bound the Newton sums of true factors:

Lemma 3.2. Let G be as above. Then, for all integer k ≥ 0, the Newton sum
Sk(G) is in OK. For any embedding σ, we have

T2(Sk(G)) ≤ deg(P )2
∑

σ

B2k
root(P

σ)

where Broot(Q) is any bound for the modulus of the complex roots of Q.

Proof. From Lemma 3.1, G ∈ OK[X]. Since G is monic, the Newton sums are
integral combinations of the coefficients of G, hence integral. The bound on
T2(Sk(G)) is obvious by summation. �

In practical computations, it is more convenient to use our specified basis (ωi).
For x =

∑
xiωi ∈ K, we let |x|2 :=

∑
x2

i . This new quadratic form is easily
related to T2:

Lemma 3.3. Let M = (mij) ∈ Md(Q) be the matrix such that (ωi) = (αi−1)M ,
and V =

(
(ασ)j−1

)
σ,1≤j≤d

be the Vandermonde matrix associated to the complex

roots (ασ) of h, then

|x|2 ≤ CT2T2(x), with CT2 = ‖M−1V −1‖2
2,

where ‖(ai,j)‖2 := (
∑

i,j|ai,j|2)1/2
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Proof. Let x = (ωj)
t(xj) = (αj−1)M t(xj), (xj) ∈ Qd. Writing the d different

embeddings of this equation in C, we obtain

t(xσ) = V M t(xj), hence |x|2 ≤ CT2T2(x)

by Cauchy-Schwarz. �

To use Lemmas 3.1 and 3.3 as stated, it is crucial to know the roots of h
with guaranteed error bounds, such as with Gourdon-Schönhage’s root-finding
algorithm [14]. Note that M−1 ∈ Md(Q) is known exactly and V −1 is stably
evaluated to arbitrary precision from Lagrange interpolation formula, since its
i-th line gives the coefficients of Ei ∈ C[X] such that Ei(α

σj) = δij for all j. It is
possible to bound

‖M−1V −1‖2 ≤ ‖M−1‖2‖V −1‖2,

which requires less accuracy for a reliable evaluation, but we obtain a worse
bound for a negligible computational saving. We shall explain in Remark 3.13
the practical reasons behind the choice of | . |2 over T2.

Note that CT2 tends to be much smaller if ((ωj), T2) is LLL-reduced, since the
L2 norm of V M is then provably smallest possible, up to a multiplicative constant
depending only on the quality ratio and the dimension d.

Corollary 3.4. Let ‖P‖2
2 :=

∑
σ‖P σ‖2

2, and assume that (wi) is LLL-reduced for
T2. With notations as in Lemma 3.1 and Lemma 3.3, we have

T2(gi) = O(4deg(P )‖P‖2
2)

CT2 = O(1)d2

Proof. The first estimate follows from Mignotte’s bound, and the second from
V M = (wσ

j ), the formula for the matrix inverse, and the Hadamard bound,
which bounds the square of a cofactor by∏

j

T2(wj) � O(1)d(d−1) det(V M)2

for an LLL-reduced basis. �

As usual for estimates using the LLL worst case bound, the second one is quite
pessimistic: in the examples from §3.11, where d gets as large as 50, we always
obtained CT2 < 1.

3.4. Modular factorization. Let p be a prime ideal such that P mod p is
squarefree, and such that p - disc(h), so that the p-adic completion Kp of K
is unramified. For matters of efficiency it is worth trying several p such that
P mod p has few factors in OK/p. When choosing p, note that taking p of
small residual degree improves factorization mod p, Hensel lift and computation
of Newton sums, while a large residual degree means easier reconstruction of
algebraic numbers from p-adic factors, see §3.7.
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Remark 3.5. Chebotarëv’s density theorem implies that the density of primes p
such that there exist p | p of residual degree 1 is larger than 1/d, with equality
if and only if K/Q is Galois [22, Corollary 6.5]. It is not known unconditionally
whether the first such p is small (assuming GRH, it is O(log2|disc(K)|)), but in
practice it is easy to find one. On the other hand, there may not exist any prime
ideal of large residual degree; for instance if K is a compositum of t quadratic
fields, whose degree 2t can be made arbitrarily large, the residual degree is either
1 or 2.

We lift the factorization over Kp. The monic irreducible factors are computed
modulo pa, where a is large enough to enable reconstructing a genuine factor from
its modular approximation, given bounds on the size of its coefficients. For this
reconstruction, we shall improve on a method of Lenstra [19].

3.5. Preliminaries on lattices.

Definition 3.6. Let E be a Euclidean space, Λ ⊂ E a lattice with given basis
B = (bi).

(1) We define the (open, centered) fundamental domain associated to B by

F = F(B) :=
{∑

λibi, (λi) ∈ RB, |λi| < 1/2
}

(2) Let B(0, r) be the open ball of radius r, centered at 0. We denote

rmax = rmax(B) := sup
{
r ∈ R+, B(0, r) ⊂ F

}
,

the radius of the largest ball inscribed in the closure of F.

We solve the reconstruction problem using the following

Lemma 3.7. Let E, Λ, B, F, rmax be as in (3.6), and | |2 the Euclidean norm.
If x ∈ E, there is at most one y ∈ E such that

x ≡ y (mod Λ) and |y| < rmax.

If it exists, y is the unique element in F congruent to x modulo Λ. In terms of
coordinates (on a fixed arbitrary basis), let M be the matrix giving the (bi), then
y is given by

(5) y = x mod M := x−M
⌊
M−1x

⌉
.

As usual, bxe := bx + 1/2c is the operator rounding to nearest integer and is to
be applied coordinatewise.

Proof. If |y| < rmax, then by definition y ∈ F. If y′ = y + λ is another solution,
with λ ∈ Λ, then |λ| ≤ |y| + |y′| < 2rmax, hence λ ∈ 2F ∩ Λ = {0}. The other
assertions are obvious. �

The radius rmax is computed in the following way:
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Lemma 3.8. Let (b∗i ) be the orthogonalized vectors corresponding to (bi), and let
R be the (upper triangular) Gram-Schmidt base change matrix: (bi) = (b∗i )R. Let
(ti,j) := R−1; then

rmax = min
i

1

2Ti

, where Ti :=

(∑
j

t2i,j/|b∗j |2
)1/2

Proof. Let x =
∑

i λibi =
∑

i λ
∗
i b
∗
i , with coordinates λi, λ

∗
i ∈ R. By definition of

R, we have the relation λi =
∑

j ti,jλ
∗
j for all i. Provided |x|Ti < 1/2, Cauchy-

Schwarz yields

(6) λ2
i =

(∑
j

ti,jλ
∗
j

)2

≤
∑

j

(λ∗j)
2|b∗j |2

∑
j

t2i,j/|b∗j |2 = |x|2T 2
i <

1

4
.

Conversely, let i an index such that Ti is maximal and

x :=
1

2T 2
i

∑
j

ti,j
|b∗j |2

b∗j ,

defining implicitly the (λj) and (λ∗j). Then all inequalities in (6) become equalities
and |x| = 1/(2Ti) = minj 1/(2Tj) implies that x is on the boundary of F by the
previous argument (since |λj| ≤ 1/2 for all j, and λi = 1/2). �

For a fixed Λ, a convenient way of maximizing rmax is to use an LLL-reduced
basis, which is close to orthogonal, with |b∗i | not much smaller than |b∗1|. From a
theoretical point of view

Lemma 3.9 (Lenstra [19]). We have

rmax(B) ≥ r0 :=
1

2
min

i
|bi| ×

∏
j

|b∗j |
|bj|

.

Proof. The product
∏
|b∗i | is the volume of the fundamental domain F, hence is

independent of the ordering of the (bi). Let x =
∑

i λibi =
∑

i λ
∗
i b
∗
i ; by symmetry,

it is enough to prove that

|x| < r0 =⇒ |λn| < 1/2.

Since the Gram-Schmidt base change matrix R is triangular with identity di-
agonal, we have λn = λ∗n. Hence |x| = λn|b∗n| + |u|, where u is the orthogonal
projection of x on 〈b1, . . . , bn−1〉. Finally, |x| < r0 implies

|λn| < r0/|b∗n| ≤
1

2

∏
i6=n

(|b∗i |/|bi|) ≤ 1/2

since mini|bi| ≤ |bn| and |b∗i | ≤ |bi| for all i. �

Assume that Λ is LLL-reduced with quality ratio α; let γ := (α − 1/4)−1 ≥ 4/3
and d := dim E. Then, from the properties of an LLL-reduced basis (see e.g. [9,
Theorem 2.6.2]), Lenstra obtains that

rmax(B) ≥ mini|bi|
2γd(d−1)/4
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A direct study from Lemma 3.8 yields the following improvement:

Proposition 3.10. Assume (bi) is LLL-reduced with quality ratio 1/4 < α ≤ 1;
let γ := (α− 1/4)−1 ≥ 4/3 and d := dim E. Then

rmax(B) ≥ |b1|
2(3

√
γ/2)d−1

.

Proof. The matrix R is upper triangular, with identity diagonal, hence ti,i = 1,
1 ≤ i ≤ d. Since (bi) is size-reduced, the off-diagonal entries of R are bounded by
1/2. By induction (or by a straightforward estimation of the cofactor of ri+k,i),
we obtain |ti,i+k| ≤ (1/2)(3/2)k−1 for 1 ≤ i ≤ d, 1 ≤ k ≤ d − i. From the
properties of LLL-reduced bases, we have |b∗1|2 ≤ γi−1|b∗i |2, for i ≥ 1 ([9, proof of
Theorem 2.6.2]). It follows that

|b∗1|2
d∑

j=1

t2i,j/|b∗j |2 ≤
d−i∑
k=0

t2i,i+kγ
i+k−1

≤ γi−1 + (γi/4)
d−i∑
k=1

(9γ/4)k−1

= γi−1 + γi (9γ/4)d−i − 1

9γ − 4
< (9γ/4)d−1

since γ ≥ 4/3 > 1/2 implies that 1/(9γ − 4) < 1/γ. The result follows since
b∗1 = b1. �

The actual bound given by the proof is slightly sharper; we use this simpler
form since we shall not need its precise value. Also, as d tends to infinity, the
tighter bound does not improve significatively on log rmax, which is the significant
parameter here.

Remark 3.11. Note that rmax ≤ 1
2
mini|b∗i | ≤ 1

2
|b1|, with equality when (bi) is

orthogonal and b1 is a shortest vector in the basis. For an LLL-reduced basis,
Proposition 3.10 proves that the right-hand side is close to rmax, up to a multi-
plicative constant depending only on the dimension and the LLL quality ratio.

3.6. Reconstruction from p-adic approximation. Assume we want to recon-
struct algebraic integers x ∈ OK satisfying T2(x) < C. We could use the following
a priori bound:

Lemma 3.12. Let (bi) be a basis of Λ = pa, LLL-reduced for T2 with quality
ratio α, and let γ := 1/(α − 1/4), d := [K : Q]. Let C > 0 and x ∈ OK such
that T2(x) < C; then we can apply Lemma 3.7 to reconstruct x uniquely from x
(mod pa), provided

Npa ≥
(
2
√

C/d · (3√γ/2)d−1
)d

Proof. We apply Lemma 3.7 to Λ = (pa, T2). Since b1 ∈ pa − {0}, we have

T2(b1) ≥ d(Nb1)
2/d ≥ d(Npa)2/d,
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where the first inequality follows from the arithmetic geometric means and the
second from the fact that Npa | Nb1, with Nb1 6= 0. From Proposition 3.10, it
follows that

rmax ≥
√

d(Npa)1/d

2(3
√

γ/2)d−1
,

and we can apply Lemma 3.7 as soon as rmax >
√

C. �

This bound, in particular the term (3
√

γ/2)d−1, is rather pessimistic, and its main
purpose is to show that a is polynomial in log C and d. In fact, it is O(d2+d log C),
whereas Lenstra and Roblot used a bound in O(d3 + d log C).

It follows from the preceding discussions, and in fact from Lenstra’s original
argument, that the LLL-reduction of pa is achieved in polynomial time with
respect to d and log C. Nevertheless, it is very expensive in practice: we shall
see it quickly dominates the running time when d gets large. Hence, in order to
reconstruct x ∈ OK such that |x|2 < CT 2C, we rather proceed as follows:

(1) Start from a heuristic value of a; say, the one from Lemma 3.12 barring
the (3

√
γ/2)d−1 term.

(2) Find an LLL-reduced basis B of Λ = (pa, | |2).
(3) Compute rmax(B) exactly, using Lemma 3.8. Note that R and the squared

lengths of the b∗i are computed during the LLL algorithm; these computa-
tions are exact since Λ has exact entries. The matrix R is upper triangular,
with ones on the diagonal, hence easily inverted. This inversion and the
weighted L2 norm computations are stable, yielding a guaranteed sharp
lower bound for rmax with O(d3) low accuracy floating point computations.

(4) If r2
max > CT2C we are done, otherwise double a and restart from Step 2.

We shall apply these results for increasing values of C. We use a given p-adic
precision and given reduced basis as long as r2

max ≥ CT2C. In practice, these
improvements have a significant impact when factoring small polynomials over
large fields, but are negligible when log C � d.

Remark 3.13. We have chosen | . |2 instead of the more natural T2 to be able to
use an integral LLL algorithm in Step 2. Choosing T2 yields smaller bounds (only
slightly so, provided (ωi) is LLL-reduced), but would force us to compute embed-
dings to a huge accuracy to avoid stability problems during the LLL reduction.
This idea is due to Fieker and Friedrichs [12].

Remark 3.14. A convenient feature of Lenstra and Roblot’s method is that ratio-
nal reconstruction is given by a formula (5), once the expensive preliminary LLL
reduction of pa is done. This formula is crucial to our extension of van Hoeij’s
method, especially the truncation of low order bits in §3.9.

Pohst has suggested using a smaller value of a, and enumerating short vectors
in congruence classes modulo pa instead. (This variant is implemented in the
KANT system [10].) In practice, Pohst’s bound is the one from Lemma 3.12,
barring the γ term coming from the uncertainty on the LLL output:

Npa ≥
(
2
√

C/d
)d

,
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so it probably provides at most a minor improvement on the method suggested
above. Also, we do not see how to adapt van Hoeij’s method in this framework.

3.7. Practical improvements to the reconstruction LLL. The drawback of
relative factorization methods is that reconstruction of algebraic numbers from p-
adic approximations is costly when d is large, since it requires the LLL reduction
of a lattice of dimension d and huge entries. If many factorizations over the same
ground field are required, this reduction needs only be performed once, provided
the coefficient bounds are of the same order of magnitude, and polynomials to be
factored remain squarefree modulo the chosen prime. The following discussions
assume that the reconstruction LLL is not part of the precomputations.

To reconstruct x with |x| < C, Lemma 3.12 requires log Npa ≈ d2 + d log C.
An HNF matrix for pa has entries bounded by Npa/f , where f is the residual
degree of p. For entries of bitsize B, the original LLL runs in at most O(Bd4)
operations on numbers of bitsize O(Bd), see [20, Proposition 1.26]. For a fixed
polynomial P , we have log C = OP (d2) by Corollary 3.4 hence B = OP (d3/f); for
a prime ideal p of degree 1, this yields an impressive upper bound of OP (d11+ε)
bit operations for every ε > 0, using asymptotically fast arithmetic. Assuming
B = OP (d2), which is closer to the observed behaviour, this would go down to
OP (d9+ε). Although polynomial in d, this gets formidable as d increases.

When deg(P ) is small compared to d, it is then expected that Trager’s algo-
rithm is faster than relative methods, even though the latter incur no recombi-
nation time while the former may have a large number of modular factors and
involves taking gcds over a large number field. Even for tough Galois resolvents,
this single LLL reduction may well dominate the running times (§3.11.5). We use
the following specific reduction strategy:

(1) If the field degree d is small, use prime ideals p of degree 1 for faster
Hensel lift, Newton sums and reconstruction of algebraic numbers (once
the initial LLL reduction is done). Otherwise look for higher residual
degree, taking care not to cripple factorization modulo p. If p is far from
inert, the matrix M of pa in HNF is badly skewed.

(2) Use Peter Montgomery’s heuristic partial LLL algorithm (unpublished,
lllintpartial in PARI) on M . The resulting matrix M ′ is partially re-
duced (two distinct columns c1, c2 satisfy |c1±c2| ≥ |c1|) and has expected
sup norm around Npa/d. In general, it is far from being LLL-reduced.

(3) Apply a floating point LLL reduction to M ′ following Schnorr-Euchner
strategy [27], with Householder orthogonalization.

The partial reduction in Step 2 yields important practical speedups: for a prime
ideal of residual degree f , the expected bitsize of the matrix entries is divided by
d/f . In practice, more than 80% of the reduction time is spent in the last step.

3.8. The relative knapsack. To adapt van Hoeij’s algorithm, we first introduce
the adapted knapsack problem, and postpone the relative truncation to the next
section. We begin by fixing a lift OKp/p

a → Zd. The ideal pa ∩ O is represented
by a Z-basis: (ωi)M , where M is an integral d × d matrix. We define lift(x) :=
x mod pa, where the latter is defined by taking any representative y =

∑
yiωi
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of x in O, then reducing (yi) modulo M , as in Lemma 3.7. This coincides with
the centered representative used over Q for p 6= 2. The basic knapsack lattice is
given by (

CIdn 0
S Q

)
where

• C ≥ 1 is a suitable integer constant (see below).
• S = lift(fSKp) is a (Nd)× n matrix, where

SKp :=

Si1G1 . . . Si1Gn
...

...
...

SiN G1 . . . SiN Gn

 ,

• Q is a (Nd)× (Nd) block diagonal matrix, with blocks equal to M on the
diagonal.

The Newton sums are computed from the Newton formulae as in the absolute
case, and are bounded using Lemma 3.2. To any true factor of P corresponds
u ∈ {0, 1}n and v ∈ ZNd such that the image of ( u

v ) has squared L2 norm bounded
by

C2n + ‖Su + Qv‖2
2

and we can bound ‖Su + Qv‖2 ≤ Btrace using Lemma 3.2 and 3.3, with

(7) B2
trace := f 2CT2 deg(P )2

N∑
k=1

∑
σ

B2ik
root(P

σ).

The constant C is chosen so that C2n ≈ B2
trace. It is not necessary at this point

that M be LLL-reduced, nor that we use the lift specified above, although both
conditions certainly speed up the reduction.

3.9. Truncation. For t > 1 any integer we now define the truncation T a,t
K :

OKp/p
a → Zd by T a,t

K (x) := blift(x)/te. Over Z, we could have used the operator

T a,pb

Q instead of T a,b, since they are equal modulo pa−b and yield equally small
entries.

To follow exactly van Hoeij’s argument, we need truncated elements to belong
to OK. In general, we do not control what happens at q | p, q 6= p, hence we
cannot divide out by powers of p and preserve integrality, so we do not insist that
t be a power of p. On the other hand, if p is inert, then van Hoeij’s idea carries
through and, choosing t = pb, we obtain better bounds. Of course, such a p may
not exist.

Let t > 1 any integer, we write S = S0 + tS1, where ‖S0‖∞ ≤ t/2 (so that
S1 = T a,t(fSKp) applied blockwise), and likewise Q = Q0 + tQ1; hence

‖S0‖2 ≤
√

Ndn
t

2
and ‖Q0‖2 ≤

√
Nd

t

2
.

From the previous section, there exists u ∈ {0, 1}n, v ∈ ZNd such that

‖Su + Qv‖2 ≤ Btrace
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hence

‖S1u + Q1v‖2 ≤ Btrace/t + ‖S0u + Q0v‖2/t

≤ Btrace/t +

√
Ndn

2
‖u‖2 +

√
Nd

2
‖v‖2

In van Hoeij’s original argument, we can assume that Q is divisible by t, hence
Q0 = 0 and the last term drops out, so it is not important to control v. Here, we
have to make two further assumptions:

• the matrix M associated to pa is such that we can apply Lemma 3.7,
which is the case if a is so large that rmax ≥ Btrace. From this we deduce
that v = −bQ−1Sue.

• the specified p-adic lift is chosen for S, so that ‖Q−1S‖∞ ≤ 1/2.

For a vector x ∈ Rd, we have bxe = x + ε, where ‖ε‖∞ ≤ 1/2 hence

‖bxe‖2 ≤ ‖x‖2 +
√

d/2.

From which we gather

‖v‖2 ≤ ‖Q−1Su‖2 +

√
d

2
≤
√

Ndn

2
‖u‖2 +

√
d

2

Finally, using ‖u‖2 ≤
√

n, we obtain

(8) ‖S1u + Q1v‖2 ≤ Bhigh := Btrace/t +
n
√

Nd

2
(1 +

√
Nd/2) +

d
√

Nd

4
So our final knapsack lattice is given by(

CIdn 0
S1 Q1

)
where C ≥ 1 is chosen so that C2n ≈ B2

high. We use either strategy A or B at
this point, strategy B being by far the most efficient.

Remark 3.15. Note that ‖Q0‖2, ‖S0‖2, and ‖Q−1S‖2 are cheaply and explicitly
computed, resulting in sharper practical bounds; in fact we can do even better
and bound directly ‖S0u‖2 and ‖Q−1Su‖2, u ∈ {0, 1}n, via the ad-hoc norm ‖.‖
from Strategy A for a negligible extra cost.

If p is inert and we choose t a power of p, then Q0 = 0, in which case the bound
becomes Btrace/t + n

√
Nd/2. Here we essentially recover van Hoeij’s bound of

n
√

N/2 in the case d = 1 (K = Q), provided we can take t � Btrace, i.e provided
that modular factors have been sufficiently lifted.

3.10. d − k-tests. The d − k tests generalize to the relative situation: we pre-
compute S := T a,1(Sk(Gi)), 1 ≤ i ≤ n, and S1 := T a,t(S) where t is such that the
coordinates of S1 fit into machine integers. Now Q and Q1 are defined as above
and we check that

‖S1u−Q1

⌊
Q−1Su

⌉
‖2 ≤ Bhigh

(these are the high order digits of Su (mod pa)), before trying the putative factor∏
i G

ui
i , with (ui) ∈ {0, 1}n.
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The test is cheap since multiplication by u is simply the sum of a column selec-
tion, S1 and Q1 are fully precomputed, with small entries by the choice of t. The
matrix Q−1S is also precomputed, but it has rational entries of large height this
time. Hence, we replace it by a floating point approximation, so that rough ap-
proximations of Q−1Su can be quickly obtained, and the exact computation need
only be done when bQ−1Sue cannot be deduced with certainty, i.e. some coordi-
nate is close to the midpoint between two integers. This is expected to happen
with small probability: heuristically, assuming (wrongly) uniform distribution,
an entry x would satisfy

|x− bxe − 1/2| < ε/2 ≤ 1/2

with probability ε. In any case, this check is not very costly: only the dubious
coordinates need to be recomputed, each of them essentially at the cost of a single
division by the denominator of Q−1S.

3.11. Examples.

3.11.1. Implementation comments. The generalized Zassenhaus’s algorithm uses
a fixed bound derived from Lemma 3.1 and 3.3. By (7), the bound Btrace increases
as (maxσ Broot(P

σ))k with the trace index k. Remark 2.2 on the importance
of sharp estimates for Broot is even more important in the number field case
since weak bounds lead to extra, larger, reconstruction lattices. In the relative
situation, we use tight bounds derived from the Graeffe variants of Gourdon [14,
Chap. 3] (which were deemed too expensive over Q).

In our implementation, we use Trager’s method if 3 deg(P ) < [K : Q]. Oth-
erwise we first try a näıve recombination of all sets of modular factors with 3
elements or less; if the number of modular factors is smaller than 10, the factor-
ization is run to completion in this way. For the knapsack, the tuning parameters

N = 1, BitsPerFactor = 0.5

were determined experimentally to give best performance on average; other val-
ues of BitsPerFactor between 0.25 and 0.75 give analogous timings, with more
variation as in the absolute setting.

From now on, (T ) denotes Trager’s absolute method, and (H) is the relative
factorizer introduced in this paper, generalizing van Hoeij’s ideas. As before, all
timings are given in seconds.

3.11.2. Simple situations. We start with a simple test to show the power of rel-
ative methods: let Φn(X) be the n-th cyclotomic polynomial. The time needed
to factor Φn(X + Y ) over K = Q[Y ]/(h(Y )) for all n ≤ 100 and various h is as
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follows
h(Y ) Time (H) Time (T )

Y 2 − 2 1.8 7.9
Y 3 − 3 2.4 20.6
Φ5(Y ) 3.4 45.0
Y 5 − 5 3.5 93.7
Φ7(Y ) 5.0 215.6
Φ11(Y ) 11.9 598.9

This is a typical behaviour for small base fields and simple polynomials, com-
pletely factored by a relative näıve recombination, whereas their norm can only
be factored over Q by using van Hoeij’s technique, with some difficulty.

3.11.3. Reconstruction trouble. Let us now consider polynomials of very small
degree, in large fields. A trivial example is (X−α)(X+α) over Q(α) for α = 21/32.
(T ) factors a polynomial of degree 64 and takes about 0.02s altogether, without
any arithmetic input about K.

Switching to (H), we take O = OK and eventually obtain a relative L2 bound of
105.8; using a prime of degree 1 above 7, and the standard quality ratio α = 3/4,
Lemma 3.12 provides the pessimistic exponent a = 145, and the reconstruction
LLL requires 20s. The minimal exponent depends on a number of non-canonical
choices; in our implementation, it is equal to a = 85. Even using that best
possible exponent, about 0.5s are still spent computing and LLL-reducing pa.
Picking the inert prime above 5, these computations become instantaneous, but
the relative method remains slower (0.2s).

3.11.4. Difficult examples. We now switch to more interesting polynomials. Here,
it is already slower to compute Trager’s resultant, let alone factor it: its degree
is 211, with huge coefficients and at least 210 modular factors.
• S7(X) over Q[Y ]/(S4(Y )), 26 modular factors: (H) finds the 24 factors in about
42s; respectively 30%, 30% and 10% of the time is spent reducing the (unique)
reconstruction lattice, reducing the recombination lattices, and in the Hensel
lift. Since only 22 modular factors are needed for each true factor, näıve relative
recombination is in fact faster (24s, using d− 1 and d− 2 tests).

• S8(X) over Q[Y ]/(S3(Y )), 27 modular factors: this is unfeasible with a näıve
approach since 24 modular factors are now needed for each of the 23 true factors.
(H) deals with it in 81 seconds, 1%, 55% and 20% of which being spent in the
reconstruction and knapsack LLL, and Hensel lift respectively; 15% were spent
in the fruitless näıve recombination.

3.11.5. Increasing the base field degree. We factor a product of two perturbated
Swinnerton-Dyer polynomials (S7S8)(X + Y ) over various random number fields
Q[Y ]/(h(Y )) of increasing degrees, selected4so that we can take O = OK. This
polynomial has at least 192 modular factors, but only 2 true factors unless the

4The fields are obtained by the following process: randomly generate a polynomial with sup
norm less than 10; eliminate if the integral basis of the associated field is not easily computed,
otherwise pipe it through a polynomial reduction algorithm.
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base field contains one of Q(
√

2), . . . , Q(
√

19), which only occurs in degree 2
below.

In order to study worst case reconstruction, we force the algorithm to use a
prime of residual degree f = 1, except for [K : Q] = 50 (see below). The following
table gives the time in seconds needed for setup (computing bounds, reducing and
factoring P modulo various prime ideals, Hensel lift), computing and checking
tentative factors (during the näıve recombination5 or at the end of the knapsack),
the single reconstruction LLL, and the various knapsack LLL.

[K : Q] Bounds Mod p Lift Check Rec. LLL Knap. LLL Total
1 0.7 2 8 1 0 182 195
2 3 2 8 6 0.0 223 244
3 7 2 15 8 0.0 211 245
4 9 2 21 16 0.1 286 337
5 12 2 31 15 0.4 347 415
6 14 3 40 20 0.8 299 387
7 16 3 57 25 2 356 476
8 17 3 61 41 3 348 495
9 22 3 89 39 8 393 591
10 27 4 101 45 12 449 682
11 27 4 105 51 17 476 734
12 31 4 121 60 29 555 868
13 33 5 139 73 46 602 997
14 34 4 156 86 72 688 1149
15 38 5 175 101 99 751 1302
20 51 6 270 170 489 1154 2445
30 83 11 523 625 4174 2567 9149

50 (f = 1) 146 18 1152 1736 72429 9117 90123
50 (f = 3) 146 600 2289 917 44360 9159 59166
50 (f = 9) 146 6166 3096 563 12435 9129 32014
50 (f = 19) 146 40846 3060 375 4707 9077 58401

Experimentally, the dependence on d is not as bad as the worst case O(d11+ε) from
§3.7 could suggest: least square fitting for Cdα yields α ≈ 5.5. The floating point
strategy helps a lot; for instance, the largest reconstruction we have attempted
with an all-integral LLL was in degree [K : Q] = 12: it required 1540 seconds,
instead of the above 29s. But reconstruction LLL using primes of degree f = 1
eventually dominates running times.

In degree 50, we give the timings associated to some prime ideals of larger
residual degree f ; the norm of pa was respectively 531×11310, 473×3888, 2719×891,
and 22719×436, all satisfying log Npa ≈ 44900. An optimum is attained when
balancing the costs of factorization mod p and reconstruction LLL, around f ≈ 10
in this specific case.

5Due to the nature of the polynomial factored, this step is a waste of time. We include it as an
indication of the performance of the generic algorithm: it checks

(
192
1

)
+
(
192
2

)
+
(
192
3

)
= 1179808

small factors, and a few large ones at the end of the knapsack.
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The polynomials used to define the base fields were as follows:
h1 = y − 1
h2 = y2 − 19
h3 = y3 − y2 + 6

h4 = y4 − 2y3 − 7y2 − 7y + 3
h5 = y5 − 3y3 − 2y2 + 8y − 10
h6 = y6 − 5y4 − y3 + 10y2 − 11y + 5

h7 = y7 − y6 − 32y5 − 100y4 − 130y3 − 70y2 + 4y + 23
h8 = y8 − 8y6 − y5 + y3 + 3y2 − 7y + 2
h9 = y9 − y8 − 42y7 − 180y6 − 375y5 − 452y4 − 327y3 − 133y2 − 31y − 11

h10 = y10 − 2y9 + 5y8 + 8y7 + 5y6 + 8y5 − 9y4 − 6y3 + 7y2 + 4y + 8
h11 = y11 − 5y10 + 3y9 − 5y8 + y7 − 5y6 + 8y5 + 7y4 − y3 + 2y2 − 6y + 9

h12 = y12 − 4y11 + 7y10 − 8y9 + 8y8 − 5y7 + 8y6 − 5y4 − 3y3 − 6y2 + y − 6

h13 = y13 − 5y12 + 8y11 − 10y10 + 3y9 + 7y8 + 6y7 − 5y6 − 9y5 + 5y4 − 8y3 + 8y2 + y − 8
h14 = y14 − 3y13 − 4y12 − 8y11 − 8y10 + 3y9 + 5y8 + 4y7 + 9y5 + 5y4 + 3y3 − 2y2 + 4y − 7
h15 = y15 − 3y14 − 4y13 − 8y12 − 8y11 + 3y10 + 5y9 + 4y8 + 9y6 + 5y5 + 3y4 − 2y3 + 4y2 − 7y + 7

h20 = y20− 3y19− 4y18− 8y17− 8y16 + 3y15 +5y14 +4y13 + 9y11 + 5y10 +3y9− 2y8 +4y7− 7y6 +7y5− 6y4−
4y3 + 4y2 + 6y + 3

h30 = y30 + y28 +3y27 +2y26− 8y25− y24− 7y23− 8y21− 8y20 +6y19− 10y18 +2y17 +6y16− 10y15− 10y14−
10y13 − 9y12 − 3y11 − 8y10 + 6y9 − 5y8 − 9y7 − y6 + 7y5 + 4y4 + y3 + y2 − 5
h50 = y50 + 3y49 − 4y48 + 8y47 − 8y46 − 3y45 + 5y44 − 4y43 − 9y41 + 5y40 − 3y39 − 2y38 − 4y37 − 7y36 −
7y35 − 6y34 + 4y33 + 4y32 − 6y31 + 3y30 − 2y29 − 9y28 + y27 − 9y26 − 10y25 − y24 − 8y23 + 6y22 + 6y21 + 5y20 +

2y19 +3y18−6y17−10y15−4y14−y13−y12−2y11 +2y10−10y9 +8y8−3y7−6y6 +6y5−8y4 +8y3 +y2−6y+5
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1852, INRIA, 1993.

[15] A. S. Householder, The numerical treatment of a single nonlinear equation, McGraw-
Hill Book Co., New York, 1970, International Series in Pure and Applied Mathematics.

[16] D. E. Knuth, The art of computer programming. vol. 2: Seminumerical algorithms,
Addison-Wesley, 1969.

[17] H. Koy & C.-P. Schnorr, Segment LLL-Reduction of Lattice Bases, in CaLC, LNCS,
vol. 2146, Springer, 2001, pp. 67–80.

[18] H. Koy & C.-P. Schnorr, Segment LLL-Reduction with Floating Point Orthogonaliza-
tion, in CaLC, LNCS, vol. 2146, Springer, 2001, pp. 81–96.

[19] A. K. Lenstra, Lattices and factorization of polynomials over algebraic number fields,
(Berlin), LNCS, vol. 144, Springer, Berlin, 1982, pp. 32–39.

[20] A. K. Lenstra, H. W. Lenstra, Jr., & L. Lovász, Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982), no. 4, pp. 515–534.

[21] M. Mignotte, An inequality about factors of polynomials, Math. Comp. 28 (1974),
pp. 1153–1157.

[22] J. Neukirch, Class field theory, Springer-Verlag, Berlin, 1986.
[23] PARI/GP, version 2.2.6, Bordeaux, 2003, http://www.parigp-home.de.
[24] M. Pohst, Computational algebraic number theory, DMV Seminar, vol. 21, Birkhäuser,
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