Préparation à l'agrégation 2020–2021 SAGE/ 13

Compléments d'algèbre linéaire

Exercice 1 – Soient A et B deux matrices $n \times n$ sur un corps, où n est une puissance de 2. Nous voulons calculer le produit C = AB le plus économiquement possible. On subdivise A, B et C en quatre blocs de taille $n/2 \times n/2$:

$$A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}, \quad B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix} \quad \text{et} \quad C = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix}.$$

Soit

$$\begin{cases}
P_1 &= A_1(B_2 - B_4) \\
P_2 &= (A_1 + A_2)B_4 \\
P_3 &= (A_3 + A_4)B_1 \\
P_4 &= A_4(B_3 - B_1) \\
P_5 &= (A_1 + A_4)(B_1 + B_4) \\
P_6 &= (A_2 - A_4)(B_3 + B_4) \\
P_7 &= (A_1 - A_3)(B_1 + B_2)
\end{cases}$$

- 1) Écrire C_2 en fonction de P_1, P_2 ; C_3 en fonction de P_3, P_4 ; C_1 en fonction de $P_4 + P_5$ et $P_2 P_6$; C_4 en fonction de $P_1 + P_5$ et $P_3 + P_7$.
- 2) Combien d'additions et multiplications de matrices $n/2 \times n/2$ sont-elles utilisées?
- 3) En déduire que l'algorithme récursif associé calcule C = AB en utilisant $O(n^{\log_2 7})$ opérations dans K.

Exercice 2 – [POLYNÔME MINIMAL D'UNE SUITE RÉCURRENTE LINÉAIRE] Soit K un corps et (s_0, \ldots, s_{2n-1}) une suite d'éléments de K. Elle vérifie une relation de récurrence linéaire d'ordre n s'il existe $c(T) = \sum_{i \leq n} c_i T^i$ dans K[T] tel que

$$c_0 s_k + \dots + c_n s_{k+n} = 0$$
, pout tout $0 \le k < n$.

1) Soit $S := s_{2n-1} + \cdots + s_0 T^{2n-1} \in K[T]$, montrer que la relation ci-dessus est équivalente à l'existence de a, b dans K[T], de degré < n, tels que

$$b = aT^{2n} + cS$$

2) Montrer que l'algorithme d'Euclide étendu appliqué aux polynômes T^{2n} et S permet de calculer b et c s'ils existent. Plus précisément, Euclide fournit des

suites (r_i) , (u_i) , (v_i) de polynômes tels que $r_i = u_i T^{2n} + v_i S$ pour tout i: sous l'hypothèse (nécessaire et suffisante) que T^n ne divise pas S, b est le premier reste euclidien r_i de degré < n; alors $c = v_i$.

Exercice 3 – [DÉCOMPOSITION DE DUNFORD-JORDAN]

En utilisant le lemme de Hensel dans $K[X]/(P^k)$, trouver la décomposition de Dunford des matrices suivantes.

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 2 & 2 & 0 & -2 & -2 & 0 \\ 2 & 0 & -1 & 1 & 1 & 0 \\ -5 & -1 & 4 & -3 & -4 & 0 \\ 5 & 1 & -4 & 4 & 5 & 0 \\ 13 & 3 & -5 & 5 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 13 & 0 & 0 & 0 & 5 \\ 0 & -2 & 0 & 0 & 0 & -1 \\ -2 & -18 & 1 & -1 & -1 & -6 \\ 0 & -3 & 0 & 1 & 0 & -1 \\ -2 & -23 & 2 & -2 & -1 & -7 \\ 0 & 5 & 0 & 0 & 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 13 & 0 & 5 & 8 & 5 \\ 0 & 2 & 0 & 0 & 0 & -1 \\ 0 & 0 & 3 & -1 & -1 & -6 \\ 0 & 0 & 0 & 4 & 0 & -1 \\ 0 & 0 & 0 & 0 & 5 & -7 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{pmatrix}$$

```
def jordan(A):
    P = A.charpoly(x);
    P = P // (P.gcd(derivative(P)));
    Q = derivative(P);
    An = A;
    Ann = An - P(An)*(Q(An)^(-1));
    while An != Ann:
        Ann, An = An-P(An)*Q(An)^(-1), Ann;
    return Ann, A-Ann

D,N = jordan(Matrix(QQ,[[2,3,2],[-1,-2,-6],[1,1,5]]))
```