FEUILLE D'EXERCICES nº 5

Exercice 1 – Combien y a-t-il de polynômes unitaires primitifs de degré 7 sur \mathbb{F}_5 ? Combien d'éléments primitifs dans \mathbb{F}_{5^7} ?

Exercice 2 -

- 1) Énumérer les classes cyclotomiques binaires modulo 11.
- 2) En déduire que le polynôme $1+X+X^2+\cdots+X^{10}=(X^{11}-1)/(X-1)$ est irréductible sur \mathbb{F}_2 .

Exercice 3 -

- 1) Énumérer les classes cyclotomiques ternaires modulo 23.
- 2) En déduire la forme de la factorisation de $X^{23} 1$ dans $\mathbb{F}_3[X]$.
- 3) Quelle est la plus petite extension de \mathbb{F}_3 dans laquelle le polynôme $X^{23}-1$ se factorise entièrement?

Exercice 4 – Soit $q = p^k$, où p est premier et $k \ge 1$. On note $\sigma: x \mapsto x^p$ le Frobenius sur \mathbb{F}_q et $\operatorname{Tr}: \mathbb{F}_q \to \mathbb{F}_p$ la trace.

- 1) Si $\alpha \in \mathbb{F}_q$ est de degré k, montrer que $\mathrm{Tr}(\alpha)$ est l'opposé du coefficient de X^{k-1} dans le polynôme minimal de α sur \mathbb{F}_n .
- **2)**a) On note α la classe de X dans $\mathbb{F}_2[X]/(f)$, où $f = X^6 + X + 1$ est primitif. b) Calculer Tr(1), $\text{Tr}(\alpha)$, $\text{Tr}(\alpha^2)$, $\text{Tr}(\alpha^3)$, $\text{Tr}(\alpha^4)$, et $\text{Tr}(\alpha^6)$.
- 3) On définit la norme de $\alpha \in \mathbb{F}_q$ par $N(\alpha) := \prod_{0 \leqslant i < k} \sigma^i(\alpha) = \prod_{0 \leqslant i < k} \alpha^{p^i}$.

 a) Montrer que pour $\alpha, \beta \in \mathbb{F}_q$, on a $N(\alpha\beta) = N(\alpha)N(\beta)$, que $N(\sigma(\alpha)) = N(\alpha)$
- et que $N(\alpha) \in \mathbb{F}_p$.
- b) Montrer que, si $\alpha \in \mathbb{F}_q$ est de degré k sur \mathbb{F}_p , alors $N(\alpha)$ est égal au coefficient constant du polynôme minimal de α sur \mathbb{F}_p multiplié par $(-1)^k$.

Exercice 5 – Soit $K = \mathbb{F}_q$ un corps de caractéristique p et soit $L = \mathbb{F}_{q^2}$.

- 1) Soit $\alpha \in L$. Montrer que $t = \alpha + \alpha^q$ et $n = \alpha^{q+1}$ sont dans K.
- 2) Déduire de la question précédente que $X^2 tX + q \in L[X]$ est en fait à coefficients dans K, et a α pour racine. Quelle est son autre racine?
- 3) Montrer que si $\alpha \notin K$, alors $X^2 tX + n$ est le polynôme minimal de α . Que se passe-t-il quand $\alpha \in K$?