FEUILLE D'EXERCICES nº 8 RSA

Exercice 1 – On considère le système de chiffrement RSA avec la clé publique (n, e) = (2773, 51).

- 1) Factoriser n. Quelle est la valeur de $\varphi(n)$?
- 2) Déterminer l'exposant de déchiffrement d.
- 3) Chiffrer le message M=1322; déchiffrer le cryptogramme C=23.

Exercice 2 -

- 1) Parmi les couples suivants (3087, 323), (3953, 475), (3599, 435) lesquels sont des clés publiques possibles pour RSA? Quelles sont les clés secrètes correspondantes?
- 2) Quels sont les cryptogrammes du message M = 234?

Exercice 3 – Soit un cryptosytème RSA de clé publique (e, n = pq). Vérifier que connaître l'un des trois nombres p, q et $\varphi(n)$ permet de calculer la clé privée.

Exercice 4 – Pour accélérer le déchiffrement RSA on utilise le théorème des restes chinois. Supposons que $d_K(y) = y^d$ et n = pq.

1) On définit $d_p = d[p-1]$, $d_q = d[q-1]$, $M_p = q^{-1}[p]$ et $M_q = p^{-1}[q]$; puis on effectue les opérations suivantes :

$$x_p \leftarrow y^{d_p}[p], \quad x_q \leftarrow y^{d_q}[q], \quad x \leftarrow M_p q x_p + M_q p x_q[n].$$

Montrer que $x = y^d \mod n$.

2) Etant donné p=1511, q=2003 et d=1234577. Calculer d_p , d_q , M_p et M_q ; puis déchiffrer le texte y=152702.

Exercice 5 – Montrer que si l'on chiffre un message lettre par lettre le système RSA n'apporte aucune sécurité.

Exercice 6 – Soit n = 16459. En remarquant que $12534^2 \equiv 1 \mod n$, factoriser n par un calcul de pgcd.

Exercice 7 – Alice utilise le système RSA avec le module n=391 et l'exposant public e=3.

- 1) Vérifier que le cryptogramme du message $m_1=246$ est $c_1=2$ et celui de $m_2=58$ est $c_2=3$.
- 2) En déduire le message m_3 correspondant au cryptogramme $c_3 = 6$, sans calculer l'exposant de déchiffrement.