
Université de Bordeaux N1MA9W05 – Master CSI
Mathématiques 2015–2016

Partial Exam, October 19th 2015 (2pm – 4pm)

Duration 2 hours. All documents allowed.

Clarity of programs and comments is a major factor in the rating scale.

• To answer the questions, create a single file per exercise, named login 1.gp,
then login 2.gp, etc. (Type whoami in a terminal if you are unsure about your
login.) For instance, kbelabas1.gp.

• To hand over your answers, type ~kbelabas/copy in a terminal, from the
directory where your files are saved. (You may do this multiple times, only the
last one matters : copies made previously are replaced.)

Exercise 1 – Find a primality certificate for the integer 300 × 22015 + 1.

Exercise 2 –

1) Eratosthenes’s basic sieve computes primes 6 B via an array T of length B such
that T [i] = 1 if and only if i is prime. For all consecutive primes p the sieve sets T [i]
to 0 in a loop of type forstep(i = pˆ2, B, p, T[i] = 0). Program such a sieve.

2) Taking care not to forget the prime 2, it is useless to consider even numbers. Write
a new program yielding an array T of length ≈ B/2 such that T [i] = 1 if and only if
2i + 1 is prime. Note that if p > 3 is prime, then p2 is odd and the i = p2 + p, p2 + 3p,
p2 + 5p, etc. are even, hence pointless. How much can we hope to gain compared to 1) ?

3) Let’s go further : fix δ invertible mod 30 = 2 × 3 × 5.
a) Obtain the list of all primes of the form 30i+δ, via an array T (of length ≈ B/30)

such that T [i] = 1 if and only if 30i + δ is prime. How much can we hope to gain ?
b) Obtain the list of all allowed δ ∈ (Z/30Z)∗.

⋆ 4) Can one generalize further and continue to gain ?

Around the Fast Fourier Transform (FFT).

Let n > 1 be an integer and let K be a commutative field containing a primitive n-th
root of unity ω. In other words, ω has order exactly n in (K∗, ×). We define ω0 = 1. If
K = Fq is a finite field, such an ω exists if and only if n | (q − 1).

Exercise 3 – [Examples]

1) Prove that the characteristic of K can never divide n.

2) Find such an ω for q = nextprime(10ˆ60) and n = q − 1.

3) Find such an ω of multiplicative order 216 in a quadratic finite field Fp2, such that
ω 6∈ Fp.

4) Fix n = 232 ; find a prime p such that n | p − 1, then an ω of order n in F∗

p.
1



2

Exercise 4 – [Fourier transform]
Let (ai : 0 6 i < n) ∈ Kn ; by abuse of notation, we identify such a vector with the
polynomial f =

∑
06i<n aiX

i in K[X]<n. The Fourier Transform of (ai) relatively to ω
is the vector

F((ai), ω) = F(f, ω) := (bj : 0 6 j < n) ∈ Kn, where bj = f(ωj).

If k ∈ Z, we have
∑

06i<n ωik = 0 if n ∤ k, and that sum is n otherwise. It follows that

F((bj : 0 6 j < n), ω−1) = (nai : 0 6 i < n),

which yields a simple formula for the inverse transform F−1(·, ω) = 1

n
F(·, ω−1).

1) Program a naive algorithm to compute the Fourier transform of (ai) using O(n2)
operations in K (additions and multiplications).

2) Same question for the inverse transform.

Exercise 5 – [FFT]
We assume from now on that n = 2k, for some integer k > 1. Let f ∈ K[X]<n, whose
degree is less than n, we define feven and fodd by

f =
n−1∑

i=0

aiX
i = feven(X2) + X · fodd(X2).

Let

(ui : 0 6 i < n/2) := F(feven, ω2),

(vi : 0 6 i < n/2) := F(fodd, ω2).

By abuse of language, we extend uj and vj to j ∈ Z by periodicity modulo n/2. We
then have f(ωj) = uj + ωjvj for all j ∈ Z.

1) Program a recursive algorithm for F(f, ω) using the previous formulae.

2) If your original program did not do so, write a new version assuming that the vector
of all ωi, i < n, are precomputed.

3) The FFT algorithm uses O(n log n) opérations in K. For a few well-chosen fields,
determine experimental thresholds where the recursive algorithm beats the naive one.


