
Advanced Computational

Number Theory

N1MA9W11

Karim Belabas

Sep 1st 2013

2

Contents

1 Introduction 11
1.1 Basic definitions . 11

1.1.1 Algorithms . 11
1.1.2 Complexity (generalities) 11
1.1.3 Algebraic and bit complexity 13

1.2 Examples . 15
1.3 Randomized algorithms . 17
1.4 Some principles . 18

1.4.1 Arithmetic is hard, Linear Algebra is easy. 18
1.4.2 Be Lazy . 19
1.4.3 Divide and conquer . 22

1.5 The Fast Fourier transform (FFT) 23
1.5.1 When ωn ∈ K . 24
1.5.2 The Schönhage-Strassen algorithm 26

1.6 Basic complexity results . 30
1.6.1 In Z . 30
1.6.2 In Z/NZ . 31
1.6.3 In K[X] where K is a field : 31
1.6.4 In K[X]/(T): . 31
1.6.5 In Mn×n(K): . 31

2 Lattices 33
2.1 Z-modules . 33

2.1.1 Definitions . 33
2.1.2 Hermite Normal Form (HNF) 35
2.1.3 Smith Normal Form (SNF) 37
2.1.4 Algorithms and Complexity 39
2.1.5 Applications . 42

2.2 Lattices . 44
2.2.1 Definitions and first results 44
2.2.2 Minkowski’s Theorem . 46
2.2.3 From algebraic requirements to short vectors 48

2.3 The LLL algorithm . 50

3

4 CONTENTS

2.3.1 Introduction : towards an effective Minkowski ? 50
2.3.2 Reduced bases . 52
2.3.3 The algorithm . 54

2.4 Algebraicity test . 59

3 Polynomials 63
3.1 Factoring in Fq[X] . 63

3.1.1 Basic idea for factoring in a Euclidean ring R 63
3.1.2 A special case: roots over Fp 64
3.1.3 Squarefree factorization 67
3.1.4 Factorization over Fq[X], q odd 69
3.1.5 Factorization over F2f [X] 71
3.1.6 Conclusion . 71

3.2 Factoring in Q[X] . 73
3.2.1 Qp and Zp . 73
3.2.2 Bounds . 76
3.2.3 Zassenhaus’s algorithm . 77
3.2.4 The LLL algorithm . 81
3.2.5 Van Hoeij’s algorithm . 82

3.3 Factoring in C[X] . 88
3.3.1 Idea of this algorithm . 89
3.3.2 Numerical integration . 90
3.3.3 Choosing Γ . 91
3.3.4 Estimate ρk(P) (Graeffe’s method) 92
3.3.5 Continuity of the roots . 93

4 Integers 95
4.1 “Elementary” algorithms . 95

4.1.1 Introduction . 95
4.1.2 Characters . 96
4.1.3 Compositeness . 97
4.1.4 Primality . 102
4.1.5 Producing primes . 104
4.1.6 Split . 105

4.2 Primality proving & factoring with elliptic curves 107
4.2.1 Elliptic curves over Z/NZ 107
4.2.2 The basic idea (Goldwasser-Killian) 108
4.2.3 Introduction to complex multiplication 110
4.2.4 Some algebraic number theory 112
4.2.5 Class groups of imaginary quadratic fields 114
4.2.6 ECPP . 118
4.2.7 Factoring with elliptic curves 120

4.3 Sieving algorithms . 121

CONTENTS 5

4.3.1 The basic idea . 121
4.3.2 The quadratic sieve . 122
4.3.3 The Multiple Polynomials Quadratic Sieve (MPQS) 123
4.3.4 The Self Initializing MPQS, Large Prime variations 124
4.3.5 The Number Field Sieve 124

5 Algebraic Number Theory 125
5.1 Introduction and definitions . 125
5.2 Concrete representations . 127
5.3 The maximal order ZK . 128
5.4 Dedekind’s criterion . 130
5.5 Splitting of primes . 130
5.6 Ideal class group and units . 131
5.7 Smaller generating sets for the class group 131
5.8 Class field theory . 131

6 CONTENTS

List of Algorithms

1. (Fast) Discrete Fourier Transform 24
2. Fast multiplication in K[X], ωn ∈ K 26
3. Fast multiplication in D[Y], D = R[X]/(X2m + 1), m = 2k 26
4. Fast multiplication in R[X], charR 6= 2 (Schönhage-Strassen) . . . 28
5. Naive Algorithm for HNF . 39
6. LLL algorithm . 54
7. 0-divisor in Fp[X]/(T), T split . 65
8. Split roots . 66
9. Equal Degree Factorization, degree 1 66
10. Squarefree part over Fq, core . 69
11. Split over Fq[X], q odd . 70
12. Berlekamp’s algorithm over Fq[X], q odd 70
13. Split over Fq[X], q = 2f even . 71
14. Hensel step . 75
15. Hensel multi-lift . 76
16. Zassenhaus’s algorithm . 78
17. van Hoeij’s algorithm . 87
18. Graeffe’s method for ρk(P) . 93
19. Solovay-Strassen compositeness test 97
20. Rabin-Miller compositeness test 98
21. Eratosthenes’s sieve . 105
22. Pollard’s p− 1 method . 106
23. Pollard’s p− 1 method, with B2 phase 107
24. Goldwasser-Killian primality test 109
25. Class group of imaginary quadratic fields 116
26. Reduction of ideals in imaginary quadratic fields 117
27. Solving U2 −DV 2 = 4N . 117
28. ECPP primality test . 119
29. Lenstra’s ECM factorization algorithm 120
30. Generic sieving factorization algorithm 121
31. Quadratic sieve . 122
32. Recipe to find Q for the quadratic sieve 123

7

8 LIST OF ALGORITHMS

Foreword

This text is a set of notes for the graduate course on Advanced computational
number theory, which I gave in Bordeaux in 2005–2007, 2010 and 2013. This
is work in progress, the last lecture is still missing, and the ones included may
contain mistakes. So use at your own risk ! Please send any corrections to
Karim.Belabas@math.u-bordeaux1.fr

The course uses classical and modern factorization algorithms to present im-
portant ideas and techniques in computational number theory. We will cover the
reduction of Z-modules and lattices (the LLL algorithm), factorization of univari-
ate polynomials over finite fields, the rationals and the complex numbers, then
primality testing (up to the Elliptic Curve Primality Proving algorithm) and inte-
ger factorization (up to the Number Field Sieve), as well as some basic algebraic
number theory (maximal orders, class groups and units of number fields).

The emphasis is on important ideas throughout, and asymptotically fast meth-
ods, certainly not programming efficiency. Many tricks must be implemented
before the algorithms that we will study become really practical. For instance,
many variants will compete to achieve a given result, each with a certain range
of input sizes on which it will be optimal, in a given environment. Hence, a good
implementation should provide all of them, as well as finely tuned thresholds to
decide which method to use. We shall ignore such concerns and blissfully lose
constant or logarithmic factors when technical details would obscure our main
point.

Very good references covering about the same material are Gerhard & von zur
Gathen [24] for chapters 1 – 3, Cohen [6] for chapters 2, 4 and 5, and Crandall
& Pomerance [9] for Chapter 4.

Happy reading!

9

10

Chapter 1

Introduction

1.1 Basic definitions

1.1.1 Algorithms

We call algorithm a computer program, meant to solve all instances of a problem:
on a given input, it must produce a (correct) output in a finite number of steps.
Precise definitions would require us to define a computational model, to specify
what a problem or a computer program is. Check out Papadimitriou [18] for a
good exposition of the necessary formalism.

We classify algorithms in two categories: the deterministic ones, not allowed
the use of a random generator; the randomized (or probabilistic) ones, where we
do allow them. The distinction is important because we have no true source of
randomness for actual computer programs, we may only simulate it. Also for a
given input, a randomized algorithm may perform differently each time it is run,
possibly very badly. This is the price to pay for better practical characteristics
on average.

As stated above, an algorithm must return a correct answer. For randomized
computations that may return a wrong answer, hopefully with small probability,
we will use the word method instead of algorithm. Obviously a deterministic
computation returning a wrong answer will be of little use, and does not deserve
a specific name.

1.1.2 Complexity (generalities)

Running the program on a fixed input expends some resources: time, space (or
memory), random bits, processors. . . A complexity estimate is a function f : N→
R+ such that for all instances of input size 6 s of the given problem, we can
guarantee that less than f(s) units of resources are used during the computation.
Unless mentioned otherwise the resource we are interested in is the running time,

11

12 CHAPTER 1. INTRODUCTION

and algorithms are deterministic. The input size must be defined suitably, and
meaningfully, for each particular problem. We will see examples shortly.

We use the following notations from analysis, whose meaning is slightly non-
standard, hence made precise below:

• we write f(s) = O
(
g(s)

)
if there exist absolute constants s0 and C > 0

such that |f(s)| 6 Cg(s) for all s > s0; C is called an implied constant.
In the algorithms we will study, the constants s0 and C will be effective,
meaning that we can in principle give an actual numerical value for them:
this helps setting algorithmic thresholds.

• if T is a list of parameters for the problem, not containing s, we write
f = OT (g) if the constants C and s0 above are allowed to depend on the
values of the parameters in T . For instance the notation f(s) = Oε(s

1+ε)
for all ε > 0 means that for every fixed ε > 0, there exist constants s0(ε)
and C(ε) such that f(s) 6 C(ε)s1+ε for all s > s0(ε).

• We use interchangeably

– f ≪ g and f = O(g),

– f ≪T g and f = OT (g),

usually for typographical reasons.

• In this course, we are not interested in precise asymptotic orders and use the
“Soft-Oh” notation, Õ(f) := O(f)×(log f)O(1), in order to hide logarithmic
factors. Note that a function that is Oε(s

1+ε) for all ε > 0 may or may not

be Õ(s), for instance f(s) = s exp(
√

log s) is not.

The following vocabulary is standard, where s is the problem size and f(s) a
running time estimate:

• if f(s) = O(s), the cost is linear. (The algorithm is linear-time.)

• if f(s) = O(sd) for some d, the cost is polynomial. (The algorithm is
polynomial-time.)

• if f(s) = O(exp(sd)), the cost is subexponential if d < 1 and exponential
otherwise.

Our general understanding is that a polynomial algorithm is good (scales nicely
as the problem size increases), subexponential is not that bad, and exponential
just will not work. Admittedly this is because we shall only be tackling relatively
easy problems, for which it makes no doubt that there exists an algorithm to
solve them. So we can afford to be picky.

1.1. BASIC DEFINITIONS 13

We will hardly touch the more difficult subject of lower bounds and complexity
classes: it is easier to produce and study an explicit algorithm than to prove that
any algorithm solving the problem must expend at least that many resources.
However, note that an algorithm that runs in linear time is heuristically best
possible: it simply means that we perform an operation on each bit of the input.
If we can do better, then our encoding of the input is redundant and we are
studying the wrong problem.

1.1.3 Algebraic and bit complexity

We fix a base ring R throughout this section. Our algorithms are presented as
functions accepting certain inputs (satisfying some preconditions), and returning
certain ouputs. Functions consist of numbered steps, executed sequentially; we
allow

• standard flow control instructions : for or while loops, if /then/else tests,
a return statement (that aborts the function and returns the specified out-
put).

• assignments to a countable set of named registers — which could be denoted
(ri)i∈N but we will use more descriptive names : x← 1 (the previous value
of x is lost, unless it has first been copied to another register). We allow
assignments of arbitrary elements of Rn to these registers for arbitrary n >

1; the size of such a register is n by definition. For notational convenience,
we abuse this notation by allowing multidimensional arrays (in particular
matrices) and multivariate polynomials over R, with the understanding
that we could emulate this in the previous notation by using a cumbersome
specific coding system. This is not innocent : we have implicitly chosen
a dense representation for compound objects, where all entries must be
explicitly enumerated, instead of a sparse representation, where some clever
encoding is used to save space (for instance, store only the non-zero entries).

• arithmetic operations in R (+,−,×).

Definition 1.1 (Algebraic complexity, over R). The space complexity of a given
run of our algorithm is the maximum of the total size of all registers used as
the steps are executed. The time complexity is the total number of arithmetic
operations performed in R.

Exercise 1.2. Given A,B ∈ R[X] of size 6 s (degree < s), write an algorithm
that computes

1. their sum C := A+B in time O(s).

2. their product C := A× B in time O(s2).

14 CHAPTER 1. INTRODUCTION

In both cases, what is the space complexity ?

This simple model depends on the fixed base ring R, that needs to be specified.
It is usually easy to estimate algebraic complexities. The major drawback is that,
unless the ring R is finite, time and space complexity have no obvious relation to
actual running times and memory use in a real computer. If R is Z for instance,
we want to take into account the fact that integers with many digits are more
costly to manipulate.

Assume that all positive integers are represented by a string of binary digits
(or bits). We define the size s(N) of the integer N > 0 as the number of bits
needed to encode N . Writing

N =

s−1∑

i=0

ni2
i, ni ∈ {0, 1} ,

we obtain s(N) = ⌊log2(N)⌋ + 1 = ⌈log2(N + 1)⌉ ∼ log2N as N →∞. We may
represent both positive and negative numbers by specifying that the leading bit (0
or 1) encodes the sign (±1) of the integer. This adds one bit to the representation
and we still have s(N) ∼ log2N . This leads to the model of bit complexity :

Definition 1.3 (Bit complexity). We allow the same operations as in the model
of algebraic complexity for R = Z, and make the following changes.

• The size of an element n ∈ Z is log2(|n| + 1) ∼ log2 |n| as n → ∞. Note
that |n| = 2s − 1. As before, the space complexity is the total size of all
registers used, but big integers use up more space.

• Let a, b be two integers of size 6 s:

– the time complexity of a+ b is O(s).

– the time complexity of a× b is denoted M(s).

In properly defined general computational models (Turing or RAM machines
for instance), one can prove that M(s) = O(s2) (schoolbook arithmetic) or M(s) =

Õ(s) (using the Schönhage-Strassen algorithm and DFT-based multiplication).
The formal difficulty is that we must reduce everything to bits and bit operations;
in particular operations on loop indices are no different from operations in R = Z,
sizes of integers are themselves integers, etc. Our “axiomatic” approach avoids
these difficulties, but one must be aware that our axioms can become theorems
provided we start at a more fundamental level.

Unless mentioned otherwise, we will use this latter model (Bit complexity) to
estimate complexities.

1.2. EXAMPLES 15

1.2 Examples

Example 1.4. Problem: given N ∈ Z>0, as a string of bits, factor N as a product
of primes. The naive approach to solve the problem is to check successively for

d = 2, 3, . . . ,
⌊√

N
⌋
, whether d | N . The bit complexity model is appropriate and

s(N) ∼ log2N . The algorithm requires
√
N divisions in the worst case (when N

is in fact prime) and even if each of these took unit time,
√
N =

√
2s − 1 ∼ 2s/2

is exponential in s.

• The current best proven algorithm for integer factorization runs in random-
ized time exp Õ(s1/2).

• The current best algorithm in practice (the number field sieve, NFS) is

conjectured to run in randomized time exp Õ(s1/3). It “routinely” factors
general integers having 200 decimal digits.

Both algorithms require subexponential space, of the same order of magnitude
as their run-time : exp Õ(s1/2) and exp Õ(s1/3), respectively.

Example 1.5. A special case of the above: given N , check whether it is a prime
number. This can be done in polynomial time Õ(s10.5) (a landmark result by
Agrawal, Kayal and Saxena [1]), improved to Oε(s

6+ε) by Lenstra and Pomerance.
Curriously enough, the implied constant in Agrawal, Kayal and Saxena’s O(s10.5)
is effective, whereas in Lenstra and Pomerance’s stronger result, it is not — at
least not unless ε is large enough.

The current best algorithm in practice (FastECPP) is not known to be poly-

nomial time; it is conjectured to run in randomized time Õ(s4). It “routinely”
proves the primality of general integers having 25000 decimal digits. When the
algorithm stops, it in fact produces a primality certificate, which is a short proof
for the primality of N , which can be checked (easily and independently) in time

Õ(s3).
If the Generalized Riemann Hypothesis (GRH) is true, we have much simpler

deterministic algorithms that run in time Õ(s4), based for instance on Rabin–
Miller’s compositeness test. This yields a conditional algorithm (correct only if
we assume some unproven hypothesis), contrary to the previous examples (ECPP,
NFS) where the output is correct and we only conjecture something about the
running time. To my knowledge, none of these GRH variants produce useful
certificates.

Example 1.6. Given T ∈ F2[X], as a vector of elements in F2, factor T into
irreducible factors. In this case, using either the bit complexity or the algebraic
complexity model with R = F2 yields the same formal results; writing

T =

s−1∑

i=0

εiX
i, εi ∈ F2,

16 CHAPTER 1. INTRODUCTION

we have s(T) = deg T + 1. This is an analog of our first factorization problem
over Z, in fact much simpler. The running time of the best algorithm so far is
Õ(s2), essentially the same as a naive multiplication!

Example 1.7. Given T ∈ Fq[X], the problem is again to factor T ; Fq is given
as Fp[Y]/(D), with degD = logp q. The bit complexity model yields s(T) =
(deg T + 1) log2 q. Justification for the size chosen: an element A in Fp[Y]/(D) is
encoded as a polynomial of degree (< degD), whose coefficients are integers in
[0, p− 1] : the total size is degD log2 p = log2 q.

The fastest known algorithm for this still runs in time Õ(s2), but it is ran-
domized: no deterministic polynomial time algorithm is known at present. More
precisely, the best such algorithms have running time polynomial in n, but expo-
nential in log q. Hence, small finite fields are easy, even if we insist on determin-
istic methods. Since this cannot be expressed in terms of the single parameter
s(T) above, we shall keep as many parameters as needed in complexity estimates
(here n and log q), in order to describe such interesting features.

In fact, this is still not precise enough. Fields of small characteristic are easy,
so we should keep three parameters: the degree n, the characteristic p, and the
extension degree e such that q = pe. Then deterministic algorithms exist which
are polynomial in e and n, but they are exponential in log p.

Example 1.8. Given an odd prime p, we want to find a quadratic non-residue
in Fp, i.e. an a ∈ Fp such that χ(a) = −1, where χ is the Legendre character. As
size for an instance, we choose the size of p: s = ⌊log2(p)⌋ + 1.

To solve the problem, we can for instance pick a random a ∈ F∗p or try for
a = 1, 2, 3, 4 . . . (Granted, we can avoid 1 and 4.) The probabilistic approach is
easy to analyze: since there are as many squares as non-squares in F∗p, namely
(p−1)/2, an element a chosen uniformly at random is a solution with probability
1/2. Note that the uncertainty only concerns the running time: the result is
guaranteed by the computation of the Legendre symbol.

The second, deterministic, approach is much harder to analyze. This can be
done by comparing the Dirichlet L-function L(χ, s) and Riemann’s ζ function, but
we must now use a deep conjecture in number theory: the Generalized Riemann
Hypothesis1, or GRH for short, which states, for a given L-function, that Re(s) >
1/2⇒ L(s) 6= 0.

Theorem 1.9 (Bach [3]). Assume that GRH holds for ζ and L(χ, ·). Then there
exists a quadratic non-residue in Fp having a representative less than 2(log p)2.

1The problem is easy to understand: if χ(1) = χ(2) = · · · = χ(x) = 1, then S(x) =∑
n6x χ(n) =

∑
n6x 1. An elementary estimate such as |S(x)| 6 √p log p (Polyá-Vinogradov)

proves that x ≪ √p log p. Proving the expected estimate S(x) = o(x) for “short character

sums”, say for x = p1/10, is a notoriously hard problem in analytic number theory, which
becomes trivial under GRH.

1.3. RANDOMIZED ALGORITHMS 17

This time, contrary to the conditional primality test algorithm in Example 1.5,
the result produced by the algorithm is correct whether GRH is true or false. The
only conditional part concerns the running time analysis. But the underlying idea
is the same, we shall explain this later in more detail (Theorem 4.19).

1.3 Randomized algorithms

In the above, we ignored a very natural question: how do we measure the cost
of a randomized algorithm? In this case we talk about expected costs : for a
fixed input i, we average the cost over all possible runs of the program. More
precisely, assume that the (finite or infinite) set of possible runs Si is equipped
with a probability measure p, and the cost of a given run a ∈ Si is fi(a), then
the expected cost for this input is

E(fi) =
∑

a∈Si

p(a)fi(a).

The expected cost for a size s is the max of these expectations over all i of size
less than s. (Often, E(fi) does not depend on i, only on its size.) In simple cases,
Si is finite and the possible runs are equidistributed, p(a) = 1/#Si for all a ∈ Si.

Note that, for us, a randomized algorithm must return a correct result, the
uncertainty only affects the running time: computer science slang calls this a Las
Vegas method. There is a weaker notion, which we will not need but is useful
in fast linear algebra for instance, where the running time is precisely bounded
but, averaging over possible runs of the program, we have a probability less than
p < 1 of giving a wrong result (Monte Carlo method). We can assume that p
is as small as we please by running the program multiple times: running the
program k times, the probability of error is now less than pk, assuming that the
successive runs are independent. As before, this is not strictly true since, on a
physical machine, we do not know how to run truly independent instances of a
program, but we will ignore this problem in our model.

Even weaker, consider Fermat’s primality test, i.e. given an integer n > 2 we
compute d ≡ 2n−1 (mod n); if d 6≡ 1 (mod n) then n is not a prime number and
we answer no; otherwise, we know nothing for sure but n may still be prime, so
we answer maybe and try again. We can try and devise a randomized algorithm
by checking that an−1 ≡ 1 (mod n) for some 1 6 a 6 n chosen uniformly at
random. But we run into trouble for some inputs: a Carmichael number n is a
non-prime integer satisfying an ≡ a (mod n) for all a ∈ Z. There are infinitely
many such integers (a difficult result of Alford, Granville and Pomerance [2]),
561 = 3× 11× 17 being the smallest one. So if n is a Carmichael number, we get
the answer maybe for all a coprime to n; the probability of getting this answer

18 CHAPTER 1. INTRODUCTION

is
φ(n)

n
=
∏

p|n

(
1− 1

p

)
,

which does not look bounded away from 1, for instance if the number of distinct
prime divisors of n remains bounded. (I do not know whether infinitely many
such Carmichael numbers exist.) This does not look like a good algorithm! Note
the importance of the sample space chosen: the algorithm is bad because for some
fixed inputs (Carmichael numbers, an infinite set) it behaves badly, independently
of our random choices. A good algorithm must behave nicely on a sizeable portion
of all possible random choices for all inputs. We could have defined a weaker
notion of randomized algorithm which behaves badly on a small proportion of
our inputs, i.e. for most input distributions we would be fine.

1.4 Some principles

In this section we list some basic principles of efficient algorithmic design, with
special emphasis on techniques relevant to computational number theory.

1.4.1 Arithmetic is hard, Linear Algebra is easy.

Because of this, we translate as much arithmetic as possible into linear algebra.
Let us consider a prototypical example. Given a, b ∈ Z>0 we have to compute
gcd(a, b). The arithmetic approach is to use the equality

gcd(a, b) =
∏

pmin(vp(a),vp(b)), where a =
∏

pvp(a), b =
∏

pvp(b).

This requires factoring a and b, a hard problem over Z.
Now consider the Euclidean Algorithm. If a = bq + r, where q, r ∈ Z, then

gcd(a, b) = gcd(b, r), and we may as well use Euclidean division to guarantee that
0 6 r < b is small. This is obviously a linear operation: write it as

(
a b

)(0 1
1 −q

)
=
(
b r

)

Iterating, the pair (a, b) is eventually replaced by (gcd(a, b), 0) and we have:

(
a b

)(0 1
1 −q1

)
. . .

(
0 1
1 −qk

)
=
(
gcd(a, b) 0

)
.

This approach only uses Euclidean divisions, and conceptually is a sequence of
matrix multiplication. Both are fast and easy operations, a much better method!
Note that multiplying out the 2× 2 matrices as they are computed, we obtain a
Bezout relation. (

a b
)(u u′

v v′

)
=
(
gcd(a, b) 0

)
.

1.4. SOME PRINCIPLES 19

Exercise 1.10. Use the above to solve in x, y ∈ Z an equation of the form
ax + by = c, where a, b, c ∈ Z. Generalize the idea and explain how to solve
in integers a linear system with integer coefficients. More generally, solve in
(x1, . . . , xn) ∈ Zn the linear system of congruences



a1,1 · · · a1,n

...
. . .

...
am,1 · · · am,n






x1
...
xn


 ≡



b1 (mod M1)

...
bm (mod Mm)




1.4.2 Be Lazy

Avoid all work that is not absolutely necessary, and defer any costly computation
until it is impossible to avoid it. Besides the general techniques in software
engineering like optimizing the inner loops or precomputing as much as possible
(with appropriate data types for fast retrieval), some techniques are typical in
computer algebra:

• symbolic computation: work with formal symbols like π, 21010 , etc. instead
of working with their (exact or approximate) decimal expansions,

• sparse representations: to compute (Xn+1)2 = X2n+2Xn+1 we need much
fewer than O(n2) operations. Structured matrices are another example.

• approximate computation: instead of computing x in Z compute x̂ which
is sufficiently close to x that we can reconstruct x from x̂. For instance,
we may take x̂ ∈ Z/NZ or a decimal approximation. The point is to avoid
intermediate expressions swell : if the final result is small, we can reconstruct
it. Of course, this does not work if the result is huge! (In fact, it may still
save time: we often can compute and recombine local information faster
than we would compute directly a global result.)

The last point is deeper and most important. Let us see how this works on a few
concrete examples.

Example: the determinant

Let A ∈ Mn(Z), we want to compute the determinant of A. We have the trivial
bound

|detA| 6 n! ‖A‖n∞ := B(A),

so the size of the integer detA is bounded by n logn + n log ‖A‖∞. The obvious
approach to solve the problem is Gauss pivoting which is expensive: it introduces
rational coefficients, whose size increases after each matrix operation. Possible
solutions are to compute detA as

20 CHAPTER 1. INTRODUCTION

1. a floating point number (round final result to Z): no explosion but stability
problems. In order to be able to round the result to Z, one must compute
with at least n log n+n log ‖A‖∞ digits of accuracy. But this will likely not
be enough due to round-off errors in intermediate computations, inherent
to the floating point model.

2. an element in Z/pZ. If p > 2B(A) is prime, compute det Ā in Mn(Fp) which
is equal to detA (mod p). Now there is a single integer x in that class with
|x| 6 B(A). Problem: how to find a large prime p ? The prime number
theorem tells us a random integer in [2k, 2k+1[is prime with probability
1/(k log 2), and we can quickly test for compositeness (see §4.1.3). (By the
way, why do we pick p prime instead of some random large integer ?)

3. an element in Z/p1Z×· · ·×Z/pkZ, for some distinct primes whose product
is > 2B(A). Compute the determinant of A modulo pk for each k, say
det(A) ≡ ak (mod pk) and then use the Chinese Remainder Theorem to
solve the congruences x ≡ ak (mod pk), k = 1, 2, . . . , n. This turns out to
be the most efficient approach.

Exercise 1.11. Make the last two algorithms precise and evaluate their costs.

The modular approaches in the above exercise are called homomorphic imaging
schemes. In order to avoid expensive computations, even when the result is large,
first map to cheaper rings, compute there, then come back.

Example: gcd in Z[X]

Let A, B be two monic polynomials in Z[X] each of degree 100, program the
Euclidean algorithm over Q[X] with A, B as inputs. In general they are coprime,
but polynomials appearing in the intermediate steps will be horrible. Bounding
the bit complexity of this naive algorithm is non-trivial.

As before let us reduce the problem to the case when the polynomials are in
Fp[X] by computing modulo a suitable prime p: we can compute the gcd of Ā
and B̄ in Fp[X] and then reconstruct the gcd of the given two polynomials in
Z[X].

To explain what is a “suitable prime”, we recall some properties of the resul-
tant, which is not as nice as a gcd, but more generally available (see [14, §V.10]
for details).

Definition 1.12. Let R be a commutative ring with unity, P , Q two polynomials
in R[X] of degree m and n respectively. The resultant of P and Q, denoted by

1.4. SOME PRINCIPLES 21

Res(P,Q), is the determinant of the (n+m)× (n +m) Sylvester matrix,




pn . . . 0 qm . . . 0
...

. . .
...

...
. . .

...
p0 pn q0 qm
...

. . .
...

...
. . .

...
0 . . . p0 0 . . . q0



,

where P (X) =
n∑

i=0

piX
i, Q(X) =

m∑

i=0

qiX
i.

Lemma 1.13. There exists U, V ∈ R[X] such that PU + QV = Res(P,Q). We
may choose degU < degQ, deg V < degP .

Proof. Exercise. Try to understand the matrix above as representing an R-linear
map from R[X]deg<m ×R[X]deg<n to R[X]deg<n+m.

Lemma 1.14. If R is an integral domain, Res(A,B) = 0 if and only if A and B
have a common root in the algebraic closure of the field of fractions K = Frac(R).
In other words,

Res(A,B) = 0⇐⇒ gcdK[X](A,B) 6= 1.

Corollary 1.15. Let δ = gcdZ[X](A,B), p a prime number not dividing the

leading coefficients of A and B, and let Ā, B̄ denote the canonical projections
from Z[X] to Fp[X]. Then

gcd(Ā, B̄) = gcd(A,B)

if and only if p does not divide Res(A/δ,B/δ).

The asumption on the leading coefficients ensures that deg(A) = deg(Ā) and
deg(B) = deg(B̄) so that the Sylvester matrices over Z and Fp are formed in a
similar way. (It can be weakened : the result remains true if p does not divide
gcd(lc(A), lc(B)).) Any such p not dividing the integer Res(A/δ,B/δ), which is
non-zero (why?), is suitable.

Exercise 1.16. 1. Bound the smallest such p in terms of n, m, ‖A‖∞, ‖B‖∞.

2. Assume that ‖δ‖∞ 6 C, p > 2C is prime and that we have computed
δ̄ = gcd(Ā, B̄). Prove that reconstructing δ is easy if p is suitable.

3. To test the latter condition without computing the resultant (which is not
possible since we do not know δ yet), prove the following first: if the prime
p does not divide the leading coefficient of A and B, and P ∈ Z[X] divides
A and B is such that P̄ = gcd(Ā, B̄) in Fp[X], then P = gcd(A,B) in Z[X].

22 CHAPTER 1. INTRODUCTION

4. Work out a similar approach using several small primes instead of a single
big one.

Working out the solution to the exercise, then incorporating fast arithmetic, we
eventually obtain

Theorem 1.17. Let f, g ∈ Z[X] of degree less than n and sup-norm less than A.

Their gcd can be computed in time Õ(n2 + n logA).

Proof. See [24, §6.8 and §11.1]

1.4.3 Divide and conquer

Most of the asymptotically fast algorithms have a recursive formulation. We shall
analyze them using the following lemma.

Lemma 1.18. Let f : R+ → R+ such that

• f(x) 6 af(x/b) + cx, for some a > 0, b > 1 and c ∈ R,

• f(x) 6 1, if x < x0.

Then

f(x)≪





xlogb a if a > b,

x log x if a = b,

x if a < b.

The hypotheses are understood as follows: f(x) is a cost function for a given size
x; we cut our original problem in a independent subproblems which are b times
smaller, then recombine the partial solution into a global one in linear time O(x).
The favorable situation is a 6 b, where the subproblems have balanced sizes and
do not proliferate, yielding Õ(x) time, essentially linear.

Proof. Let x > x0, et let ℓ := ⌈logb(x/x0)⌉ be the smallest integer such that
x/bℓ 6 x0. We have

f(x) 6 af(x/b) + cx 6 a
(
af(x/b2) + cx/b

)
+ cx

6 . . . 6 aℓf(x/bℓ) + cx

ℓ−1∑

i=0

(a/b)i.

By the choice of ℓ, we have f(x/bℓ) 6 1; further, ℓ 6 logb x+1, thus for all y > 1,

yℓ 6 y × ylogb x = yxlogb y.

We can bound aℓ 6 axlogb a; how we bound the geometric sum depends on the
value of r = a/b :

1.5. THE FAST FOURIER TRANSFORM (FFT) 23

• if r > 1, the sum is (rℓ − 1)/(r − 1), and rℓ 6 rxlogb(a/b) = O(xlogb a−1);

• if r = 1, the sum is ℓ 6 1 + logb x;

• if r < 1, the sum is (rℓ − 1)/(r − 1) < 1/(1− r).

Corollary 1.19. Let f : R+ → R+ such that

• f(x) 6 af(x/b) + cxr, for some r > 0, a > 0, b > 1 and c ∈ R,

• f(x) 6 1, if x < x0. Then

f(x)≪





xlogb a if a > br,

xr log x if a = br,

xr if a < br.

Proof. Let g(x) = f(x1/r) and apply the Lemma to g.

Let us start with a simple example (mergesort), we shall study a much more
involved one (the Fast Fourier Transform) in the next section.

Example: mergesort. We want to sort n numbers in increasing order using
only comparisons. We denote by f(n) the number of comparisons required.

1. Sort the first half; cost: f(n/2).

2. Sort the second half; cost: f(n/2).

3. Merge the two sorted sublists; cost O(n) (why?)

Whence f(x) 6 2f(x/2) +O(x), and the lemma implies that f(x) = O(x log x).

Exercise 1.20. Using the asymptotic estimate log n! ∼ n logn, prove that this
order of magnitude is optimal : by using only comparisons, it is not possible to
sort n integers in o(n logn) operations.

1.5 The Fast Fourier transform (FFT)

We investigate in this section a very important application of the divide and
conquer paradigm: the Fast Fourier Transform algorithm, or FFT, which is the
basis of most (asymptotically) fast multiplication algorithms.

24 CHAPTER 1. INTRODUCTION

1.5.1 When ωn ∈ K
Let n = 2k be a power of 2 and let K be a field containing an n-th primitive
root ω of 1. In other words, ω ∈ K∗ has multiplicative order exactly n. Let
T (X) = a0 + a1X + · · ·+ an−1X

n−1, with (a0, . . . , an−1) ∈ Kn. We define:

F(T, ω) := (T (ω0), . . . , T (ωn−1)) ∈ Kn

the discrete Fourier transform of T , and by abuse of notation.

F
(
(a0, . . . , an−1), ω

)
:= F(a0 + a1X + · · ·+ an−1X

n−1, ω).

Our problem is to compute F(T, ω). Note that T (ωℓ) =
∑

06t<n atω
ℓt, a discrete

version of f̂(ℓ) =
∫
f(t)eitℓ dt: we are computing the Discrete Fourier Transform

(DFT) of t 7→ at. Define the even and odd parts of T :

T0(X
2) :=

T (X) + T (−X)

2
, XT1(X

2) :=
T (X)− T (−X)

2

so that T (X) = T0(X
2) +XT1(X

2). In particular, for all i, we have

T (ωi) = T0((ω
2)i) + ωiT1((ω

2)i).

Since deg(T0), deg(T1) 6 n/2 and ord(ω2) = n/2, this leads to a simple recursive
algorithm:

Algorithm 1. (Fast) Discrete Fourier Transform

Input: R a commutative ring; T ∈ R[X], deg T < n = 2k, a primitive root of
unity ω of order n in R. The vector (1, ω, . . . , ωn−1) is precomputed.

Output: F(T, ω).
1: If n < 1, return the 1-dimensional vector containing the scalar T .
2: Compute (a0, . . . , an/2−1) = F(T0, ω

2), calling ourselves recursively.
3: Compute (b0, . . . , bn/2−1) = F(T1, ω

2).
4: Return (ai + ωibi)i<n. {Extend ai and bi by periodicity: an/2+i := ai.}

We denote by f(n) the number of basic operations in R, of type +,× (in fact,
multiplication by a power of ω), required to compute F(T, ω). Again we have
f(x) 6 2f(x/2) + O(x), hence f(x) = O(x log x). This almost linear cost is a
large improvement over the obvious approach where we evaluate successively the
T (ωi): in the latter case we obtain each individual T (α) in time O(n) using the
identity

T (α) = a0 + α(a1 + α(. . . (an−2 + an−1α) . . .))

(Horner’s scheme), yielding an O(n2) algorithm for the naive DFT.
Whatever algorithm we use to compute it, the DFT has a very nice property:

it is just as easy to invert as to compute.

1.5. THE FAST FOURIER TRANSFORM (FFT) 25

Lemma 1.21. Let R be a commutative ring containing a root of unity ω of order
n such that (1 − ωℓ) is invertible for all ℓ not divisible by n. For all T ∈ R[X],
deg T < n, we have

F(F(T, ω), ω−1) = nT.

Proof. ∑

i<n

T (ωi)ω−ki =
∑

i,j<n

ajω
i(j−k) = nak.

Indeed, the terms for j = k add up to nak; for j 6= k, use

∑

i<n

ωiℓ = 0 when ℓ 6≡ 0 (mod n).

(Multiply by the unit (1− ωℓ).)

Note that the technical condition (1 − ωℓ) ∈ R∗ is automatic if K is a field
since ω has order n ⇒ ωℓ 6= 1. The following exercise presents another situation
where the condition is automatically satisfied :

Exercise 1.22. For k ∈ Z>0, write Φk for the k-th cyclotomic polynomial. Let
R be a commutative ring, n = pk a power of a prime p. Let further ω ∈ R∗ be of
order n, such that Φn(ω) = 0. (This is automatic if R is a domain, but need not
be true in general.) Using the factorization

∑

i<n

X i =

k∏

j=1

Φpj(X) =

k∏

j=1

Φp(X
pj−1

),

show that we still have
∑

i<n

ωiℓ = 0 when ℓ 6≡ 0 (mod n),

so the conclusion of the Lemma still holds for T ∈ R[X].

Corollary 1.23. Let R be a commutative ring of characteristic 6= 2, and let m
be a power of 2. Let ω be the class of X in D = R[X]/(Xm + 1). Then ω has
order 2m and (1− ωℓ) is invertible in D for all ℓ not divisible by 2m.

Proof. If m is a power of 2, then Φ2m = Xm + 1.

Exercise 1.24. For p a fixed small prime, R and ω as in the previous exercise,
write

T (X) = T0(X
p) +XT1(X

p) + · · ·+Xp−1Tp−1(X
p),

where the Ti have degree 6 n/p. Devise a p-adic DFT algorithm using Op(n log n)
operations in R.

26 CHAPTER 1. INTRODUCTION

We now come to a most important application.

Algorithm 2. Fast multiplication in K[X], ωn ∈ K
Input: S, T ∈ K[X], where deg S, deg T < n

2
.

Output: n× S × T .
1: Compute ω2, . . . , ωn−1.
2: Compute F(S, ω) = (a0, . . . , an−1).
3: Compute F(T, ω) = (b0, . . . , bn−1).
4: Return F

(
(a0b0, . . . , an−1bn−1), ω

−1).

Corollary 1.25. Provided K contains a primitive root ω of degree 2n = 2k,
polynomials of degree up to n can be multiplied in O(n logn) operations in K.

Proof. It is enough to prove that charK 6= 2, hence n ∈ K∗ is invertible. But if
charK = 2, then 0 = ωn − 1 = (ω − 1)n and ω = 1 which does not have order n
in K∗.

Compare with the naive approach which requires O(n2) operations in K! The
basic idea is essentially due to Gauss, rediscovered in the 1960’s: the Fourier
transform is a K-algebra isomorphism from K[X]/(Xn−1) to Kn. It transforms
the complicated algebra on the left to the trivial product algebra on the right.
This is basically a homomorphic image scheme : we map to Kn, multiply there
and come back; we can thus multiply quickly in K[X]/(Xn−1). Finally, Provided
all polynomials considered have degree < n/2, multiplying in K[X]/(Xn−1) and
K[X] is the same.

For later reference, we note that the exact same multiplication algorithm
performs equally well in a more general situation (cf. Corollary 1.23):

Algorithm 3. Fast multiplication in D[Y], D = R[X]/(X2m + 1), m = 2k

Input: S, T ∈ D[Y], where deg S, deg T < t, where t = m or 2m.
Output: t× S × T (mod Y t − 1).
1: Let ω be the class of X2 (t = 2m), resp. the class of X4 (t = m); then ω is a

primitive t-th root of 1 in D.
2: Compute ω2, . . . , ωt−1.
3: Compute F(S, ω) = (a0, . . . , at−1).
4: Compute F(T, ω) = (b0, . . . , bt−1).
5: Return F

(
(a0b0, . . . , at−1bt−1), ω

−1).

1.5.2 The Schönhage-Strassen algorithm

A major problem in this presentation is the requirement that there exists a prim-
itive n-th root of 1 with n = 2k in the base ring. A simple solution is to embed

1.5. THE FAST FOURIER TRANSFORM (FFT) 27

K in K[y]/(yn− 1), but this is no longer a field and Lemma 1.21 needs not hold.
Exercise 1.22 provides a solution: embed in K[y]/(Φn(y)), for n = 2k, or more
generally n = pk using Exercise 1.24.

Unfortunately, an operation in this new quotient ring now requires about n
operations in K (since deg Φn = φ(n) = n/2), which does not look good. The
details will be rather involved but the idea is remarkably simple and general:
instead of multiplying polynomials of degree n using roots of order n, multiply
polynomials of degree

√
n using roots of order

√
n. Then a linear number of es-

sentially linear-time operations in the larger ring still amounts to Õ(n) operations
in the base ring R.

Let us make this more precise:

Definition 1.26. Let R be a ring, m be an integer and T ∈ R[X].

• let T ♯ ∈ R[X, Y] be the unique bivariate polynomial such that T ♯(X,Xm) =
T (X), degX T

♯ < m. For instance, if m = 3 and

T (X) = 1 + 2X + 3X2 + 4X3 + 5X4 +X10,

then
T ♯(X, Y) = (1 + 2X + 3X2) + (4 + 5X)Y +XY 3.

Note that degY T
♯ = ⌊deg T/m⌋.

• let D = R[X]/(X2m + 1), in which ω = X is a primitive 4m-th root of 1.
We let T ∗(Y) = T ♯(X, Y) mod X2m + 1 ∈ D[Y].

Definition 1.27. In all that follows, f, g ∈ R[X] are such that deg fg < n = 2k.
We let m = 2⌊k/2⌋ and t = n/m = m or 2m.

To recover fg, we need only compute fg mod (Xn+ 1). For this it is enough
to compute f ♯g♯ mod Y t + 1, more precisely to compute an h♯ ∈ R[X, Y] such
that

f ♯g♯ = q♯ · (Y t + 1) + h♯, degY h
♯ < t. (1.1)

Indeed, evaluation at (X, Y) = (X,Xm), we obtain that

f(X)g(X) = q♯(X,Xm) · (Xn + 1) + h♯(X,Xm) ≡ h♯(X,Xm) (mod Xn + 1).

Equation (1.1) implies that degX q
♯ 6 degX f

♯g♯ < 2m, which in turn implies
degX h

♯ < 2m. Reducing the equation mod X2m + 1 this time we obtain

f ∗(Y)g∗(Y) ≡ h∗(Y) (mod Y t + 1)

in D[Y]. Note that since degX h
♯ < 2m, we can recover h♯(X, Y) from h∗(Y) =

h♯(X, Y) (mod X2m+1). The key remark is that f ∗ and g∗ have degree less than
t 6 2m, and D contains ω = X̄ , a 4m-th root of 1, hence a 2t-th root of unity,
η = ω (t = 2m) or ω2 (t = m); we can thus compute f ∗g∗ (up to powers of 2)
using three 2t-points FFTs and 2t multiplications in D. There are two further
tricks, each allowing to save a further factor 2:

28 CHAPTER 1. INTRODUCTION

• since ηt = −1, the above congruence shows that

f ∗(ηY)g∗(ηY) ≡ h∗(ηY) (mod Y t − 1),

and we can use t-point FFTs instead of 2t-points FFTs !

• We can gain another factor 2 during the multiplications in D : we only
need the result modulo X2m + 1 this time, even though the inputs have
representatives of degree < 2m. When first calling the algorithm, we must
ensure that the inputs f, g satisfy deg fg < n in order to reconstruct fg
from fg mod (Xn + 1). During the recursion, we no longer care.

This yields the following algorithm:

Algorithm 4. Fast multiplication in R[X], charR 6= 2 (Schönhage-Strassen)

Input: f, g ∈ R[X] of degree < n = 2k.
Output: 2e(n)fg mod Xn + 1 for some e(n) ∈ Z>0.
1: If k 6 2, return f × g mod Xn + 1 using a näıve algorithm. In particular,
e(1) = e(2) = e(4) = 0.

2: Let m = 2⌊k/2⌋ and t = n/m = m or 2m. Let D = R[X]/(X2m + 1), and
f ∗, g∗ ∈ D[Y] be as above, with degree < t. Let η be a root of order 2t in D,
namely η = ω (t = 2m) or ω2 (t = m).

3: Compute F(f ∗(ηY), η2) = (a0, . . . , at−1) ∈ Dt.
4: Compute F(g∗(ηY), η2) = (b0, . . . , bt−1) ∈ Dt.
5: Compute F

(
(2e(2m)a0b0, . . . , 2

e(2m)at−1bt−1), η
−2) = 2e(2m)+th∗(ηY) in D[Y],

deg h∗ < t. We call ourselves recursively for the t multiplications aibi in D,
where we perform the multiplication on representatives of degree < 2m in
R[X], yielding 2e(2m)aibi in R[X]/(X2m + 1).

6: Recover h∗(Y) from h∗(ηY), then h♯ ∈ R[X, Y] from h∗ (lift all coefficients
in D to their representative of minimal X-degree). Finally use h♯(X,Xm) =
(fg)(X) to recover 2e(n)fg ∈ R[X], with e(n) = e(2m) + t.

Proposition 1.28. The algorithm requires O(n logn log logn) operations in R.

Proof. The three FFTs over D each require O(t log t) operations in D:

• additions : each addition in D corresponds to O(m) additions in the base
ring R;

• multiplications by the ωi : this is a shift, followed by a reduction mod
X2m + 1, using O(m) subtractions in R.

Let f : R+ → R+ be a non-decreasing function such that f(n) is the algebraic
complexity of the algorithm. We have

f(n) 6 tf(2m) +O(n logn).

1.5. THE FAST FOURIER TRANSFORM (FFT) 29

Replacing k → k + 1, hence n→ 2n, replaces t→ 2m and m→ t, hence

f(2n) 6 2mf(2t) +O(n logn).

Let g(x) = f(2x)
x(log x−1) , where log denotes the base-2 logarithm; then the inequality

simplifies to

g(n) 6
2(log t− 1)

logn− 1
g(t) +O(1),

using 2mt = 2n. The fraction is 2(⌈k/2⌉ − 1)/(k − 1) 6 1 and we obtain

g(n) 6 g(t) + C,

for some universal constant C. Define by induction the two sequences

• x0 = k, xi+1 = ⌈xi/2⌉ for i > 0.

• y0 = k, yi+1 = (yi + 1)/2 for i > 0.

The motivation for this is that

g(2x0) 6 g(2x1) + C 6 . . . 6 g(2xi) + C × i.
By induction, we have xi 6 yi for all i, and yi = 1 + (k − 1)/2i. It follows that
xi 6 2 for i = O(log k). Finally, g(2k) = O(log k) and we are done !

Note that the algorithm can be trivially modified so as to return the precise value
of e(n), as well as the product 2e(n)ST .

All we have done is useless when charR = 2 (we get 0) or more generally
when 2 is not invertible in R (how to recover ST from 2e(n)ST ?). In this case,
in addition to using 2k-th roots of unity and a 2-adic DFT, we can use 3s-th
roots and a 3-adic DFT as introduced in Exercise 1.24. We may also compute
3sST in essentially linear time, for some integer s > 0. From a Bezout relation
u2k + v3s = 1 in Z, we recover the product ST without requiring a division! The
final result is

Theorem 1.29 (Cantor-Kaltofen). Over any commutative ring R, polynomials

of degree less than n can be multiplied in O(n logn log log n) = Õ(n) operations
in R.

Theorem 1.30 (Schönhage-Strassen). Two positive integers less than 2n repre-

sented by bit-strings can be multiplied in time O(n logn log log n) = Õ(n).

Proof. (Rough sketch) This follows the same pattern as the polynomial multi-
plication. The idea is to represent integers as values of polynomials at powers
of 2. We are reduced to multiplying f, g ∈ Z[X], deg fg < n = 2k, and ‖f‖∞,
‖g‖∞ 6 2ℓ. We can assume that 2ℓ + 1 6 n − k in which case ‖fg‖∞ < 2n−1.
This time we compute fg in D[X] where D = Z/(2n + 1)Z supports the FFT
since 2 is a primitive 2n-th root of 1. The multiplications in D are handled by a
recursive call to the algorithm.

30 CHAPTER 1. INTRODUCTION

1.6 Basic complexity results

1.6.1 In Z

The size of an integer a is the number of bits required to store a, i.e s(a) :=
⌊log2(a+ 1)⌋+ 1. Assume all operands have size less than n.

Operation Naive Fast
a + b O(n) O(n)

a× b O(n2) MZ(n) = Õ(n)
a = bq + r O(n2) O(MZ(n))

Extended gcd O(n2) O(MZ(n) logn)
Chinese remainders O(n2) O(MZ(n) logn)

• Multiplication : MZ(n) is the multiplication time in Z for two operands
of size less than n. The fast algorithm is based on Schönhage-Strassen
multiplication, in time O(n logn log log n).

For inputs of different sizes, s(a) 6 n, s(b) 6 m, the naive (quadratic)
algorithm runs in time O((n+ 1)(m+ 1)).

• Euclidean division : the input is (a, b), b 6= 0, and the output (q, r) with
0 6 r < |b|. The fast algorithm solves the equation b − a/x = 0 using the
Newton Iteration

xn+1 = xn − xn(xnb− a).

(Let the precision increase with the iterations and use fast multiplication.)
We then set q = ⌊x⌋, then r = a − bq. The complexity stated assumes
than MZ(n) satisfies properties like M(n)/n > M(m)/m for all n > m, and
M(mn) 6 m2M(n), it is in particular applicable for the Schönhage-Strassen
and the naive quadratic multiplication.

If s(a) 6 n, s(b) 6 m, n > m, the naive (quadratic) algorithm runs in time
O((n−m+ 1)(m + 1)).

• Extended gcd: the input consists of two integers a, b and the output consists
of the gcd(a, b) and two integers u, v such that au + bv = gcd(a, b). The
fast gcd is again based on the divide an conquer paradigm.

• Chinese Remainder: the input consists of n congruences x ≡ ak (mod bk)
where the bk are pairwise coprime with and the output expected is a solution
for the above congruences. We assume s(ak) 6 s(bk) and

∑
k s(bk) 6 n.

The fast algorithm uses three divide-and-conquer passes: first to compute
a product tree, then all modular inverses simultaneously, then a standard
recursion.

1.6. BASIC COMPLEXITY RESULTS 31

1.6.2 In Z/NZ

We choose a canonical representative in each congruence class. A natural choice
are the integers in [0, N−1]; another is]−N/2, N/2], which is often more efficient
when we need small negative integers, but a little more complicated to describe.
In both cases, the size of any input is less than n := s(N).

An addition is implemented as an addition in Z, possibly followed by a sub-
traction. Multiplication, is a multiplication in Z, followed by a Euclidean division
by N . Inversion is an extended gcd followed by a multiplication. So the costs
are the same as in Z, except for fast division which is more expensive by a factor
log n.

1.6.3 In K[X] where K is a field :

Here the costs for operations in K[X] count the number of operations in K;
we may multiply by the cost of an elementary operation in K when this cost is
bounded independently of the element considered, i.e. when K is finite. The
operations taken into account are +, −, ×, / in K. Let f, g be two polynomials
in K[X]. If h ∈ K[X], the size of h is S(h) = deg h+ 1 6 n.

Operation Naive Fast
f + g O(n) [+] O(n) [+]

f × g O(n2) [+,×] MK[X](n) = Õ(n)
f = gh+ r O(n2) O(MK[X](n))

Extended gcd O(n2) O(MK[X](n) log n)
CRT O(n2) O(MK[X](n) log n)

1.6.4 In K[X]/(T):

Important special cases are finite field extensions Fq/Fp, and finite extensions
of Q. As in Z/NZ we work with polynomials of size 6 s(T), so the costs are as
above. Again, fast modular division is slower by a factor logn than fast Euclidean
division.

1.6.5 In Mn×n(K):

Again, we count the operations in K, for A ∈Mn×n(K), S(A) = n2.

Operations Naive Fast
A+B O(n2) O(n2)
A× B O(n3) O(nω), ω = 2.376

A = LU O(n3) O(nω)

32 CHAPTER 1. INTRODUCTION

The LU factorization is enough to solve most linear algebra problems over K:
computing kernels, image, rank profile. . . In the above, ω is called a feasible mul-
tiplication exponent. The best value used for practical sizes is ω = log2 7 ≈ 2.8
(Strassen).

Black Box Linear Algebra: in this model, costs are calculated as the number
of evaluations x 7→ Ax for a “black box matrix” A. (The name comes from the
fact that we do not know anything about A except how it acts on vectors: it
is an opaque operator, or a black box.) In general, matrix-vector multiplication
for A ∈Mn×n(K) is an O(n2) operation but most matrices encountered in prac-
tice have some structure which make evaluation cheaper, e.g. diagonal or band
matrices, sparse matrix (as in the factorbase algorithms used to factor integers),
Sylvester’s matrix from the resultant definition, Berlekamp matrix (used to factor
polynomials over finite fields), FFT matrix (= van der Monde on roots of unity),
etc.

In this model, randomized algorithms are available that can compute the LU
factorisation of A in O(n) evaluations and O(n2) field operations on average.
So we gain nothing on general matrices, where a matrix-vector multiplication
requires O(n2) scalar operations; but quite a lot for special matrices.

Chapter 2

Lattices

2.1 Z-modules

2.1.1 Definitions

Any abelian group (G,+) can be made into a module over Z by the rules

• 0 · g = 0G, the neutral element of G,

• n · g = g + · · ·+ g (n summands), for n > 0,

• (−n) · g = −(n · g), for n < 0, where −x is the inverse of x.

We may thus identify abelian groups and Z-modules, as well as submodules with
subgroups.

• If g = (gi) ∈ Gn and λ = (λi) ∈ Zn, the linear combination
∑

i λigi ∈ G
will be denoted g ·λ. More generally, let m,n be two non-negative integers.
Using freely the linear algebra formalism, we can associate to any matrix
in Mm×n(Z) a Z-linear operator Gm → Gn by “right multiplication” :

(g1, . . . , gm) ·



λ1,1 · · · λ1,n

...
...

...
λm,1 · · · λm,n


 =

(
n∑

i=1

λi,1gi, · · · ,
n∑

i=1

λi,ngi

)
.

The degenerate cases corresponding to m = 0 or n = 0 are handled grace-
fully by the convention G0 = (0): the trivial module, with a single element.

• If A ⊂ G, the submodule/subgroup generated by A is

〈A〉Z :=
{∑

i∈I
λiai : (λi) ∈ ZI , (ai) ∈ AI , I finite

}

33

34 CHAPTER 2. LATTICES

• G is of finite type if G = 〈A〉Z for some finie A. In this case, we have
G = A ·Z#A; in other words, any element of G is of the form A · λ. All our
modules will be of this type.

• A family g = (g1, . . . , gn) is free (linearly independent) if and only if

g · λ, λ ∈ Zn ⇒ λ = 0.

• G (of finite type) is free if and only if there exist (g1, . . . , gn) ∈ Gn which
is free and generates G. In this case, (g1, . . . , gn) is called a basis, and the
integer n is well-defined: it is the rank of G.

Example 2.1. Not all modules have a basis: G = Z/2Z is not free because
2x = 0 for all x ∈ G, and 2 6= 0, so no non-empty subset of G can be free; but
the empty set does not generate G. More generally, no module with non-trivial
torsion elements can be free. However, Zn is free, for all n > 0.

We state without proof two basic theorems about Z-modules:

Theorem 2.2 (Adapted Basis). Let G be a free Z-module of rank n, and H 6 G
a submodule. There exists a basis (g1, . . . , gn) of G and dn | · · · | d1, di ∈ Z>0,
such that {digi : di > 0} is a basis for H. In particular, H is free, with rank 6 n.

The integers d1, . . . , dn are well-defined: they do not depend on the basis (gi).

Note that some of the di can be zero (the first ones).

Corollary 2.3 (Elementary Divisors). Let G be a Z-module of finite type. There
exist g1, . . . , gn in G such that

G =

n⊕

i=1

(Z/diZ) · gi, where dn | · · · | d1, di ∈ Z>0,

=
r⊕

i=1

Z · gi
︸ ︷︷ ︸

Zr

⊕
n⊕

r+1

(Z/diZ) · gi
︸ ︷︷ ︸

Gtor

if d1 = · · · = dr = 0, and dr+1 6= 0,

where Gtor is the torsion subgroup of G containing all the elements of finite order.
If we further assume that dn 6= 1, then the (d1, . . . , dn) are unique and n is the
minimal number of generators in any presentation of G.

The meaning of the direct sum in the Corollary is as follows:

n∑

i=1

λigi = 0, λi ∈ Z ⇔ λi ∈ diZ, ∀i.

We call r the rank of G, generalizing the notion defined for free modules.
We now make these results explicit using linear algebra over Z.

2.1. Z-MODULES 35

2.1.2 Hermite Normal Form (HNF)

Studying free modules is similar to studying vector spaces. If L is a free sub-
module of rank n in some Zm, it can be represented by an m × n matrix whose
columns give the coordinates of a basis of L on the canonical basis of Zm. The
representation is not unique, because it depends on a choice of basis for L. In
vector spaces, any basis can be brought to column echelon form — even better, to
canonical Gauss-Jordan form — using Gaussian elimination, but this algorithm
uses division in an essential way, a forbidden operation over Z.

The Hermite Normal Form generalizes the Gauss-Jordan form (over a field K)
to modules (over a principal ring R). The simple underlying idea was introduced
in Exercise 1.10. Here is a comparison of the two methods with 2 × 2 matrices.
If a 6= 0, Gaussian elimination yields:

(
a b

)(1 −b/a
0 1

)
=
(
a 0

)

Using a Bezout relation au+ bv = δ := gcd(a, b) instead, we can write:

(
a b

)(u −b/δ
v a/δ

)
=
(
δ 0

)
.

The multiplying matrix is no longer elementary, but nevertheless in SL2(R). Be-
fore generalizing this idea (in order to zero chosen entries in a matrix while
conserving some global structure), we first define our analog of the column eche-
lon form, over the principal ring R = Z. (Other normalizations could be chosen
over an arbitrary principal ring, e.g. Howell form.)

Definition 2.4. The matrix H = (Hi,j) ∈Mm×n(Z) is in Hermite Normal Form
(HNF) if there exist r > 0 such that only the first r columns are non-zero, and a
strictly decreasing function f : {1, . . . , r} → {1, . . . , m} satisfying

• [Echelon] qj := Hf(j),j > 0, Hi,j = 0 if i > f(j) and Hf(j),k = 0 if k > j,

• [Reduction] 0 6 Hf(j),k < qj if k < j.

In particular, the matrix rank is r and the last n− r columns are zero. A matrix
satisfying only the first condition is in echelon form. It is easier to tell what the
definition is saying with a picture of the matrix:




× × × × q5 0 · · · 0
× × × × 0 · · · 0
× × × ×
× × × q4
× × q3
× q2
×
q1 0 · · · 0




36 CHAPTER 2. LATTICES

Here r = 5, and the × entries can be zero, positive or negative. There are two
conditions:

• f(j) is the row where the pivot qj > 0 lies. All coefficients to the right of a
pivot (on the same row), or below it (in the same column), are 0.

• All the coefficients to the left of a pivot qj (on the same row) are reduced
mod qj . So the × to the left of a qj satisfy 0 6 × < qj.

The function f determines the rank profile: the matrix
(
Hf(i),j

)
16i,j6r

is non-

singular.

Example 2.5. Assume H ∈Mn×n(Z) has rank n. In this (simplest) case, r = n
and the rank profile f is the identity.

Theorem 2.6. The m × n HNF matrices form a system of representatives of
Mm×n(Z) /GLn(Z).

N.B. GLn(Z) acts on Mm×n(Z) by right multiplication. The previous formulation
is equivalent to the following one: if A ∈ Mm×n(Z), there exist a unique H ∈
Mm×n(Z) in HNF and a matrix U ∈ GLn(Z) (not necessarily unique) such that
H = AU . We call H the HNF reduction of A.

Corollary 2.7. If we fix a basis (gi)i6m of a free module G ≃ Zm, any submodule
H of G has a canonical basis, given by (hi)i6n = (gi) ·M , where M is an HNF
matrix. We call it the HNF-basis of H.

Proof. It is sufficient to see that the submodule H can be represented by a matrix
whose n columns are elements of one of its bases, described by their coordinates
in the fixed basis of G. Since these bases are defined modulo GLn(Z), the unicity
of the HNF gives the result.

Our specific definition of the HNF is unimportant: one could swap the columns
or choose another system of representatives of Z/qiZ than [0, qi− 1] for instance.
What matters is that, on the one hand, the HNF is a normal form (two modules
are identical if and only if they have the same HNF basis), and on the other
hand, the echelon form simplifies standard linear algebra problems. Here are
direct applications of the normal form property: a submodule G ⊂ Zm is defined
by a matrix A ∈Mm×∗(Z), whose columns generate it.

• Equality of two submodules: let G1 and G2 be two submodules of Zm

defined by matrices A1 and A2. Then they are equal if and only if the HNF
reductions of A1 and A2 are equal.

• Sum of two submodules: let G1 and G2 be two submodules of Zm defined
by matrices A1 and A2. Then the HNF of (A1 | A2) gives an HNF-basis for
G1 +G2.

2.1. Z-MODULES 37

• Inclusion. We have G1 ⊆ G2 ⇐⇒ G1 + G2 = G2, which can be checked
using the previous two points. A generally more efficient test if G2 is fixed
and G1 varies consists in computing the HNF H of the matrix associated
to G2, and then checking whether the triangular linear system HX = A1

has a solution (see below).

Here are some classical linear algebra problems made simple by the echelon
form. Let A be a matrix in Mm×n(Z) and H = AU its HNF reduction.

• Image: the non-zero columns of H form a basis of the (free) Z-module
ImZA := AZn ⊂ Zm generated by the colums of A. In Example 2.11,
ImZA = Z2.

• Kernel : to determine KerZA := {x ∈ Zn : Ax = 0}, write U = (U1 | U2)
where AU2 = 0 and AU1 = the non-zero columns of the HNF. Then the
columns of U2 form a basis of the module KerZA.

Proof. Obviously the columns of U2 belong to KerZA; as they were ex-
tracted from a non-singular matrix, they form a basis of the subspace they
generate. Conversely, let X ∈ Zn such that AX = 0 and let Y = U−1X ∈
Zn. Since HY = 0, and H is in echelon form, the presence of the r pivots
Hf(j),j 6= 0 for 1 6 j 6 r leads to Yj = 0 for j 6 r and the result follows
when writing X = UY .

In example 2.11, KerZ(A) is generated by t(10,−7, 1).

• Linear system: solving AX = Y amounts to solving HX ′ = Y , where
X ′ = U−1X ; the latter system is “triangular” and easy to solve, then the
solutions to the original system are of the form UX ′. As usual, once a
particular solution X0 is found, the set of all solutions is X0 + KerZA.

We will see other applications later (2.1.5).

2.1.3 Smith Normal Form (SNF)

Definition 2.8. A matrix
(
0 D

)
or

(
0
D

)
is in Smith Normal Form (SNF) if D

is diagonal, with diagonal d1, . . . , dn such that dn | · · · | d1 in Z>0.

Theorem 2.9 (Restatement of elementary divisors theorem). The m × n SNF
matrices form a system of representatives of

GLm(Z)\Mm×n(Z)/GLn(Z).

38 CHAPTER 2. LATTICES

N.B. GLm(Z) and GLn(Z) act by left and right multiplication respectively. The
previous formulation is equivalent to the following one: if A ∈ Mm×n(Z), there
exist a unique S ∈ Mm×n(Z) in SNF and matrices U ∈ GLn(Z), V ∈ GLm(Z)
(not necessarily unique) such that S = V AU .

This relates quite explicitly to the elementary divisors theorem. In full gen-
erality, an abelian group G of finite type is given by a finite presentation (g, R),
such that

• g ∈ Gn is a finite set of n generators of G (i.e. 〈g〉Z = G), which we may
see as a row vector. For x ∈ Zn, we note as in the introduction

g · x =

n∑

i=1

xigi.

• R ∈Mn×k(Z) represents the module of all relations between the generators:

g · x = 0 for x ∈ Zn ⇔ x ∈ ImZR, i.e. ∃y ∈ Zk, x = Ry.

In particular, G ≃ Zn/ ImZR.

The content of the elementary divisors theorem is that we can choose g such that
R = diag(d1, . . . , dn) is an essentially unique diagonal matrix, satisfying the SNF
property. Write URV = S with S in SNF and U, V unimodular, then g′ := gU−1

is a set of suitable new generators.

Proof. Since U is unimodular, g′ is a set of generators for G; as well g′S =
gU−1URV = gR · V = 0 · V = 0 so g′ satisfies at least the right relations.
Conversely, let g′Y = 0 be an arbitrary relation, Y ∈ Zn, then gU−1Y = 0 hence
U−1Y = RZ for some integral Z and Y = SV −1Z. Since V is unimodular,
ImZ SV

−1 = ImZ S and S indeed defines the full set of relations for g′. The
matrix S need not be diagonal, but we can remove or add columns of zeros as
needed (corresponding to a trivial relation g′ · 0 = 0). It has n rows; if we delete
all columns of 0s, it will have less than n columns (as many as its rank 6 n).
This means that we can complete S to an n×n diagonal matrix diag(d1, . . . , dn),
still in SNF.

Finally,

G =

n⊕

i=1

(Z/diZ) · g′i,

and we can also delete generators such that di = 1. We obtain in this case
a presentation involving the minimal number of generators, with relations as
predicted by the elementary divisors theorem; the di are then unique.

2.1. Z-MODULES 39

2.1.4 Algorithms and Complexity

A good reference for these algorithms is Arne Storjohann’s PhD dissertation [22].
See also Cohen [6] which lacks details and complexity estimates but contains a
wealth of applications. Here are the input and output of the algorithms:

Input: A ∈Mm×n(Z), size nm log ‖A‖∞.

Output (HNF): H ∈Mm×n(Z), U ∈ GLn(Z) such that AU = H in HNF.

Output (SNF): S ∈Mm×n(Z), U ∈ GLn(Z), V ∈ GLm(Z) such that V AU = S
in SNF.

Below is a simple, but inefficient algorithm for HNF. There exist efficient,
more complex, algorithms (Theorem 2.13). Note: to simplify the presentation,
we do not produce U at this point.

Algorithm 5. Naive Algorithm for HNF

Input: A = (Ai,j) ∈Mm×n(Z).
Output: H ∈Mm×n(Z) such that AU = H in HNF, for some U ∈ GLn(Z).
1: Set R← 1
2: for i = m,m− 1, . . . , 1 do {row i}
3: for j = R + 1, . . . , n do {zero Ai,j using Ai,R}
4: Let δ := gcd(Ai,R, Ai,j) and write

(
Ai,R Ai,j

)(u s
v t

)
=
(
δ 0

)
,

using the extended Euclidean algorithm.

5:
(
A∗,R A∗,j

)
←
(
A∗,R A∗,j

)(u s
v t

)
{A∗,j : jth column}

6: if Ai,R 6= 0 then
7: let R← R + 1
8: Reset R← 1 {will increase up to 1+rank of matrix}
9: for i = m,m− 1, . . . , 1 do {row i}
10: if Ai,R 6= 0 then {pivot; if no pivot, do nothing}
11: Let A∗,R ← A∗,R × sign(Ai,R) {ensures that Ai,R > 0}
12: for j = 1, . . . , R− 1 do
13: Let q ← ⌊Ai,j/Ai,R⌋ {0 6 Ai,j − qAi,R < Ai,R}
14: A∗,j ← A∗,j − qA∗,R
15: let R← R + 1

The algorithm is made of two main for loops, one on lines 2 to 7, another on lines 9
to 15. The first loop uses the extended Euclidean algorithm to bring the matrix
into left-upper triangular form. The last entries of row i will be (Ai,R 0 . . . 0).
The second loop reduces the entries to the left of the pivots to bring the matrix
into HNF.

40 CHAPTER 2. LATTICES

Remark 2.10. AU = H , where U = A−1H is uniquely determined if A is
invertible. To recover U in the general case, apply the algorithm to the matrix(

Id
A

)
instead.

Example 2.11. Let A = (2 3 1
1 2 4). The first loop transforms successively A in

(2 1 1
1 0 4), then in (2 1 1

1 0 0) and finally in (2 1 0
1 0 0), for the successive choices (u sv t) =

(1 4
0 −1), (0 1

1 −2) and (1 7
0 −1). The second loop gives the desired HNF : (0 1 0

1 0 0).
If we instead apply the algorithm to B = (Id

A) we obtain




−3 2 10
2 −1 −7
0 0 1
0 1 0
1 0 0



,

from which we deduce 

−3 2 10
2 −1 −7
0 0 1




as a possible value for U . The value obtained for U , contrary to what happens
with the HNF (which is unique), depends on the matrices (u sv t) chosen in the
algorithm. For instance, if instead of (1 7

0 −1) in the last step of the first loop we
use (8 7

−1 −1) — which still ensures
(
1 7

)
(u sv t) =

(
1 0

)
—, we now obtain

U =



−3 12 10
2 −8 −7
0 1 1


 ,

another valid answer.

Measuring only algebraic complexity, the first loop requires O(mnr) opera-
tions (+,×, extended gcd) in Z. The second loop requires O(r2m) operations
(+,×,÷) in Z. Therefore, the overall order is O(rm(n + r)). If in addition you
would like to recover U, replace m by (m+ n) in the previous expression.

A major problem with this algorithm is that the size of entries increases
quickly during iterations. Thus, it does not run in polynomial time, (input size)O(1).
Kannan and Bachem (1979) found an algorithm that works in polynomial time.
There are two main ideas:

• Reduce to the special case where 1) A is a square non-singular matrix of
rank r; 2) the unimodular transformation matrix U is not needed. As-
sume that A ∈ Mr×n(Z) for simplicity (full row rank). Using fraction free
Gaussian decomposition, find a permutation matrix P such that the first r
columns of AP are independant, and complete this latter matrix with the

2.1. Z-MODULES 41

last n− r rows of the n × n identity matrix. Then the resulting matrix B
is square of dimension n and non-singular. Let H be the HNF reduction of
B, computed using the special case; then U = PB−1H is unimodular and
AU is the HNF reduction of A.

• In the special case where A is square and non-singular, work modulo N :=
|detA| 6= 0. This prevents the previous problem of the entries blowing up,
because at every step, all the entries belong to a fixed system of represen-
tatives of Z/NZ. This works because the HNF of A and


A

∣∣∣∣∣∣∣

N 0
. . .

0 N




are identical. One can reconstruct the HNF from this modular computation,
see the proof in Cohen [6]; it is a good exercise.

Example 2.12. Prove that SNF can be solved in polynomial time.

1. Prove that we can assume that the input matrix A is square of dimension
n and non-singular.

2. Let H = AU be the HNF reduction of A. Let H ′ = tHU ′ be the HNF
reduction of the transpose of H . Then the entry at position (1, n) of tU ′AU
is the gcd d of all entries in the last row and last column of A. Using obvious
line and column operation, this reduces A to the shape

(
A′ 0
0 d

)
. Iterating,

we can now assume that A is diagonal.

3. Let a, b be two integers and au + bv = d a Bezout relation. Write a = da′

and b = db′; using the matrix identity

(
b′ −a′
u v

)(
a 0
0 b

)(
1− ua′ 1
−ua′ 1

)
=

(
ab/d 0

0 d

)
,

explain how to reduce a diagonal matrix to its SNF reduction.

One can do better than the above naive algorithms:

Theorem 2.13 (Storjohann). Suppose A ∈ Mm×n(Z) has rank r 6 min(m,n)
and let B = log ‖A‖∞. The HNF and SNF problems can be solved

• in time Õ(mnr2B) and space Õ(max(m,n)3B).

• in time Õ(mnr2B3) using space Õ((m + n)rB).

42 CHAPTER 2. LATTICES

The first algorithm is fast, but requires a lot of memory. In the second, memory
use is softly linear in the input size, essentially best possible. Actually, SNF
without U and V can be solved faster than HNF, provided we allow Monte-Carlo
method (randomized, with possibly wrong results):

Theorem 2.14 (Eberly, Giesbrecht, Villard). Let A ∈ Mn(Z) and let B =

log ‖A‖∞. There exist a probabilistic algorithm running in time Õ(n3.5B2.5),
which computes an SNF matrix that coincides with the SNF reduction of A with
probability > 1/2.

The running times above all use classical O(n3) matrix multiplication. Using
asymptotically fast multiplication (a feasible multiplication exponent 2 6 ω < 3)
yields further improvements.

2.1.5 Applications

All these are straightforward applications of HNF and SNF.

Exercise 2.15. Let A ∈ Mn(Z) and (d1, . . . , dn) be the diagonal of its SNF.
Then

Zn/ ImZA ≃
n⊕

i=1

(Z/diZ).

Exercise 2.16. Solve XA = Y , where Y ∈ Mℓ×n(Z), A ∈ Mm×n(Z), unknown
X ∈ Mℓ×m(Z). Hint: Write AU = H , H in HNF.

Exercise 2.17. Solve

AX =



y1 (mod d1)

...
yn (mod dn)




Hint: AX = Y +DZ, D diagonal ⇒ (AI −D)

(
X
Z

)
= Y .

Exercise 2.18. Let

0 −−−→ A
(gA,RA)

φ−−−→ B
(gB,RB)

ψ−−−→ C
(gC ,RC)

−−−→ 0

be an exact sequence of abelian groups. Each abelian group G in the sequence
is given by a finite presentation (g, R), which is a finite set of generators and
relations as explained in §2.1.3 (we may assume that R is square, in SNF). We
say that

• we know a group G = (g, R) if we can express any element of G as g · x,
for some integral column vector x. (This is called the discrete logarithm
problem. Do you see why?)

2.1. Z-MODULES 43

• we know a map φ : A → B if for any a ∈ A we can compute its image
φ(a) ∈ B, and for any b ∈ Im(φ) we can compute an inverse image a ∈ A
such that φ(a) = b.

Prove that if you know the two maps φ : A → B and ψ : B → C, as well as 2
out of the 3 groups in the sequence, then you also know the third one.

Proof. We treat just one case in this last exercise: suppose that we know A and
B, how to compute C? Explicitly, assume that (gA, RA) and (gB, RB) are given.
We first compute a suitable (gC, RC):

• ψ(gB) = (ψ(g1), . . . , ψ(gnB
)) =: gC is a set of generators for C.

• Let ϕ(gA) = gB · P where P is a known matrix. By definition, gC · x = 0
for some x ∈ ZnB if and only if ψ(gB) · x = 0. This is equivalent to

ψ(gB · x) = 0 (because ψ is Z-linear)

⇐⇒ gB · x ∈ ImZ(ϕ) (exactness)

⇐⇒ gB · x = ϕ(gA · y), with y ∈ ZnA .

⇐⇒ gB · (x− Py) = 0

⇐⇒ x− Py = RB · z, with z ∈ ZnB .

Finally, we want all x ∈ ZnB for which there exist y, z such that:

x = (P | RB)

(
y
z

)
.

Then RC = (P | RB) is suitable. If needed, we can replace RC by its Smith
Normal Form, and obtain a minimal presentation for C (i.e. with minimal number
of generators): let D = URCV the SNF of RC , then GC = gC · U are new
generators, and (GC , D) is such a presentation, once we delete the generators
corresponding to elementary divisors equal to 1.

We now prove that the discrete logarithm problem can be solved in C. Let
c ∈ C, that we must express on the the gC . Then c = ψ(b) for some in B. Since
we can solve the discrete logarithm problem in B, we can write b = gB · β, for
some β ∈ ZnB ; finally, c = gC · β, since gC = ψ(gB).

Exercise 2.19 (Subgroups). Let B = Zn/ ImZR be a finite group, described by
some relation matrix R. We can assume that R has rank n: replace it by its
SNF and delete trivial generators corresponding to elementary divisors equal to
1 (thereby decreasing n).

1. Prove that the subgroups of B are in bijection with the subgroups H 6 Zn

containing ImZR.

44 CHAPTER 2. LATTICES

2. A canonical basis for the submodule H is given by a square HNF matrix
M of dimension n (and maximal rank). Prove that ImZR 6 H if and only
if M−1R has integer coefficients.

3. Conclude that the subgroups of B are in bijection with the square HNF
matrices which are left-divisors of R. Write down explicitly the correspon-
dance.

2.2 Lattices

2.2.1 Definitions and first results

Definition 2.20. A lattice (Λ, q) is a free Z-module Λ of finite rank, together
with a positive definite quadratic form q on Λ⊗Z R.

This definition is the most flexible one, but one can also define a lattice as
already embedded in a fixed Euclidean space E = (Rn, q), where q is a positive
definite quadratic form. Then (Λ, q) is a lattice if and only if Λ ⊂ Rn is a free
Z-module of maximal rank n.

Let x · y = 1
4

(
q(x + y) − q(x − y)

)
be the scalar product associated to the

quadratic form q. To any basis (b1, . . . , bn) of E, we associate its Gram-Schmidt
orthogonal basis (b∗1, . . . , b

∗
n), defined by

b∗i := bi −
∑

16j<i

µi,jb
∗
j , 1 6 i 6 n, where µi,j :=

bi · b∗j
b∗j · b∗j

.

In particular, b∗1 = b1. The recurrence formula follows from requiring that b∗i ·b∗j =
0 for j < i.

Note that if Λ = 〈b1, . . . , bn〉Z is a lattice, the (b∗i)i6n do not lie in Λ in
general since the coefficients µi,j need not be integers. The (b∗i)i6n do however
form an orthogonal R-basis for Rn, a priori not orthonormal. More generally,
〈b∗1, . . . , b∗r〉R = 〈b1, . . . , br〉R for any 1 6 r 6 n and b∗k is orthogonal to this
subspace for any k > r. This follows from

(b1, . . . , br) = (b∗1, . . . , b
∗
r)




1 µ1,2 · · · µ1,r

0 1 · · · µ2,r
...

. . .
. . .

...
0 · · · 0 1


 , (2.1)

with a non-singular base-change matrix.

Remark 2.21. From the Gram-Schmidt process, we could assume that q is the
standard Euclidean form. Namely, we can set

δi =
b∗i√
b∗i · b∗i

2.2. LATTICES 45

to get an orthonormal basis (δ1, . . . , δn). But for arithmetic applications, it is
more flexible to retain the possibility of a general positive form. For instance, if
bi · bj ∈ Z for all i, j, then µi,j ∈ Q for all i, j (proof by induction).

Let E = (Rn, q) be a Euclidean space, where x · x is the scalar product, and
let Λ be a lattice with basis (b1, . . . , bn).

Definition 2.22.

• Let Gram(b1, . . . , bn) := (bi · bj)16i,j6n be the Gram matrix of the bi.

• The discriminant of Λ is

disc(Λ) := det(Gram(bi)).

• The determinant of Λ is

d(Λ) :=
√

disc(Λ).

Proposition 2.23. The discriminant disc(Λ) is well-defined and is equal to∏n
i=1 q(b

∗
i). In particular, the latter depends only on the lattice and not on the

chosen basis.

Proof. Consider (b∗1, . . . , b
∗
n) the orthogonal basis of Rn, such that (b∗i)A = (bi),

with A ∈ GLn(R) an upper triangular matrix with determinant 1 as in (2.1).
Then

Gram(b1, . . . , bn) = tAGram(b∗1, . . . , b
∗
n)A.

Since Gram(b∗1, . . . , b
∗
n) is diagonal, taking the determinant we obtain disc(Λ) =

q(b∗1) . . . q(b
∗
n). Now any other basis of Λ is of the form (b′i) = (bi)U for some

U ∈ GLn(Z), replacing A by AU in the above. Since detU = ±1, it follows that
disc(Λ) is well-defined.

Corollary 2.24 (Hadamard’s inequality). Let B ∈ Mn(R) be the matrix whose
columns are some bi ∈ Rn, and let (Rn, ‖·‖2) be the standard Euclidean space.
Then

|detB| =
n∏

i=1

‖b∗i ‖ 6
n∏

i=1

‖bi‖ .

Proof. Let Λ be the lattice generated by the bi equiped with q = ‖·‖2. We have

disc(Λ) = det(Gram(bi)) = det(tBB) = det(B)2 =

n∏

i=1

‖b∗i ‖2 ,

by the previous Proposition. Since bi = b∗i +
∑

j<i µi,jb
∗
j and since (b∗1, . . . , b

∗
i) is

orthogonal we have

‖bi‖2 = ‖b∗i ‖2 +
∑

j<i

µ2
i,j

∥∥b∗j
∥∥2 > ‖b∗i ‖2

and the result follows.

46 CHAPTER 2. LATTICES

We are interested in short vectors in lattices. We shall now see that short vec-
tors do exist, where “short” only depends on the dimension and the discriminant
of the lattice. But this theorem does not say how to find them.

2.2.2 Minkowski’s Theorem

Theorem 2.25 (Minkowski). Let C be a subset of Rn such that:

• C is symmetric (C = −C),

• C is convex,

• Vol(C) > 2nd(Λ);

then there is a non-zero lattice point in C.

In the theorem, Vol(C) is the volume with respect to the Euclidean volume form,
i.e. the Lebesgue measure if q is the standard form. More generally, if A is the
base change matrix expressing an orthonormal basis of E in terms of the canonical
basis, the volume form is the Lebesgue measure divided by |det(A)|.

Lemma 2.26. If Vol(C) > d(Λ), then there exists x, y ∈ C, x 6= y such that
x ≡ y mod Λ.

Proof. (of Lemma) Let (bi)16i6n be a basis of Λ and F be the fundamental domain
for Λ (a complete system of representatives for Rn/Λ) given by:

F =

{
n∑

i=1

λibi : 0 6 λi < 1

}
.

We have Vol(F) = d(Λ). Let us define

Cx := (C − x) ∩ F , where x ∈ Λ.

Since C−x∩F is C ∩ (F +x) translated, and translations conserve volumes, we
have

Vol(Cx) = Vol(C ∩ (F + x)).

By construction the F + x are disjoint and cover Rn:
⋃
x∈Λ(F + x) = Rn. Now

argue by contradiction: assume that the Cx are disjoint (if not, there exist distinct
x, x′ ∈ Λ such that c1−x = c2−x′ ⇔ c1 ≡ c2 (mod Λ) which proves the Lemma).
Since

F ⊃
⋃

x∈Λ
Cx,

2.2. LATTICES 47

we have

d(Λ) = Vol(F) >
∑

x∈Λ
Vol(Cx), by disjointness,

=
∑

x∈Λ
Vol(C ∩ (F + x))

= Vol

(
⋃

x∈Λ
C ∩ (F + x)

)
, by disjointness,

= Vol(C ∩ Rn) = Vol(C)

This is a contradiction.

Proof. (Minkowski’s theorem). Since

Vol

(
C

2

)
=

Vol(C)

2n
> d(Λ),

the Lemma yields distinct c1, c2 ∈ C and λ ∈ Λ \ {0}, such that

c1
2

=
c2
2

+ λ,

hence λ = 1
2
(c1−c2). But C is symmetric so −c2 ∈ C; by convexity, 1

2
(c1−c2) ∈ C

and we are done.

Corollary 2.27 (Minkowski). Let C be a subset of Rn such that:

• C is compact,

• C is symmetric,

• C is convex,

• Vol(C) > 2nd(Λ);

then there is a non-zero lattice point in C.

Proof. Use Theorem 2.25 with Ck = (1+1/k)C, where k ∈ Z>0 : Ck is symmetric,
convex, and satisfies Vol(C) > 2nd(Λ). Then there exists xk ∈ Λ \ {0} such that
xk ∈ Ck ⊆ 2C. Since 2C is compact, we can extract from (xk) a convergent
subsequence. On the one hand, its limit x is in every Ck (because the Ck are
closed, decreasing and xk ∈ Ck), hence x ∈ C (because C is closed). On the other
hand, the lattice Λ being discrete, this subsequence is ultimately stationnary and
x ∈ Λ \ {0}.

48 CHAPTER 2. LATTICES

Corollary 2.28. Let (Λ, q) be a lattice of rank n. There exists x ∈ Λ \ {0} such
that

q(x) 6 γn disc(Λ)
1
n ,

where γn only depends on n.

Proof. We may assume that the Euclidean space (E, q) is (Rn, ‖·‖2) (why?). Let
C = {x ∈ R, ‖x‖2 6 R}, which is compact, convex and symmetric. In order to
apply Corollary 2.27, we want VolC = δnR

n > 2nd(Λ), where δn is the volume
of the unit ball in Rn. We choose

R = 2δ−1/nn d(Λ)1/n

and obtain the requested x.

The proofs of these Minkowski variants is by contradiction, obviously ineffective.

2.2.3 From algebraic requirements to short vectors

In this section we study an example, to be developped in §2.4, to explain how
knowing small vectors can help solving number-theoretic problems. Let x ∈ R,
given by a decimal approximation xε:

|x− xε| < ε.

We think of the xε ∈ Q as a sequence of approximations, which can be made
arbitrarily precise. We want to answer the question: is x algebraic? Of course,
there is no way to prove this only by knowing xε ∈ Q for a given ε, since this
rational number is obviously algebraic! But there is a nice way to make good
guesses provided ε is sufficiently small compared to the height and degree of x,
which measure the “complexity” of an algebraic number.

We fix a positive integer n, and a big real number C > 0; think of n as an
upper bound for the degree of a minimal polynomial of x over Q. Consider the
(n+ 2)× (n+ 1) matrix

A =




1 0
...

. . .
...

...
. . . 0

0 1
Cxn . . . Cx C




and the Z-module ⊂ (Rn+2, ‖ · ‖2) generated by the columns of A, that is the set
of 



λn
...
λ0

C (
∑n

i=0 λix
i)


 , λi ∈ Z.

2.2. LATTICES 49

We are interested in short vectors in this lattice, where “short” means small with
respect to the Euclidean length. A short vector satisfies:

1.
∑n

i=0 λ
2
i is small;

2. C2 (
∑n

i=0 λix
i)

2
is small.

If C is large, then we probably have
∑n

i=0 λix
i ≈ 0 for a short vector, so we let

P (X) =
n∑

i=0

λiX
i.

If x is algebraic of degree 6 n then we can hope that P (x) = 0. We shall see
how to guarantee this in §2.4. The point of the first condition is that if we allow
λi to be arbitrarily large, the pigeonhole principle says there are many good
approximations satisfying the second one, possibly bearing no relation to the
minimal polynomial we look for. Assuming x is decent, λi should be relatively
small.

Many problems can be thus translated into short vectors problem. Sometimes
we want the shortest vector, sometimes we are happy a family of relatively short
ones. Consider the set

S(c) = {x ∈ Rn : q(x) < c} .

This is an ellipsoid, quite easy to describe geometrically (essentially it is a ball).
Since Λ is discrete, S(c)∩Λ is finite for any c. This leads to an easy but inefficient
algorithm to find short vectors, by enumerating all vectors with bounded length.
In fact, if we call N(c) the number of points of Λ contained in S(c), then N(c) is
roughly proportional to cn, so enumerating all the lattice points in S(c) requires
exponential time in the dimension n.

A second problem is that we do not know c in advance. So we use the following
workaround:

1. start with an arbitrary c, e.g. c = 1;

2. if S(c) ∩ Λ is empty, replace c by 2c, and iterate.

This requires O(logB) iterations if B is the final bound. Minkowski’s Theo-
rem 2.25 tells us that the length B of the shortest (non-zero) vector is nicely
bounded in terms of the size of the input, so this second problem is not very
serious. But the first one is!

50 CHAPTER 2. LATTICES

2.3 The LLL algorithm

Definition 2.29. We let ⌈x⌋ := the nearest integer to x =
⌊
x + 1

2

⌋
, then

a cmod b := a−
⌈a
b

⌋
b.

(The letter c is for center.) We have − |b|
2
6 a cmod b < |b|

2
.

2.3.1 Introduction : towards an effective Minkowski ?

Our goal is to find a basis of short vectors for Λ, i.e. with q(bi) small. We
will eventually achieve this with the LLL (or L3) algorithm, invented by Arjen
Lenstra, Hendrik Lenstra Jr. and László Lovász, in a landmark 1982 paper [16],
with the intended application of factoring polynomials in Q[X].

The first idea is to generalize the Euclidean algorithm, which yields the opti-
mal solution in dimension 1 (the gcd of the inputs). The latter iterates reductions
(a← a mod b) and swaps (a↔ b); we shall mimic this.

We want to define the meaning of “reduce bi mod 〈b1 . . . bi−1〉Z”. The idea is
to reduce the size of bi by removing a linear combination of the (b1, . . . , bi−1).
Which one ?

Over R. Let us first review the classical procedure over R. The meaning of
“reduce bi mod 〈b1 . . . bi−1〉R” is clear: project on the orthogonal complement of
〈b1, . . . , bi−1〉R, i.e.

bi ← bi −
i−1∑

j=1

µi,jb
∗
j .

To generalize this, it is helpful to view this formula as a sequence of elementary
operations: for all j = i− 1, . . . , 1, let successively

bi ← bi − µi,jbj , where µi,j =
bi · b∗j
b∗j · b∗j

,

computed using the current value of bi.

• In this algorithm, the µi,j change as bi does; but the b∗j do not, for j < i.

• We prove by induction that at the beginning of step j, the vector bi is
orthogonal to b∗j+1, . . . , b

∗
i−1; indeed the vector b = bi − µi,jbj satisfies

– b · b∗j+1 = · · · = b · b∗i−1 = 0 because all these vectors are orthogonal
to bi by the induction hypothesis, and to the subspace generated by
(b1, . . . , bj), to which bj belongs.

– b · b∗j = 0 by construction, since bj · b∗j = b∗j · b∗j .

2.3. THE LLL ALGORITHM 51

• It follows that the final value of bi lands in the orthogonal subspace to
H = 〈b1 . . . bi−1〉R. Since it is equal to the original value of bi plus an
element of H , it is in fact the orthogonal projection of bi on H⊥. Hence,
this final value of bi is the same as before!

Over Z. We approximate the above reduction process: for all j = i− 1, . . . , 1,
let successively

bi ← bi − ⌈µi,j⌋ bj , where µi,j =
bi · b∗j
b∗j · b∗j

,

computed using the current value of bi. Because of our rounding µi,j, we obtain
some approximation of the true orthogonal projection. Note that the above is a
sequence of elementary operations over Z, hence invertible.

Lemma 2.30. Let bi the resulting vector. It satisfies the following:

|µi,j| 6
1

2
, for all j < i.

Proof. Decreasing induction. Let |µi,j| 6 1
2

for all j such that ℓ < j < i. The
transformation bi ← bi − ⌈µiℓ⌋ bℓ has a nice behaviour: it does not affect the µi,j
for j > ℓ and replaces µi,ℓ by µi,ℓ cmod 1. The result follows.

A vector bi satisfying the condition in the Lemma is called size-reduced, with
respect to the family (b1, . . . , bi−1).

Corollary 2.31. Given any Z-basis of Λ we may change it into a size-reduced
basis such that all the |µi,j| 6 1

2
for every j < i. To size-reduce a basis requires

O(n2) operations on vectors in Λ, hence O(n3) operations on scalar coordinates.

Remark 2.32. Since the lattice does not change,
∏n

i=1 q(b
∗
i) remains fixed. Fur-

ther

• q(b∗1) = q(b1), and more generally q(b∗i) 6 q(bi).

• q(bi) = q(b∗i) +
∑

j<i µ
2
i,jq(b

∗
j), since the b∗j are an orthogonal family.

• µ2
i,j 6

1
4

so the bi are short provided the q(b∗j) are.

Problem

If all q(b∗j) are small, so is q(bi) by the above and we are happy. But what occurs
if q(b∗j) is very small for some j ? Since the product

∏n
i=1 q(b

∗
i) = disc(Λ) is

constant, then some other Gram-Schmidt vector b∗j is large, so at least one vector
in the basis is large, since q(bj) > q(b∗j).

So we want to avoid “tiny” Gram-Schmidt vectors. Ideally, we want the q(b∗i)

to be roughly equal, of the order of disc(Λ)
1
n since their product is disc(Λ). We

will swap vectors between reductions in order to ensure this.

52 CHAPTER 2. LATTICES

2.3.2 Reduced bases

We are now ready to give definitions.

Definition 2.33. The basis (b1, . . . , bn) is size reduced if |µi,j| 6 1
2

for every j < i.

Definition 2.34. (bi)i6n is Siegel reduced if q(b∗i) 6 2q(b∗i+1) for i < n.

For such a basis, we have

q(b1) = q(b∗1) 6 2q(b∗2) 6 22q(b∗3) 6 . . . 6 2n−1q(b∗n), (2.2)

hence
q(b1)

n
6
∏

q(b∗i)
∏

i<n

2i = disc(Λ)× 2n(n−1)/2. (2.3)

(Compare with Minkowski and Corollary 2.28.)

Definition 2.35. (bi)i6n is called reduced if it is size reduced and Siegel reduced.

In a Siegel reduced basis, the values q(b∗i) cannot decrease too fast, hence a
small q(b∗i) means that all q(b∗j) are small for j 6 i. If the basis is further size-
reduced, all bi are small in that same range (Remark 2.32) and we are happy.
From the Siegel condition, if a q(b∗i) is large (so that q(bi) is large), then all
following ones are large also. Since the product is controlled, no really large
vector can occur.

The LLL algorithm produces a reduced basis from an arbitrary basis. Before
giving the algorithm, we describe the nice properties of a reduced basis:

Theorem 2.36. Let x ∈ Λ, x 6= 0, and let (bi)i6n be a reduced basis for Λ. Then
the following three properties hold:

1. q(x) > min
i6n

q(b∗i) (this one actually holds for any basis)

2. q(b1) 6 2n−1q(x) (in other words, b1 is essentially as short as possible)

3. (Generalization of the previous case.) Let (x1, . . . , xt) be t independent
vectors in Λ; in particular, xi 6= 0 and t 6 n. Then

q(bt) 6 2n−1 max
j6t

q(xj).

Remark 2.37. The second property gives in general a much better bound than
that given by Minkowski’s theorem or (2.3), since here the bound for q(b1) de-
pends on the shortest x for a specific lattice, while Minkowski runs through
all possible lattices with a given discriminant. Recall that according to Corol-
lary 2.28, there is a non-zero vector x in Λ such that q(x) 6 γn disc(Λ)

1
n , for some

γn only depending on n.

2.3. THE LLL ALGORITHM 53

Proof. 1. Write x =
∑

i6n λibi, where λi ∈ Z and not all are 0 since x 6= 0.
Let k be the maximal index such that λk 6= 0. Then

x =
∑

i6k

λi(b
∗
i +

∑

j<i

µi,jb
∗
j) = λkb

∗
k +

∑

j<k

νjb
∗
j , νj ∈ R.

Using the fact that (b∗1, . . . , b
∗
k) are orthogonal and |λk| > 1:

q(x) = λ2kq(b
∗
k) +

∑

j<k

ν2j q(b
∗
j) > q(b∗k) > min

j6n
q(b∗j).

2. q(b1) = q(b∗1) 6 2k−1q(b∗k) 6 2k−1q(x) 6 2n−1q(x).

3. (Thus far we have not made use of the assumption that the given basis is
size reduced, only Siegel reduced. In practice however, decent algorithms
giving a Siegel reduced basis yield a basis which is size reduced too.) We
start by generalizing (2.2), noting that Siegel reducedness implies that for
j < i:

q(b∗j) 6 2q(b∗j+1) 6 . . . 6 2i−jq(b∗i).

Next we prove the following inequality between vectors in the reduced basis
and corresponding vectors in the orthogonal basis:

Lemma 2.38. It holds that

1 6
q(bi)

q(b∗i)
6 2i−1

Proof. From

bi = b∗i +
∑

j<i

µi,jb
∗
j ,

it follows that
q(bi) = q(b∗i) +

∑

j<i

µ2
i,jq(b

∗
j),

hence
q(bi)

q(b∗i)
= 1 +

∑

j<i

µ2
i,j

q(b∗j)

q(b∗i)
.

Note that the last term is non-negative. Now use |µi,j| 6 1
2
:

1 +
∑

j<i

µ2
i,j

q(b∗j)

q(b∗i)
6 1 +

i−1∑

j=1

1

4
2i−j = 2i−2 + 2−1 6 2i−2 + 2i−2 = 2i−1.

54 CHAPTER 2. LATTICES

Now we prove our contention. Write the xj in terms of the basis:

xj =

n∑

i=1

ri,jbi , ri,j ∈ Z.

For a fixed j, let i(j) be the largest index i such that ri,j 6= 0. Then by the
proof of the first point (actually the second-last step) with x = xj :

q(xj) > q(b∗i(j))

By renumbering the xj , we may assume that

i(1) 6 i(2) 6 . . . 6 i(t)

We proceed to prove by induction that j 6 i(j). Firstly 1 6 i(1) since
x1 6= 0. Now suppose j − 1 6 i(j − 1). Since i(j − 1) 6 i(j) we have
j − 1 6 i(j). But j − 1 = i(j) would imply that {x1, . . . , xj} is contained
in the subspace 〈b1, . . . , bj−1〉 spanned by the first j − 1 basis vectors. This
contradicts the assumption that the xi are linearly independent. Hence
j − 1 < i(j), or j 6 i(j). Now combine the various little results:

q(bj) 6 2j−1q(b∗j) 6 2j−12i(j)−jq(b∗i(j)) = 2i(j)−1q(b∗i(j)) 6 2n−1q(xj),

which completes the proof.

2.3.3 The algorithm

Algorithm 6. LLL algorithm

Input: (bi) a Z-basis for Λ ⊂ Rn. We assume that the bi are in Zn, and
Gram(bi) ∈Mn(Z). (Hence the µi,j are in Q.)

Output: A reduced basis for Λ.
1: let k := 2, compute the (b∗i)i6n {i.e. compute (µi,j)j<i6n.}
2: while (k 6 n) do {(b1, . . . , bk) is reduced}
3: Reduce bk mod (b1, . . . , bk−1), update (b∗i)i6n {Reduction step}
4: if (k > 1) and q(b∗k−1) > 2q(b∗k) then {Swap if Siegel condition fails}
5: Exchange bk−1 and bk
6: Update (b∗i)i6n
7: Set k := k − 1
8: else
9: Set k := k + 1
10: return (b1, . . . , bn)

2.3. THE LLL ALGORITHM 55

Remark 2.39. It is not necessary to recompute the (b∗i) from scratch each time a
change is made: most do not change, and the others can be cheaply updated. See
Cohen [6] for formulas. There are many variants on Siegel reducedness, simpler
to check and a little harder to explain, but yielding essentially the same bounds.

Remark 2.40. Since (b1, . . . , bn) is a basis, we can get the base change matrix
going from the input basis to the output basis just from the input and output
of the algorithm — this is easy linear algebra. What happens if the (bi) are
dependent vectors ? If the reduction of bk mod (b1, . . . , bk−1) is 0 we discard bk,
and everything else works. But in that case, from input/output, we lose some
information: the kernel. If that is a problem, one can add more steps updating an
auxiliary matrix (initially Idn) to keep track of elementary operations, as usual.

Remark 2.41. We assume the bi and Gram(bi) are integral because we want
exact arithmetic throughout. Using floating point arithmetic complicates quite a
bit the analysis — we need perturbation results —, although it certainly improves
efficiency in practice. This is not a serious theoretical restriction since we may
approximate all entries by rationals then clear denominators.

Theorem 2.42. Let A = maxi6n q(bi). The algorithm stops after O(n4 logA)

operations on integers of size O(n logA). Thus it takes Õ(n5(logA)2) time and
requires O(n3 logA) space.

Remark 2.43. The final sentence is obvious since there are n2 numbers of size
O(n logA) each. In comparison, the advanced HNF algorithm uses Õ(n4(logA)3)
time and O(n2 logA) space. The LLL algorithm has the advantage however that
it is easier to implement (coefficients do not blow up in a naive implantation),
gives nicer base change matrices (smaller entries), and nicer output (bases whose
vectors are provably small).

Proof. First step. Prove termination.

1. Some definitions: Let
Λi = 〈b1, . . . , bi〉Z

denote the lattice in Λi ⊗Z R generated by the first i basis vectors. So
Λn = Λ. Then define

Di = disc(Λi) =
∏

j6i

q(b∗j)

D :=

n−1∏

i=1

Di = q(b∗1)
n−1 . . . q(b∗n−1).

Then Di ∈ Z \ {0}, i 6 n − 1, and hence D ∈ Z>1. The idea is now to
bound the maximum value that D can have at the beginning, and show

56 CHAPTER 2. LATTICES

that D only changes during a swap, becoming less than 3
4
D every time that

it changes. This will bound the maximum number of swap steps, hence
the number of iterations in the while loop. This proves termination, and
will eventually give a bound on the running time of the algorithm, once we
make sure coefficient explosion does not occur.

2. We now consider how D changes through the algorithm.

Reduction of bk mod (b1, . . . , bk−1)Z does not change the b∗i , hence it leaves
the Di and D fixed.

A swap step replaces (b∗k−1, b
∗
k) by (s, t), where

s = b∗k + µk,k−1b
∗
k−1

since it is the component of bk orthogonal to b1, . . . , bk−2. In particular it
follows that q(s) > q(b∗k), which will be useful later. Since the product over
all q(b∗i) stays constant, and only two of them change, we have

q(s)q(t) = q(b∗k−1)q(b
∗
k),

from which we deduce q(t) 6 q(b∗k−1). (Here is another way to see this:
t is the component of bk−1 orthogonal to b1, . . . , bk−2, bk, which spans a
subspace containing b1, . . . , bk−2. But b∗k−1 is defined as the component of
bk−1 orthogonal to this latter subspace, hence q(t) 6 q(b∗k−1).)

Summing up, the Dj are unaffected except Dk−1, which gets multiplied by
q(s)/q(b∗k−1). From the expression for s we get

q(s)

q(b∗k−1)
=

q(b∗k)

q(b∗k−1)
+ µ2

k,k−1 6
1

2
+

1

4
=

3

4
,

using the fact that we are swapping precisely because the Siegel condition
was not satisfied at (b∗k−1, b

∗
k), and the size reduction consequence: |µi,j| 6

1/2.

This proves that during each swap D gets replaced by an integer which is
less than 3

4
D.

3. From the definitions of A and D it follows that at the beginning of the
algorithm

D 6 q(b1)
n−1 . . . q(bn−1) 6 A

n(n−1)
2 .

By the above it follows that the number of swaps is bounded by

log 3
4
A

n(n−1)
2 = O(n2 logA).

Thus there are O(n2 logA) loops, and since each loop involves O(n2) oper-
ations on the coordinates of the bi and µi,j, the total number of operations
is O(n4 logA), as claimed.

2.3. THE LLL ALGORITHM 57

Second step. Bound the denominators.

Lemma 2.44. At any point in the algorithm the following are true:

1. Dk−1b
∗
k ∈ Zn

2. Dℓµk,ℓ ∈ Z, for all ℓ < k 6 n.

Proof. 1. We can express

b∗k = bk −
∑

ℓ<k

λk,ℓbℓ

for certain λk,ℓ ∈ R. Recall that b∗k · bj = 0 for j < k. Taking the inner
product of every term in the above equation with bj for j varying between
1 and k − 1 gives the following k − 1 linear equations in k − 1 variables:

∑

ℓ<k

λk,ℓ(bℓ · bj) = (bk · bj) , j < k.

The determinant of the linear system is Dk−1. Using Cramer’s rule, we
deduce that Dk−1λk,ℓ ∈ Z, as claimed.

2. Using the definitions and what was just proved gives the following:

Dℓµk,ℓ = Dℓ−1q(b
∗
ℓ)
bk · b∗ℓ
q(b∗ℓ)

= bk · (Dℓ−1b
∗
ℓ) ∈ Z

Thus bounding the Di will bound all denominators. Recall that A was chosen
such that q(bi)

∗ 6 q(bi) 6 A for all i, at the beginning of the algorithm. Now we
claim that maxi q(b

∗
i) never increases, i.e. it is bounded throughout by A. This

has essentially already been shown, since these values do not change except at
the swap step, where both q(s) and q(t) were shown to be less than q(b∗k−1) 6 A
by induction. Thus:

Di =
∏

j6i

q(b∗i) 6 Ai.

Hence all the Di are bounded by An. Then it follows from the previous step
that the denominators of the b∗k and µk,l are bounded by An, and since the bi
are anyway integers, this bounds all denominators of rational numbers in the
algorithm by O(n logA).
Third step. Bound the absolute values of the entries. Using the previous step,
this will bound the absolute values of the numerators.

1. We claim that

|µi,j|2 6 Dj−1q(bi).

58 CHAPTER 2. LATTICES

This follows from the definitions and the Cauchy-Schwartz inequality:

|µi,j|2 =

(
bi · b∗j
q(b∗j)

)2

6
q(bi)

q(b∗j)

q(b∗j) =
Dj

Dj−1
>

1

Dj−1

2. Next we need to bound the q(bi). The idea is to show that q(bi) 6 nA
everywhere except possibly during the reduction step where bi is being
reduced, where the weaker bound q(bi) 6 n2(4A)n+1 still holds. At the
beginning q(bi) 6 A 6 nA by definition. The only place in the algorithm
where q(bi) changes is at the reduction step when bi is being reduced. To
bound q(bi) during this step and at the end, we use the bound q(b∗i) 6 A
and the expression

bi = b∗i + µi,i−1b
∗
i−1 + · · ·+ µi,1b

∗
1.

Letting µi,i = 1 and using orthogonality gives:

q(bi) =
∑

j6i

|µi,j|2q(bj) 6
∑

j6i

m2
iA 6 nm2

iA,

where

mi = max {|µi,j| : 1 6 j 6 i} .

At the end of the reduction step mi = 1 since |µi,j| 6 1
2

for j < i and 1 for
j = i. Thus the bound q(bi) 6 nA always holds outside the reduction step.

To bound q(bi) during the reduction step,we need a bound for the mi which
holds throughout the reduction step (we fix some i from now on). We give a
bound for mi which holds at the beginning of the step, and then show that
mi does not grow too much during the reduction step. So at the beginning
of the reduction step:

m2
i = max

i

{
|µi,j|2 : 1 6 j 6 i

}

6 max
i
{Dj−1q(bi) : 1 6 j 6 i}

6 An−1q(bi) 6 An−1nA = nAn

Now consider how mi changes during one step in the loop of the reduction
step for some 1 6 j < i, i.e. when bi is being replaced by bi − ⌊µi,j⌉bj . As
mentioned in the beginning of the lecture, after this step the new values of
µi,l for j 6 l < i are less than 1

2
in absolute value. Thus they will not have

2.4. ALGEBRAICITY TEST 59

an incremental effect on the new value of mi. For 1 6 l < j the following
holds for the new value of µi,l (which is given by the first expression):

(bi − ⌊µi,j⌉bj) · b∗l
b∗l · b∗l

= |µi,l − ⌊µi,j⌉µj,l|

6 |µi,l|+ |⌊µi,j⌉| · |µj,l|

6 mi + (mi +
1

2
)
1

2
=

3

2
mi +

1

4
6 2mi

Thus the new value of mi cannot be more than twice the old value. So
during the whole loop, mi increases by at most a factor 2i−1 6 2n−1, so
m2
i increases by at most a factor 22n−2. Thus it is always the case that

m2
i 6 nAn22n−2 6 n(4A)n. This gives

q(bi) 6 nm2
iA 6 n2(4A)nA 6 n2(4A)n+1.

Fourth step. It remains to bound the absolute values of the numerators of the
numbers occurring in the algorithm:

1. ||bk|| = q(bk)
1
2 6 n(4A)

n+1
2

2. ||Dk−1b
∗
k|| 6 AnA

1
2

3. |Dlµk,l| 6 An(Dl−1)
1
2 ||bk|| 6 AnA

n
2 n(4A)

n+1
2 6 n(4A)2n+

1
2

Thus the numerators all have length O(n logA) also, completing the proof.

Here is a theorem on a variation of the LLL-algorithm, using floating point
arithmetic:

Theorem 2.45 (NGuyen-Stehlé). Let Λ ⊂ Zd be a lattice given by a generating
family of n vectors. Then a reduced basis can be obtained in time

O(d4n(d+ logA) logA).

When n = d this becomes O(n6 log2A).

2.4 Algebraicity test

We come back to our example in §2.2.3, as a nice application of the LLL algorithm,
and as a motivation for our factorization efforts in C[X] in §3.3.

Theorem 2.46. Let z ∈ C. Assume

1. There exists P ∈ Z[X] irreducible, with P (z) = 0, deg P 6 n, and ‖P‖∞ 6

A.

60 CHAPTER 2. LATTICES

2. We can compute ẑ(ε) ∈ Q(i) such that |z − ẑ(ε)| < ε, for all ε > 0 with
log(1/ε) = O(n2 logA).

Then we can find such a P in deterministic polynomial time (actually, polynomial
in n logA).

Corollary 2.47. Assume we can factor P ∈ Z[X] in C[X] in the above sense
(approximate roots). Then we can factor it in Q[X] in polynomial time.

Proof. Pick a complex root z of P , actually the approximation ẑ, and find its
minimal polynomial by looking at the polynomials D with properly bounded size
(i.e. ‖D‖∞ 6 A, A such that all divisors of P in C[X] satisfy ‖D‖∞ 6 A, see
Landau’s bound) and degD < degP . Either we get a factor, or we obtain a
proof that P is irreducible.

Proof. We now prove the Theorem: Let Λ be the free Z-module generated by the
columns of the following matrix




1 . . . 0
...

. . .
...

0 . . . 1
C Re(ẑn) . . . C Re(ẑ0)
C Im(ẑn) . . . C Im(ẑ0)



,

where C > 1 is a large integer. In other words, the set of




λn
...
λ0

C Re(
∑
λiẑ

i)
C Im(

∑
λiẑ

i)



, λi ∈ Z.

Let v = (λn, . . . , λ0, ∗, ∗) ∈ Λ be the first vector in a reduced basis, and let
Q(X) =

∑n
i=0 λiX

i. We claim that Q(z) = 0, provided C was large enough! To
prove this, we need three lemmas:

Lemma 2.48 (Cauchy’s bound). Let z ∈ C, P =
∑n

i=0 λiX
i ∈ C[X] such that

P (z) = 0, an 6= 0. Then

|z| 6 2 max
06i<n

∣∣∣∣
ai
an

∣∣∣∣
1/(n−i)

.

Proof. Assume by contradiction that

|z|n−i > 2n−i
∣∣∣∣
ai
an

∣∣∣∣ , for all i < n.

2.4. ALGEBRAICITY TEST 61

Then 2i−n |an| |z|n > |aizi| and

|anzn| > |anzn|
∑

i<n

2i−n >
∑

i<n

∣∣aizi
∣∣ .

Hence P (z) 6= 0.

Lemma 2.49. Let P ∈ Z[X], irreducible over Q[X], deg P 6 n, ‖P‖∞ 6 A, and
z ∈ C a root of P . Then for all Q ∈ Z[X] such that degQ 6 n and ‖Q‖∞ 6 A,
we have either Q(z) = 0 or |Q(z)| > η(A, n) > 0, where log(1/η) = O(n2 logA).

Proof. We may write P = an
∏n

i=1 (X − zi), zi ∈ C, with z1 = z say. From
Lemma 2.48, |zi| < D = 2A and we may assume D > 1. Now consider

R := adegQn

n∏

i=1

Q(zi) = Res(P,Q) ∈ Z.

Recall that Res(P,Q) = 0 if and only if P and Q have a common root in C,
which implies P | Q since P is irreducible. Assume that Q(z) 6= 0, then P and
Q have no common root and |Res(P,Q)| > 1.

On the other hand, we bound |Q(zi)| < DnA(n + 1) for all i > 1, |an| by A,
and obtain

1 6 |R| 6 Q(z)An
(
DnA(n+ 1)

)n−1
.

Lemma 2.50. Let z, ẑ ∈ C such that |z − ẑ| < ε < 1, |z| 6 A, and let P ∈
C[X], degP 6 n, ‖P‖∞ 6 A. Then |P (z)− P (ẑ)| < εB(A, n), where logB =
O(n logA).

Proof. From the Mean Value Theorem, P (z)−P (ẑ) = (z−ẑ)P ′(ξ), ξ = z+t(ẑ−z),
for some t ∈ [0, 1]. Hence |ξ| 6 A+ ε 6 A+ 1 and |P ′(ξ)| 6 n2A(A+ 1)n−1.

We continue with the proof of theorem. Recall that C and ε are not fixed, we
will choose them in order to get a contradiction.

• Assume by contradiction that Q(z) 6= 0. then C |Q(z)| > Cη(A, n) by
Lemma 2.49. Hence, C |Q(ẑ| > C(η − εB) (Lemma 2.50). Note that the
statement is empty if εB > η.

• Since v is the first vector in a reduced basis, the LLL theorem says that

q(v) 6 2nq(smallest nonzero vector in Λ)

6 2n
(
C2 |P (ẑ)|2 + (n + 1)A2

)

6 2n
(
C2ε2B2 + (n+ 1)A2

)
(Lemma 2.50, with P (z) = 0).

• On the other hand q(v) > C2 |Q(ẑ)|2 > C2(η − εB)2 if η − εB > 0.

62 CHAPTER 2. LATTICES

We get a contradiction if

C2(η − εB)2 > 2n(C2ε2B2 + (n+ 1)A2),

or η − εB > 2(n+1)/2εB,

if we choose C such that CεB =
√
n + 1A. We now choose ε 6 η/2B such that

2(n+1)/2εB 6 η/2, i.e. ε = η
/
B2(n+3)/2 is suitable. We find successively

log(1/ε) = log(1/η) + logB +O(n) = O(n2 logA),

logC = O(log(nA)− log(εB)) = O(n2 logA),

hence the sizes of all inputs are polynomially bounded in terms of n log(A).

Chapter 3

Polynomials

Factorization of univariate polynomials is our unifying theme, over finite fields,
over p-adic fields and C, and over Q.

3.1 Factoring in Fq[X]

3.1.1 Basic idea for factoring in a Euclidean ring R

To factor N ∈ R:

• Look for a zero divisor in R/(N)

• d = gcd(a,N) is a nontrivial factor of N , such that d and N/d are not units
in R.

• Restart with d, N/d.

This algorithm works if we have a notion of size so that d and N/d are smaller
than N , and we know the size cannot decrease indefinitely. This ensures the
method terminates. The problem now becomes to find zero divisors.

Example 3.1. To factor N ∈ Z, we want to find x2 ≡ y2 (mod N), x, y ∈ Z,
so that(x− y)(x+ y) ≡ 0 (mod N). Hence x± y are two potential zero divisors
(provided none of them is 0).

Exercise 3.2. In this example, we must assume that N is not a prime power.

1. Why ?

2. How to reduce to this case? (How to detect N is of the form pk, and
compute p and k in that case?)

Exercise 3.3. If k is a field and P ∈ k[X] we may assume that P has no repeated
factors, i.e gcd(P, P ′) = 1. Why?

63

64 CHAPTER 3. POLYNOMIALS

3.1.2 A special case: roots over Fp

Let T ∈ Fp[X], deg T = n. We are not interested in all factors, only the linear
ones. Eventually, we will reduce the whole factorization problem over Fq[X] to
finding roots over the prime field Fp.

Reduction

We may assume that T splits (has n distinct roots) over Fp. Indeed, we may
replace T by gcd(T,Xp −X): the new T is split and has the same roots as the
old one. In fact

Xp −X =
∏

α∈Fp

(X − α).

Cost: assuming the coefficients of T are in [0, p − 1], the size of the input is
O(n log p). We count the elementary operations in Fp in terms of n and log p:

• Compute y = Xp in Fp[X]/(T):

– O(ln p) operations in Fp[X]/(T)

– in this algebra an operation costs Õ(n) operations in Fp (multiplica-
tion, addition).

• gcd(y, T): Õ(n) operations in Fp.

So Õ(n log p) operations.

Find a 0-divisor in Fq[X]/(T)

Let A := Fp[X]/(T)
Fp−alg≃ (Fp)

n, from the Chinese Remainder Theorem. We
can easily find 0-divisors in (Fp)

n (any non-zero vector with a zero coordinate),
however the isomorphism Fp[X]/(T) ≃ (Fp)

n is not explicit: for that we would
need to know the decomposition of T ! On the other hand, A is a quite concrete
Fp-vector space:

A =
〈

1, X, ..., X
n−1〉

Fp

.

Lemma 3.4. For all x ∈ A, xp − x =
∏

α∈Fp
(x− α) = 0.

Any sub-product in the above is a potential 0-divisor, but it is not obvious how
to find a non-trivial one, i.e. such that its cofactor is not 0 !

Let x ∈ A\Fp and yj := x(x−1)(x−2) . . . (x−j). There exists a smallest 1 6

j < p such that yj = 0. Then x−j is a 0-divisor, yielding the following algorithm;
unfortunately, a priori, the worst case running time is O(p), i.e. exponential in
log p.

3.1. FACTORING IN FQ[X] 65

Algorithm 7. 0-divisor in Fp[X]/(T), T split

Input: x ∈ A \ Fp
Output: a 0-divisor
1: set j := 0, y := x;
2: while y 6= 0 do
3: increase j by 1 and set y := y(x− j).
4: Return x− j {6= 0}

Exercise 3.5. Introduce the polynomial P (X) = X(X − 1) . . . (X − t), t close

to
√
p and improve the above into a Õ(

√
p) algorithm.

Find a 0-divisor in Fq[X]/(T) with randomization assuming p > 2

All known deterministic algorithm for our problem are exponential time in the
worst case. We now use randomization to avoid this exponential behavior.

Lemma 3.6. Let t := p−1
2
∈ Z. For all x ∈ A, x(xt − 1)(xt + 1) = 0.

If x 6= 0 and xt 6= ±1 then we have a 0-divisor, namely

{
x(xt − 1) if 6= 0,

x otherwise.

Pick x uniformly at random in A. The bad choices, not leading to a 0-divisor,
are 




x = 0 1 choice,

xt = 1 tn choices,

xt = −1 tn choices.

So, the probability P (n) of picking a bad x is (2tn + 1)/pn. Notice that P (n) is
a decreasing function of n. As expected, P (1) = 1: there is no good choice if T
is irreducible! Otherwise, for n > 2,

P (n) 6 P (2) =
2t2 + 1

p2
6

1

2
.

Cost: Õ(n log p) operations in Fp, no more than the initial reduction.

• Compute xt in A: Õ(n log p) operations in Fp

• gcd : Õ(n)

66 CHAPTER 3. POLYNOMIALS

Algorithm 8. Split roots

Input: T ∈ Fp[X], totally split over Fp, p odd prime.
Output: 0-divisor in A.
1: Pick x ∈ A uniformly at random.
2: Compute b a representative in Fp[X] of xt ∈ A, t = (p− 1)/2.
3: Compute D = gcd(b− 1, T) ∈ Fp[X].
4: If D 6= 1 and D 6= 0 in A, then return D.
5: Otherwise return FAIL.

The complete algorithm is now easy to write, a special case of Equal Degree
Factorization (or EDF):

Algorithm 9. Equal Degree Factorization, degree 1

Input: T ∈ Fp[X], totally split over Fp, p odd prime.
Output: Factors of degree 1.
1: If deg T = 1, return T .
2: Call Split until it returns a non-trivial factor D of T .
3: Call oneself recursively on D and T/D. Return the concatenation of the

outputs.

Lemma 3.7. Let T = λ
∏s

i=1(X − αi). Let 1 6 i < j 6 n be two indices. Then
Split(T) fails to separate αi and αj with probability 6 5/9 < 1.

Proof. Exercise.

Theorem 3.8. The algorithm finds all the roots of T in an expected number of
operation in Fp which is Õ(n log p).

Proof. For a given sequence of random choices, define the execution tree as fol-
lows. Each node is a run of our Split algorithm, and is labelled with the poly-
nomial T . Either it succeeds and the node has two offsprings (labelled with their
respective factors), or it fails and we have a single son.

T

T

D T/D

X − αi X − αj

3.1. FACTORING IN FQ[X] 67

On a given level, the product of all labels is T (or a divisor of T if we remove the

degree 1 factors as they are found). The cost of a node of degree m is Õ(m log p),

so the cost of a level is Õ(n log p). (Since n is the sum of the m for the nodes on
that level.) The proof follows from next Lemma.

Lemma 3.9. The expected depth (number of levels) of the tree is Õ(log n).

Proof. Fix i < j and let δ = 5/9. By Lemma 3.7:

Prob(αi and αj are not separated in a given node) 6 δ.

Since at level k we went through k nodes already,

Prob(αi and αj are not separated after level k) 6 δk.

We stop when all pairs of roots are separated. There are n(n − 1)/2 6 n2 pairs
of roots, so

pk := Prob(not done after level k) 6 n2δk.

Note that the probability that the tree stops at depth k is exactly pk−1 − pk.
Hence

E(depth) =
∑

k>1

(pk−1 − pk)k

=
∑

k>1

(k − 1)pk−1 − kpk + pk−1 =
∑

k>0

pk 6 +∞

because kpk 6 n2kδk tends to 0 as k → +∞. We now use either the trivial bound
pk 6 1, or the one just proved:

∑

k>0

pk 6
∑

k>0

min(1, n2δk).

Note that n2δk 6 1 if and only if k > s := ⌈− logδ n
2⌉. So

∑

k>0

pk 6 s+
∑

k>s

n2δk ≪ s+ n2δs ≪ log n.

3.1.3 Squarefree factorization

We now reduce the general problem of factorization over k[X] to squarefree poly-
nomials.

68 CHAPTER 3. POLYNOMIALS

Definition 3.10. Let T ∈ k[X] be monic non-constant, and
∏
T eii its decompo-

sition into distinct irreducible monic factor. The squarefree part of T , or core(T),
is
∏
Ti.

The squarefree factorization of T is T = f 1
1 f

2
2 . . . f

m
m , where the fi ∈ k[X]

are monic squarefree polynomials, pairwise coprime, and fm 6= 1. The squarefree
part of T is f1 . . . fm.

It is enough for our purpose to compute core(T), since once it is factored and
the irreducible factors of T are known, we can compute the ei as valuations (if
they are at all needed).

Lemma 3.11. Let T ∈ k[X] of degree n, k a perfect field of characteristic p > 0.
Assume T =

∏s
i=1 T

ei
i , where the Ti are irreducible, pairwise non-associate. Let

u := gcd(T, T ′), v := T/u, w :=
u

gcd(u, vmin(n−1,deg u))

then

v =
∏

p∤ei

Ti, and w =
∏

p|ei

T eii .

Proof. From the logarithmic derivative formula, we find

T ′ =
s∑

i=1

ei
T ′i
Ti
T,

hence T ei−1i | gcd(T, T ′) and T eii divides the GCD if and only if Ti | eiT ′i , i.e ei = 0
in k (since T ′i = 0 over the perfect field k would imply that Ti is a p-th power,
hence not irreducible). Since the irreducible factors of v are among the Ti,

u =
∏

p∤ei

T ei−1i

∏

p|ei

T eii ,

and the first equality follows. For the second, ei − 1 is less than deg u and n− 1
for all i, hence

gcd(u, vmin(n−1,deg u)) =
∏

p∤ei

T ei−1i

and we are done.

From the lemma, we can compute the squarefree part of T , in fact in a partially
factored form:

3.1. FACTORING IN FQ[X] 69

Algorithm 10. Squarefree part over Fq, core

Input: T ∈ Fq[X], deg T = n.
Output: core(T), the squarefree part of T .
1: Compute u = gcd(T, T ′), then v = T/u.
2: Compute a representative a ∈ Fq[X] of vmin(n−1,deg u)−1 in Fq[X]/(u), then
w = u/ gcd(u, a). {w is of the form

∑
wiX

pi}
3: Let W =

∑
F−1(wi)X

i, where F−1 : x 7→ xq/p. {we have W p = w}
4: Return v × core(W), calling ourselves recursively.

Theorem 3.12. Let T ∈ k[X] be of degree n. If k has characteristic 0, or

k = Fp, p prime, the squarefree part of T is computed in Õ(n) operations in k. If

k = Fq is finite but not a prime field, the squarefree part is computed in Õ(n log q)
operations.

Proof. Computing u, v, vn−1 (mod u) and w all cost Õ(n) operations in k. This

proves the case char k = 0. Evaluating F−1 on x ∈ Fq costs Õ(log(q/p)) opera-
tions, i.e. nothing if q = p. If f(n) is a the total cost of the computation for T of

degree n, then f(n) 6 Õ(n log(q/p)) + f(n/p), and the case k = Fq follows.

Remark 3.13. If we are counting operations over Fp, and write Fq = Fp(y) then
we can improve the above by precomputing F−1(y) then F−1(Q(y)) asQ(F−1(y)).

Yun’s algorithm ([24, §14.6]) exploits the Lemma in a clever way to find the
full squarefree factorization at the same cost as above.

3.1.4 Factorization over Fq[X], q odd

The beginning is actually also valid for q even. Let T ∈ Fq[X] be square-free, T =∏s
i=1 Ti , Ti irreducible, pairwise coprime. Let A := Fq[X]/(T) and F : x 7→ xq

the Frobenius endomorphism (of Fq-algebras) of A. By the Chinese Remainder
Theorem,

A
∼−→

s∏

i=1

Fq[X]/(Ti) ≃
s∏

i=1

Fpdeg Ti .

a 7−→ (π1(a), ..., πs(a))

Let B := ker(F − Id) the Berlekamp algebra, first introduced in this context
in [4].

Lemma 3.14. B ≃ (Fq)
s.

From now on q is odd. As before, for all b ∈ B, b(bt − 1)(bt + 1) = 0, where
t = q−1

2
. It is a little harder to split polynomials since we have no immediate

way of detecting an irreducible factor (we can recompute another Berlekamp

70 CHAPTER 3. POLYNOMIALS

matrix, but this is expensive), so we cannot remove them from the tree as they
are found. So we keep trying to split all polynomials obtained so far until the
required s factors are found.

Algorithm 11. Split over Fq[X], q odd

Input: (T,B,F), where T ∈ Fq[X], B is given by an Fq-basis, and F =
{f1, . . . fr} is a collection of fi ∈ Fq[X] such that T =

∏
i6r fi for some

r < s.
Output: A larger collection of factors of T .
1: Pick uniformly a random x ∈ B
2: Compute ȳ := xt in Fq[X]/(T). {O(log t) multiplications}
3: Compute D := gcd(y − 1, fi) in Fq[X], for all i 6 r. Each time D is non

trivial, we split the corresponding fi in two.
4: Return the new collection of factors.

The global algorithm is then as follows:

Algorithm 12. Berlekamp’s algorithm over Fq[X], q odd

Input: T ∈ Fq[X], squarefree, q odd.
Output: The irreducible factors of T .
1: Compute an Fq-basis of B = ker(F − Id) acting on Fq[X]/(T).
2: Let s = dimFq

B. If s = 1, we are done: T is irreducible.
3: Otherwise, set F = {T} then F = Split(T,B,F) until #F = s.
4: Return F .

Lemma 3.15. The expected cost of “Splitting B”, i.e. of splitting T using B is
Õ(n log q) operations in Fq.

Proof. It is essentially the same as for roots. Left as an exercise.

What is the cost of computing a basis of B? We count operations over Fq:

1. Compute F (X) = Xq in A = Fq[X]/(T): Õ(n log q) operations.

2. F (X2) = X2q, . . . , X(n−1)q : n− 1 multiplications in A, for a cost of Õ(n2)

operations (Õ(n) for one multiplication).

3. Compute the kernel : Õ(nω).

Theorem 3.16. The total cost of Berlekamp’s algorithm is Õ(nω + n log q) ex-
pected operations in Fq. The computation of the Berlekamp algebra B is de-
terministic, and yields the number of irreducible factors; only the splitting is
randomized.

3.1. FACTORING IN FQ[X] 71

3.1.5 Factorization over F2f [X]

As before, let B := ker(F − Id) be the Berlekamp algebra. For q odd, we used
x(xt − 1)(xt + 1) = 0. In characteristic 2, we consider instead

Tr(x) =

f∑

k=1

x2
k−1

.

Lemma 3.17. 1. Tr : F2f → F2 is a surjective F2-linear map.

2. For a random x ∈ F2f , Tr(x) = 0 or 1 with probability 1/2.

3. For all b ∈ B, πi(Tr(b)) ∈ F2.

Proof. Exercise.

Corollary 3.18. For a random b ∈ B, Tr(b) ∈ F2 with probability 21−s 6 1/2 if
s > 2

We thus obtain our last variant of the Split algorithm:

Algorithm 13. Split over Fq[X], q = 2f even

Input: (T,B,F), where T ∈ Fq[X], B is given by an Fq-basis, and F =
{f1, . . . fr} is a collection of fi ∈ Fq[X] such that T =

∏
i6r fi for some

r < s.
Output: A larger collection of factors of T .
1: Pick uniformly a random x ∈ B
2: Compute D := gcd(Tr(b), T) in Fq[X], for all i 6 r. Each time D is non

trivial, we split the corresponding fi in two.
3: Return the new collection of factors.

3.1.6 Conclusion

Theorem 3.19. The expected cost of the Berlekamp Algorithm using any of the
Split subroutines is the same: Õ(nω + n log q) operations in Fq.

Proof. Exercise.

Using black-box algebra and randomizing also the computation of the Berlekamp
algebra B, the above improves to Õ(n2 + n log q) (Kaltofen & Lobo).

A quite different approach (iterated Frobenius), was introduced by von zur
Gathen & Shoup, improving on a classical algorithm by Cantor & Zassenhaus: it
avoids completely linear algebra, and computes simultaneously the Xqd for d 6 n
in Õ(n2 + n log q) operations in Fq (this is non-trivial within that time bound,
contrary to the Xqd required by Berlekamp!).

72 CHAPTER 3. POLYNOMIALS

After taking the gcds (Xqd −X, T), it remains to split products of irreducible
polynomials having the same degree d, using a generalization of Algorithm 3.1.2.
This algorithm achieves the same complexity: Õ(n2+n log q) expected operations
in Fq. Both algorithms are quite practical.

3.2. FACTORING IN Q[X] 73

3.2 Factoring in Q[X]

3.2.1 Qp and Zp

R is a convenient “limit field” associated to convergent sequences of rational
approximations: for all x ∈ R, there exists x̂(ǫ) ∈ Q such that |x− x̂| < ǫ. From
a computational point of view we only know (some of) the approximations x̂.

We need an analogous ring associated to a different metric: now we want
closer and closer approximations modulo ever larger powers of a given prime p:
for all x ∈ Zp there exists x̂(n) ∈ Z such that |x− x̂|p < p−n.

Definition 3.20. Let |·|p : Q→ R+ defined by x 7→ p−vp(x) for x 6= 0 and |0|p = 0.
It is a non-Archimedean absolute value, satisfying |x + y|p 6 max(|x|p , |y|p).
Definition 3.21. Equip Q with the topology afforded by the |·|p metric. Let Qp

be the ring of Cauchy sequences in QN, modulo the ideal of sequences converging
to 0. (Both “Cauchy sequence” and “converging to 0” are understood with repect
to the p-adic metric!) The absolute value |·|p extends to Qp (with values in Q),
making it a topological field.

Definition 3.22. Let Zp =
{
x ∈ Qp : |x|p 6 1

}
be the unit ball in Qp. This is a

compact ring, whose field of fraction is Qp, in fact Qp = Zp[1/p]. Zp is a principal

local ring with unique maximal ideal pZp =
{
x ∈ Qp : |x|p < 1

}
the open unit

ball. One proves that the natural map Zp/p
kZp → Z/pkZ is an isomorphism.

An alternative construction for Zp and Qp is

Zp = lim←−−
n>1

Z/pnZ,

that is the subring of Z/pZ× Z/p2Z× · · · , containing the (x1, x2, . . .) such that
xi ≡ xj (mod pi), for all i 6 j. Then define Qp = FracZp = Zp[1/p].

The important property for us is that Z is dense in Zp (and Q in Qp). We
represent an x ∈ Zp by an approximation x̂ ∈ Z such that x ≡ x̂ (mod pℓ) and
say that x is known modulo pℓ. The next theorem is the crux of all modern
factorization algorithms over Q[X]: one can refine an approximate factorization
in coprime factors to an arbitrary accuracy.

Theorem 3.23 (Hensel’s lemma). Let T ∈ Zp[X] be a monic polynomial, and
a collection of polynomials Ti ∈ Zp[X], i 6 r, which are monic and pairwise
coprime, such that

T ≡
r∏

i=1

Ti (mod p) (= mod pZp[X]).

(This is an equality in Zp[X]/pZp[X] ≃ Fp[X].) There exist unique T ∗i ∈ Zp[X]
such that T =

∏r
i=1 T

∗
i and T ∗i ≡ Ti (mod p) for i 6 r.

74 CHAPTER 3. POLYNOMIALS

Proof. Let k > 0. Starting from a factorization T =
∏r

i=1 Ti (mod pk), we
construct explicitly ti ∈ Zp[X], deg ti < deg Ti such that

T =
r∏

i=1

(Ti + tip
k) (mod p2k).

In fact, from a Bezout relation in the principal ring Qp[X], we obtain ti ∈ Qp[X],
deg ti < deg Ti such that

s∑

i=1

ti
∏

j 6=i
Tj =

T −∏r
i=1 Ti

pk
∈ Zp[X].

We claim the ti belong to Zp[X]. If not, let ti have the largest denominator pd;
clear denominators by multiplying by pd and reduce modulo p: we see that Ti
divides pdti modulo p, hence ti = 0, a contradiction.

By induction this yields T
(k)
i ∈ Zp[X], deg T

(k)
i 6 deg T such that T

(k)
i ≡ T

(ℓ)
i

(mod ℓ) for all ℓ 6 k, i.e. k 7→ T
(k)
i is a Cauchy sequence in Zp[X]6deg T , which is

complete. Therefore, it converges to T ∗i ∈ Zp[X]. To prove unicity, notice that
Zp is a UFD (it is principal!), hence Zp[X] is also a UFD.

Remark 3.24. It is a little easier to lift a Bezout relation in Fp[X] = Zp[X]/(p)
to ensure a factorization modulo pk+1, instead of p2k. This would be sufficient
for the above proof, but would be less efficient in the computational version to
follow.

To put this proof in a computationally convenient form, we must deal with
approximations in Z/pkZ at each stage. E.g. knowing the ti modulo pk is enough

to know T
(2k)
i := T

(k)
i + pkti modulo p2k. The problem is the Bezout relation,

since (Z/pkZ)[X] is a terrible ring, certainly not principal. To avoid this, we lift
simultaneously the polynomials and the Bezout relation:

3.2. FACTORING IN Q[X] 75

Algorithm 14. Hensel step

Input: R (commutative, unital), f, g, h ∈ R[X] monic, such that deg s < deg h,
deg t < deg g, f ≡ gh (mod m), sg + th ≡ 1 (mod m).

Output: g∗, h∗ ∈ R[X] monic, s∗, t∗ ∈ R[X] such that deg s∗ < deg h∗ = deg h,
deg t∗ < deg g∗ = deg g, f ≡ g∗h∗ (mod m2), s∗g∗ + t∗h∗ ≡ 1 (mod m2).

1: Let e = f − gh,

G = et (mod m2, g), g∗ = g +G

H = es (mod m2, h), h∗ = g +H

2: Let e = 1− (sg∗ + th∗)

S = et (mod m2, h∗), s∗ = s+ S

T = es (mod m2, g∗), t∗ = t + T

Proof. Letting g∗ = g + G, h∗ = h + H , s∗ = s + S, t∗ = t + T , we look for
G,H, S, T ≡ 0 (mod m) with degG < deg g, degH < deg h, deg S < deg S,
deg T < deg t.

First lift g and h. We want

g∗h∗ ≡ gh+ Hg +Gh (mod m2) ≡ f.

Letting e = f − gh ≡ 0 (mod m), we try to solve Hg +Gh ≡ e (mod m2).
The quotient ring R/m2 is not a field so we cannot solve this in the usual

way (extended Euclidean algorithm). Fortunately, a Bezout relation is provided
with the input, and G = et, H = es is a solution. Unfortunately, we want
degG < deg g and degH < deg h.

But we can modify H by a multiple of h and G by the corresponding multiple
of g, so write: G = qg + r, deg r < deg g (division possible because g is monic),
and replace G← G− qg, H ← H + qh.

1. Hg +Gh does not change.

2. G = r satisfies degG < deg g.

3. deg e < deg f = deg g + deg h. (Since f, g, h are monic, leading terms
cancel). Now use Gh+Hg = e; since degGh = degG+deg h < deg g+deg h,
we finally obtain deg(Hg) < deg g + deg h. In other words, degH < deg h
as required.

4. f ≡ g∗h∗ (mod m2).

Now lift s, t: we have

s∗g∗ + t∗h∗ = sg∗ + th∗ + Sg∗ + Th∗, sg∗ + th∗ ≡ 1 (mod m),

76 CHAPTER 3. POLYNOMIALS

and we solve Sg∗ + Th∗ ≡ 1− (sg∗ + th∗) (mod m2) exactly as before.

The most important applications are R = Z, m = pℓ, p prime and R = k[X],
m = Xℓ.

Lemma 3.25. If R = Z, deg f = n, and all inputs satisfy ‖·‖∞ < m2, the cost

of a Hensel step is Õ(n logm), i.e. essentially linear in the input size.

Exercise 3.26. Over Z, if f ≡ gh (mod pℓ), and we do not wish to lift s, t, we
can still solve Hg+Gh ≡ f−gh but modulo pℓ+1, no longer modulo p2ℓ. Develop
the corresponding algorithm (linear lift).

Algorithm 15. Hensel multi-lift

Input: R commutative ring, p ∈ R such that R/p is a field, ℓ ∈ Z>0. f ∈ R[X]
monic. f1, f2, . . . , fr monic in R[X], pairwise coprime in (R/p)[X] such that

f =
r∏

i=1

fi (mod p).

Output: Monic f ∗1 , . . . , f
∗
r ∈ R[X] such that

f ≡
r∏

i=1

f ∗i (mod pℓ).

1: If r = 1, return f .
2: Let k = ⌊r/2⌋, g = f1 . . . fk, h = fk+1 . . . fr, and find s, t such that sg+th ≡ 1

(mod p) (Extended Euclidean Algorithm).
3: Compute g∗, h∗ such that f ≡ g∗h∗ (mod pℓ), using O(log ℓ) Hensel Steps.
4: Call ourselves recursively with g∗, (f1 . . . fk), then h∗, (fk+1 . . . fr) and return

the concatenation of the factors.

Theorem 3.27. Assume R = Z, deg f = n, and all inputs are reduced modulo
pℓ. Then the lifting cost is Õ(n log pℓ), essentially linear.

Proof. Exercise. See [24, §15].

3.2.2 Bounds

Let

T = an

n∏

i=1

(X − αi), αi ∈ C, an 6= 0.

Define the Mahler measure

M(T) := |an|
n∏

i=1

max(|αi| , 1).

3.2. FACTORING IN Q[X] 77

Theorem 3.28 (Landau). M(T) 6 ‖T‖2 6 2deg TM(T).

Proof. We first prove the left-hand side: let

U(X) = an
∏

|αi|61

(ᾱiX − 1)
∏

|αi|>1

(X − αi).

We have

M(T) = |U(0)| 6 ‖U‖2 = ‖T‖2 ,
where the last equality uses the following lemma, whose proof is an easy exercise:

Lemma 3.29. If z ∈ C, ‖(X − z)T‖2 = ‖(z̄X − 1)T‖2.
As for the right hand side, writing the relations between roots and coefficients

for T =
∑n

i=0 aiX
i, we have

|ai| 6
(
n

i

)
|an| max

j1<···<ji
|αj1 · · ·αji| ,

and the max is less than M(T)/ |an|.

Corollary 3.30. If S | T in C[X] then ‖S‖2 6 2degS ‖T‖2 6 2deg T ‖T‖2.

Proof. ‖S‖2 6 2degSM(S) 6 2degSM(T) 6 2deg T ‖T‖2.

In particular, if S, T ∈ Z[X], deg T = n, ‖T‖∞ = A, we have

‖S‖∞ 6 ‖S‖2 6 2n(n+ 1)1/2A,

yielding a finite number of possible divisors, hence a naive algorithm to factor T .
We shall now improve drastically on such an exhaustive search.

3.2.3 Zassenhaus’s algorithm

Our goal is to factor the polynomial T in Q[X]. By clearing denominators and
rescaling (T ← an−1T (X/a) if T has degree n and leading coefficient a), we may
assume that T is monic in Z[X]. Gauss lemma (multiplicativity of contents) then
says that the monic irreducible factors of T in Q[X] are in fact in Z[X].

From squarefree factorization, we can assume further that T is squarefree.

Definition 3.31. Le p prime, k ∈ Z>0 and R one of the rings Z, Zp or Z/piZ for
some i > k. If a ∈ R, we write MOD

(
a, pk

)
for the unique representative in Z of

a (mod pk), which lies in]−pk/2, pk/2]. We extend this definition coefficient-wise
to polynomials in R[X].

78 CHAPTER 3. POLYNOMIALS

Algorithm 16. Zassenhaus’s algorithm

Input: T ∈ Z[X], monic, squarefree
Output: The monic irreducible factors of T in Q[X].
1: Pick p prime such that T ∈ Fp[X] remains squarefree and compute

T ≡
r∏

i=1

Ti (mod p)

where the Ti are distinct, monic and irreducible in Fp[X].
2: Let B = 2detT ‖T‖2 {= bound for the sup-norm of a factor in Z[X]}
3: Compute ℓ minimal such that pℓ > 2B and lift

T ≡
r∏

i=1

T ∗i (mod pℓ).

4: Let S0 = {1, . . . , r}.
5: for S ⊂ S0, by increasing size do
6: Compute

AS := MOD

(
∏

i∈S
T ∗i , p

ℓ

)
∈ Z[X].

7: if AS | T then
8: Output AS. {AS is an irreducible factor}
9: Replace S0 ← S0 \ S and T ← T/AS.

Proof. We first prove that all factors appear as AS for some S: by Corollary 3.30
a factor Q satisfies ‖Q‖∞ 6 B, and we certainly have Q ≡ AS (mod pℓ) for a
unique S (since the Ti are distinct: apply Hensel Lemma and reduce mod pℓ the
factorization in Zp[X]). Hence

‖Q− AS‖∞ 6 B +
pℓ

2
< pℓ,

by the choice of ℓ. Since this polynomial is divisible by pℓ, is is identically 0 and
Q = AS.

It remains to prove that the AS we output are irreducible. This is guaranteed
by the order in which we consider the set S: if AS is not irreducible, then AS =
BC in Q[X], for non-constant B and C. By what we have just proved B is of
the form AS′ for a proper subset S ′ of S, which cannot occur because smaller sets
are considered first and the indices in S ′ would already have been removed from
S0.

Remark 3.32. In the loop over the subsets S, we may stop as soon as #S >
#S0/2, since AS is a factor if and only if AS′ is a factor, with S ′ the complement
of S in S0. In particular, we consider at most 2r−1 sets S.

3.2. FACTORING IN Q[X] 79

Remark 3.33. There is a “big prime” variant of this algorithm where we directly
chose p > 2B and skip the Hensel lift (take ℓ = 1). But this is a bad idea

since Hensel lifting is essentially linear time (Õ(n log pℓ)) whereas factorization in

Fp[X] for big p definitely is not: Õ(n2 log p+ log2 p) using the fastest randomized
algorithms from Section 3.1.6. Also it is not obvious a priori how to construct a
“big prime”, whereas small primes are easy to find using a sieve. (See later.)

We now examine the various costs involved, letting n = deg T , A = ‖T‖∞. We
make use of the following classical result in analytic number theory (see Tenen-
baum [23])

Theorem 3.34 (Prime Number Theorem (PNT)). As x→ +∞, we have

Θ(x) :=
∑

p6x

log p ∼ x.

Effectively, one has Θ(x) > 0.98x for x > 7481.

The usual, more transparent, formulation is in terms of the function π(x) :=
{p 6 x}, satisfying π(x) ∼ x/ log x. The above function is the one which turns
up in our case.

Exercise 3.35. Using integration by part (Abel’s summation), show that the
two forms of the PNT are equivalent.

Theorem 3.36. There exists a prime p = O(n log(nA)) such that T is squarefree
in Fp[X]. In particular log p = O(logn + log logA).

Proof. Let D = Res(T, T ′). This is an integer (since T, T ′ ∈ Z[X]), which is non-
zero since T is squarefree in Q[X], hence gcd(T, T ′) = 1. Since D is a polynomial
in the coefficients of T and T ′ and reduction mod p is a ring homomorphism,
the resultant in Fp[X] of T̄ and T̄ ′ is D̄, and this is non-zero if and only if T̄ is
squarefree in Fp[X].

By Hadamard’s bound and deg T ′ 6 n − 1, |D| 6 ‖T‖n−12 ‖T ′‖n2 , from which
we obtain log |D| = O(n log(nA)). Assume now that all primes p 6 x divide D,
for some x > 7481. Then

log |D| >
∑

p6x

log p > 0.98x,

which is a contradiction for x≫ n log(nA).

Corollary 3.37. The cost of finding a suitable p is Õ(n2 logA)

Proof. Reducing the n+1 coefficients of T modulo p costs O(n logA log p). Once

the inputs have sup norm less than p, computing gcd(T̄ , T̄ ′) costs Õ(n log p),

negligible before the reduction cost. Summing this for all p = Õ(n logA), and

using the PNT, we obtain Õ(n logA)2.

80 CHAPTER 3. POLYNOMIALS

In practice, one chooses a few random primes less than twice an explicit upper
bound for |D| (T and T ′ are known !). This guarantees that less than half the
primes up to the bound are unsuitable, so we expect 6 2 trials before hitting
one, replacing the above estimate by Õ(n logA) (no longer deterministic). Even
after hitting a suitable prime, we still compute a few more and choose the one
such that the number of modular factors r is minimal.

Note that p is so small that we can factor deterministically in Fp[X] (in time
exponential in log p) and still remain polynomial-time with respect to n and logA.
This is important for our later theoretical result that factoring in Q[X] can be
done in deterministic polynomial time. In practice, one uses a fast randomized
algorithm, for a cost of Õ(n2 log p+ n log2 p):

Corollary 3.38. The (randomized) cost of factoring over Fp is Õ(n2 log logA+
n(log logA)2).

Corollary 3.39. The cost of the Hensel lift is Õ(nℓ log p) = Õ(n2 + n logA).

Proof. We have B 6 2n
√
n + 1A and want pℓ > 2B, i.e. ℓ = log(2B)/ log p+O(1).

Hensel lifting costs

Õ(nℓ log p) = Õ(n log(2B) + n log p).

Using the upper bound logB = O(n + log(A)) and log p = O(logn + log logA),

we obtain Õ(n2 + n logA).

So far, so good. Unfortunately, the number of sets S to consider is a priori
exponential in n. In fact, if T is irreducible, we have to consider 2r−1 sets. And
for bad polynomials, r can be as large as n/2, independently of p. Take T the
minimal polynomial of

αk =
√

2 +
√

3 + · · ·+
√
pk,

where pk is the k-th prime number. The polynomial T is irreducible of degree
n = 2k, and Q(αk)/Q is Galois with group G = (Z/2Z)k. A theorem of Frobenius
relates the cycle structure of elements of G (viewed as conjugacy classes in Sn)
with the factorization of T modulo p. In this example, it asserts that T has either
n or n/2 factors in Fp[X], whenever it is squarefree.

More generally, if T is irreducible, generating a Galois extension of Q with
Galois group of exponent e, we have r > n/e. Hence Zassenhaus algorithm
runs in deterministic polynomial time up to the last loop, which unfortunately is
exponential time in n. (But not in logA: for small degrees, it is fine.)

On the other hand, if there exist primes modulo which r (number of modular
factors) is not much bigger than s (number of true factors), then effective forms
of the theorem of Chebotarëv tell us that a relatively small such p exist.

3.2. FACTORING IN Q[X] 81

3.2.4 The LLL algorithm

This provides a replacement for the last step in Zassenhaus algorithm, avoiding
the exhaustive enumeration which make it exponential time in the worst case.
This results in a deterministic polynomial time algorithm, though not a very
practical one.

Lemma 3.40. Let f, g ∈ Z[X] have positive degrees. Suppose u ∈ Z[X] is non-
constant, monic, and divides f and g in (Z/mZ)[X], for some m > |Res(f, g)|.
Then gcd(f, g) ∈ Q[X] is non-constant.

Proof. There exist s, t ∈ Z[X] such that sf + tg = Res(f, g) =: R ∈ Z. Hence ū
divides R̄ in (Z/mZ)[X]; since u is monic, non-constant, ū has degree > 1 which
implies R̄ = 0. Since m > |R|, R = 0 and f, g have a common factor in Q[X].

The idea is to use the lemma together with the LLL algorithm as follows: let
m = pℓ, f = T ∈ Z[X] of degree n and u ∈ Z[X] which is an irreducible factor of
T modulo m, e.g. u = T ∗1 from Zassenhaus algorithm. Then look for a g ∈ Z[X]
of degree k < n such that

• u | g modulo m,

• ‖g‖n2 < m ‖T‖−k2 , which implies |Res(T, g)| < m by Hadamard.

If T is reducible, then there exists such a “small” g, provided m is large enough.
How large ? We know k 6 n− 1 and ‖g‖2 6 B, hence want m > ‖T‖n−12 Bn. We
only need to express the divisibility condition with a lattice and we have a short
vector problem! From any short vector, the lemma finds a factor. On the other
hand if no short vector is found, or the short vector does not yield a factor, it
proves that T was irreducible.

So let j > deg u and Λj ⊂ Z[X] be the lattice (of rank j) generated by the
{
uX i, i < j − deg u

}
∪
{
mX i, i < deg u

}

Lemma 3.41. g ∈ Λj if and only if deg g < j and u divides g modulo m.

Lemma 3.42. Let m > 2n
2/2Bn, and g the first vector in an LLL-reduced basis

of Λn−1. Then either gcd(g, T) is a non trivial factor of T or T is irreducible.

Proof. Assume T reducible. Then there exists h in Λj which divides T in Z[X]
(take the irreducible rational factor containing T ∗1). From Landau’s bound, we
know ‖h‖2 6 B. Let j = n− 1; by the properties of LLL-reduced bases,

‖g‖2 6 2(j−1)/2 ‖h‖2 6 2n/2B.

Then Lemma 3.40 ensures we get a factor provided

‖g‖n2 ‖T‖
n−1
2 < m.

Now use the trivial bound ‖T‖2 6 B.

82 CHAPTER 3. POLYNOMIALS

Corollary 3.43. In order to apply the LLL method we must lift modulo pℓ, where
log pℓ = O(n2 + n logA), for a cost Õ(n(n2 + n logA)).

Note that this lifting bound is n times larger than Landau’s bound used in Zassen-
haus algorithm.

Theorem 3.44. Let T ∈ Z[X] be monic. We can factor T in Q[X] in determin-

istic polynomial time Õ(n10 + n8 log2A).

Proof. An LLL reduction costs Õ(n5 log2m) = Õ(n9 + n7 log2A), the final mod-

ular gcd has negligible cost Õ(n2 + n logB) by Theorem 1.17. We must perform
the above at most 2n times since T has at most n factors (so at most n splittings
and at most n failures denoting an irreducible polynomial).

A practical improvement is to take for u some T ∗i , then consider successively
Λdeg u, Λ2 deg u, . . . , Λ2k deg u, trying to guess the degree of a factor g containing u

by dichotomy. The cost now becomes Õ(d9 + d7 log2A) to find a factor of degree
d. Such a factor may be reducible, but any factor containing u has degree > d/2.
By dichotomy (knowing a factor of degree d2 and that no factor of degree d1
exist, we try for degree (d1 + d2)/2) we arrive at the irreducible factor of degree

d containing u in O(log d) steps, and the cost remains Õ(d9 + d7 log2A). Since∑
d = n, we have

∑
dt 6 (

∑
d)t = nt for any t > 0 and the total cost goes down

to Õ(n9 + n7 log2A).

Another improvement is to try smaller lattices or lift to smaller accuracy than
pℓ: if the polynomial is reducible, we may get lucky and find a factor. Unfortu-
nately, when the polynomial is irreducible, there is no way to avoid computing
up to the worst case bounds. This is still horrendously expensive for large de-
grees, e.g. n = 1000: 1027 operations are beyond the capabilities of any current
computer.

3.2.5 Van Hoeij’s algorithm

Van Hoeij’s algorithm (2002), in the version we shall describe, has the same proven
complexity as LLL (in particular polynomial time) but is orders of magnitude
faster in practice. Moreover, it gives all the factors at once, whereas LLL gives
just one. Variants of van Hoeij’s method can be proven to perform better than
LLL, but they are more technical to prove and describe so we will be content
with heuristics at this point. The setup is the same as for Zassenhaus and LLL:

Input: f ∈ Z[X], monic, square-free, of degree n, f =
∏r

i=1 gi ∈ Zp[X]. The
gi ∈ Zp[X] are monic, irreducible, pairwise distinct, and MOD

(
gi, p

ℓ
)
∈ Z[X]

is known for all i.
Output: f =

∏s
i=1 fj ∈ Q[X], s 6 r. The fj ∈ Z[X], are monic and irreducible.

3.2. FACTORING IN Q[X] 83

Notations

Let Gp = 〈g1, · · · , gr〉 be the multiplicative subgroup of Qp(X)∗ generated by the
gi and GQ = 〈f1, · · · , fs〉 the subgroup generated by the fj . Note that GQ is a
subgroup of Gp and they both are free Z-modules of rank r and s respectively.
Our goal is to compute GQ; this is sufficient because the HNF algorithm enables
us to deduce the fj from any Z-basis of GQ:

Lemma 3.45. Using (gi) as a fixed basis for Gp, a suitable permutation of the

(fj) form an HNF basis for GQ. More precisely, if fj =
∏

i g
hi,j
i and H = (hi,j)

is a matrix with {0, 1}-coefficients then, up to a reordering of its columns, H is
in HNF.

Proof. This is true for any matrix with {0, 1} coefficients containing a most a
single 1 on each line.

Corollary 3.46. If the bj =
∏

i g
ai,j
i , j 6 s, form a basis of GQ, then in the

notations of the Lemma, H is the HNF of (ai,j).

The idea is to find a basis of GQ as a set of short vectors. First we linearize
the problem. Let ϕ be the following map:

ϕ : (Gp,×) → (Qp(X),+)

g 7→ f g
′

g

From the derivative laws (fg)′ = f ′g+ g′f so (fg)′

fg
= f ′

f
+ g′

g
and ϕ is a morphism.

In fact,

ϕ
(r∏

i=1

geii

)
=

r∑

i=1

eig
′
i

f

gi
∈ Qp[X],

with degree < n. Analogously, we see that ϕ (GQ) ⊂ Z[X]<n.
More generally, define

Φ(gi) = ϕ(gi) +Xn+r−i,

and extend it additively to Gp. In effect, we concatenate an identity matrix above
the matrix giving the ϕ(gi). This will keep track of column operations; in a short
vector algorithm, it further ensures that perturbations of the input remain small.

It is difficult to work with ϕ (Gp) because it is not a Z-module of finite type,
and the gi are not known exactly. So we introduce the lattice Λ, which is the
Z-module generated by Φ(gi), i 6 r and by pℓX i, i 6 n. Expressed on the natural
basis 1, X, . . . , Xn+r−1, Λ is generated by the columns of the following matrix:

(
Idr 0
A pℓ Idn

)
,

84 CHAPTER 3. POLYNOMIALS

where A is the n×r matrix of the MOD
(
ϕ(gi), p

ℓ
)
, written by decreasing degree.

(Recall that ϕ(gi) has degree < n.) A generic vector in Λ has the form




e1
e2
...
er∑

i eiMOD
(
ϕ(gi), p

ℓ
)

+ pℓQ




with Q ∈ Z[X]<n. The above vector is Φ(
∏
geii), where the part of degree < n is

taken modulo pℓ, and

(
Φ(Gp) + pℓZp[X]<n

)
∩ Z[X] = Λ.

The Φ(fj) have (e1, . . . , er) in {0, 1}. Compared to LLL, the base change
matrix is very simple: in LLL it is given by the coefficients of a factor, which
may be large. We shall prove that, if the accuracy pℓ is large enough, the first
s vectors in an LLL-reduced basis of Λ will form a basis of Φ(GQ), enabling us
to find GQ and the rational factors. The recipe to find s is simple: eliminate the
big basis vectors. But first we need some lemmas:

Lemma 3.47 (Mahler, 1961). Let A ∈ C[X], then M(A′) 6 deg(A)M(A).

Proof. The proof is surprisingly difficult and we shall only sketch it, see [10,
Appendix D] for details. Letting α1, . . . , αd and β1, . . . , βd−1 be the complex
roots of A and A′ respectively, we must prove

d−1∏

j=1

max(1, |βj |) 6
d∏

j=1

max(1, |αj|).

For given α1, . . . , αd−1 ∈ C, and t ∈ R, let

ft(αd) =
∑

j6d

1

e2iπt − αj
.

Using Jensen’s formula, Mahler’s measure admits the alternative expression

logM(A) =

∫ 1

0

log
∣∣A(e2iπt)

∣∣ dt.

(The integral is well-defined, since any singularity is of the form log(polynomial).)
Using

A′

A
(z) =

∑

j6d

1

z − αj
,

3.2. FACTORING IN Q[X] 85

a simple modification of the proof shows that

∫ 1

0

log |ft(αd)| dt = log
M(A′)

M(A)
= log d+log

d−1∏

j=1

max(1, |βj |)− log

d∏

j=1

max(1, |αj|).

Hence the inequality to prove becomes equivalent to

∫ 1

0

log |ft(αd)| dz 6 log d. (3.1)

The function αd 7→ log |ft(αd)| is subharmonic on C \ {z : |z| = 1}, hence so is

αd 7→
∫ 1

0

log |ft(αd)| dt.

From the maximum modulus principle for subharmonic functions applied to
{z : |z| < 1} and {z : |z| > 1}, it follows that the integral in (3.1) above is maxi-
mal for some αd with |αd| = 1. By symmetry, it is enough to prove the inequality
when |α1| = · · · = |αd| = 1.

In that case, it follows immediately from Lucas’s theorem: the zeroes of A′

are in the convex hull of the zeroes of A, which implies that |βj| 6 1 for all j. To
prove Lucas’s result, let β be a root of A′, then

0 =
A′

A
(β) =

d∑

j=1

1

β − αj
=

d∑

j=1

β − αj
|β − αj |2

.

Taking the conjugate, it follows that β is a linear combination of the αj with
positive coefficients.

Lemma 3.48. If g ∈ Z[X] divides f , then ‖ϕ(g)‖2 6 n2n · ‖f‖2
Proof. As in Landau’s theorem, let M(A) be the Mahler measure of A. For two
polynomials A, B, we have M(AB) = M(A)M(B). Remember that M(A) 6

‖A‖2 6 2degAM(A). Since deg ϕ(g) < n and f
g

is a polynomial, we have

‖ϕ(g)‖2 6 2n ·M(fg′/g) = 2nM(g′)M(f/g).

Using Mahler’s lemma and Landau’s estimate,

M(g′)M(f/g) 6 n2n ·M(g)M(f/g) = n2nM(f) 6 n2n · ‖f‖2 .

Corollary 3.49. For all j 6 s, ‖Φ(fj)‖2 6 n2n ‖f‖2 +
√
r.

Proof. Exercise.

86 CHAPTER 3. POLYNOMIALS

For g =
∏

i g
ei
i ∈ Gp, we define the support of g by

Supp(g) = {i : ei 6= 0} .

Lemma 3.50. gi | ϕ(g)⇔ i 6∈ Supp(g).

Proof. Since ϕ is a morphism, we have ϕ(g) =
∑

i eiϕ(gi). Now, gi | ϕ(gj) if and
only if

gi |
g′j
gj
· f =

∏

k 6=j
gk · g′j

Since gj is irreducible, and Qp has characteristic 0, g′j and gj are coprime. Hence
gi | ϕ(gj)⇔ i 6= j. Since gi divides all the summands in ϕ(g) except the i-th one,
gi | ϕ(g) if and only if the latter is 0, i.e. ei = 0.

Lemma 3.51. Let G be a subgroup of Gp containing strictly GQ and u ∈ G\GQ.
Then there exists g ∈ G \GQ such that:

1. gi | ϕ(g) for some i 6 r

2. fj ∤ ϕ(g) for all j 6 s

3. MOD
(
Φ(g), pℓ

)
is not much larger than MOD

(
Φ(u), pℓ

)
.

Proof. We start with g = u and modify it until the conditions hold. Because of
Lemma 3.50, the first two conditions mean that i 6∈ Supp g and Supp fj∩Supp g 6=
∅ for all j.

So for all j such that Supp(fj) ∩ Supp(g) = ∅, we we replace g by gfj. After
this step, the second condition is satisfied. Since we have multiplied u 6∈ GQ by
elements in the subgroup GQ, the resulting g is not in GQ.

Write g =
∏

i g
ei
i . We want to make sure that one of the ei is zero. For j 6 s,

let Sj = {ei : i ∈ Supp fj}. There exists j such that #Sj > 1, otherwise Sj = {sj}
for all j and g =

∏
j f

sj
j ∈ GQ, a contradiction.

Pick one i ∈ Sj, since gi divides fj to the first power, we replace g by g/f eij ,
ensuring that gi does not divide g, without affecting the other conditions.

As for the last condition, the Φ(fj) are bounded by Corollary 3.49, and so
is ei.

Lemma 3.52. Let (Λ, q) be a lattice, (b1, . . . , bn) a basis of Λ and (b∗1, . . . , b
∗
n) the

associated Gram-Schmidt orthogonalized basis. Assume q(b∗j) > B, for all j > j0.
Then if v ∈ Λ satisfies q(v) 6 B, we have v ∈ 〈b1, . . . , bj0〉Z.

Proof. Exercise (look at the proof of Theorem 2.36).

3.2. FACTORING IN Q[X] 87

This is true for any basis, but of course an LLL-basis is most suitable: since
2q(b∗i+1) > q(b∗i), the q(b∗i) do not decrease too fast. In fact, we expect them to
increase quickly if the basis contains both small and large vectors. The idea is
then that we expect non-rational inputs taken mod pℓ to yield big integers. (Just
like we expect the average irrational number not to have a long sequence of 0 in
its decimal development.)

Algorithm 17. van Hoeij’s algorithm

1: Compute an LLL-reduced basis (b1, . . . , bm) of the lattice Λ generated by

{
MOD

(
Φ(gi), p

ℓ
)
, i 6 r

}
∪
{
pℓX i, i < n

}
.

2: Let B = 2n(n ‖f‖2 +
√
r).

3: Let s = j0 be minimal such that
∥∥b∗j
∥∥
2
> B for all j > j0. {we have

ΛQ ⊂ 〈b1, . . . , bj0〉Z.}
4: Return (b1, . . . , bs)

Theorem 3.53. There exists an effective C = O(n2 + n log ‖f‖2) such that if
log(pℓ) > C, the above algorithm returns a basis of ΛQ.

Proof. Assume there exists i 6 j0 such that bi 6∈ ΛQ. Then there exists a vector
MOD

(
Φ(g), pℓ

)
in 〈b1, . . . , bj0〉Z \ ΛQ not much larger than bi satisfying the con-

ditions of Lemma 3.51. Let us be more precise: since
∥∥b∗j0

∥∥
2
6 B, by definition

of j0, we have ‖b∗i ‖2 6 2(j0−i)/2B from Siegel condition, and

‖bi‖2 6 2(i−1)/2 ‖b∗i ‖2 6 2(j0−1)/2B 6 2(n−1)/2B,

where we have used Lemma 2.38. To go from bi to Φ(g), we follow the proof of
Lemma 3.51,

• we first add Φ(
∏
fj) for some factor

∏
fj of f , whose length is less than

B, so the resulting vector has length 6 (2(n−1)/2 + 1)B, which is an upper
bound for |ei|,

• we then subtract eiΦ(fi) whose length is less than |ei|B.

Let G = MOD
(
ϕ(g), pℓ

)
∈ Z[X] be the part with degree < n. Because of the

above, ‖G‖2 6 (2(n−1)/2 + 1)B(1 +B) =: C. Because of Lemma 3.51, we have

1. Res(G, f) ≡ 0 (mod pℓ),

2. Res(G, f) 6= 0,

3. |Res(G, f)| < Cn ‖f‖n−12 =: R is effectively bounded.

88 CHAPTER 3. POLYNOMIALS

The last point is Hadamard’s inequality, with degG < n. If pℓ > R, we have a
contradiction. Finally, one easily checks that logR = O(n2 + n log ‖f‖2).

This version of Van Hoeij’s Algorithm turns out to have the same proven
complexity as LLL. But there are a number of practical improvements, which
make it superior in practice:

First we do not work with Λ but with the Z-module generated by the columns
of the matrix (

Ir 0
A1 B1

)
,

where A1 is the first line of the n × r matrix A, and B1 is the first line of pℓIn.
We apply LLL to this lattice and eliminate large vectors as above. This gives us

a new lattice generated by the columns of a matrix

(
M
N

)
. We work now with

the lattice generated by by the columns of
(
M 0
A2 B2

)
,

where A2 is the second line of the matrix A ×M . And so on introducing suc-
cessively the lines of A (suitably updated from the successive base changes). We
expect to eliminate quickly many basis vectors, as if we had worked with all lines
of A simultaneously.

A second similar improvement is to take into account only the leading p-adic
digits of A (we need to modify the bounds for the discarded vectors of course)
then iterate, feeding more and more digits.

Intuitively, we expect to quickly detect true small vectors in the original lattice
Λ from these approximate (simpler) lattices: since the small vectors in Λ are small
perturbations of the input vectors, they are short vectors in all these other lattices
and we hope to detect them early, before all the lines and all the digits are input.
Theorems exist to support this intuition but are a little harder to formulate and
prove!

From these heuristics, the lattices we reduce in practice have much smaller
size than the ones in LLL. As a result, van Hoeij’s Algorithm is the current best
practical method to factor polynomials in Q[X].

3.3 Factoring in C[X]

We fix ε > 0 and P ∈ Q(i)[X] ⊂ C[X], P is monic and of degree n. We want to
find u1, · · · , un,∈ Q(i) such that

∥∥∥P −
n∏

i=1

(X − ui)
∥∥∥
1
6 ε ‖P‖1 . (3.2)

3.3. FACTORING IN C[X] 89

Theorem 3.54 (Schönhage). If the coefficients of P are given by floating point
numbers, we can compute n floating point numbers (u1, . . . , un) satisfying (3.2)
in time

Õ(n3 ln(s) + n2s), with ε = 2−s.

Remark 3.55. It is an impressive result, because it does not depend on the size
of the input polynomial but only on the degree and requested accuracy. We shall
not prove the theorem, which is rather technical, but introduce the main ideas.

Remark 3.56. The problem of root finding is ill-conditioned, i.e. sensitive to
perturbations (hence difficult), even though the roots are a continuous function
of the coefficients (of monic polynomials of given degree). Indeed, let P = Xn

and P̂ = Xn− εn for a small 0 < ε < 1. The polynomials P and P̂ are very close
but ε is a root of P̂ whose distance to the unique root 0 of P is ε, much larger
than the distance from P to P̂ (= εn).

Remark 3.57. If P =
∏

i(X − zi) then |ui − zi| will be small (see Ostrowski’s
Theorem 3.64). The problem in this form is well suited for approximate inputs:
instead of estimating the error between the result and the true roots, we esti-
mate the distance from the input to a virtual input which would produce the
approximate roots as an exact result. (Backward error analysis.)

3.3.1 Idea of this algorithm

The naive root finding idea is to use random Newton iterations : pick a random
x0 ∈ C and for n > 0, define

xn+1 = xn −
P (xn)

P ′(xn)
.

This sequence will probably converge to a root of P . It works nicely for small
degrees but it is quite unstable, especially if the degree of P is big (say, degP >

10) or if ‖P‖∞ is big. Already in degree 3, consider all polynomials in a given ball
B, whose roots belong to some other ball Ω. There exists a set of polynomials of
positive measure in B, such that a positive measure of initial points in Ω do not
yield converging sequences.

Schönhage’s idea is deterministic and recursive.

1. Look for a separating circle Γ containing exactly k roots of P : u1, u2, · · · , uk.
Ideally, k ≈ n/2 and the roots of P are well away from Γ (Lemma 3.58).

2. Use Cauchy formula: for all m 6 k, approximate the Newton sums

sm := um1 + um2 + · · ·+ umk =
1

2iπ

∮

Γ

P ′(z)

P (z)
· zm dz.

90 CHAPTER 3. POLYNOMIALS

3. Thanks to Newton formulas, from approximations of the sm, m 6 k, we
obtain an approximation P0 of

∏i=k
i=1(X − ui).

4. Reapply to P0 and P/P0.

In order to obtain an efficient algorithm, one must prove perturbation results
so as to use floating point arithmetic (incurring rounding errors) with smallest
possible accuracy and still realistic error bounds.

In practice, numerical integration is very costly and we alternate these with
Newton-like iterations (seeded by the values from the integrals), falling back to
integration when the iteration diverges. We will neglect these aspects, see [11]
for details.

Then the main problem is to find the separating circle Γ, which ultimately
depends on our ability to approximate the modulus of the roots.

3.3.2 Numerical integration

In this section we assume Γ is known. By translation and scaling, we may further
assume Γ is the unit circle. We discretize Γ at H-th roots of 1 and approximate
the integral by Riemann sums:

Lemma 3.58. Let

Wm =
1

H

H−1∑

j=0

P ′

P
(ωj)ω(m+1)j , ω = e2iπ/H .

Assume P of degree n has no root in the annulus e−δ < |z| < eδ, for some δ > 0.
Then for all m 6 n < H, we have

|Wm − sm| 6
ne−δ(H−m)

1− e−δH = On,δ(e
−δH).

Proof. Let u1, . . . , uk be the roots of P within Γ, and uk+1, . . . , un the others. By
assumption,

|u1| , . . . , |uk| , |uk+1|−1 , . . . , |un|−1

are all less than e−δ < 1. Let

sm =
∑

i6k

umi , Sm =
∑

i>k

u−mi

and develop (P ′/P)(ωt) in Fourier series,

P ′

P
(ωj) =

∑

ℓ∈Z
cℓω

ℓj.

3.3. FACTORING IN C[X] 91

From the logarithmic derivative formula, one obtains

P ′

P
(ωj) =

∑

i6k

1

ωj − ui
+
∑

k<i

1

ωj − ui
=

∑

i6k

ω−j
∑

ℓ>0

(uiω
−j)ℓ −

∑

k<i

u−1i
∑

ℓ>0

(ωju−1i)ℓ

=
∑

ℓ>0

sℓω
−j(ℓ+1) −

∑

ℓ>0

ωjℓSℓ+1.

So that

cℓ =

{
−Sℓ+1 if ℓ > 0,

s−ℓ−1 if ℓ < 0.

From this we gather Wm =
∑
cℓ, where m+1+ℓ ≡ 0 (mod H), and sm = c−(m+1).

Finally, Wm − sm =
∑
cℓ, where ℓ is of the form −(m + 1) + λH , λ ∈ Z \ {0}.

From |sm| 6 ke−mδ and |Sm| 6 (n− k)e−mδ, we get

|Wm − sm| 6
∑

λ>0

(n− k)e−δ(λH−m) +
∑

λ<0

ke−δ(−λH+m)

6 eδm(k + (n− k))
∑

λ>0

e−δλH .

Remark 3.59. If n is large, to compute the Riemann sums Wm, we choose H a
power of 2 and use the FFT to compute the P (ωj) and P ′(ωj) (saving essentially
a factor n).

3.3.3 Choosing Γ

Let (u1, . . . , un) be the roots of P =
∑

i6n aiX
i, ordered by increasing modulus,

and ρ1(P) 6 . . . 6 ρn(P) their absolute values. We assume n > 2. In this section
we show that if we can approximate the ρi, then we can find a suitable Γ and
compute k and δ as above. We always assume that ρ1(P) > 0 (since we can first
remove the roots equal to 0).

1. Translate: replacing P by P (X−an−1/an), we can assume that the barycen-
ter of the ui is 0, i.e. that

∑
ui = 0.

2. Rescale: replacing P by P (X/ρn), we can assume that the largest root is
close to the unit circle.

3. Test for center: let S = {±2,±2i}. From Lemma 3.60, there exists a point
Ω ∈ S such that ρn/ρ1 for P (X − Ω) is bigger than 2/

∣∣2− eiπ/4
∣∣ ≈ 1.35.

Fix the center of Γ at Ω.

92 CHAPTER 3. POLYNOMIALS

4. Choose radius: by translation again, we may now assume that Γ is centered
at 0. If ρi < R < ρi + 1 is the chosen radius, the optimal δ such that no z
in the annulus Re−δ < |z| < Reδ is a root of P satisfies

eδ = min(ρi+1/R,R/ρi).

This is maximal for R =
√
ρiρi+1, with value eδ =

√
ρi+1/ρi. So we choose

k such that ρk+1/ρk is maximal and set the radius R of Γ as above.

Since the product of the ρi+1/ρi is bigger than 1.35, one of them is> 1.351/n.
Finally, eδ > 1.351/2n is bounded away from 1.

Lemma 3.60. With the notations of 3), let Ω ∈ S a closest point to a largest
root of P . Then ρn/ρ1 for P (X − Ω) is bigger than 2/

∣∣2− eiπ/4
∣∣.

Proof. There exists a root u of P such that |Ω− u| > 2 (since 0 is their center
of gravity). There exists a root v of P such that |Ω− v| 6

∣∣2− eiπ/4
∣∣ (a closest

root). The result follows.

3.3.4 Estimate ρk(P) (Graeffe’s method)

We start with two lemmas, giving very rough bounds, see [12].

Lemma 3.61. Let P =
∑

i6n aiX
i ∈ C[X] with a0an 6= 0 and n > 2. Let k > 0

such that |ak| = maxi |ai|. Then ρk(P) 6 2n and ρk+1(P) > 1/2n.

Proof. The second bound follows from the first applied to the reciprocal poly-
nomial XnP (1/X) of P . The case k = 0 is Cauchy’s bound 2.48. The case
k > 0 follows from Cauchy’s bound applied to P/Q, Q = (X−un) . . . (X−uk+1).
Details left as an exercise (use the series development of 1/Q).

Lemma 3.62. Let P =
∑

i6n aiX
i, n > 1. One can choose r > 0 such that

Q := P (rX) =
∑

i6n biX
i is such that there exists ℓ, h in [0, n], with

ℓ < k 6 h, |bℓ| = |bh| > |bj | , ∀j 6 n).

In particular
1

2n
6 ρℓ+1(Q) 6 ρk(Q) 6 ρh(Q) 6 2n.

Proof. Let C be the upper convex hull of the Mj = (j, log |aj |) ∈ R2 (omit the
points with aj = 0). Let ℓ be the largest j < k such that Mj ∈ C, and h the

smallest j > k such that Mj ∈ C. Then set r = |aℓ/ah|1/(h−ℓ).

We now use Graeffe’s construction to “amplify” the behavior we want to
detect: let G(P) be the polynomial G such that G(X2) = P (X)P (−X) (the
letter G stands for Gräffe, the method is also independently due to Dandelin

3.3. FACTORING IN C[X] 93

and Lobachevsky). Obviously, G has the same degree as P and its roots are the
squares of the roots of P .

Algorithm 18. Graeffe’s method for ρk(P)

Input: P ∈ C[X], k 6 degP , δ > 0
Output: R such that Re−δ 6 ρk(P) 6 Reδ.
1: let m be minimal such that (2n)1/2

m

6 eδ.
2: Define Pi, Qi, ri by

P0 = P, Qj = Pj(rjX), Pj+1 = G(Qj),

where (Qj, rj) come from Lemma 3.62. {The roots of Qj are the (ui/Rj)
2j ,

1 6 i 6 n, where Rj = r0r
1/2
1 . . . r

1/2j

j .}
3: Return Rm.

Proof. By Lemma 3.62, we have 1/2n 6 ρk(Qm) 6 2n, hence

Rm(2n)−1/2
m

6 ρk(P) 6 Rm(2n)1/2
m

.

3.3.5 Continuity of the roots

This is the following result:

Theorem 3.63. Let C be the set of monic polynomials of degree n in C[X],
equipped with the natural product topology (we identify C with Cn). Then T :
Cn/Sn → C given by (z1, . . . , zn) 7→∏

i6n(X − zi) is a homeomorphism.

Proof. Since C is algebraically closed (fundamental theorem of algebra), T is a
bijection, obviously continuous (polynomial map). Let S = T−1 and Pk ∈ C be
such that Pk → P , we want to prove that S(Pk)→ S(P). But S(Pk) is bounded
(Cauchy’s bound). By compacity, passing to a subsequence, we may assume
that S(Pk) → Q. By continuity of T , we have Pk = T (S(Pk)) → T (Q), hence
P = T (Q) and Q = S(P).

The following theorem is an effective version, giving concrete approximations
to the roots of P from Schönhage’s algorithm.

Theorem 3.64 (Ostrowski). Let ρ = max(1, |z1| , . . . , |zn|). Let P ∈ C[X] be
monic such that

‖P − (X − z1) . . . (X − zn)‖1 < εn.

There exists a permutation (u1, . . . , un) of the complex roots of P such that

(1− 4ε) |ui − zi| < 4ρε.

94 CHAPTER 3. POLYNOMIALS

Proof. Let z be a root of P̂ = (X−z1) . . . (X−zn). Consider the continuous family

of polynomials Ht = tP + (1 − t)P̂ = P̂ − t(P̂ − P), t ∈ [0, 1]. In particular,

H1 = P , H0 = P̂ . By continuity of the roots, there exists a continuous path
t 7→ dt(z) ∈ C such that d0 = 0 and z + dt is a root of Ht for all t. In particular,
u(z) := z + d1 is a root of P . (Choose the dt(z) such that z 7→ u(z) is 1-to-1.)
Let D = |u− z| = |d1|; by continuity of dt, dt takes at least all values in [0, D].

On the other hand, we have

∣∣∣P̂ (z + dt)
∣∣∣ = t

∣∣∣(P̂ − P)(z + dt)
∣∣∣ < εn(ρ + |dt|)n,

∣∣∣P̂ (z + dt)
∣∣∣ >

∣∣∣∣∣

n∏

i=1

|dt| − |z − zi|
∣∣∣∣∣ .

Hence, for all d ∈ [0, D],

εn(ρ+D)n > εn(ρ+ d)n >

∣∣∣∣∣

n∏

i=1

d− |z − zi|
∣∣∣∣∣ .

By the minimax property of Chebyshev polynomials (Lemma 3.65), the right
hand side is larger than 2(D/4)n for some d ∈ [0, D], whence ε(ρ + D) > D/4
and the result follows.

For the following minimax result used above, see [5].

Lemma 3.65. If P ∈ R[X] runs through the monic polynomials of degree n, we
have

min
P

max
x∈[a,b]

|P (x)| >
(
b− a

2

)n
21−n = 2

(
b− a

4

)n
,

Remark 3.66. The minimal value is realized by a suitable Chebyshëv polyno-
mial, e.g. if [a, b] = [−1, 1], 21−nTn (where Tn(X) = cos arccos(nX) for X ∈
[−1, 1]).

Chapter 4

Integers

The main reference for this chapter is Cohen [6].

4.1 “Elementary” algorithms

4.1.1 Introduction

If N is a positive integer, given by a string of binary digits, we consider three
basic different problems:

1. (Primality) let N be prime, prove it is so.

2. (Compositeness) let N be composite, prove it is so.

3. (Split) let N be composite, find a non trivial factor d 6= 1, N .

In fact, the problem we are actually most interested in would be

4. (Factor) factor N completely, i.e find all prime divisors p of N , the vp(N),
and prove that each p is a prime number.

But an algorithm solving 4. also solves the three others. Conversely, solving 1.,
2. and 3. implies we can solve 4.: apply 3. O(logN) times and run simultaneously
1. and 2. on each factor (stop whenever one succeeds). In theory, 2. is not
needed, since 3. is obviously stronger (exhibiting a factor proves compositeness).
In practice, ordering the problems by increasing order of difficulty: 2 ≪ 1 ≪ 3,
and we will consider them in this order. Some landmarks:

Theorem 4.1 (Rabin). Problem 2. can be solved in randomized time Õ(logN)2.

Theorem 4.2 (Agrawal-Kayal-Saxena, 2002). 1. and 2. can be solved in polyno-
mial time O(logN)10.5.

This timing was later improved to O(logN)6+ε by Lenstra and Pomerance.

95

96 CHAPTER 4. INTEGERS

Theorem 4.3 (Miller, 1976). Assuming the Generalized Riemann Hypothesis

holds, 1. and 2. can be solved in time Õ(logN)4.

Conjecture 4.4 (Goldwasser-Killian, Atkin, Shallit). Fast variants of the ECPP

algorithm solve 1. in randomized time Õ(logN)4.

If successful, the Elliptic Curve Primality Proving algorithm (ECPP) produces a
primality proof, i.e. a tailor-made algorithm which proves the primality of N in
time Õ(logN)3. Something which Miller’s algorithm is not capable of.

Definition 4.5. Let 0 6 α 6 1, we define

Lα(N) = exp
(
(logN)α(log logN)1−α

)
.

Note that L0(N) = logN and L1(N) = N .

Theorem 4.6 (Lenstra-Pomerance). The integer N can be factored in random-
ized time L1/2(N).

Conjecture 4.7 (Pollard). Using the Number Field Sieve algorithm (NFS), the
integer N is factored in randomized time L1/3(N).

4.1.2 Characters

We introduce here an important notion, which we need to explain the Solovay-
Strassen test, and will be the key to Miller’s Theorem 4.3.

Definition 4.8. A character χ modulo N is a group homomorphism from the
multiplicative group (Z/NZ)∗ to C∗. We lift χ to a function χ : Z→ C by setting
χ(a) = 0 if (a,N) > 1 and χ(a) := χ(a mod N) otherwise. We write χ0 for the
trivial character: χ0(a) = 1 whenever (a,N) = 1.

An important example is the Jacobi symbol, generalizing the Legendre sym-
bol. For odd N =

∏
p, where the primes p are repeated according to their

multiplicity, let (
a

N

)
:=
∏(

a

p

)
,

where
(
a
p

)
is Legendre’s symbol (−1, 0, or 1 if a is a non-square, 0 or a non-zero

square in Fp).
The function a 7→

(
a
N

)
is a character modulo N , whose values can be computed

efficiently using the quadratic reciprocity law, and a variant of the Euclidean
algorithm, in essentially linear time Õ(N) if we use fast arithmetic. If N is
prime, then

(
a
N

)
≡ a(N−1)/2 (mod N).

4.1. “ELEMENTARY” ALGORITHMS 97

4.1.3 Compositeness

The following congruences are the basis of three historically important compos-
iteness tests:

Theorem 4.9. If N > 2 is prime and 0 < a < N , then the following equalities
hold in Z/NZ:

1. aN−1 = 1,

2. a(N−1)/2 =
(
a
N

)
6= 0,

3. Write N −1 = 2eq, q odd, e > 1 and set b := aq. Then b = 1 or there exists
a unique 0 6 i < e such that b2

i

= −1.

Proof. (1) is Fermat’s little theorem and (2) is one of the elementary properties
of the Legendre symbol. The condition

(
a
N

)
6= 0 is empty if N is prime, but we

shall need it for general N later.

The last congruence follows from the polynomial equality

X2e − 1 = (X − 1)(X + 1)(X2 + 1) . . . (X2e−1

+ 1)

(which you can prove directly or as a property of cyclotomic polynomials), eval-
uated at X = b: the left hand side is 0 by Fermat so one of the factors on the
right hand side is 0. The index i is obviously unique since from then on, the b2

j

,
j > i are obtained by successive squarings, hence all are equal to 1.

This yields a more enlightening proof: by Fermat, aN−1 = 1 = b2
e

. In a
(commutative) field of characteristic different from 2, the equation X2 = 1 has
just two solutions −1 and 1. Since we obtain 1 by a sequence of squarings from
b, either all b2

i

are 1 or we hit −1 somewhere.

These congruences yield three probabilistic compositeness tests: pick a ran-
dom 0 < a < N , and check one of (1), (2) or (3) above, yielding respectively
Fermat’s test (1640), Solovay-Strassen test (1977), and Rabin-Miller test. As for
the last test, Miller (1976) devised a conditional deterministic test (see Theo-
rem 4.3), which Rabin modified to the above probabilistic compositeness test in
1980. For completeness:

Algorithm 19. Solovay-Strassen compositeness test

Input: N an odd integer, a ∈ Z/NZ, a 6= 0.
Output: SS(a) = Composite or Fail
1: If

(
a
N

)
6= a(N−1)/2 return Fail.

2: Return Composite.

98 CHAPTER 4. INTEGERS

Algorithm 20. Rabin-Miller compositeness test

Input: N an odd integer, a ∈ Z/NZ, a 6= 0.
Output: RM(a) = Composite or Fail
1: Write N − 1 = 2eq, q odd.
2: Compute b = aq.
3: If b = 1 or b2

i

= −1 for some i = 0, . . . , e− 1 return Fail.
4: Return Composite.

Theorem 4.10. All three tests (Fermat, Solovay-Strassen, Rabin-Miller) run in

time Õ(logN)2.

Proof. This is obvious for Fermat, easy for Rabin-Miller (note that we need
O(log q + e) = O(logN) multiplications in Z/NZ), and a little more involved
for Solovay-Strassen: the powering part is easy again, but one needs to adapt the
complexity proof of Euclid’s algorithm to the computation of Jacobi’s symbol(
a
N

)
using quadratic reciprocity. This requires specifying precisely the latter, and

you can check out the result in Cohen [6].

Definition 4.11. An a such that SS(a) or RM(a) returns Composite is called
a witness (of compositeness). If N is composite, an a such that they return Fail

is called a liar.

Note that a witness testifies to the compositeness of N , but provides only
circonstancial evidence: no explicit factor is exhibited.

Theorem 4.12. Let N > 2 be an odd integer (no longer a prime), 0 < a < N ,
and consider again the congruences from Theorem 4.9. Then (3) implies (2)
implies (1).

Proof. (1) follows from (2) by squaring: since we impose
(
a
N

)
6= 0 in (2), the

Jacobi symbol is ±1. We now prove (3) ⇒ (2), which is surprisingly intricate.
Note that (3) ⇒ (1) is obvious again by squarings, which already implies a ∈
(Z/NZ)∗ and

(
a
N

)
= ±1. Since q is odd, we have

(
a
N

)
=
(
a
N

)q
=
(
b
N

)
.

1. If (3) holds because b = 1, then a(N−1)/2 = b2
e−1

= 1 and
(
b
N

)
= 1 =

(
a
N

)
,

hence (2) holds.

2. We now assume that b2
i

= −1 for a unique 0 6 i < e. We write p−1 = 2epqp,

qp odd, for all p | N . The congruence b2
i ≡ −1 (mod p) holds for all p | N ,

meaning that the order of b ∈ F∗p is 2i+1. This must divide #F∗p = p − 1,
hence i+ 1 6 ep.

3. From
(
b
p

)
≡ b2

ep−1qp (mod p), b2
i ≡ −1 (mod p) and i + 1 6 ep, it follows

that (−1)2
ep−i−1

=
(
b
p

)
(we also use that qp odd). Hence

(
b
p

)
= −1 if and

only if ep = i + 1.

4.1. “ELEMENTARY” ALGORITHMS 99

4. Consider

N =
∏

p

(1 + 2epqp) ≡ 1 + 2i+1
∑

p : (b
p)=−1

qp (mod 2i+2)

≡ 1 + 2i+1#

{
p :

(
b

p

)
= −1

}
(mod 2i+2),

where each p is repeated according to its multiplicity. It follows that i+1 = e

if and only if #
{
p :
(
b
p

)
= −1

}
is odd, that is if and only if

(
b
N

)
= −1.

5. Finally a(N−1)/2 = b2
e−1

= −1 if and only if i = e− 1.

In other words a(N−1)/2 and
(
a
N

)
, which are both equal to ±1, are equal to −1

under the exact same conditions. Thus they are equal.

In other words, Rabin-Miller’s test is stronger than Solovay-Strassen, itself
stronger than Fermat. It is easy to find specific counter examples showing that
the reverse implications do not hold in general. To check whether our tests are
any good we must now prove that for any odd composite N , there exist sufficiently
many 0 < a < N that violate (1), (2) or (3).

Theorem 4.13. If N > 1 is composite, then

{
0 < a < N : aN−1 ≡ 1 (mod N)

}

is a subgroup of (Z/NZ)∗. If is equal to the full group (Z/NZ)∗ if and only if N
is squarefree and p | N ⇒ p− 1 | N for all prime divisors p of N .

Proof. The subgroup assertion is clear. Now assume aN−1 ≡ 1 (mod N) for all
a coprime to N . Then it holds mod p for p | N , and a a primitive root (of order
p− 1) in F∗p. This implies p− 1 | N − 1. If further p2 | N , then taking a of order
p(p−1) in the cyclic group (Z/p2Z)∗ we obtain p(p−1) | N−1. This contradicts
p | N since gcd(N,N − 1) = 1.

A bad composite N as above, which completely wrecks Fermat’s test, is called
a Carmichael number. They were actually previously defined and studied by
Korselt (1899), who could not find an actual example. In 1910, Carmichael found
the smallest such number 561. These have no equivalent for the Solovay-Strassen
test, nor for the stronger Rabin-Miller test:

Theorem 4.14. If N > 1 is composite, then
{

0 < a < N : a(N−1)/2 ≡
(
a

N

)
6= 0 (mod N)

}

is a proper subgroup of (Z/NZ)∗.

100 CHAPTER 4. INTEGERS

Proof. The subgroup assertion is clear again, and we must prove it is not the
whole group. Since it is a subgroup of the one considered in the previous theorem,
we may assume that N is a Carmichael number, and we must find an a not
belonging to the given set.

If p | N is an odd prime, let a be a non-square mod p and a ≡ 1 (mod N/p),
which exists by the Chinese Remainder Theorem. In fact, since N is squarefree,
we have gcd(p,N/p) = 1. This implies

(
a
N

)
= −1, but a(N−1)/2 6≡ −1 (mod N)

since this is not true modulo p.

Corollary 4.15. If N is an odd composite number, an 0 < a < N chosen
uniformly at random is a witness with probability > 1/2.

Proof. A proper subgroup has index greater than 2.

This is a quick and beautiful argument, telling us witnesses are relatively
abundant. In fact for most N almost all a are witnesses. It is not hard to give a
much more precise result, or to improve on the Corollary:

Theorem 4.16. 1. If N =
∏
pfp, let ω = # {p | N},

ep = v2(p− 1), E = min
p|N

ep.

Then the number of a such that RM(a) returns Fail is

∏

p|N
gcd(q, p− 1)

(
1 +

2Eω − 1

2ω − 1

)
.

2. If N is composite, an 0 < a < N chosen uniformly at random is a witness
with probability > 3/4.

Proof. An a such that RM(a) fails belongs to (Z/NZ)∗. By the Chinese Re-
mainder Theorem, (Z/NZ)∗ is ring-isomorphic to

∏
p|N(Z/pfpZ)∗. Each factor

is cyclic, which linearizes the equations. We can count the (ap) in the product∏
p|N Z/(p− 1)pfp−1Z such that RM(a) returns Fail:

{(ap) : qap = 0}+
e−1∑

i=0

#
{

(ap) : q2iap = (p− 1)pfp−1/2
}

(these sets are disjoints). Using (q, (p−1)pf−1) = (q, p−1) and E 6 e (a product
of integers ≡ 1 (mod 2E) is ≡ 1 (mod 2E)), we obtain

(
1 +

E−1∑

i=0

2iω

)
∏

p

(q, p− 1) =

(
1 +

2ωE − 1

2ω − 1

)∏

p

(q, p− 1)

4.1. “ELEMENTARY” ALGORITHMS 101

and the first result follows. Note that the special case ω = 1, p = N , E =
e reproves case (3) in Theorem 4.9. We have already seen two rather more
enlightening proofs.

To prove the second point, note that the proportion of witnesses is

∏
p|N gcd(q, p− 1)

N − 1

(
1 +

2ωE − 1

2ω − 1

)
.

We bound gcd(q, p−1) 6 (p−1)/2ep 6 (p−1)/2E. We treat first the case ω = 1:
N = pf , f > 1. Then (p− 1)/(pf − 1) 6 1/(p+ 1) 6 1/4, and the result follows.

If ω > 1, we bound
∏

(p− 1) 6 N − 1 and the proportion is less than

2−ωE
(

1 +
2ωE − 1

2ω − 1

)
.

For a fixed ω, this is a decreasing function of E, which equals 21−ω for E = 1.
Hence the result unless ω = 2, in which case we obtain only 1/2. . . Coming back
to the original gcd(q, p − 1) 6 (p − 1)/2ep 6 (p − 1)/2E, we see that our final
upper bound is divided by at least 2 unless we have equality throughout. The
only remaining bad case is then N = pq, p − 1 | N − 1, q − 1 | N − 1, where
p < q are distinct primes. But N − 1 ≡ p − 1 (mod q − 1), hence q − 1 | p− 1,
a contradiction. So this case cannot happen. This proves in particular that a
Carmichael number has at least three distinct prime factors.

Definition 4.17. Let w(N) be the least witness for the compositeness of N ,
i.e. the smallest a such that RM(a) returns Composite. For N prime, we let
w(N) = 0.

If N is a Carmichael number whose prime divisors are ≡ 3 (mod 4), there are
exactly ϕ(N)21−ω liars and 3/4 is not that far off. But, in general, the lower
bound 3/4 is very pessimistic: for large random N , we expect that (q, p − 1) is
small for p | N ; then the proportion of liars is essentially bounded by 2(ω−1)e/q
which is small. Precisely, we have the following very strong average result:

Theorem 4.18 (Burthe). The average value of w(N) over odd integers is 2:

∑

N<X, 2∤N

w(N) ∼ 2
∑

N<X, 2∤N

1.

Which means that 2 is almost always a reliable witness. Note that from the
prime number theorem, the primes contribute a negligible amount O(X/ logX)
to the right hand side ∼ X . On the other hand, it is known by work of Alford-
Granville-Pomerance that there are infinitely many Carmichael numbers and that
lim supN→∞w(N) = +∞.

102 CHAPTER 4. INTEGERS

4.1.4 Primality

Miller’s theorem

First we explain how the GRH can turn either Solovay-Strassen or the Miller-
Rabin test into a good primality prover. How does the Riemann Hypothesis come
into play ? For χ a character modulo N , we introduce the Dirichlet L-function

L(χ, s) =
∑

n>1

χ(n)n−s.

These are instrumental in proving that there exist infinitely many primes such
that p ≡ a (mod N) whenever gcd(a,N) = 1. Just as the Riemann zeta function
(which we essentially recover when χ = χ0) is required to prove the prime number
theorem.

For details on the basic theory of L-functions, see Serre [20]. For more ad-
vanced material, see Iwaniec-Kowalski [13]. In particular, it is a standard fact
that L(s, χ) extends to a meromorphic function on C with at most a simple pole
in s = 1 (if and only if χ = χ0). For Re(s) > 1, it satisfies an Euler product

L(s, χ) =
∏

p

(1− χ(p)p−s)−1.

The theorem of Miller, in an effective version due to Bach [3], is as follows:

Theorem 4.19. Assume the Dirichlet L-functions L(s, χ) have no 0 in the half-
plane Re(s) > 1/2, for all characters modulo N (GRH). If N is composite, there
exists a witness a 6 2(logN)2.

Since RM(a) runs in time Õ(logN)2, this theorem yields a conditional primality

test in essentially quartic time Õ(logN)4. Unconditionally, we only know that
w(N) 6 N1/(6

√
e)+ε for all ε > 0, and N large. Not sufficient for a polynomial-time

test.

Proof. (rough idea). Let G = (Z/NZ)∗. Since N is composite, the subgroup
H =

{
a ∈ G : a(N−1)/2 =

(
a
N

)}
is proper. In particular, there exists a non trivial

character χ modulo N such that χ is trivial on H (lift a non-trivial character
of G/H). Assume by contradiction that w(N) > x, then

∑
a6x χ(a) = ⌊x⌋, and

we have a non-trivial character masquerading χ0. Assuming GRH, we have good
bound on character sums, which yields a contradiction.

More precisely, taking the logarithmic derivative of the Euler product, we
obtain

−L
′

L
(s, χ) =

∑

n>1

χ(n)Λ(n)n−s,

where Λ is the Riemann-von Mangoldt function: Λ(n) = log p if n = pk is a prime
power, and Λ(n) = 0 otherwise.

4.1. “ELEMENTARY” ALGORITHMS 103

Perron’s formula says that

∑

n6x

χ(n)Λ(n) =
1

2iπ

∫

Re(s)=c

−L
′

L
(s, χ)xs

ds

s
,

for x > 0 not in Z and any c > 1. Subtracting the formula for χ0, we obtain
∫

Re(s)=c

L′

L
(s, χ)xs

ds

s
=

∫

Re(s)=c

L′

L
(s, χ0)x

s ds

s
.

We move the line of integration to the left up to the left of the line Re(s) = 1/2:
the GRH enables us to keep a tight control on the singularities of L′/L: at the
zeroes of L for Re(s) = 1/2, and a simple pole at s = 1 for (L′/L)(s, χ0). Keeping
track of the residues, we find an equality of the form O(x1/2) = x + O(x1/2), a
contradiction if x is large.

The true proof is technically more demanding because the error terms depend
on N : we must use an “explicit formula”, and integrate with respect to more
involved kernel functions.

Primality certificates (Pratt)

Besides being conditional, Miller’s algorithm is not entirely satisfactory: if the
answer is no, I have a witness, i.e. a proof of compositeness; but if the answer
is yes, I am left with no evidence, hence no convincing argument besides “I did
program the test correctly”. We are no better off than when trial dividing up to
the square root of the number. In this section, we explain the idea of primality
certificate, or succinct proof of primality.

We use the following idea: N > 1 is prime if and only if (Z/NZ)∗ is cyclic.
If I can exhibit a generator and prove that it has order N − 1, I am done.
Unfortunately, this will require factoring N − 1, which is hard. But the person
I am handing the certificate to will not care: creating a proof may be hard, but
checking it is easy.

Theorem 4.20 (Pocklington). Let N > 1 be an integer and p | N − 1 a prime
such that vp(N − 1) = e. Assume a ∈ Z satisfies

• aN−1 ≡ 1 (mod N),

• gcd(a(N−1)/p − 1, N) = 1.

Then all divisors d | N satisfy d ≡ 1 (mod pe).

Proof. We may assume that d is prime, since a product of integers ≡ 1 (mod M)
is congruent to 1 ≡ (mod M). Since d | N , aN−1 ≡ 1 (mod d), which implies
that gcd(a, d) = 1 hence ad−1 ≡ 1 (mod d) by Fermat’s little theorem.

Since a(N−1)/p 6≡ 1 (mod d), the order r of a in (Z/dZ)∗ satisfies r | N − 1,
but r ∤ (N −1)/p, hence pe | r. On the other hand, r | d−1 and we are done.

104 CHAPTER 4. INTEGERS

Corollary 4.21. Let N > 1 be an integer. Assume N − 1 = FU with F >
√
N ,

where the prime divisors of F are known, and for all such p, and ap as above is
given. Then N is prime.

Proof. If d | N , then d ≡ 1 (mod F) by the Chinese remainder Theorem and
Theorem 4.20. Hence d = 1 or d > F + 1 >

√
N . The latter implied d = N ,

since N/d <
√
N must be 1. Hence N is prime.

Of course, the catch is that one needs to factor N −1. But when this is done,
the rest is easy: if N is prime, all a ∈ (Z/NZ)∗ satisfy the first condition, and
exactly (N − 1)/p elements satisfy a(N−1)/p = 1, hence a random a ∈ (Z/NZ) is
a suitable ap with probability 1− 1/p > 1/2.

We can now define recursively a primality certificate C(N): it is a factorization
N =

∏
pep together with a set of triples (p, ap, C(p)), where C(p) recursively

certifies p. In order to avoid infinite recursion, we allow the empty certificate for
p = 2.

Exercise 4.22. Bound the size of C(N). How fast can you check it ?

4.1.5 Producing primes

We recall the Prime Number Theorem in its standard form:

Theorem 4.23 (Prime Number Theorem (PNT)). As x→ +∞, we have

π(x) := # {p 6 x : p prime} ∼ x

log x
.

Effectively, we have

x

log x

(
1 +

1

2 log x

)
6 π(x) 6

x

log x

(
1 +

3

2 log x

)
,

where the left-hand side is valid for x > 59, and the right-hand side for x > 1.

From the prime number theorem, the number of primes in]N, 2N] is

π(2N)− π(N) ∼ N

logN
.

Picking an integer at random in the interval, the expected number of trials before
hitting a prime is logN . We can test the numbers produced for compositeness,
then for primality once we have a good candidate (an integer which fails many
compositeness tests is often declared a “probable prime”). This is a suitable
algorithm to find a big prime. We now examine a dual, nicer construction: a sieve
constructs simultaneously many small primes, for an essentially constant unit
cost. According to the divide-and-conquer principle, “small primes” algorithms

4.1. “ELEMENTARY” ALGORITHMS 105

followed by chinese remaindering (and to a lesser degree p-adic algorithms using
Hensel lifting) perform better than “large prime” algorithms, although the latter
are conceptually simpler.

Algorithm 21. Eratosthenes’s sieve
Input: An integer B.
Output: The set of primes p 6 B.
1: Initialize an array A[2] = · · · = A[B] = 1.
2: for n = 2, . . . ,

√
B do

3: if A[n] = 1 then {n is prime}
4: for k = 2, . . . , B/n do {cross out multiples of n}
5: Set A[kn] = 0, {kn not a prime}
6: Return the n such that A[n] = 1.

The number of array operations involved is

2B +
∑

p6
√
B

⌊B/p⌋ = 2B +O(
√
B) +B

∑

p6
√
B

1

p
∼ B log logB,

using
∑

p6x p
−1 ∼ log log x, which follows for instance from the Prime Number

Theorem.

4.1.6 Split

This section introduces the important notion of smooth integers, and serves as a
warm up for our later factoring with elliptic curves.

Definition 4.24. Let B > 0. A positive integer N > 0 is

• B-smooth (or B-friable) if p | N implies p 6 B for prime p.

• B-powersmooth if pk | N implies pk 6 B for prime p and positive k.

Theorem 4.25 (de Bruijn). Let ψ(x, y) = # {n 6 x : n is y-smooth}. Provided
(log x)ε 6 u 6 (log x)1−ε for some 0 < ε < 1, we have

ψ(x, x1/u)

x
= u−u+o(u)

as x tends to infinity.

We will abuse this theorem to estimate the probability that integers in certain
sequences are x1/u smooth. Our reasoning will not be rigorous: a random integer
in our sequence is considered to be x1/u-smooth with the same probability u−u

as if it were taken form a uniform distribution. It is possible to rigorously prove

106 CHAPTER 4. INTEGERS

some estimates, using much more technical arguments, beyond the scope of our
lectures. Here is a simple application of smooth numbers:

Algorithm 22. Pollard’s p− 1 method

Input: N an integer, B a smoothness bound.
Output: A non-trivial factor of N or Fail.
1: Using Eratosthenes’s sieve, compute all primes p 6 B.
2: Pick a random a ∈ Z/NZ. Let b = a.
3: for p 6 B do {compute b = alcm(2,...,B)}
4: Let k be maximal such that pk 6 B.
5: Set b := bp

k

.
6: if d = gcd(b− 1, N) is a non-trivial divisor of N then
7: Return d.
8: else
9: Return Fail.

The algorithm succeeds when the order of a modulo some divisor of N is B-
powersmooth. Equivalently, the order of a modulo a prime divisor p of N is
B-powersmooth. Unless we are lucky this means that p − 1 is B-powersmooth.
Indeed, if ℓ > B is a large prime dividing p − 1, then a random a ∈ (Z/NZ)∗

has order divisible by ℓ in F∗p with probability 1 − 1/ℓ ≈ 1. (p − 1 also fails to
be B-powersmooth if ℓk > B divides p − 1 for a small ℓ and huge k, but this is
implausible.)

At the end of the for loop, b = alcm(2,...,B), which is congruent to 1 modulo p
by our assumption that p− 1 is B-powersmooth. In other words, p | b− 1. If we
are lucky, N ∤ b− 1 and d is a non-trivial factor. The algorithm can fail for two
reasons:

• d = 1: this proves that there is no prime divisor p of N such that p− 1 is
B-powersmooth. We must increase B and retry.

• d = N : the order of a in (Z/NZ)∗ is B-powersmooth. As above, unless we
were lucky, this means that ϕ(N) is B-powersmooth. We must decrease B
and retry. (If B is not very large, we can try a different a, just in case.)

The cost of the method is dominated by the powering, in time

∑

pk6B

(log pk)Õ(logN) = Õ(B logN).

Assuming that p − 1 is B-powersmooth is a little extreme. We increase our
chances by assuming it is B1-powersmooth, up to a single prime less than B2 ≫
B1. There is a nice way of implementing this idea, based on the fact that primes
are relatively plentiful, and the differences pi+1 − pi between consecutive primes

4.2. PRIMALITY PROVING & FACTORING WITH ELLIPTIC CURVES107

are rather small. (To be taken with a grain of salt: it is an easy exercise to show
that lim supi pi+1 − pi = +∞; the “converse” statement lim inf i pi+1 − pi = 2 is
the famous Twin primes conjecture.)

Algorithm 23. Pollard’s p− 1 method, with B2 phase

Input: N an integer, (B1, B2) smoothness bounds.
Output: A non-trivial factor of N or Fail.
1: Pick a random a ∈ Z/NZ and compute b = alcm(2,...,B1) as in the standard

method.
2: Let S = {bpi+1−pi}, where the pi, 1 6 i 6 K are the consecutive primes
B1 < p 6 B2. This is a (small) set indexed by the pi+1 − pi.

3: Set b← bp1;
4: for i = 1, . . . , K − 1 do
5: If d = gcd(b− 1, N) is a non-trivial divisor of N , return d.
6: Replace b← b× S[pi+1 − pi]. {b = alcm(2,...B1)pi+1}
7: Return Fail.

In effect, instead of a powering cost of
∑

p<B2
log p ∼ B2 multiplications, we have

π(B2) ∼ B2/ logB2 multiplications. If B2 is so large that a full fledged sieving of
[0, B2] becomes impractical, we can precompute the primes up to

√
B2 and sieve

out smaller slices [kM, (k + 1)M] with k = ⌊B2/M⌋.
The p − 1 method has the very nice feature of being sensitive to the size of

the smallest prime divisor of N : smaller numbers are smoother. On the other
hand the first point above is a big problem: either there exists a prime divisor p
with p− 1 smooth, or there does not and we are lost. The elliptic curve method
nowadays completely supersedes p − 1: it will try many orders #E(Fp) instead
of the single #F∗p = p− 1, by varying the curve E. All these orders have roughly
the same size as p− 1, hence supposedly the same chance of being smooth, using
the heuristic principle discussed above.

4.2 Primality proving & factoring with elliptic

curves

4.2.1 Elliptic curves over Z/NZ

Let N > 0 be an integer coprime to 6. An “elliptic curve” over Z/NZ is a
Weierstrass equation

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Z/NZ, 4a3 + 27b2 ∈ (Z/NZ)∗.

This defines a “nonsingular curve” in the projective space P2(Z/NZ):
{

(x, y, z) ∈ (Z/NZ)3, gcd(x, y, z, N) = 1
}
/multiplication by λ ∈ (Z/NZ)∗.

108 CHAPTER 4. INTEGERS

The class of (x, y, z) in P2(Z/NZ) is denoted (x : y : z) as usual. If p | N , there
is a natural projection π : P2(Z/NZ) → P2(Z/pZ) inducing a natural map from
E to Ep, the curve over Z/pZ defined by reducing the equation of E modulo p,
i.e. we can reduce P ∈ E(Z/NZ) to π(P) ∈ Ep(Z/pZ). Basic facts about elliptic
curves can be found in Silverman [21].

Theorem 4.26. If N is prime

1. E(Z/NZ) has a natural structure of commutative group. The group law is
denoted (P,Q) 7→ P+Q with neutral element OE = (0 : 1 : 0). It is given by
polynomial mappings (depending on the coefficients of E) in the coordinates
of P and Q, formally the same ones as in the “chord and tangent process”
over R or Q.

2. E(Z/NZ) has at most two cyclic components.

3. (
√
N − 1)2 < #E(Z/NZ) < (

√
N + 1)2 (Hasse’s bound).

Now a non-theorem: if N is not prime, E(Z/NZ) is definitely not a group.
But we may still try to add points applying the same defining formulae as if
N were prime. The worse obstruction we may encounter is a non-invertible
d ∈ (Z/NZ)\{0}. In this case, gcd(d,N) is a non-trivial factor of N . In the text,
we now assume that all computation depicted in curves over Z/NZ (e.g. compute
P + Q) do succeed. Whenever they do not we obtain a non-trivial factor of N ,
which is usually our main motivation.

More generally, we define [m]P for m ∈ Z and P ∈ E(Z/NZ) by

[0]P := OE, [m]P := [m− 1]P + P, for m > 0

and [m]P := [−m]P for m < 0. If N is prime, we have genuine associative group
law and [m]P = P + · · ·+ P with m summands, for m > 0; otherwise, the result
is undefined if one of the addition fails. The only result we will need about this
pseudo group law is that if p | N is a prime, π : P2(Z/NZ) → P2(Z/pZ) is the
natural projection, and P,Q ∈ E(Z/NZ) such that P +Q is well-defined, then

π(P +Q) = π(P) + π(Q), and π([m]P) = [m]π(P),

where the right-hand side additions use the ordinary group law on Ep(Z/pZ).
We will subsequently use freely operations in E(Z/NZ), with the convention

that any such operation failing provides a non trivial factor of N and aborts all
computations.

4.2.2 The basic idea (Goldwasser-Killian)

We now adapt Pocklington’s theorem 4.20, in the simplest setting, not meant to
be practical.

4.2. PRIMALITY PROVING & FACTORING WITH ELLIPTIC CURVES109

Theorem 4.27. Let N be an integer coprime to 6, let E be an elliptic curve over
Z/NZ, P ∈ E(Z/NZ), and m > 0 an integer such that

• There exists a prime divisor q of m with q > (N1/4 + 1)2,

• [m]P = OE, but [m/q]P = (x : y : z), with (z,N) = 1.

Then N is prime.

Proof. Assume N is composite, and let p 6 N1/2 be the smallest prime divisor
of N . The order r of π(P) ∈ Ep(Z/pZ) divides m but not m/q, hence q | r. On
the other hand, by Hasse’s bound,

r 6 #Ep(Z/pZ) < (p1/2 + 1)2 6 (N1/4 + 1)2,

hence q < (N1/4 + 1)2, a contradiction.

If N is prime the above just uses a curve E and P ∈ E(Z/NZ) of provably
large order (divisible by q). It is natural to choose m = #E(Z/NZ) and try
random points on the curve:

Proposition 4.28. Let N > 3 be prime, E an elliptic curve over Z/NZ, m =
#E(Z/NZ), and q a prime factor of m. Then a random point P ∈ E(Z/NZ)
satisfies [m/q]P = OE with probability 1/q.

Proof. Since m < (
√
N + 1)2, we have vq(m) = 1. The requested property is

true for any abelian group G satisfying vq(#G) = 1. Indeed, we may write
G = Z/qZ⊕H for some abelian group H or order h (coprime to q); the condition
h(a ⊕ b) = 0 is equivalent to a = 0, which is true for a fraction h/#G = 1/q of
all elements of G.

Algorithm 24. Goldwasser-Killian primality test
Input: N > 1, coprime to 6.
Output: A primality proof for N .
1: Pick a, b ∈ Z/NZ at random and let E : Y 2Z = X3 + aXZ2 + bZ3.
2: Compute m = #E(Z/NZ), as if N were prime.
3: Try to factor m: if it factors completely leaving a factor q > (N1/4 + 1)2

which looks prime (fails a few compositeness tests).
4: Recursively prove the primality of q. If it fails, start over at (1).
5: Find P ∈ E(Z/NZ) such that [m/q]P = (x : y : z), with gcd(z,N) = 1 and

[m]P = OE. {pick a random x ∈ Z/NZ until x3 + ax+ b is a square, then
let y be a square root and set P = (x : y : 1).}

In the above we factor the quadratic polynomial Y 2 − (x3 + ax + b) as if N
were prime: if it fails, N is composite. We can simplify the last step by picking
simultaneously E and P : pick randomly x, y, a ∈ Z/NZ and set b = y2−x3−ax.

110 CHAPTER 4. INTEGERS

The big problem with the algorithm is that m is difficult to compute. Gold-
wasser and Killian use Schoof’s algorithm which runs in time O(logN)8, assuming
N is prime. Even with a lot of improvements since (in particular by Elkies and
Atkin), this is still impractical to prove the primality of large integers, say 10000
digits. Atkin’s idea is to consider curves with complex multiplication, so that m
is known in advance from a simple formula.

4.2.3 Introduction to complex multiplication

An elliptic curve over C is a torus C/Λ, where Λ is a lattice, i.e. a rank 2 sub-
module. In particular, Λ is not contained in R.

Definition 4.29. An elliptic function with period lattice Λ is a meromorphic
function f , such that f(z + w) = f(z) for all w ∈ Λ. In other words it induces a
well-defined function on C/Λ with finitely many poles deleted.

One of the simplest examples is Weierstrass ℘-function:

℘(z; Λ) := ℘(z) =
1

z2
+

∑

w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
.

It satisfies the following differential equation:

℘′(z)2 = 4℘(z)3− g2℘(z)− g3, where g2 = 60
∑

w∈Λ\{0}

1

w4
, g3 = 140

∑

w∈Λ\{0}

1

w6
.

(The proof is easy: an elliptic function without poles is constant, because it is
entire and bounded. Apply this to the difference 4℘(z)3 − g2℘(z)− g3 − ℘′(z)2.)
Note that g2 and g3 are well-defined, in fact

Lemma 4.30. For any lattice Λ ⊂ C, the series

∑

w∈Λ\{0}

1

|w|s ,

converges if s > 2.

Proof. Prove that Ck = # {w ∈ Λ, |w| 6 k} = C(Λ)k2 +O(k), for some constant
C(Λ). It follows that # {w ∈ Λ, k 6 |w| < k + 1} = O(k). Summing by parts,
the sum converges for s > 2.

Proposition 4.31. We have g32 − 27g23 6= 0, i.e the projective curve y2z = 4x3 −
g2xz

2 − g3z3 is non-singular.

4.2. PRIMALITY PROVING & FACTORING WITH ELLIPTIC CURVES111

Remark 4.32. The mapping

C/Λ → P2(C)

z 7→
{

(℘(z) : ℘′(z) : 1) if z 6∈ Λ,

(0 : 1 : 0) if z ∈ Λ,

is a complex isomorphism between the torus C/Λ and the non-singular projective
curve E : y2z = 4x3−g2xz2−g3z3. This endows E with a natural group structure,
which coincides with the chord-and-tangent law.

We now consider morphisms between complex elliptic curve, that is holomor-
phic, Z-linear maps:

Theorem 4.33. 1. The curves C/Λ and C/Λ′ are isomorphic if and only if
there exists α ∈ C∗, Λ′ = αΛ.

2. End(C/Λ) = {α ∈ C : αΛ = Λ}.

3. End(C/Λ) = Z or an order O in an imaginary quadratic field (i.e. O =
Z + wZ with Im(w) > 0 and w2 − sw + d = 0 for some s, d ∈ Z).

4. Let j(E) = j(Λ) = 1728g32/(g
3
2 − 27g23). This j-invariant characterizes the

isomorphism class of E = C/Λ: j(E) = j(E ′) if and only if E ∼= E ′.

5. j(αΛ) = j(Λ) for any α ∈ C∗.

Corollary 4.34. It is easy to write a Weierstrass equation for a complex curve
with given j-invariant:

1. If j = 0, take y2 = x3 − 1.

2. If j = 1728, take y2 = x3 − x.

3. If j 6= 0, 1728, let c = j/(1728− j) and take y2 = x3 + 3cx + 2c. The right
hand side has discriminant −2233c2(c+ 1) 6= 0.

We denote E(j) the equation given above. The formula is in fact valid over any
base whose characteristic is not 2 or 3.

Definition 4.35. E has complex multiplication by O if End(E) = O is strictly
larger than Z. We say E has CM by O.

Example 4.36. The curve C/Z[i] has CM by Z[i]. It is isomorphic to E : y2 =
x3 − x, which has extra endomorphism (x, y) 7→ (−x, iy).

From now on, we insist that a basis (ω1, ω2) for Λ be positively oriented:
Im(ω1/ω2) > 0, which is easily achieved by swapping ω1 and ω2. Since j(αΛ) =
j(Λ), we may assume that Λ = 〈τ, 1〉Z, with Im τ > 0. Given a basis (ω1, ω2)
such that τ = ω1/ω2 has positive imaginary part, we set j(τ) := j(〈τ, 1〉Z).

112 CHAPTER 4. INTEGERS

Remark 4.37. The reason for the weird normalizing constant 1728 for j is to
ensure the following identity

j(τ) =
1

z
+ 744 +

∑

n>1

cnq
n, with q = exp(2iπτ),

where the cn are positive integers.

The fact that j(Λ) is a function on lattices, which we compute using any
positively oriented basis is equivalent to saying that j(τ) is invariant under the
natural action of SL2(Z):

(a bc d) · τ =
aτ + b

cτ + d
.

Namely (ω1, ω2) → (aω1 + b, cω2 + d), (a bc d) ∈ GL2(Z), gives the general base
change and

Im

(
aτ + b

cτ + d

)
= Im

(
(aτ + b)(cτ + d)

|cτ + d|2

)
=

(ad− bc) Im τ

|cτ + d|2
> 0

restricts us to SL2(Z). Hence, we may further impose that τ belongs to the
standard fundamental domain for the action of SL2(Z) on Poincaré’s half-plane
Im(z) > 0:

|Re(z)| 6 1

2
, |z| > 1.

In particular Im τ >
√

3/2 and |q| 6 exp(−π
√

3) ≈ 0.0043. From this, j(τ) is
easy to approximate numerically. In fact, we find

g2 =
1

12

(
2π

ω2

)4
(

1 + 240
∑

n>1

n3qn

1− qn

)
,

g3 =
1

216

(
2π

ω2

)6
(

1 + 504
∑

n>1

n5qn

1− qn

)
.

This is not the fastest way to compute j, but already quite efficient: n5qn tends
very quickly to 0.

4.2.4 Some algebraic number theory

A z ∈ C is algebraic if it is a root of a non-zero polynomial in Z[X]. It is an
algebraic integer if that polynomial can be chosen to be monic.

A number field K ⊂ C of degree n is a finite extension of Q of degree n, i.e. a
field which is a Q-vector space of finite dimension n. The algebraic integers in K
form a ring ZK . An integral ideal is a non-zero ideal in ZK , a fractional ideal is
a subset A of K such that dA is integral for some d ∈ K. A fractional ideal, in
particular ZK , is a free Z-modules of rank n.

4.2. PRIMALITY PROVING & FACTORING WITH ELLIPTIC CURVES113

Remark 4.38. We define number fields as embedded in C. This is not a necessity,
and is in fact the wrong point of view. We could view K as an abstract field
embedding Q ⊂ K or, more concretely but less adequately, as a quotient ring
K = Q[X]/(T), for some irreducible T ∈ Q[X] of degree n (this follows from
the primitive element theorem, and is not suitable to define extensions over more
general bases than Q, e.g. Fp(t)). To each complex root αi of T corresponds an
embedding K → C, sending the class of X to αi, and each complex embedding
is of this form. In this way, an abstract number field of degree n comes equipped
with n canonical embeddings into the complex numbers, or any algebraically
closed field. There is no reason to favor any of them.

For instance, the field Q[X]/(X3−2) has three different embeddings, Q(21/3),
Q(21/3j) and Q(21/3j2), which are isomorphic as fields, but definitely not identical.
For one thing, the first one is a subset of R.

There is a natural multiplication on the set of integral ideals: AB is the
smallest integral ideal containing all ab, a ∈ A, b ∈ B. This extends in a natural
way to fractional ideals.

Theorem 4.39. 1. ZK is a Dedekind ring: the fractional ideals of K form an
abelian group under multiplication, with neutral element ZK . Any fractional
ideal can be written uniquely as a product of maximal ideals: A =

∏
pep,

where all ep but finitely many are 0. A is integral, if and only if ep > 0 for
all p. If p ⊂ ZK is a maximal ideal, then ZK/p is a finite field.

2. If A is an integral ideal, then the norm of A, NA := ZK/A is finite, this
is a multiplicative map: N(AB) = NA · NB, which extends to fractional
ideals by multiplicativity.

3. Let IK be the group of fractional ideals, and PK be the subgroup of principal
fractional ideals. The quotient group IK/PK is a finite abelian group Cl(K),
the class group of K.

4. There exists a finite Galois extension HK/K, the Hilbert class field of K,
whose Galois group is Cl(K). A maximal ideal p ⊂ ZK splits completely in
HK if and only if it is principal.

(The ideal p splits completely in L/K if pZL is a product of [L : K] distinct
maximal ideals in ZL; they all satisfy ZL/P = ZK/p.)

We shall see in the next lecture how to compute class groups of imaginary
quadratic fields. From this, the j-invariant will enable us to compute Hilbert
class fields. There are beautiful and important algorithms for the general case of
arbitrary number fields, and generalizations of the Hilbert class field, just beyond
the scope of our lectures. Class fields provide a complete solution to the inverse
Galois problem for abelian groups. In short, they describe all abelian extensions

114 CHAPTER 4. INTEGERS

of a given number field K, in terms of arithmetic data depending on K only. For
an introduction to this so-called Class Field Theory in a context very close to
ours, see Cox [8], then Cohen [6, 7] for a computational approach.

Let us consider a few examples :

1. K = Q, one finds ZK = Z, Cl(K) = {1} (Z is principal, in fact Euclidean),
hence HK = K.

2. K = Q(i), one finds ZK = Z[i], Cl(K) = {1} (Z[i] is again Euclidean),
hence HK = K.

3. K = Q(
√
−6), one finds ZK = Z[

√
−6], Cl(K) ≃ Z/2Z, generated by the

maximal ideal p generated by 2 and
√
−6, which is not principal; in this

case ZK/p = F2. The Hilbert class field HK is

K(
√
−3) = K(

√
2) = Q(

√
2 +
√
−3).

Remark 4.40. The notation
√
d for d < 0 denotes the complex number i

√
d ∈ C.

Had we taken the better point of view that K = Q(
√
d) is really Q[X]/(X2− d),

for some non-square d, we could just say it is the class of X in K.

Exercise 4.41. Let d be a squarefree integer, K = Q(
√
d). Prove that ZK =

Z[ω], where

ω =





√
d if d ≡ 2, 3 (mod 4),

1 +
√
d

2
if d ≡ 1 (mod 4).

(When is (u+
√
d)/2 an algebraic integer, if u, v ∈ Q ?)

The discriminant of a quadratic field Q(
√
d), d squarefree, is D = 4d if

d ≡ 2, 3 (mod 4), and d otherwise. Then ZK = Z[D+
√
D

2
] in all cases.

4.2.5 Class groups of imaginary quadratic fields

Let K = Q(
√
D) be the imaginary quadratic field of discriminant D < 0. The

most efficient representation for handle ideal classes in ZK uses an isomorphism
with classes of integral binary quadratic forms modulo the action by SL2(Z) given
by change of variables. We will stick to ideals, which entails minor inefficiencies.
See [6, Chap.5] for details.

The proofs of the following lemmas are not difficult and left as exercises:

Lemma 4.42. If α ∈ K ⊂ C, then N(α) = |α|2.
Lemma 4.43. Let K be a quadratic field of discriminant D. All integral ideals

in ZK are of the form A = δ
(
aZ + −b+

√
D

2
Z
)
for some a, δ ∈ Z>0, b ∈ Z, such

that −a < b 6 a and b2 ≡ D (mod 4a). Conversely, these Z-modules are distinct
ideals (= ZK-modules). Further, A ∩ Z = δaZ and NA = aδ2.

4.2. PRIMALITY PROVING & FACTORING WITH ELLIPTIC CURVES115

Proof. Tedious but simple computations. (Write ZK =
〈

1, D+
√
D

2

〉
Z

and A as

a submodule given by an HNF basis.) Note that the lemma holds for real and
imaginary fields.

Definition 4.44. An integral ideal is primitive if it is not of the form δA with

A integral and δ > 1. We represent the primitive ideal
(
aZ + −b+

√
D

2
Z
)

by the
triple (a, b, c) ∈ Z3, with a > 0, −a < b 6 a and c := (b2 −D)/(4a) > 0. Since c
can be deduced from a, b and D, we may omit it in the notation, as in (a, b, ∗).

The condition −a < b 6 a only says that b = MOD (b, 2a), and corresponds
to the obvious fact that 〈a, τ〉Z = 〈a, τ − qa〉Z for any q ∈ Z. Since we are mostly
interested in ideal classes, it does not hurt to assume that ideals are primitive.

Note also that if τ = aX− −b+
√
D

2
Y lies in the ideal (a, b, c), i.e. if X, Y ∈ Z, then

N(τ) = |τ |2 = a(aX2 + bXY + cY 2) (4.1)

(Here come the binary quadratic forms.)

Lemma 4.45. With the previous notations, let

A = (a, b, c), B = (c,MOD (−b, 2c) , ∗), τ =
b+
√
D

2a
∈ K.

Then A and B are in the same ideal class. In fact, B = (τ)A.

Corollary 4.46. Each ideal class in ZK contains a unique ideal of the form
A = (a, b, c) such that

|b| 6 a 6 c,

and b > 0 if one inequality is an equality. Such an ideal is called reduced.

Proof. Existence is easy: pick a representative in the ideal class such that a ∈ Z>0

is minimal. Then a 6 c by minimality and the previous lemma. The other
conditions are easy.

We now prove unicity. Using (4.1), we claim that

a2 = min
x∈A\{0}

|x|2 , ac = min
x∈A\Z

|x|2 .

Let us prove the first one: a2 is obviously attained (X = 1, Y = 0); using the
defining equalities |b| 6 a 6 c, we have

aX2 + bXY + cY 2
> a(X2 − |XY |+ Y 2) > a,

since X, Y ∈ Z implies

X2 − |XY |+ Y 2 = (X − |Y | /2)2 +
3

4
Y 2

> 1, (X, Y) ∈ Z2 \ {(0, 0)} .

116 CHAPTER 4. INTEGERS

The second equality follows analogously, by investigating the consequences of
Y 6= 0.

Assume now that A = (a, b, c) and A′ = (a′, b′, c′) are reduced and in the
same ideal class: A = αA′ for some α ∈ K∗. This implies NA = N(α)NA′ hence
a = |α|2 a′ by the multiplicativity of norms and Lemma 4.42. Then

{
|x|2 : x ∈ A′ \ {0}

}
= |α|2

{
|x′|2 : x′ ∈ A′ \ {0}

}
,

hence they have the same minimum and a2 = |α|2 a′2. It follows that a = a′ and
|α| = 1. Then A ∩ Z = A′ ∩ Z = aZ and

{
|x|2 : x ∈ A′ \ Z

}
=
{
|x′|2 : x′ ∈ A′ \ Z

}
,

from which we obtain ac = a′c′, hence c = c′. Since b2−4ac = b′2−4a′c′, it follows
that b = ±b′. By the convention on the sign of b, we can assume 0 < |b| < a < c,
otherwise b, b′ > 0 and we are done.

In these conditions, the only solutions of aX2 + bXY + cY 2 = a are (±1, 0)

(refine the computations above). Since a ∈ A, there exists u = Xa′−Y −b′+
√
D

2
∈

A′, X, Y ∈ Z, such that a = αu, hence |u|2 = a2, which now implies that
(X, Y) = (±1, 0). Finally α = ±1, and A = A′.

Note that ZK is always reduced and is represented either by (1, 0,−D/4)
or by (1, 1, (1 − D)/4) depending on D mod 4. More importantly, the triples
representing reduced ideals are easily bounded: in fact, let ∆ = |D| = −D, the
definitions |b| 6 a 6 c and D = b2 − 4ac imply

−D = 4ac− b2 > 4a2 − a2 = 3a2,

hence a 6
√

∆/3. This yields a simple algorithm to enumerate Cl(K):

Algorithm 25. Class group of imaginary quadratic fields

Input: D < 0, discriminant of a quadratic fields K; we let ∆ = −D.
Output: A set of reduced ideal representatives of Cl(K).
1: for a = 1, . . . ,

√
∆/3 do

2: for b = 0, . . . , a such that b ≡ ∆ (mod 2) do
3: Let c = (b2 + ∆)/4a.
4: if c ∈ Z and a 6 c then
5: Print (a, b, c).
6: If b 6= a 6= c and b 6= 0, print (a,−b, c).

Theorem 4.47. This algorithm prints all reduced ideals in ZK in time Õ(D).

Proof. The two outer loops have length O(
√

∆).

4.2. PRIMALITY PROVING & FACTORING WITH ELLIPTIC CURVES117

One proves that # Cl(D) ≪
√

∆ log ∆, hence the algorithm above is cer-
tainly not optimal. In fact the Brauer-Siegel theorem states that log # Cl(D) ∼
log(
√

∆) as D tends to infinity, so the size of the output is indeed roughly
√

∆. It
is possible to enumerate Cl(D) in time essentially linear in the size of the output
by describing first Cl(D) in terms of generators and relations, see §5.6. Note
that the error terms in Brauer-Sieger are ineffective unless we assume a Riemann
Hypothesis.

Algorithm 26. Reduction of ideals in imaginary quadratic fields

Input: A primitive integral ideal A = (a, b, c) in ZK .
Output: The reduced representative B of the ideal class of A, and a τ ∈ K∗

such that B = τA.
1: Set τ ← 1.
2: while a > c or (b < 0 and a = c) do
3: Let a′ = c, b′ = MOD (b, 2a′), c′ = (b′2 −D)/(4a′).
4: Set (a, b, c)← (a′, b′, c′).

5: Set τ ← τ × b+
√
D

2a
.

Proof. Since we assume −a < b 6 a, it is impossible that b = −a and the output
is correct by repeated application of Lemma 4.45. The only thing to prove is that
the algorithm stops. If a = c and b < 0 at the beginning of the loop then (a, b, a)
is replaced by (a,−b, a) and we exit the loop in the next iteration. Otherwise,
a ∈ Z>0 decreases strictly from one loop to the next, and we are done. With a
little care [6, Prop 5.4.3], one proves a′ 6 a/2 except in the very last iteration,
so there are O(log a) iterations.

Algorithm 27. Solving U2 −DV 2 = 4N

Input: D < 0 discriminant of a quadratic field; N an odd prime coprime to D.
Output: Return a solution (U, V) of U2 −DV 2 = 4N , or False if none exist.
1: Factor the quadratic polynomial X2 −D in Z/NZ, as if N were prime.
2: If the polynomial is irreducible, return False.
3: Let 0 < b < N be a square root of D modulo N . If b and D have different

parities, set b← N − b.
{Now, b2 ≡ D (mod 4N).}

4: Let c = b2−D
4N
∈ Z. Using the previous reduction algorithm with input A =

(N, b, c), find a reduced representative B = (a, ∗, ∗) of A, and τ ∈ K such
that B = τA.

5: If a 6= 1, return False.

6: Write 1/τ = U+V
√
D

2
and return (U, V).

Proof. The equation means N = αα, where α = (U + V
√
D)/2 is an algebraic

integer, since it is a root of the monic X2 − UX + N ∈ Z[X]. The integral

118 CHAPTER 4. INTEGERS

ideal (α) has norm N , which is prime, hence it must be primitive and can be
represented as (N, b, ∗) where b2 ≡ D (mod 4N). Provided this is possible, the
equation has a solution if and only if this ideal is principal, i.e. B = ZK , which
is the same as a = 1.

The proof shows that, if α = (U + V
√
D)/2 is the solution returned for the

equation Normα = N , the others are of the form ζα or ζᾱ, where ζ ∈ Z∗K . Hence
there are either 0 or exactly 2w(D) solutions, where w(D) = #Z∗K is the number
of units in ZK , i.e. w(D) = 2 for D < −4, w(−4) = 4, w(−3) = 6.

4.2.6 ECPP

Let K = Q(
√
D) be an imaginary quadratic field of discriminant D < 0. If

A ⊂ ZK ⊂ C is an integral ideal, C/A is an elliptic curve with CM by ZK .

Theorem 4.48. 1. The Weierstrass equation E of C/A is defined over HK,
in particular j(E) = j(A) ∈ HK. Note that j(A) only depends on the class
of A in Cl(K). In fact, if A runs through the classes of Cl(K), the j(A)
define the C-isomorphism classes of elliptic curves with CM by ZK.

2. Let

Φ(X) =
∏

A∈Cl(K)

(
X − j(A)

)
.

Then Φ(X) ∈ Z[X] is irreducible and any root of Φ generates HK/K.

3. A prime N splits completely inHK/Q if and only if the equation U2−DV 2 =
4N has a solution in integers U, V . In this case, maximal ideals p above N
in HK satisfy ZK/p = Z/NZ and are principal.

Exercise 4.49. Using the algorithm in the previous lecture, show that K =
Q(
√
−163) has trivial class group. Then explain why exp(π

√
163) is very close

to an integer.

For a root j ∈ HK of the modular polynomial Φ(X), let E(j) the complex
curve of Corollary 4.34, which is defined over HK . In the situation of (3), N splits
completely and we can intuitively reduce the equation E modulo p, to obtain Ē
over Z/NZ. Unfortunately, even though j is integral, the equation E(j) does
not have integral coefficients, and denominators are a nuisance. The proper way
to proceed is as follows: Φ(X) splits into distinct linear factors modulo N and
its roots j̄ are the reductions of the j invariants of the C-isomorphism classes of
curves with CM by ZK . The whole point of the construction, besides surprisingly
producing explicit curves Ē = E(j̄) over Z/NZ from complex analytic data, is
that the #Ē(Z/NZ) are known:

4.2. PRIMALITY PROVING & FACTORING WITH ELLIPTIC CURVES119

Theorem 4.50. 1. In the above situation, #Ē(Z/NZ) = N + 1−U for some
solution (U, V) of U2 − DV 2 = 4N . Note that Hasse’s bound |U | < 2

√
N

is obvious in this case.

2. Conversely, there are w(D) such solutions U , where w(D) = #Z∗K , and
each give rise to the cardinality of a curve

We can now formulate roughly the main ideas in Atkin’s algorithm. Its com-
plexity is not rigorously analyzed, but optimized variants are the fastest known
methods in practice.

Algorithm 28. ECPP primality test

Input: N an integer
Output: True if N is prime, False otherwise.
1: for D = −3,−4,−7, . . . do {Loop over imaginary quadratic fields K =

Q(
√
D)}

2: if D is a discriminant and 4N = U2 −DV 2 has integer solutions then
3: Compute mU = N + 1 − U for all solutions (U, V). If one of these is

completely factored up to a large probable prime q > (N1/4 + 1)2.
4: Compute representatives A for the elements of Cl(K).
5: Compute floating point approximations of the j(A), then of the polynomial

Φ(X) and round its coefficients to the nearest integer.
{If N is prime, then Φ splits in Z/NZ}

6: Compute a root j̄ of Φ in Z/NZ, and write a Weierstrass equation for Ē with
j-invariant j̄.

7: Test a few random points P until we believe that #Ē(Z/NZ) = mU , i.e. we
always have [mU]P = OE. If for even a single P , the test fails, replace E by
its quadratic twist. (If D = −3,−4, consider all quadratic twists until we
find one whose cardinality is probably mU .)

8: Use the Goldwasser-Killian test to prove that N is prime, assuming that q
is: pick a random point P and check that [mU/q]P = (x : y : z), with
gcd(z,N) = 1.

9: Then recursively prove the primality of q.

The algorithm is not completely formalized and it is clear there are many
places where it can be improved. For instance,

• One should consider the D by increasing class numbers. Also, better invari-
ants than j are known (smaller polynomials than Φ) to compute HK/K.

• With some more theoretical effort, one can avoid almost all the guesswork
when matching mU to a specific curve (not up to quadratic twist as shown
above).

120 CHAPTER 4. INTEGERS

• A heuristic analysis shows that the most time consuming part is the solving
of b2 ≡ D (mod N), so we can restrict the D to be products of small primes
pi and precompute their square roots. Then the square root of D can be
recovered by a multiplication. This is the main idea in the FastECPP algo-
rithm, which is conjectured to run in randomized time Õ(logN)4, where the

original algorithm was conjectured to run in randomized times Õ(logN)5.
Current records for primality proofs of general integers use FastECPP and
lie around 20000 decimal digits (june 2006).

As in §4.1.4, ECPP produces a primality certificate for N , of the form C(N),
which consists in

• the integer N ,

• a curve E over Z/NZ and a point P ∈ E(Z/NZ),

• an integer m divisible by q > (N1/4 + 1)2, such that [m]P = OE and
[m/q]P = (x : y : z) with gcd(z,N) = 1,

• a certificate C(q) for q.

4.2.7 Factoring with elliptic curves

This is straightforward generalization of the p− 1 method from §4.1.6.

Algorithm 29. Lenstra’s ECM factorization algorithm

Input: N an integer, B a smoothness bound.
Output: A non-trivial factor of N or Fail.
1: Using Eratosthenes’s sieve, compute all primes p 6 B.
2: Pick a random curve E over Z/NZ and P ∈ E(Z/NZ). Let Q = P .
3: for p 6 B do {compute Q = [lcm(2, . . . , B)]P}
4: Let k be maximal such that pk 6 B.
5: Set Q := [pk]Q. If during the computation we hit a point R = (x : y : z)

with z 6= 0 but d = gcd(z,N) > 1, the computation is impossible, but we
are happy and return the factor d !

6: Return Fail.

Just as for the p− 1 method, we can introduce a B2-phase to cater for #E(Fp)
which are B1-powersmooth up to a single larger prime 6 B2.

Conjecture 4.51. With suitable parameters, ECM runs in randomized time
L1/2(p)

1/
√
2+o(1), where p is the smallest prime divisor of N . Since p 6

√
N ,

this is L1/2(N)1+o(1).

4.3. SIEVING ALGORITHMS 121

4.3 Sieving algorithms

4.3.1 The basic idea

We want to find x, y ∈ Z such that

x2 ≡ y2 (mod N), x 6≡ ±y (mod N).

Since this is impossible if (Z/NZ)∗ is cyclic (unless we stumble directly on x, y
not belonging to (Z/NZ)∗, which is highly implausible but would indeed yield
factors), we must check that N is an not a prime power before embarking on
this course of action. We may as well require that it is not a pure power, of
the form N = qk. Note that k = O(logN) and an approximation to N1/k

is easily computed for each given k using Newton’s method (or approximating
exp(1

k
logN)), so this is not a costly pre-condition :

Algorithm 30. Generic sieving factorization algorithm

Input: An odd integer N , not a pure power.
Output: A non-trivial factor of N or Fail.
1: Choose a factorbase B, e.g. {−1} ∪ {p 6 B}
2: Produce many congruences of the form

x2j ≡
∏

i∈B
iei,j (mod N), j 6 J,

where ei,j ∈ Z, but may as well be taken in {0, 1}.
3: If v = (vj) is a non-zero vector in the kernel of (ei,j), viewed as a matrix

over F2, then
∑

j ei,jvj ≡ 0 (mod 2) for all i ∈ B and

(
∏

j

x
vj
j

)2

≡
(
∏

i∈B
i
1
2

∑
j ei,jvj

)2

(mod N),

which is of the required form x2 ≡ y2 (mod N).
4: If x ≡ ±y (mod N), return Fail.

Of course, in practice, one never returns Fail, but computes further kernel
vectors. The number of square roots of 1 in Z/NZ is 2ω, where ω is the number
of distinct prime divisors of N . So two random (x, y) such that x2 ≡ y2 (mod N)
yield a trivial factor with probability 21−ω 6 1/2 provided ω > 2.

The whole difficulty is now to find relations, and then to choose suitably the
factorbase depending of our relation-finding algorithm. Let

B :=
⌊√

N
⌋
.

122 CHAPTER 4. INTEGERS

The simplest idea (Dixon’s random squares) is to pick t > B at random. If
MOD (t2, N) factors on B, we have found a relation. Of course, we want t ≈ B
to that MOD (t2, N) be of the order of

√
N and no larger. This method provably

runs in expected time L1/2(N)O(1).
For instance, we may try t = B+ a, for a = 1, 2, Note that if a is not too

large, then

MOD
(
t2, N

)
= (B + a)2 −N,

which is the basic idea behind the quadratic sieve.

4.3.2 The quadratic sieve

It is quite costly to check directly that a given integer is B-smooth: about
B/ logB divisions. Sieves are slower, but they can check a whole range of num-
bers simultaneously, at an essentially constant cost per number. Just like Er-
atosthenes’s sieve produces many more primes than a single primality proof. The
main problem with the trial division approach is that almost all numbers tested
are not smooth, so we have a huge amount of wasted work.

Let Q(X) = (X + B)2 − N , with B =
⌊√

N
⌋
. Since this is a polynomial in

Z[X], if m | Q(a), then m | Q(a + λm) for all λ ∈ Z.

Algorithm 31. Quadratic sieve

Input: An integer N , a factorbase B, a sieving bound M > 1. We assume that
all p ∈ B satisfy

(
N
p

)
= 1.

Output: A set of a 6M such that Q(a) is B-smooth: p | Q(a) implies p ∈ B.
1: Build an array A[a] = Q(a), for 1 6 a 6 M .
2: If 2 ∈ B, replace A[a] by its largest odd factor for all a 6M .
3: for p ∈ B odd prime do
4: Find the largest k such that pk 6 Q(M).
5: Find ak, bk such that Q(ak), Q(bk) ≡ 0 (mod pk). {Two solutions mod p

then Hensel lift.}
6: for i = k, k − 1, . . . , 1 do
7: If i < k, set (ai, bi)← (ai+1, bi+1) mod pi.
8: for λ 6M/pi, p ∤ λ do
9: Divide A[ai + λpi] by pi in place. {exact division}
10: Divide A[bi + λpi] by pi in place. {exact division}
11: Return all the a such that A[a] = 1.

Proof. The reason for the condition
(
N
p

)
is that p cannot divide Q(a) unless N is

a square modulo p. Of course, if p | N , we have factored N . So the assumption is
harmless. Since we ensure p 6= 2, it follows that the equation x2 ≡ N (mod pk)
has exactly 2 solutions for all k. The result is correct since we divide the A[a] by

4.3. SIEVING ALGORITHMS 123

primes belonging to B. Note that we may miss some smooth numbers this way,
but this agrees with the specifications.

Provided M is large enough, the sieve proper dominates the running time. In
an actual implementation, two basic improvements are useful:

• Initialize A[a] by a rough approximation to logQ(a), then subtract approx-
imations to i log p instead of dividing by pi: subtractions are cheaper than
divisions. Of course, the log p are precomputed.

• Do not sieve by small primes, which cost a lot (there are lots of them) and
do not decrease much the size of A[a]. Then we may as well not sieve by
prime powers, since most integers will not be divisible by too many squares
of a not-so-small primes.

In the end, we check directly by trial division the a such that A[a] is not too large.
Due to the above two approximations, we may miss quite a few smooth numbers,
which seems wasteful. But we still expect a large number of the corresponding
Q(a) to be smooth. Since the sieve is now much faster, proper tuning results
in a net gain: finding twice fewer relations in each sieving range is not a major
problem if we find them three times faster!

4.3.3 The Multiple Polynomials Quadratic Sieve (MPQS)

Our polynomial Q is nice but it stands all alone, and the Q(a) increase relatively
fast with a. We now replace the polynomial (X + B)2 − N with a more general
polynomial Q(X) = AX2 + 2BX +C, with reduced discriminant B2−AC = N ,
hence AQ(X) = (AX +B)2 −N .

What are suitable parameters ? Q(X) is minimal at −B/A, with value −N/A,
which is fine compared to our old (X+B)2−N if A is not much smaller than

√
N .

We can get a symmetric range of small values: for all x ∈ [−B/A−M,−B/A+M],
we have

−N = AQ(−B/A) 6 AQ(x) 6 AQ(−B/A+M) = (AM)2 −N,

so if A 6
√

2N/M , we have |Q(x)| 6 N/A ≈M
√
N/2.

Algorithm 32. Recipe to find Q for the quadratic sieve

Input: An odd integer N , a sieving bound M > 1.
Output:
1: Find A odd prime such that A ≈

√
2N/M and

(
N
A

)
= 1.

2: Find B, B2 ≡ N (mod A) and let C := (B2 −N)/A
3: Return Q = AX2 +BX + C.

124 CHAPTER 4. INTEGERS

We take A prime and
(
N
A

)
= 1 so that the congruence be solvable (factor a

quadratic polynomial over a finite field). Such A are found by trial and error,
trying consecutive integers larger than

√
2N/M until they fail a few composite-

ness tests and the Legendre symbol has the right value. Now when the Q(a)
become large, we can find a new polynomial Q with different arithmetic proper-
ties, and still relatively small values!

We must also compute the roots of Q modulo primes in the factorbase. Pro-
vided p ∤ A, the roots of Q(a) ≡ 0 (mod p) are the (−B + a1)A

−1 (mod p),
(−B + b1)A

−1 (mod p), with a1, b1 the square roots of N (mod p) as before. If
p | A there is a single root −BC−1 modulo p. Note that it is more difficult to
sieve modulo prime powers when p | A: another reason to avoid it.

4.3.4 The Self Initializing MPQS, Large Prime variations

It is unfortunately rather costly to change Q, so we cannot change it as often as we
please. A very simple idea takes care of the problem, reminiscent of FastECPP:
we do not need A to be prime, only that B2 ≡ N (mod A) be easy to solve.
We consider A =

∏
pi ≈

√
2N/M for some distinct small primes pi such that(

N
pi

)
= 1, with precomputed squares root B2

i ≡ N (mod pi). Then we recover B
by Chinese remaindering.

A final very important practical improvement are the Large Prime variations
(Single, Double, etc.), reminiscent of the B2 phase in p − 1 and ECM. We now
maintain a database of relations which are smooth, but for a single Large Prime
(or up to a few large primes). If we hit another relation which is almost smooth
but for the same large primes, we can combine them and get new relations; or
at least get relations involving fewer large primes. Due to the birthday paradox,
we expect to find quite a few new relations this way. This idea can be used in all
the sieving factorization algorithms.

In practice, the Single and Double large prime variations are easy to imple-
ment, but the combinatorics and the costs of handling the associated graphs
become quickly horrendous as we allow more of them.

4.3.5 The Number Field Sieve

Chapter 5

Algebraic Number Theory

5.1 Introduction and definitions

See [19] for a quick introduction to the notions developped in this chapter and
[15] for more in-depth discussions and developments. [17] contains a wealth of
detailed computations and explicit results.

A number field K is a finite extension of Q; we may write K = Q(x) for some
x in K (primitive element theorem). All the elements of K are algebraic over Q.
An algebraic integer in K is an element x ∈ K satisfying one of the following
equivalent properties:

1. the minimal polynomial of x belongs to Z[X],

2. there exists Q ∈ Z[X], Q monic, such that Q(x) = 0,

3. Z[x] is a Z-module of finite type,

4. there exists M ⊂ K a Z-module of finite type containing Z[x].

The set of algebraic integers ZK ⊂ K is a ring, which is the proper analog of
ZQ = Z ⊂ Q for the arithmetic of K.

A number field K has dimQK = r1 + 2r2 field embeddings σ : K →֒ C.
Among them, r1 embeddings have image contained in R, and 2r2 further pairwise
conjugate embeddings. The norm, trace, characteristic polynomial of x in K is
the determinant, trace, characteristic polynomial of the multiplication by x seen
as a Q-linear endormorphism of K. In particular, N : K∗ → Q∗ and Tr : K → Q
are group morphisms (for the multiplicative and additive structure, respectively).
Concretely,

N(x) =
∏

σ:K →֒C

σ(x), Tr(x) =
∑

σ:K →֒C

σ(x), Charx(T) =
∏

σ:K →֒C

(
T − σ(x)

)
.

The norm, trace and characteristic polynomial of an algebraic integer are integral.
In particular, the units Z∗K in ZK have norm ±1.

125

126 CHAPTER 5. ALGEBRAIC NUMBER THEORY

We consider
K ⊗ R ≃R-algebra R

r1 × Cr2

as a Euclidean space, endowed with the canonical Euclidean form T2(x) :=∑
σ:K →֒C |σ(x)|2. The discriminant ∆K of K is the discriminant of the lattice

(ZK , T2). Algebraically, it is the absolute value of the determinant of the matrix
(Tr(wiwj)), where ZK = 〈w1, . . . , wn〉Z.

An integral ideal is a non-zero ideal of ZK , a fractional ideal is a sub ZK-
module of K of rank 1 (equivalent definition: A is a fractional ideal if and only if
dA is integral for some d ∈ Z>0). Since ZK is a Dedekind domain, the fractional
ideals form a group and every fractional ideal can be written uniquely as a product
of maximal ideals:

A =
∏

p

pvp(A),

where vp(A) = 0 for all but finitely many p. (Note that we exclude the 0 ideal.)
A maximal ideal p contains a unique prime number p (the generator of p ∩ Z),
and the quotient ZK/p is a finite field of characteristic p.

A fractional ideal is principal if it is of the form (α) := αZK for some α ∈ K∗.
The norm N : K → Q generalizes to the group of principal ideals by N(xZK) :=
|N(x)|. (It wouldn’t be well-defined without the absolute value: x is defined
up to units, and units may have norm −1.) This extends to a multiplicative
function on the whole group of fractional ideals. For an integral ideal A, we have
NA = #(ZK/A).

The class group of Cl(ZK) is the quotient of the group of fractional ideals
by the subgroup of principal ideals. It is a finite abelian group. In fact, a
simple application of Minkowski’s theorem proves that each ideal class contains
an integral ideal of norm O(

√
∆K).

A place of K is an equivalence class of non-trivial absolute values on K.
Concretely, canonical representatives for these classes are given as follows:

• r1 real places : |x|σ := |σ(x)| where σ : K →֒ R is a real embedding.

• r2 complex places : |x|σ := |σ(x)| where σ : K →֒ C runs through a system
of non-congugate complex embeddings.

• one finite place for each maximal ideal p: |x|p := Np−vp(x).

The r1 + r2 real and complex places are called infinite places. Given a finite set
of places S containing all infinite places, we define the S-integers as

ZK,S = {x ∈ K : vp(x) > 0 for all x 6∈ S} .

The subgroup of invertible elements is

Z∗K,S = {x ∈ K : vp(x) = 0 for all x 6∈ S} .

5.2. CONCRETE REPRESENTATIONS 127

This is a Z-module of finite type, a direct product of a (finite) cyclic subgroup
µ(K) containing all roots of unity in K and a free module of rank #S − 1. If S
contains only the places at infinity, we obtain the ordinary integers and units in
K. Note that ZK,S is still a Dedekind ring (not of finite type over Z), and we can
also define a notion of S-class group, by quotienting the ZK,S-fractional ideals by
principal ones. It turns out that Cl(ZK,S) ≃ Cl(ZK)/ 〈p : p ∈ S〉.

Computational algebraic number theory concerns itself with computing and
handling all these objects effectively.

5.2 Concrete representations

We assume that K is given abstractly by the minimal polynomial of a generating
element: K = Q[X]/(T), where T is irreducible in Q[X]. It is no loss of generality
to assume that T is integral of degree n = r1 + 2r2. We shall furthermore assume
that T is monic. (We can reduce to this case by a change of variable, although
most algorithms can be adapted to work directly with non-monic inputs, more
efficiently than on the transformed monic polynomial.) We will not explicitly
evaluate the complexity of most of our algorithms computing invariants of K, but
their input size would be n log ||T ||∞, and we hope to obtain runtimes bounded
by a polynomial in this input size. (We shall not be successful.)

We may then work in K either as in any (univariate) polynomial quotient
ring, or as a Q-vector space with canonical basis 1, X, . . . , Xn−1. In particular,
this yields a direct way to compute the norm, trace and characteristic polynomial
of x ∈ K using Q-linear algebra.

The r1 + 2r2 embeddings are given by σ : X 7→ ασ, where the ασ are the
complex roots of T . Since we know how to approximate the complex roots of T
within a guaranteed fixed accuracy, we may approximate any σ(x) ∈ C as floating
point complex numbers to an arbitray fixed precision. This gives a different,
analytic, method to compute norms, traces and characteristic polynomials (bound
denominators, approximate, then round).

ZK and all fractional ideals are free Z-module of rank n and can be represented
by a Z-basis. Once we fix a Z-basis (w1, . . . , wn) for ZK , any integral ideal has a
canonical basis, given by the Hermite Normal Form, i.e. of the form (wi)H where
H is a square matrix in HNF. Note that detH is the index of the submodule,
hence the norm of the ideal. The product A ×B is the Z-module generated by
all n2 products aibi of the generators of A and B. The quotient AB−1 is (A : B),
where

(A : B) := {α ∈ K,αB ⊂ A} ,
for any Z-modules A and B. Given Z-bases, this quotient can also be computed
using Z-linear algebra (i.e. the HNF algorithm).

Units and ideal classes are represented in the obvious way: as elements of
K and by any (integral) ideal representative respectively. It is not yet clear

128 CHAPTER 5. ALGEBRAIC NUMBER THEORY

how to compute with ideal classes, nor how to enumerate a complete system
of representatives. Analogousy, if µ(K) is relatively straightforward (amounts to
factoring cyclotomic polynomials over K, which can be done using generalizations
of the techniques we saw over Q), how to find non-torsion units ?

5.3 The maximal order ZK

An order of K is a subring O (in particular, containing 1) such that rankZO =
dimQK. Note that ZK is an order and that all orders are contained in ZK (prop-
erty 4. from §5.1), with finite index. We define the discriminant ∆O of O, from
any Z-basis of O, by mimicking the definition of ∆K = ∆ZK

. A direct compu-
tation involving a van der Monde matrix shows that if x is an algebraic integer
generating K, with minimal polynomial T , then ∆Z[x] = discT := Res(T, T ′).

The main point of orders is that

• they are easy to construct: Z[x] is an order for any x ∈ ZK , in particular.
Given T ∈ Z[X] monic such that K = Q[X]/(T), we obtain a canonical
equation order (generated by the class of X).

• they approximate ZK . In fact they have finite index in ZK , which is easy
to bound since we have ∆O = [ZK : O]2∆K and we know ∆O.

• they are somewhat imperfect compared to the maximal order, but still have
interesting arithmetic properties: they are noetherian integral domains of
dimension 1. But a non-maximal order is not integrally closed and the
norm O/A is no longer multiplicative, finitely many maximal ideals are not
invertible, etc.

Exercise 5.1. More generally, orders appear as rings of stabilizers: if A ⊂ K is
a Z-module of rank n, prove that O = (A : A) is an order.

In many applications (e.g. factoring polynomials in K[X], splitting primes in K)
it is enough to know any order, the computation being more efficient if its index is
reasonably small. For instance, given a Z-basis (wi) for an order O, any integer
of K is a Q-linear combination of the wi, with denominator bounded by the
exponent of the additive group ZK/O (itself obviously bounded by the index).
On the other hand, to compute more subtle invariants like the class groups and
units we will need ZK itself.

Definition 5.2. Let m be an integer. On order O ⊂ ZK is m-maximal if m and
the index [ZK : O] are coprime.

Theorem 5.3 (Zassenhaus). Given an order O and a prime p, we can find in
polynomial time a basis for an order Op ⊃ O such that Op is p-maximal.

5.3. THE MAXIMAL ORDER ZK 129

Proof. In fact, we will compute Op minimal with respect to the requested prop-
erty, i.e. [Op : O] will be a power of p. Let Ip = Rad (pO) the radical of pO:
by definition, Ip/pO is the ideal of nilpotents in the finite ring O/pO. Since a
nilpotent in the n-dimensional Fp vector space O/pO has index 6 n, Ip/pO is
the kernel of the Fp-linear endomorphism of O/pO given by F t : x 7→ xp

t

, where
t is minimal such that pt > n.

Ip is the intersection of the minimal prime ideals containing p and we also
have

Ip :=
⋂

p : p∈p
p =

∏

p : p∈p
p.

There are finitely many such ideals p and they are maximal in O. The idea of the
method is that O is p-maximal if and only if all the p are invertible (as O-ideals),
if and only if Ip is invertible.

Lemma 5.4. Let O′ := (Ip : Ip). The order O is p-maximal if and only if
O = O′. Otherwise, p | [O′ : O] | pn.
Proof. O′ is an order containing O (Ip is a Z-module of rank n, apply Exer-
cice 5.1); since p ∈ Ip, we have pO′ ⊂ Ip ⊂ O hence [O′ : O] | pn. It follows that
O = O′ if O is p-maximal.

Conversely, if O = O′, let R ⊂ ZK the smallest p-maximal order containing
O. Since Ip and R have finite rank, we have Imp ⊂ pO and pmR ⊂ O for m≫ 1.
Finally RImp ⊂ O for m large enough. We now show that in fact m = 0, hence
R ⊂ O and O is p-maximal.

By contradiction, suppose there exists m > 0 such that RImp 6⊂ O and pick it
maximal. Choose α ∈ RImp \ O; then αIp ⊂ O, refined to αIp ⊂ Ip: for k ≫ 1,
Ikp ⊂ pO, hence (αIk)

kℓ ⊂ pℓR ⊂ pO for ℓ ≫ 1. Hence α ∈ (Ip : Ip) = O′ = O;
contradiction.

The algorithm is now obvious: compute Ip/pO, lift to Ip, then compute O′.
Either O = O′ is p-maximal or we replace O by O′ and restart, dividing the
index at least by p.

Corollary 5.5. Given the primes p such that p2 | disc T , we can compute a
Z-basis for ZK in polyomial time.

Proof. If p2 ∤ discT , the equation order is p-maximal. Otherwise, compute Op
for all those given p and return

∑Op, using the HNF algorithm.

Interestingly, Zassenhaus’s algorithm still works if p is only assumed to be
squarefree. Either the algorithm exhibit a zero divisor in Z/pZ (from which we
can factor p and restart), or it produces a p-maximal order. Using these ideas
one can prove a stronger result:

Theorem 5.6 (Buchmann-Lenstra). There are polynomial time algorithm that
given a number field K and one of 1), 2) below determines the other:

130 CHAPTER 5. ALGEBRAIC NUMBER THEORY

1. the ring of integers of K,

2. the largest squarefree divisor of ∆K .

Finding the largest squarefree divisor of a given integer is currently essentially as
hard as full integer factorization, hence computing ZK is difficult; but it becomes
easy if an explicit factorization is given. To see why 2) is at least as hard as 1),
consider the simplest case of a quadratic field K = Q(

√
D) for some integer D.

How would you compute ZK without assuming that D is squarefree ?

5.4 Dedekind’s criterion

A very important byproduct of Zassenhaus’s algorithm is that it is trivial to
check whether a given order O is p-maximal for p prime (or squarefree, using
Buchmann and Lenstra’s trick). The recipe simplifies if O is the equation order:

Theorem 5.7 (Dedekind). Let p be a prime number. Let K = Q(X)/(T),
T ∈ Z[X] monic, such that

T ≡
∏

i

P ei
i (mod pZ[X]),

where the Pi ∈ Z[X] are monic, irreducible and distinct modulo p. Let

f :=
∏

Pi, g :=
∏

P ei−1
i , h := (T − fg)/p ∈ Z[X].

Then the equation order is p-maximal if and only if gcd(f, g, h) = 1 in Fp[X].

Proof. It follows from the Chinese Remainders that Ip = pZ[θ] + f(θ)Z[θ], where
θ is the class of X modulo T . From this, one computes (Ip : Ip) explicitly.

Corollary 5.8. An Eisenstein polynomial at p yields a p-maximal equation order.

Proof. f = X , g = Xn−1, h = (T −Xn)/p. The gcd is 1.

5.5 Splitting of primes

Theorem 5.9 (Kummer). Let K = Q[X]/(T), T ∈ Z[X] monic and θ = X
(mod T). If the equation order is p-maximal, “the factorization of T mod p
mirrors the factorization of pZK”. More precisely, if

T ≡
∏

i

P ei
i (mod pZ[X]),

5.6. IDEAL CLASS GROUP AND UNITS 131

where the Pi are monic, irreducible and distinct modulo p. Then

pZK =
∏

i

peii ,

where the pi := pZK + Pi(θ)ZK are distinct maximal ideals, with residual degree
degPi.

If Dedekind’s criterion tells us that the equation order is not p-maximal, we
can still compute a p-maximal orderO using Zassenhaus’s method (Theorem 5.3).
In fact, for simplicity, assume we know ZK . Then we can compute Ip =

∏
pi as

in Zassenhaus’s method, and finding the pi is equivalent to splitting the separable
algebra ZK/Ip, which can be done using an adaptation of Berlekamp’s algorithm.

5.6 Ideal class group and units

5.7 Smaller generating sets for the class group

5.8 Class field theory

132 CHAPTER 5. ALGEBRAIC NUMBER THEORY

Bibliography

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, Primes is in P, Ann.
of Math. (2) 160 (2004), no. 2, 781–793. MR MR2123939

[2] W. R. Alford, Andrew Granville, and Carl Pomerance, There are infinitely
many Carmichael numbers, Ann. of Math. (2) 139 (1994), no. 3, 703–722.
MR MR1283874 (95k:11114)

[3] E. Bach, Explicit bounds for primality testing and related problems, Math.
Comp. 55 (1990), no. 191, 355–380. MR 91m:11096

[4] E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp.
24 (1970), 713–735. MR 43 #1948

[5] Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities,
Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995.
MR MR1367960 (97e:41001)

[6] Henri Cohen, A course in computational algebraic number theory, Grad-
uate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR
MR1228206 (94i:11105)

[7] , Advanced topics in computational number theory, Graduate Texts
in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR MR1728313
(2000k:11144)

[8] David A. Cox, Primes of the form x2+ny2, A Wiley-Interscience Publication,
John Wiley & Sons Inc., New York, 1989, Fermat, class field theory and
complex multiplication. MR MR1028322 (90m:11016)

[9] Richard Crandall and Carl Pomerance, Prime numbers, second ed.,
Springer, New York, 2005, A computational perspective. MR MR2156291
(2006a:11005)

[10] Graham Everest and Thomas Ward, Heights of polynomials and entropy
in algebraic dynamics, Universitext, Springer-Verlag London Ltd., London,
1999. MR MR1700272 (2000e:11087)

133

134 BIBLIOGRAPHY

[11] Xavier Gourdon, Algorithmique du théorème fondamental de l’algèbre, Rap-
port de recherche 1852, INRIA, 1993.

[12] Peter Henrici, Applied and computational complex analysis, Wiley-
Interscience [John Wiley & Sons], New York, 1974, Volume 1: Power series—
integration—conformal mapping—location of zeros, Pure and Applied Math-
ematics. MR MR0372162 (51 #8378)

[13] Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American
Mathematical Society Colloquium Publications, vol. 53, American Mathe-
matical Society, Providence, RI, 2004. MR MR2061214 (2005h:11005)

[14] Serge Lang, Algebra, second ed., Addison-Wesley Publishing Company Ad-
vanced Book Program, Reading, MA, 1984. MR MR783636 (86j:00003)

[15] , Algebraic number theory, second ed., Graduate Texts in Mathemat-
ics, vol. 110, Springer-Verlag, New York, 1994. MR MR1282723 (95f:11085)

[16] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with
rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 84a:12002

[17] W ladys law Narkiewicz, Elementary and analytic theory of algebraic numbers,
second ed., Springer-Verlag, Berlin, 1990. MR 91h:11107

[18] Christos H. Papadimitriou, Computational complexity, Addison-Wesley,
1994. MR 95f:68082

[19] Pierre Samuel, Théorie algébrique des nombres, Hermann, Paris, 1967. MR
MR0215808 (35 #6643)

[20] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York, 1973,
Translated from the French, Graduate Texts in Mathematics, No. 7. MR
MR0344216 (49 #8956)

[21] J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New
York, 1986. MR 87g:11070

[22] A. Storjohann, Algorithms for matrix canonical forms, Ph.D. thesis, ETH
Zurich, 2000, http://www.cs.uwaterloo.ca/~astorjoh/dissA4.ps.

[23] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nom-
bres, Pub. Inst. Elie Cartan, 1990.

[24] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra,
Cambridge University Press, New York, 1999. MR 2000j:68205

