TAUBERIAN TYPE THEOREM FOR OPERATORS
WITH INTERPOLATION SPECTRUM FOR HÖLDER CLASSES

C. AGRAFEUIL AND K. KELLAY

(Communicated by N. Tomczak-Jaegermann)

Abstract. We consider an invertible operator T on a Banach space X whose spectrum is an interpolating set for Hölder classes. We show that if $\|T^n\| = O(n^p)$, $p \geq 1$, $\|T^{-n}\| = O(w_n)$ with $n^q = o(w_n)$ $\forall q \in \mathbb{N}$ and $\sum_n n^1/(n^1 - (\log n)^{1+q}) = +\infty$, then $\|T^{-n}\| = O(n^{p/s})$ for all $s > \frac{1}{2}$, assuming that $(w_n)_{n \geq 1}$ satisfies suitable regularity conditions. When X is a Hilbert space and $p = 0$ (i.e. T is a contraction), we show that under the same assumptions, T is unitary and this is sharp.

1. Introduction

In this note, we are interested in invertible operators T on a Banach space X with polynomial growth and whose spectrum, denoted by $\sigma(T)$, is a K-set. We study growth of the norms of the negative iterates of T. A closed set E of the unit circle T is said to be a K-set if there exists $c_E > 0$ such that for all arcs $L \subset T$,

$$\sup_{\zeta \in E} d(\zeta, E) \geq c_E |L|,$$

where $|L|$ denotes the length of L. Dynkin [4] showed that K-sets are the interpolating sets for Hölder classes: if we denote by $A(D)$ the disc algebra and set, for $s \in (0, 1),

$$A^s = \{ f \in C(T) : \|f\|_s = \|f\|_{C(T)} + \sup_{h \not= 0, t \in \mathbb{R}} \frac{|f(e^{i(t+h)}) - f(e^{it})|}{|h|^s} < +\infty \}$$

and $A^e = A^e \cap A(D)$, then E is K-set iff $A^e|E = A^e|E$.

We also need the following definition: let $w = (w_n)_{n \geq 1}$ be a sequence of positive real numbers; we say that w satisfies condition (R), and we write $w \in (R)$, if it satisfies:

1. $(\log w_n)_{n \geq 1}$ is non-decreasing, and $(w_{n+1}/w_n)_{n \geq 1}$ is non-increasing;
2. $n^q = o(w_n)$ for all $q \geq 0$;
3. the sequence $(\log w_n/n^{\beta})_{n \geq n_0}$ is non-increasing for some $\beta < 1/2$.

Received by the editors February 26, 2007.

2000 Mathematics Subject Classification. Primary 30H05; Secondary 30D55, 47A15.

Key words and phrases. Interpolating set, Hölder classes, growth of the norms.

©2008 American Mathematical Society
Theorem 1.1. Let \(w \in (R) \) and let \(T \) be an operator on a Banach space \(X \) such that \(\sigma(T) \) is a \(K \)-set, \(\|T^n\| = O(n^p) \) for some \(p \geq 1 \) and \(\|T^{-n}\| = O(w_n) \). If for all \(\alpha \in (0,1) \),

\[
\sum_{n \geq 1} \frac{1}{n^{1-\alpha}(\log w_n)^{1+\alpha}} = +\infty,
\]

then, for all \(\varepsilon > 0 \),

\[
\|T^{-n}\| = O(n^{p+\frac{1}{2}+\varepsilon}), \quad n \to +\infty.
\]

In [5], Theorem 1.1 was obtained when norms of the negative powers of \(T \) satisfy the condition \(\sum_{n \geq 1} \frac{1}{(n \log w_n)^{1+\alpha}} = +\infty \) instead of (1) and the spectrum was an arbitrary \(K \)-set. In [1], Theorem 1.1 was obtained when \(\sigma(T) = E_\zeta \) is a perfect symmetric set with constant of ratio \(\xi \in (0,1/2) \) (special classes of \(K \)-sets) and under the condition \(\|T^{-n}\| = O(e^{\alpha n}) \) with \(\beta < \frac{1}{\log 2} |\log 2\zeta|/|\log 2\zeta^2| \). Theorem 1.1 extends results of [1, 5]. For contractions on a Hilbert space we improve Theorem 1.1 to obtain the following result.

Theorem 1.2. Let \(w \in (R) \) and let \(T \) be an invertible contraction on a Hilbert space \(X \), such that \(\sigma(T) \) is a \(K \)-set and \(\|T^{-n}\| = O(w_n) \). If condition (1) is satisfied for all \(\alpha \in (0,1) \), then \(T \) is unitary.

On the other hand, if there exists \(\alpha \in (0,1) \) such that

\[
\sum_{n \geq 1} \frac{1}{n^{1-\alpha}(\log w_n)^{1+\alpha}} < +\infty,
\]

then there exists an invertible contraction on a Hilbert space \(T \) such that \(\sigma(T) \) is a \(K \)-set, \(\|T^{-n}\| = O(w_n) \) and \(\|T^{-n}\| \to +\infty \).

Theorem 1.2 is not valid for contractions on general Banach spaces. Indeed, Esterle constructed in [7] a contraction \(T \) on a Banach space such that \(\sigma(T) \) is a \(K \)-set (a perfect symmetric set with constant of ratio \(\zeta \) such that \(1/\zeta \) is not a Pisot number) and \(\|T^{-n}\| \to +\infty \). Observe also that Theorem 1.2 is not valid when \(\sigma(T) \) is a null measure set (see [10]). Similar results of Tauberian type were obtained in [1, 2, 5, 6, 7, 8, 10, 14].

2. Proofs

2.1. Hausdorff measure of \(K \)-sets. A non-decreasing continuous function on \([0,+\infty)\) such that \(h(0) = 0 \) is said to be a Hausdorff function, and the \(h \)-measure of Hausdorff of a closed set \(E \subset \mathbb{T} \) is defined by

\[
H_h(E) = \lim \inf_{t \to 0} \sum_i h(|\Delta_i|),
\]

where the infimum is taken over all the coverings \((\Delta_i) \) of \(E \) by arcs of \(\mathbb{T} \) with length \(|\Delta_i| \leq t \). Dynkin showed in [4] that if \(E \) is a \(K \)-set, then there exists \(\alpha_E > 0 \) such that

\[
\int_0^1 \frac{|E_t|}{t^{1+\alpha_E}} dt < +\infty,
\]

where

\[
E_t = \{ \zeta \in \mathbb{T} : d(\zeta, E) \leq t \}, \quad t > 0,
\]
$|E_t|$ denotes the length of E_t and $\alpha_E \geq \log(1/(1-c_E))/\log(2/(1-c_E))$. Note that a K-set is a Beurling–Carleson set since
\[\int_0^1 \frac{|E_t|}{t} \, dt < +\infty. \]

Shapiro gave in [12] a complete characterisation of Beurling–Carleson sets of null h-Hausdorff measure: he showed that $H_h(E) = 0$ for all Beurling–Carleson sets E if and only if $\int_0^1 dt/h(t) = +\infty$. Let $(\zeta_n)_{n \geq 1}$ be a sequence of real numbers such that $0 < \zeta_n < 1/2$. We set
\[E_{(\zeta_n)} = \left\{ \exp \left[2\pi \sum_{n \geq 1} \varepsilon_n \zeta_1 \cdots \zeta_n (1 - \zeta_n) \right], \varepsilon_n = 0 \text{ or } 1 \right\}. \]

When $\zeta_n = \zeta$ for all n, E_ζ is the perfect symmetric set of constant ratio ζ (as $E_{1/3}$ is the usual Cantor triadic) and E_ζ is a K-set of Hausdorff dimension $d_E = \log 2/\log 2^2$ (see [9]). When $\limsup_{n \to \infty} \zeta_n < 1/2$, Esterle showed in [7] (Proposition 2.5) that $E_{(\zeta_n)}$ is still also a K-set. The following lemma gives a complete description of a K-set of null h-Hausdorff measure.

Lemma 2.1. Let h be a Hausdorff function such that $h(t)/t$ is strictly decreasing. Then the following two conditions are equivalent.

(i) For all K-sets E, $H_h(E) = 0$.

(ii) For all $\alpha \in (0, 1)$,
\[\int_0^1 \frac{dt}{t^\alpha h(t)} = +\infty. \]

Proof. (ii) \Rightarrow (i). Suppose that there exists a K-set E such that $H_h(E) = c > 0$. For all $t > 0$, E_t is a disjoint union of arcs Δ_i with $|\Delta_i| \geq 2t$: $E_t = \bigcup_{1 \leq i \leq N} \Delta_i$, and so
\[c \leq \sum_{1 \leq i \leq N} h(|\Delta_i|) \leq \sum_{1 \leq i \leq N} \frac{h(|\Delta_i|)}{|\Delta_i|} |\Delta_i| \leq \frac{h(2t)}{2t} |E_t|. \]

Since E is a K-set, there exists $\alpha \in (0, 1)$ such that $\int_0^1 |E_t|/t^{1+\alpha} \, dt < +\infty$, and we deduce from (3) that
\[\int_0^1 \frac{dt}{t^\alpha h(t)} < +\infty. \]

(i) \Rightarrow (ii). Suppose that there exists $\alpha \in (0, 1)$ such that
\[\int_0^1 \frac{dt}{t^\alpha h(t)} < +\infty. \]

We will construct a K-set E satisfying $H_h(E) > 0$. In order to do that, we define $(\lambda_n)_{n \geq 0}$ by $\lambda_0 = 1$ and $h(\lambda_n) = 2^{-n}$, $n \geq 1$. Let $E = E_{(\lambda_n)}$ be the perfect symmetric set associated with $(\zeta_n)_{n \geq 0} := (\lambda_n/\lambda_{n-1})_{n \geq 1}$. The set E is as described in [9], $E = \bigcap_{n \geq 0} E_n$, where E_n is a disjoint union of 2^n closed arcs $E_{i,n}$ with
\[|E_{i,n}| = 2\pi (\zeta_1 \cdots \zeta_n) = 2\pi \lambda_n, 1 \leq i \leq 2^n. \] For all \(N \geq 0 \),
\[
+ \infty > (1 - \alpha) \int_0^1 \frac{dt}{t^\alpha h(t)} = (1 - \alpha) \int_0^{\lambda_{N+1}} \frac{dt}{t^\alpha h(t)} + (1 - \alpha) \sum_{0 \leq n \leq N} \int_{\lambda_{n+1}}^{\lambda_n} \frac{dt}{t^\alpha h(t)}
\geq 2^{N+1} \lambda_{N+1}^{1-\alpha} + \sum_{0 \leq n \leq N} 2^n (\lambda_n^{1-\alpha} - \lambda_{n+1}^{1-\alpha})
\geq 2^{N+1} \lambda_{N+1}^{1-\alpha} + \sum_{1 \leq n \leq N} 2^{n-1} \lambda_n^{1-\alpha} + 1 - 2^N \lambda_{N+1}^{1-\alpha} \geq \sum_{1 \leq n \leq N} 2^{n-1} \lambda_n^{1-\alpha}.
\]
Hence \(\sum_{n \geq 1} 2^{n-1} \lambda_n^{1-\alpha} < +\infty \) and so
\[
\limsup_{n \to \infty} \zeta_n = \limsup_{n \to \infty} \frac{\lambda_n}{\lambda_{n-1}} \leq \frac{1}{2^{1/(1-\alpha)}}.
\]
The perfect symmetric set \(E = E(\zeta_n) \) is a \(K \)-set and \(H_h(E) = \lim_{n \to \infty} 2^n h(\lambda_n) = 1 \). □

2.2. Hyperfunctions supported by a \(K \)-set. A hyperfunction on \(\mathbb{T} \) is a holomorphic function on \(\mathbb{C} \setminus \mathbb{T} \) vanishing at infinity. We denote by \(\mathcal{H}(\mathbb{T}) \) the set of all hyperfunctions. The support of a hyperfunction \(\psi \in \mathcal{H}(\mathbb{T}) \), denoted by \(\text{supp} \psi \), is the smallest closed set \(E \subset \mathbb{T} \) such that \(\psi \) can be analytically extended on \(\mathbb{C} \setminus E \). For a closed set \(E \subset \mathbb{T} \), we set \(\mathcal{H}(E) = \{ \psi \in \mathcal{H}(\mathbb{T}) : \text{supp} \psi \subset E \} \). The Taylor coefficients of \(\psi \) are given by
\[
\left\{ \begin{array}{ll}
\psi^+(z) := \psi|_{\mathbb{B}}(z) = \sum_{n \geq 1} \tilde{\psi}_n z^{n-1}, & |z| < 1, \\
\psi^-(z) := \psi|_{\mathbb{C} \setminus \mathbb{B}}(z) = -\sum_{n \leq 0} \tilde{\psi}_n z^{n-1}, & |z| > 1.
\end{array} \right.
\]
We set
\[
\mathcal{H}_d^2(\mathbb{T}) = \left\{ \psi \in \mathcal{H}(\mathbb{T}) : \sup_{n \geq 1} \frac{|\tilde{\psi}_n|}{w_n} < +\infty \text{ and } \sum_{n \leq 0} |\tilde{\psi}_n|^2 < \infty \right\}
\]
and \(\mathcal{H}_d^2(E) = \mathcal{H}_d^2(\mathbb{T}) \cap \mathcal{H}(E) \). We will need the following lemma, which follows from a result of Hruscev [11].

Lemma 2.2. Let \(w \in (R) \). The following conditions are equivalent.
(i) For all \(K \)-sets \(E \), we have \(\mathcal{H}_d^2(E) = \{0\} \).
(ii) For all \(\alpha \in (0, 1) \), condition [1] is satisfied.
Proof. Define \(F_h(E) \) for a Hausdorff function \(h \) by
\[
F_h(E) = \left\{ \psi \in \mathcal{H}(E) : |\psi^+(z)| = O(\exp \frac{h(1-|z|)}{1-|z|}) \text{ and } \psi^- \in H^2(\mathbb{C} \setminus \mathbb{B}) \right\}.
\]
We set \(h_w(t) = t \log \sup_{n \geq 1} (1-t)^n w_n \). According to Lemma 5.2 of [3], the function \(h_w \) is a Hausdorff function, \(h_w(t)/t \) is strictly decreasing and
\[
\int_0^1 \frac{dt}{t^\alpha h_w(t)} \leq \sum_{n \geq 1} \frac{[(n+1)/\log w_{n+1}]^\alpha - [n/\log w_n]^\alpha}{\log w_n}.
\]
Since \((\log w_n/\sqrt{n})_{n \geq 0} \) is non-increasing and \((\log w_n)_{n \geq 0} \) is non-decreasing,
\[
\left(\frac{\sqrt{n}}{\log w_n} \right)^\alpha (n+1)^{\alpha/2} - n^{\alpha/2} \leq \left[\frac{n+1}{\log w_{n+1}} \right]^\alpha - \left[\frac{n}{\log w_n} \right]^\alpha \leq \frac{(n+1)^\alpha - n^\alpha}{(\log w_n)^\alpha}.
\]
Remark 2.3. Denote by \(A(\mathbb{D}) \) the disk algebra, denote by \(A^p(\mathbb{D}) \) the algebra of all functions \(f \) such that \(f^{(k)} \in A(\mathbb{D}) \), \(0 \leq k \leq p \), and let \(A^\infty(\mathbb{D}) = \bigcap_{p \geq 1} A^p(\mathbb{D}) \). First observe that a \(K \)-set \(E \) is a Beurling–Carleson set, and so there exists \(f \in A^\infty(\mathbb{D}) \) with \(f^{(n)}|E| = 0 \) (see [13]). Now set

\[
\mathcal{H}_{w,p}(\mathbb{T}) = \left\{ \psi \in \mathcal{H}(\mathbb{T}) : \sup_{n \geq 1} \frac{|\hat{\psi}_n|}{w_n} < +\infty \text{ and } \sup_{n \leq 0} \frac{|\hat{\psi}_n|}{(1 + |n|)^p} < +\infty \right\}
\]

and set \(\mathcal{H}_{w,p}(E) = \mathcal{H}_{w,p}(\mathbb{T}) \cap \mathcal{H}(E) \). If \(f \in A^\infty(\mathbb{D}) \) and \(\psi \in \mathcal{H}_{w,p}(\mathbb{T}) \), we define the hyperfunction \(f.\psi \) whose Taylor coefficients are given by

\[
\hat{f.\psi}_n = \sum_{m \in \mathbb{Z}} \hat{f}(n)\hat{\psi}_{n-m}, \quad n \in \mathbb{Z}.
\]

If \(\psi \in \mathcal{H}_{w,p}(E) \) and \(f^{(n)}|E| = 0 \), then \(f.\psi \in \mathcal{H}^2_{w}(E) \) (see [5], Proposition 2.1). Hence, if condition (ii) of the lemma is satisfied, then for all \(K \)-sets \(E \) and for all \(p \geq 0 \), \(\psi \in \mathcal{H}_{w,p}(E) \), \(f \in A^\infty(\mathbb{D}) \) with \(f^{(n)}|E| = 0 \) we have \(f.\psi = 0 \).

2.3. Proofs of Theorem 1.1 and Theorem 1.2. Suppose that condition (1) is satisfied. Letting \(x \in X \) and \(l \in X^* \), we set

\[
\phi(z) = \langle (T - zI)^{-1}x, l \rangle, \quad z \notin \sigma(T).
\]

We have \(\phi \in \mathcal{H}_{w,p}(\sigma(T)) \) (\(p = 0 \) for Theorem 1.2). Consider an outer function \(f \in A^\infty(\mathbb{D}) \) such that \(f^{(m)}|\sigma(T) = 0 \) for all \(m \geq 0 \). A standard computation of (5) gives that

\[
f.\phi(z) = \langle (T - zI)^{-1}f(T)x, l \rangle, \quad z \notin \sigma(T).
\]

According to Remark 2.3, \(f.\phi = 0 \), and so \(f(T) = 0 \). The conclusion follows from the proof of Theorem 4.1 of [5] (see also [2]) for Theorem 1.1 and from the proof of Theorem 6.4 of [6] for Theorem 1.2.

Now suppose that condition (2) is satisfied for some \(\alpha \in (0, 1) \). Set \(\bar{w}_n = w_n^{1/2} \). Then \(\bar{w} \) satisfies (R) and (2). According to (4), we have \(\int_0^1 dt/(t^\alpha h_{\bar{w}}(t)) < +\infty \), where \(h_{\bar{w}}(t) = t \log \sup_n (1 - t)\bar{w}_n \) is a Hausdorff function and \(h_{\bar{w}}(t)/t \) is strictly decreasing. Lemma 1 and Frostman’s Theorem [9] give the existence of a \(K \)-set \(E \) and a singular measure \(\mu \) supported by \(E \) which modulus of continuity satisfies \(\rho_\mu(t) = O(h_{\bar{w}}(t)) \). Let \(S_\mu \) be the singular inner function associated with \(\mu \). Consider the operator \(T : H^2 \ominus S_\mu H^2 \rightarrow H^2 \ominus S_\mu H^2 \) defined by \(Tg = P_\mu(zg) \), where \(P_\mu \) is the orthogonal projection on \(H^2 \ominus S_\mu H^2 \). Then \(T \) is an invertible contraction with spectrum \(E \), \(\|T^{-n}\| = O(w_n) \) and \(\|T^{-n}\| \rightarrow \infty \) (see [10] for more details).

Acknowledgment

The authors would like to thank the referee for valuable remarks.
References

Université Aix Marseille III, Bat Henri Poincaré Cours A, 13397 Marseille cedex 20, France
E-mail address: cyril.agrafeuil@univ-u-3mrs.fr
Current address: 164, rue d’Alésia, 75014 Paris, France
E-mail address: cyril.agrafeuil@gmail.com

LATP-CMI, Université Aix Marseille I, 39 rue F. Joliot Curie, 13347 Marseille cedex 13, France
E-mail address: kellay@cmi.univ-mrs.fr