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Abstract. We continue the study of equivalent boundary conditions in ferromag-
netic domains crossed by a thin split. In this second part, weadd nonhomogenous
boundary conditions arising from interactions such as surface anisotropy and super-
exchange. We expand the problem up to the first order and establish equivalent bound-
ary conditions in presence of surface anisotropy and super-exchange. In particular, the
well-posedness of the expansion problem with equivalent boundary condition and the
convergence in some meaning of the expansion are proven.

Introduction

Following part I [8], we study the behavior of a ferromagnetic domain crossed by a thin
split. In order to efficiently compute the evolution of the magnetization on such a geometry,
we expanded the magnetizationm(0),ε = m(0) + εm(1) on Ωε and derived an equivalent
boundary condition on the contact surface:

∂m(1)

∂ν
=
∂2m(0)

∂ν2
.

In this second part of the article, we extend our results whenboundary interactions such
as super-exchange and surface anisotropy are present [4]. The mathematical effect of these
interactions is to modify the Neumann boundary condition ina nonlinear way. The new terms
will be described in section 1. In the same paper, the existence, but not the uniqueness, of
infinite time weak solutions is also proved.

We denote bym the dimensionless magnetization. In the expansion,m(0) represents the
term of order0 andm(1) the term of order1. Formallym = m(0) + εm(1), whereε is the
half-thickness of the split. The considered geometry is presented in Figure 1. We use the
same notations as in part I. Let

• ε the half thickness of the split, always verifyingε≪ min(L+, L−).

• B a bounded convex open set ofR2, with a smooth boundary.

• L+, L− be two nonzero positive numbers.

• Ω+
ε = B × (ε, L+) andΩ−

ε = B × (−L−,−ε) for all ε < min(L−, L+)/2 are the
domains filled with the ferromagnetic material.

• Ω+ = B × (0, L+) andΩ− = B × (−L−, 0).
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Figure 1: Geometry of the problem

• Ω = Ω+ ∪ Ω− andΩε = Ω+
ε ∪ Ω−

ε for all ε < min(L−, L+)/2.

• Qε
T = Ωε × (0, T ), for all ε < min(L−, L+)/2 andQT = Ω× (0, T ).

• Γ+
ε = B×{+ε},Γ−

ε = B×{−ε} andΓ±
ε = Γ+

ε ∪Γ
−
ε . Whenε is omitted, it corresponds

to ε = 0.

• γ0ε is the map that sendsm to its trace onΓ±
ε .

• γ0,′ε is the trace map that sendsm to γ0ε (m ◦ σ), whereσ is the application that sends
(x, y, z, t) to (x, y,−z, t).

• We define the surfaceΓ = B×{0}. γ0,+ε is the trace map that sendsm to γ00(m ◦ τ−ε)
on Γ+, whereτ−ε(x, y, z, t) = (x, y, z + ε, t). γ0,−ε is the trace map that sendsm to
γ00(m ◦ τ+ε) onΓ−.

• γ1ε is the map that sendsm to its normal trace∂m
∂ν

onΓ±
ε .

• γ1,′ε is the trace map that sendsm to γ1ε (m ◦ σ). (x, y, z, t) to (x, y,−z, t).

• γ1,+ε is the trace map that sendsm to γ10(m ◦ τ−ε) on Γ+. γ1,−ε is the trace map that
sendsm to γ10(m ◦ τε) onΓ−.

• ν represents the unitary exterior normal to the surface boundary of an open set, usually
Ωε orΩ.

In this second part, we use the same notations concerning Sobolev spaces as in section 2.1
of [8]. In particular,Hs(Ω) are the classical Sobolev spaces as defined in [1],Hs(Ω) =
(Hs(Ω))3, and

Hp,q(Ω× (0, T )) = Hq(0, T ;L2(Ω)) ∩ L2(0, T ;Hp(Ω)). (0.1)

as in Lions-Magenes [5]. We make an extensive use of the spaces H3, 3
2 (Ω × (0, T )) and

H2,1(Ω× (0, T )). By Lp(Ω), we denote(Lp(Ω))3.
In section 1, we describe the super-exchange and surface anisotropy interactions along

with their energies and operators. The description of the other interactions can be found in
section 1 of [8]. We also give the complete description of theLandau-Lifshitz system and its
linearization. We also state in this section the well posedness of the Landau-Lifchitz system
with super-exchange and surface anisotropy as proved in [9]. In section 2, we formally derive
the equivalent boundary condition. In section 3, we give additional inequalities which are not
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contained in section 2.3.1 of [8]. In section 4, we prove the existence of the first order
term. Then, in section 5, we prove the weakH2,1 convergence of the expansion at first order.
Finally, in section 6, we provide the results of some numerical simulations which compute
the effect of super-exchange and surface anisotropy to the magnetization terms of both order
0 and1.

1 The mathematical model

We only describe the additional material compared to part I section 1. Readers should refer
to it for more information.

1.1 The surface anisotropy interaction

The surface anisotropy energy, see [4], and the associated operator are

Esa =
Ks

2

∫

Γ−
ε ∪Γ+

ε

(1− (γ00m · ν)2)dσ(x),

Hsa = Ks((γ
0
0m · ν)ν − γ00m) onΓ−

ε ∪ Γ+
ε .

when the ferromagnetic material fillsΩε. This operator has basically the same form as the
volume anisotropy uniaxis operator but withu = ν.

1.2 The super-exchange interaction

This interaction has its roots in quantum mechanics—see [2]. We use the mathematical model
found in [4]. If the ferromagnetic material fillsΩε, the energy and the operator associated to
the super-exchange operator are

Ese(m) = J1

∫

Γ

(1− γ0ε
+
m · γ0ε

−
m)dσ(x) + J2

∫

Γ

(1− |γ0ε
+
m · γ0ε

−
m|2)dσ(x),

Hse = J1(γ
0,′
ε m− γ0εm) + 2J2((γ

0
εm · γ0,′ε m)γ0,′ε m− |γ0,′ε m|2γ0εm) onΓ− ∪ Γ+.

whereJ1, J2 are positive real numbers. In reality,J1 andJ2 depend on the distanceε, but as
they converge asε tends to0, we will consider them to be constant throughout this article.

1.3 The boundary condition

For the remaining part of the article, we define

Hd,a = Hd +Ha, Hv = Hd +Ha +He, Hs = Hsa +Hse. (1.1)

whereHd,Ha,He are defined in section 1.2 in part I. The boundary conditions onm are

∂m

∂ν
= 0 on∂Ωε \ Γ

±
ε , (1.2a)

∂m

∂ν
=

1

A

(
Hs(m)−

(
γ00m · Hs(m)

)
γ00m

)
onΓ+

ε ∪ Γ−
ε . (1.2b)

These are obtained as the Euler-Lagrange conditions on the boundary.
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1.4 The Landau-Lifshitz system

The Landau-Lifshitz system is

∂mε

∂t
= −mε ×Hv(m

ε)− αmε × (mε ×Hv(m
ε)) in Ωε × (0, T ), (1.3a)

|mε| = 1 a.e. inΩε × (0, T ), (1.3b)

mε(·, 0) =mε
0, (1.3c)

∂mε

∂ν
=





0 on∂Ω \ Γ,

Q+(γ00m
ε, γ0,′0 m

ε) onΓ+
ε ,

Q−(γ00m
ε, γ0,′0 m

ε) onΓ−
ε ,

(1.3d)

whereQ±(γ0εm, γ0,′ε m) = Q±
r (γ

0
εm, γ0,′ε m)− (Q±

r (γ
0
εm, γ0,′ε m) ·γ0εm)γ0εm withQr being

a polynomial in two variables. It is left to the reader to verify that conditions (1.2) are a
particular case of conditions (1.3d). In [9], we proved the following theorem of existence.

Theorem 1.1. If the initial conditionmε
0 belongs toH2(Ωε) and satisfies the boundary con-

dition

∂mε
0

∂ν
=





0 on∂Ω \ Γ±
ε ,

Q+(γ0εm
ε
0, γ

0,′
ε m

ε
0) onΓ+

ε ,

Q−(γ0εm
ε
0, γ

0,′
ε m

ε
0) onΓ−

ε ,

(1.4)

and|m0| = 1, then there exists a uniqueT ∗ > 0 andmε in H3, 3
2 (Ω× (0, T )) for all T < T ∗

satisfying(1.3). The system is well-posed.

Anticipating the expansion of the Landau-Lifshitz system,we introduce a general form
of the linearized Landau-Lifshitz system.

∂w

∂t
= −m×Hv(w)−w ×Hv(m)− αm× (m×Hv(w))

− αm× (w ×Hv(m))− αw × (m×Hv(m)) + θ onΩ× (0, T ∗),
(1.5a)

m ·w = 0, (1.5b)

w(·, 0) = w0. (1.5c)

∂w

∂ν
=





0 on∂Ω \ Γ× (0, T ),

DQ+(γ00m, γ0,′0 m) · (γ00w, γ
0,′
0 w) + β+ onΓ+ × (0, T ),

DQ−(γ00m, γ0,′0 m) · (γ00w, γ
0,′
0 w) + β− onΓ− × (0, T ).

(1.5d)

wherew is the unknown.β+, β−, θ, w, m are in appropriate functions spaces with values
in R3. Q+, Q− are the polynomials defined in (1.3d).D is the differentiation operator.

Definition 1.2. We defineH
3
2
, 3
4

00, (Γ× (0, T )) as the subset ofH
3
2
, 3
4 (Γ× (0, T )) containing all

functionsg such that ∫ T

0

∫

Γ

|g(x, t)|2
dx

ρ(x)
dσ(x)dt < +∞,

whereρ(x) = dist(x, ∂Γ).

This is to ensure compatibility relations, see Lions-Magenes [5]. The existence and
uniqueness problem for them(1) are stated by the next two theorems.
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Theorem 1.3. Letm in H3, 3
2 (Ω × (0, T )) be a solution to the Landau-Lifshitz system with

upper timeT ∗. Letθ be inH1, 1
2 (Ω × (0, T )) for all T < T ∗ such thatθ is orthogonal tom

almost everywhere. Letβ+, β− in H
3
2
, 3
4

00, (Γ± × (0, T )), orthogonal almost everywhere on the
boundaryΓ× (0, T ) tom. Letw0 in H2(Ω) orthogonal almost everywhere inΩ tom, such
that

∂w0

∂ν
= 0 on∂Ω \ Γ,

∂w0

∂ν
= DQ+(γ00m0, γ

0,′
0 m0)(γ

0
0w0, γ

0,′
0 w0) + β+(·, 0) onΓ+,

∂w0

∂ν
= DQ−(γ00w0, γ

0,′
0 w0)(γ

0
0w0, γ

0,′
0 w0) + β−(·, 0) onΓ−.

(1.6)

Then, there exists a uniquew in H3, 3
2 (Ω× (0, T )) solution to system(1.5).

The following theorem solves the existence problem ofm(1). It lowers the requirements
of the previous theorem on the regularity of the data as well as the regularity of the solution.

Theorem 1.4.Letm in H3, 3
2 (Ω× (0, T )) be a solution to Landau-Lifshitz system with upper

timeT ∗. Let θ be inL2(Ω × (0, T )) for all T < T ∗ such thatθ is orthogonal tom almost
everywhere. Letβ+, β− belonging toH

1
2
, 1
4 (Γ± × (0, T )), β± ·m = 0. Letw0 in H1(Ω) such

thatm0 ·w0 = 0. Then, there exists a uniquew in H2,1(Ω× (0, T )) solution to system(1.5).

The complete proofs of both theorems can be found at section 4.

Remark1.5. Theorems 1.4 and 1.3 also hold if we replaceΩ byΩε.

2 The equivalent boundary condition

As in the first part, we consider forε small enough an initial conditionmε
0 belonging to

H2(Ω), satisfying (1.4) onΓ±
ε . We suppose that there existsm(1)

0 such that

‖m
(0)
0 −m

ε,(0)
0 ‖H2(Ωε) = O(1), ‖m

(0)
0 −m

ε,(0)
0 ‖H1(Ωε) = O(ε), (2.1a)

m
(0),ε
0 −m

(0)
0

ε
→ u1

|Ωε0
=m

(1)
0 weakly inH1(Ωε0) for all ε0 > 0. (2.1b)

We then definemε as the solution to the Landau-Lifshitz system (1.3), with initial condition
mε

0 on Ωε. If we formally expandmε = m(0) + εm(1) up to the first order, we obtain as
in [8], equations onm(1) andm(0). Formally,m(0) = m0 and is the solutionm to the
Landau-Lifshitz system (1.3) with initial conditionm(0)

0 =m0
0 on domainΩ. m(1) formally

satisfy

1

ε

∂(mε −m(0))

∂z
(·, ·, ε, ·) ≈ −

1

ε
Q+(γ0ε

+
mε, γ0ε

−
mε)−Q+(γ00

+

εm
(0), γ00

−

εm
(0))

−
1

ε
Q+(γ00

+

εm
(0), γ00

−

εm
(0))−Q+(γ00

+
m(0), γ00

−
m(0))

−
1

ε

∂(γ00
+
εm

(0) − γ00
+
m(0))

∂z

≈ −DQ+(γ00
+
m(0), γ00

−
m(0)) ·

(
γ00

+
m(1) +

∂m(0)

∂z
, γ00

−
m(1) −

∂m(0)

∂z

)
−
∂2m(0)

∂ν2
.
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Hence, onΓ± the boundary condition is

∂m(1) − ∂m(0)

∂ν

∂ν
= DQ±(γ00m

(0), γ0,′0 m
(0)) ·

(
γ00m

(1) − γ10m
(0), γ0,′0 m

(1) − γ1,′0 m
(0)
)

= DQ±(γ00m
(0), γ0,′0 m

(0)) · (γ00m
(1) − γ10m

(0), γ0,′0 m
(1) − γ1,′0 m

(0)). (2.2)

Thus, formallym(1) is the solutionw of the linearized Landau-Lifshitz system (1.5) with
m =m(0) and

β+ = −DQ+(γ00m
(0), γ0,′0 m

(0)) ·

(
∂m(0)

∂ν
,
∂m(0)

∂ν

)
(2.3a)

β− = −DQ±(γ00m
(0), γ0,′0 m

(0)) ·

(
∂m(0)

∂ν
,
∂m(0)

∂ν

)
. (2.3b)

Also, as in part I, formallyθ =m(0)×Hd(γ
0
0m

(0)dσ(Γ))+m(0)×(m(0)×Hd(γ
0
0m

(0)dσ(Γ))).

3 Miscellaneous inequalities and Sobolev spaces

We recall here without proof some well-known properties of Sobolev spaces. It can be ver-
ified [8] that the considered domainΩ is regular enough for those inequalities to hold. In
particular, Sobolev embeddings hold.

Lemma 3.1.The spaceH3, 3
2 (Ω×(0, T )) is continuously embedded inC0(0, T ; H2(Ω)) and in

L∞(Ω×(0, T )). Besides, the gradient application is linear continuous fromH3, 3
2 (Ω×(0, T ))

to L4(0, T ;L∞(Ω)).

PROOF: This is a consequence of theorem 4.2 Lions-Magenes [6]. andMaz’ya [7] page
274. �

Lemma 3.2. H3, 3
2 (Ω× (0, T )) is an algebra for the pointwise multiplication. Moreover, the

pointwise multiplication of a function inH3, 3
2 (Ω× (0, T )) and a function inH2,1(Ω× (0, T ))

is in H2,1(Ω× (0, T )).

The constants involved depend strongly onT whenT tends to0.

Definition 3.3. We defineH
m− 1

2
morc (∂Ω) as the subset ofL2(∂Ω) of functions whose restrictions

on∂B × (0, L),B × {0} etB × {L} are inHm− 1
2 .

The following regularity properties hold.

Proposition 3.4(Elliptic regularity).

The space
{
v ∈ H1(Ω) | △v ∈ L2(Ω), ∂v

∂ν
∈ H

1
2
morc(∂Ω)

}
is equal toH2(Ω) and there exists

a constantC such that for allv in H2(Ω)

‖v‖H2(Ω) ≤ C

(
‖v‖L2(Ω) + ‖△v‖L2(Ω) +

∥∥∥∥
∂v

∂ν

∥∥∥∥
H

1
2
morc(∂Ω)

)
. (3.1a)

Proposition 3.5.The space
{
v ∈ H1(Ω),∇△v ∈ L2(Ω), ∂v

∂ν
∈ H

3
2
morc(∂Ω)

}
is equal toH3(Ω)

and there exists a constantC such that for allv in H3(Ω)

‖v‖H3(Ω) ≤ C

(
‖v‖L2(Ω) + ‖∇△v‖L2(Ω) +

∥∥∥∥
∂v

∂ν

∥∥∥∥
H

3
2 (∂Ω)

)
. (3.1b)
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PROOF: This proposition is a trivial consequence of Proposition 2.8 in part I of this
article. �

Lemma 3.6. If A is a continuous bilinear operator from spacesX, Y into spaceZ thenA is
bilinear continuous from the spaces(L∞ ∩ H

1
2 )(X), (L∞ ∩ H

1
2 )(Y ) into (L∞ ∩ H

1
2 )(Z).

PROOF: The proof is left to the reader. It is similar to the proof of Lemma 2.14 in the
first part [8]. �

This lemma allows to recover theH
1
2 regularity in time from the Landau-Lifshitz equation

and theH1(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)) regularity of the solution.

4 Proof of the existence theorems

In this section, we prove the existence Theorems 1.3 and 1.4.

4.1 An equivalent problem

We first develop the second term of Landau-Lifshitz equation. This gives us a system equiv-
alent to (1.5). This new system includes equations (1.5c), (1.5d), (1.5b), and the following
developed form of Landau-Lifshitz.

∂w

∂t
= −Am×△w − Aw ×△m+ Aα△w + Aα|m|w + 2Aα(∇m · ∇w)m

−m×Hd,a(w)−w ×Hd,a(m)− αm× (m×Hd,a(w))

− αm× (w ×Hd,a(m))− αw × (m×Hd,a(m)) + θ.

(4.1)

Lemma 4.1. Letβ+, β−, θ, andw0 satisfy the hypothesis of Theorem 1.3. Ifw in H3, 3
2 (Ω×

(0, T )) satisfies equations(1.5c), (1.5d)and(4.1), thenw also satisfies the local orthogonal-
ity (1.5b). Thus,w is a solution to Theorem 1.3.

PROOF: The time equation is

∂(w ·m)

∂t
= αA

(
△(w ·m) + 2|∇m|2(w ·m)

)
.

Moreover, the boundary condition is

∂(m ·w)

∂ν
= 0 on∂Ω \ Γ× (0, T ),

∂(m ·w)

∂ν
= −2Q+

r (γ
0
0m, γ0,′0 m)γ00m · γ00w onΓ+ × (0, T ),

∂(m ·w)

∂ν
= −2Q−

r (γ
0
0m, γ0,′0 m)γ00m · γ00w onΓ− × (0, T ).

We multiply equation (4.1) byw ·m and integrate overΩ× (0, T ).

[∫

Ω

|w ·m|2dx

]T

0

+ (αA− η)

∫

QT

∣∣∇(w ·m)
∣∣2dx ≤

2αA

∫ T

0

‖∇m‖2L∞(Ω)

∫

Ω

|m ·w|2dx+
C

η3

∫

QT

|m ·w|2dx.

By Gronwall’s inequality,m ·w = 0. �

We need to prove the existence and uniqueness of solutions tothis new system. We basically
prove the theorem in four steps.
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1. Existence with the homogenous Neumann boundary condition.

2. Extension of the boundary condition, then existence withan affine Neumann boundary
condition.

3. Particular case with an affine Neumann boundary conditionthat allow the construc-
tion of a sequencewn+1 satisfying (4.1), (1.5c) and a Neumann boundary condition
involvingwn.

∂wn+1

∂ν
=





0 on∂Ω \ Γ× (0, T ),

DQ+(γ00m, γ0,′0 m) · (γ00w
n, γ0,′0 w

n) + β+ onΓ+ × (0, T ),

DQ−(γ00m, γ0,′0 m) · (γ00w
n, γ0,′0 w

n) + β− onΓ− × (0, T ).

(4.2)

4. Convergence of the sequence to the solution by proving thatthe difference between
two elements in the sequence tend to0.

4.2 The affine Landau-Lifshitz system

Theorem 4.2. Let 0 < T ∗. For all T < T ∗, let m anda in H3, 3
2 (Ω × (0, T )) and θ in

H1, 1
2 (Ω× (0, T )). Letw0 in H2(Ω), ∂w0

∂ν
= 0 on∂Ω. Then, there exists a uniquew satisfying

w(·, 0) = w0,
∂w0

∂ν
= 0 on∂Ω× (0, T ∗), and equation(4.1).

PROOF: We use Galerkin’s method as in 2.24 in the first part [8]. We introduce the
orthonormal basew1, . . . , wn, . . . of L2(Ω) made of the eigenvectors of the Laplace operator
with Neumann boundary conditions. We denote byVn the subspace generated byw1, . . . , wn
and byPn the orthogonal projection onVn in L2(Ω). Pn is also an orthogonal projector in
H1(Ω) and in{u ∈ H2(Ω), ∂u

∂ν
= 0}. First, we introduce for each contributionp,

F
p,lin
m(0)(w) = −w ×Hp(m(0))−m(0)×Hp(w)− αw × (m(0)×Hp(m(0)))

− αm(0)× (w ×Hp(m(0)))− αm(0)× (m(0)×Hp(w)).
(4.3)

We look forwn in H1(0, T )⊗ Vn such that

∂wn

∂t
− αA△wn = Pn(−Aw

n ×△m− Am×△wn + 2αA(∇m · ∇wn)m)

+ αAPn(|∇m|2wn + F a,d,lin
m

(wn) + θ),
(4.4)

wn(·, 0) = Pn(w0) (4.5)

In subsequent estimates,η will be a positive real that can be chosen arbitrarily small.C will
be a generic constant depending only on domainΩ. To make these estimates, we need the
inequalities

‖F a,d,lin
m

(w)‖L2(Ω) ≤ C ′(1 + ‖m‖H1(Ω))‖w‖H1(Ω), (4.6a)

‖∇F a,d,lin
m

(w)‖L2(Ω) ≤ C ′(1 + ‖m‖H2(Ω))
2‖w‖H2(Ω). (4.6b)

We already know from the proof of Theorem 2.24 in part I.thatwn exists over[0, T ∗)
and is unique. Besides,wn is bounded inH2,1(Ω × (0, T )). We only need the following
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additional estimate. We multiply (4.4) by△2wn and integrate. Since,△2wn belongsVn

1

2

d

dt

∫

Ω

|△wn|2dx+ αA

∫

Ω

|∇△wn|2dx =

A

∫

Ω

(∇wn ×△m) · ∇△wndx

︸ ︷︷ ︸
I

+A

∫

Ω

(wn ×∇△m) · ∇△wndx

︸ ︷︷ ︸
II

+ A

∫

Ω

(∇m×△wn) · ∇△wndx

︸ ︷︷ ︸
III

−2αA

∫

Ω

(∇m ·D2wn)m · ∇△wndx

︸ ︷︷ ︸
IV

− 2αA

∫

Ω

(D2m · ∇wn)m · ∇△wndx

︸ ︷︷ ︸
V

−2αA

∫

Ω

(∇m · ∇wn)∇m · ∇△wndx

︸ ︷︷ ︸
V I

− 2αA

∫

Ω

(D2m · ∇m)wn · ∇△wndx

︸ ︷︷ ︸
V II

−αA

∫

Ω

|∇m|2∇wn · ∇△wndx

︸ ︷︷ ︸
V III

−

∫

Ω

∇θ · ∇△wndx

︸ ︷︷ ︸
IX

−

∫

Ω

∇F a,d,lin
m

(wn) · ∇△wndx

︸ ︷︷ ︸
X

(4.7)

We evaluateI =
∫
Ω
(∇wn ×△m) · ∇△wndx.

|I| ≤ ‖∇wn‖L6(Ω)‖△m‖L3(Ω)‖∇△wn‖L2(Ω)

≤
1

4η
‖△m‖2L3(Ω)‖w

n‖2H2(Ω) + η‖∇△wn‖2L2(Ω).
(4.8a)

Then, we estimateII =
∫
Ω
(wn ×∇△m) · ∇△wndx.

|II| ≤ ‖wn‖L∞(Ω)‖∇△m‖L2(Ω)‖∇△wn‖L2(Ω)

≤
1

4η
‖∇△m‖2L2(Ω)‖w

n‖2H2(Ω) + η‖∇△wn‖2L2(Ω).
(4.8b)

EstimatingIII =
∫
Ω
(∇m×△wn) · ∇△wndx yields

|III| ≤ ‖∇m‖L∞(Ω)‖△w
n‖L2(Ω)‖∇△wn‖L2(Ω)

≤
1

4η
‖D3m‖2L2(Ω)‖△w

n‖2L2(Ω) + η‖∇△wn‖2L2(Ω).
(4.8c)

Then, we estimateIV =
∫
Ω
(∇m ·D2wn)m · ∇△wndx.

|IV | ≤ ‖m‖L∞(Ω)‖∇m‖L∞(Ω)‖D
2wn‖L2(Ω)‖∇△wn‖L2(Ω)

≤
1

4η
‖m‖2L∞(Ω)‖∇m‖2L∞(Ω)‖∇w

n‖2L2(Ω) + η‖∇△wn‖2L2(Ω).
(4.8d)

If we estimateV =
∫
Ω
(D2m · ∇wn)m · ∇△wndx, we obtain

|V | ≤ ‖D2m‖L6(Ω)‖∇w
n‖L3(Ω)‖∇△wn‖L2(Ω)

≤
1

4η
‖m‖2H3(Ω)‖w

n‖2H2(Ω) + η‖∇△wn‖2L2(Ω).
(4.8e)
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EstimatingV I =
∫
Ω
(∇m · ∇wn)∇m · ∇△wn andV III =

∫
Ω
|∇m|2∇wn · ∇△wndx

yields

|V I|, |V III| ≤
1

4η
‖∇m‖4L∞(Ω)‖∇w

n‖2L2(Ω) + η‖∇△wn‖2L2(Ω). (4.8f)

When we estimateV II =
∫
Ω
(D2m · ∇m)wn · ∇△wndx, we obtain

|V II| ≤
1

4η
‖D2m‖2L3(Ω)‖∇m‖2L6(Ω)‖w

n‖2H2(Ω) + η‖∇△wn‖2L2(Ω). (4.8g)

EstimatingIX =
∫
Ω
∇θ · ∇△wndx yields

|IX| ≤
1

4η
‖∇θ‖2L2(Ω) + η‖∇△wn‖2L2(Ω). (4.8h)

Eventually, we estimateX =
∫
Ω
∇F a,d,lin

m
(wn) · ∇△wndx using inequality (4.6).

|X| ≤ ‖∇F a,d,lin
m

(wn)‖L2(Ω)‖∇△wn‖L2(Ω)

≤
C

4η
(1 + ‖m‖2H2(Ω))‖w

n‖2H2(Ω) + η‖∇△wn‖2L2(Ω).

We combine inequalities (4.8).

1

2

d

dt

∫

Ω

|△wn|2dx+αA

∫

Ω

|∇△wn|2dx ≤
C

η
g(t)‖wn‖2H2(Ω)+η‖∇△wn‖2L2(Ω)+‖∇θ‖2L2(Ω).

(4.9)
whereg belongs toL1(0, T ). Choosingη small enough, we can apply Gronwall’s lemma.

‖△wn‖L∞(0,T ;L2(Ω)) ≤ CT , ‖∇△wn‖L2((0,T )×Ω) ≤ CT . (4.10)

The previous estimate, the regularity inequalities 3.1 andLemma 3.6 prove that the se-
quencewn remains bounded inH3, 3

2 (Ω × (0, T )) for all T < T ∗. Thus, there exists a
subsequence such that, for allT < T ∗,wn

k converges weakly tow in H3, 3
2 (Ω× (0, T )). This

limit satisfies∂w
∂ν

= 0,w(·, 0) = w0, and
∫∫

QT

∂w

∂t
ψdxdt = −A

∫

QT

(w ×△m+m×△wdxdt− α△w − 2α(∇m · ∇w)m)ψdxdt

+ αA

∫

QT

(
|∇m|2wdxdt+ F a,lin

m
(w) + F d,lin

m
(w) + θ

)
ψ,

for all ψ in C1(0, T ;R3) ⊗
⋃∞
i=1 Vn. Since this space is dense inL2(Ω × (0, T )), w is a

solution.
We now prove the uniqueness. Letw andw′ be solutions to the system (4.1) thenδw =

w′ −w is solution to (4.1) affine termθ = 0 and initial conditionw0 = 0. After multiplying
this equation byδw and integrating overΩ× (0, T ), we obtain the following estimate.

[∫

Ω

|δw|2dxdt

]T

0

+ (αA− η)

∫∫

QT

|δ∇w|2dxdt

≤ C(η)

∫ T

0

(‖m‖2H1(Ω)‖∇m‖2L∞(Ω))‖δw‖2L2(Ω)dt.

The uniqueness follows from choosingη = αA/2 and Gronwall’s lemma. �
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Corollary 4.3. Let T < T ∗. Letm in H3, 3
2 (Ω × (0, T )) for all T < T ∗. Letβ+, β− be in

H
3
2
, 3
4

00, (Γ × (0, T )). Letw0 in H2(Ω) satisfy equation(1.6) with Q+, Q− = 0. Then, there
exists a uniquew solution to equations(1.5c), (4.1)and (1.5d)withQ+, Q− = 0.

PROOF: β+ andβ− satisfy the compatibility relations of Theorem A.6. Thus, there
exists an extensionv in H3, 3

2 (Ω × (0, T )), such thatv satisfy the boundary conditions ofw
in (1.5d) withQ+, Q− = 0. We then define

θ̃ = −
∂v

∂t
− Am×△w − Av ×△m+ Aα△v + Aα|m|w + 2Aα(∇m · ∇v)m

−m×Hd,a(v)− v ×Hd,a(m)− αm× (m×Hd,a(v)− αm× (v ×Hd,a(m))

− αv × (m×Hd,a(m)) + θ.

θ̃ belongs toH1, 1
2 (Ω × (0, T )), w0 − v(·, 0) satisfy the Neumann boundary conditions. By

Theorem 4.2, there existsu such thatw = u + v is the solution to our theorem. Sinceu is
unique, so isw. �

Corollary 4.4. Let 0 < T ∗. Letm in H3, 3
2 (Ω × (0, T )) for all T < T ∗. Let a be in

H3, 3
2 (Ω× (0, T )). Letβ+, β− be inH

3
2
, 3
4

00, (Γ× (0, T )). Letw0 in H2(Ω) satisfying

∂w0

∂ν
=





0 on∂Ω \ Γ× (0, T ),

DQ+(γ00m0, γ
0,′
0 m0) · (γ

0
0a, γ

0,′
0 a) + β+ onΓ+ × (0, T ),

DQ−(γ00m0, γ
0,′
0 m0) · (γ

0
0a, γ

0,′
0 a) + β− onΓ− × (0, T ).

(4.11)

Then, there exists a uniquew solution to equations(1.5c), (4.1)and

∂w

∂ν
=





0 on∂Ω \ Γ× (0, T ),

DQ+(γ00m, γ0,′0 m) · (γ00a, γ
0,′
0 a) + β+ onΓ+ × (0, T ),

DQ−(γ00m, γ0,′0 m) · (γ00a, γ
0,′
0 a) + β− onΓ− × (0, T ).

(4.12)

PROOF: DQ+(γ00m, γ0,′0 m) · (γ00a, γ
0,′
0 a) is in H

3
2
, 3
4

00, (Γ × (0, T )). The easiest way

to prove it is to construct the extension explicitly. First,we recall thatH3, 3
2 (Ω × (0, T )) is

an algebra. Givenχ in C∞
c (−∞,+∞;R+) such thatχ(z) = 0 if z > 3

4
min(L+, L−) and

χ(z) = 1 if z < min(L+,L−)
2

. We define

g =

{
DQ+(m,m ◦ σ) · (a,a ◦ σ) in Ω+,

DQ−(m,m ◦ σ) · (a,a ◦ σ) in Ω−,

whereσ is the application that maps(x, y, z, t) to (x, y,−z, t). Then, the functionv that
maps(x, y, z, t) to

∫ z
0
χ(s)g(x, y, s, t)ds is inH3, 3

2 (Ω× (0, T )) and has the required proper-
ties. We apply corollary 4.3. �

We need the following lemma to provide a first element to our converging sequence.

Lemma 4.5. Letm0 in H3, 3
2 (Ω× (0, T )) such that∂w0

∂ν
= 0 on∂Ω \ Γ. Then, there existsa

in H3, 3
2 such thata(·, 0) = w0 and ∂a

∂ν
= 0 on∂Ω \ Γ× (0, T ).

PROOF: All the compatibility relations of Theorem A.6 are satisfied. Soa exists. �
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4.3 Existence and convergence of the sequence

Theorem 1.3 is a consequence of Lemma 4.1 and the following result.

Theorem 4.6. Letm in H3, 3
2 (Ω × (0, T )). Letw0 in H2(Ω) satisfying(1.6). Then, there

exists a uniquew in H3, 3
2 (Ω× (0, T )) solution to system(4.1), (1.5c), and(1.5d).

PROOF: We definewn by induction. Letw−1 in H3, 3
2 be thea of Lemma 4.5. Then,

knowingwn, we definewn+1 as the unique solution to equations (4.1), (1.5c), and (4.2).
This is possible by corollary (4.4). We need estimates on thesize ofwn. Letv0 be inH2(Ω)
such that∂v0

∂ν
vanishes on∂Ω \ Γ, and is equal toDQ±(γ00m, γ0,′0 m) · (γ00w0, γ

0,′
0 w0) onΓ.

The existence of suchv0 is given by the same construction as the one found in the proofof
corollary 4.4. We defineu0 = w0 − v0. We first defineu as theH3, 3

2 (Ω × (0, T )) solution
to equations (1.5c), (4.1) and (1.5d) withQ± = 0, θ = 0, and initial conditionu0, but with
sameβ±. Note that ifβ± = 0 thenu = 0. This solution exists by corollary (4.3). We make
all of our estimates onvn = wn − u. vn satisfy (1.5c), (4.1) and (4.2) with same initial
condition,Q±, andθ but β± = DQ±(γ00m, γ0,′0 m) · (γ00u, γ

0,′
0 u). These are basically the

same estimates as those of the proof of Theorem 4.2. But, the nonhomogenous Neumann
boundary conditions force us to use more complicated forms of inequalities (3.1). Thus, an
upper bound on theL2 norm of△v does not yield an upper bound on theH2 norm. We
introduce our preliminary estimates.

‖vn+1‖2H2(Ω) ≤ C
(
‖vn+1‖2L2(Ω) + ‖△vn+1‖2L2(Ω) + ‖DQ±(γ00m, γ0,′0 m) · (γ00w

n, γ0,′0 w
n)‖2

H
1
2 (Γ)

)

But,

‖DQ±(m,m ◦ σ) · (wn,wn ◦ σ)‖2
H

1
2 (Γ)

≤ P
(
‖m‖H2(Ω)

)
‖vn + u‖2H1(Ω)

Butm is in C([0, T ∗);H2(Ω)). Thus,

sup
1≤n≤N

{
‖vn‖2H2(Ω)

}
≤ C

(
sup

1≤n≤N

{
‖vn‖2H1(Ω)

}

+ sup
1≤n≤N

{
‖△vn‖2L2(Ω)

}
+ ‖u‖2H1(Ω) + ‖v0‖2H2(Ω)

) (4.13a)

We do the same estimate for theH3 norm.

‖vn+1‖2H3(Ω) ≤ C
(
‖vn+1‖2L2(Ω) + ‖∇△vn+1‖2L2(Ω)

+ ‖DQ±(γ00m, γ0,′0 m) · (γ00w
n, γ0,′0 w

n)‖2
H

3
2 (Γ)

)

But

‖DQ±(m,m ◦ σ) · (wn,wn ◦ σ)‖2
H

3
2 (Γ)

≤ P
(
‖m‖H2(Ω)

)
‖vn + u‖2H2(Ω)

Thus,

sup
1≤n≤N

{
‖vn‖2H3(Ω)

}
≤ C

(
sup

1≤n≤N

{
‖vn‖2H1(Ω)

}
+ sup

1≤n≤N

{
‖∇△vn‖2L2(Ω)

}

+ ‖u‖2H2(Ω) + ‖v0‖2H3(Ω)

) (4.13b)

With inequalities (4.13), we can make useful estimates. We make three estimates on the norm
of vn for n ≥ 1.
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1. We multiply equation (4.1) byvn and integrate overΩ.

2. We take the gradient of equation (4.1), multiply it by∇△vn and integrate overΩ.

3. We take the gradient of equation (4.1), multiply it by∇vn and integrate overΩ.

The first two estimates have mostly been made in the proof of Theorem 4.2, except for the
nonzero Neumann boundary condition. The third is a simplification of the second estimate.
We do not detail the volume terms as it was done in the proof of Theorem 4.2. In these
estimatesη represents a small positive real.

First estimate Using trace theorems, we obtain that

1

2

d‖vn‖2
L2(Ω)

dt
+ αA‖∇vn‖2L2(Ω) ≤ P0(‖m‖H2(Ω))‖v

n‖H2(Ω) + αA

∣∣∣∣
∫

Γ

∂vn

∂ν
· vn
∣∣∣∣ dσ(x)

≤ P1(‖v
n‖H2(Ω)),

(4.14)

whereP0, P1 are given polynomial.

Second estimateWe obtain

1

2

d‖△vn‖2
L2(Ω)

dt
+ αA‖∇△vn‖2L2(Ω) ≤ C

(
1 +

1

η

)
P1(‖m‖H2(Ω))‖D

3m‖2L2(Ω)‖v
n‖2H2(Ω)

+ η‖D3vn‖2L2(Ω) + αA

∣∣∣∣
∫

Γ±

∂2vn

∂ν∂t
· △vn

∣∣∣∣ dσ(x).
(4.15)

After integrating over(0, T ), the boundary term has a meaning even before using the
boundary condition. Ifv belongs toH3, 3

2 (Ω × (0, T )), then ∂2v
∂t∂ν

belongs to the space
H− 1

4 (0, T ;L2(Ω)) andγ00△v belongs toH
1
4 (0, T ;L2(Ω)). The evaluation of the inte-

gral onΓ+ for n ≥ 1 gives

∫

Γ±

∣∣∣∣
∂2vn

∂ν∂t
· △vn

∣∣∣∣ dσ(x) ≤
1

2
‖△vn‖2L2(Γ+)

+
1

2

∥∥∥∥∥
∂
(
DQ+(γ00m, γ0,′0 m) · (γ00w

n−1, γ0,′0 w
n−1)

)

∂t

∥∥∥∥∥

2

L2(Γ+)

,

‖△vn‖2L2(Γ+) ≤ C‖△vn‖
1
2

L2(Ω)(‖△v
n‖L2(Ω) + ‖∇△vn‖L2(Ω))

3
2 .

And,

∥∥∥∥∥
∂
(
DQ+(γ00m, γ0,′0 m) · (γ00w

n−1, γ0,′0 w
n−1)

)

∂t

∥∥∥∥∥
L2(Γ+)

≤ P3(‖m‖L∞(Ω))

∥∥∥∥
∂m

∂t

∥∥∥∥
H1(Ω)

‖vn−1‖H2(Ω)

+ P4(‖m‖L∞(Ω))

∥∥∥∥
∂(vn−1 + u)

∂t

∥∥∥∥
3
4

H1(Ω)

∥∥∥∥
∂(vn−1 + u)

∂t

∥∥∥∥
1
4

L2(Ω)

.
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By (4.1) if n ≥ 1, there existsC depending on theH3, 3
2 norm ofm such that

∥∥∥∥
∂vn−1

∂t

∥∥∥∥
H1(Ω)

≤ C‖vn−1‖H3(Ω),

∥∥∥∥
∂vn−1

∂t

∥∥∥∥
L2(Ω)

≤ C‖vn−1‖H2(Ω).

Thus,
∣∣∣∣
∫

Γ±

∂2vn

∂ν∂t
· △vn

∣∣∣∣ dσ(x) ≤ C(‖m‖L∞)

∥∥∥∥
∂m

∂t

∥∥∥∥
2

H1(Ω)

(
1 +

1

η

)
(‖vn‖2H2(Ω) + ‖vn−1‖2H2(Ω))

+ η(‖vn‖2H3(Ω) + ‖vn−1‖2H3(Ω)) +

∥∥∥∥
∂u

∂t

∥∥∥∥
2

H1(Ω)

.

(4.16)

Third estimate This is a simplification of the previous estimate

1

2

d‖∇vn‖2
L2(Ω)

dt
+ αA‖△vn‖2L2(Ω) ≤

(
1 +

1

η

)
P6(‖m‖H2(Ω))‖v

n‖2H2(Ω) + η‖D3vn‖2L2(Ω)

+ αA

∣∣∣∣
∫

Γ±

∂vn

∂ν
· △vn

∣∣∣∣ dσ(x).
(4.17)

But,
∣∣∣∣
∫

Γ+

∂vn

∂ν
· △vn

∣∣∣∣ dσ(x) ≤
1

2
‖△vn‖2L2(Γ+) +

1

2

∥∥∥∥
∂vn

∂ν

∥∥∥∥
2

L2(Γ+)

≤ C‖△vn‖
1
2

L2(Ω)‖∇△vn‖
3
2

L2(Ω) + P3(‖m‖H2(Ω))‖v
n−1 + u‖2L2(Ω)

≤
1

4η
‖△vn‖2L2(Ω) + P4(‖m‖H2(Ω))‖v

n−1 + u‖2L2(Ω)

+ η‖∇△vn‖2L2(Ω),

where thePi are polynomials andC a constant only depending on theL∞(0, T ;H2(Ω))
norm ofm which is bounded for allT < T ∗.

We chooseη small enough, combine all estimates, and obtain for alln ≥ 1

‖vn‖2H1(Ω)+‖△vn‖2L2(Ω)+

∫ t

0

‖∇△vn‖2L2(Ω)dt ≤ η

∫ t

0

(
‖D3vn‖2L2(Ω) + ‖D3vn−1‖2L2(Ω)

)
dt

(
1 +

1

η

)∫ t

0

Ψ(t)(‖vn‖2H2(Ω) + ‖vn−1‖2H2(Ω))dt+ C

(
‖u‖2H1(Ω) +

∥∥∥∥
∂u

∂t

∥∥∥∥
2

H1(Ω)

)
. (4.18)

We take the upper bound for1 ≥ n ≥ N , use inequalities (4.13), and obtain

sup
1≤n≤N

{‖vn‖2H1(Ω) + ‖△vn‖2L2(Ω)}+ sup
1≤n≤N

{∫ T

0

‖∇△vn‖2L2(Ω)dt

}

≤

∫ T

0

C(η)( sup
1≤n≤N

(‖vn‖H1(Ω))
2 + ‖v0‖2H1(Ω) + ‖v−1‖2H1(Ω))dt+

∫ T

0

P η
5 (‖v

0‖H2(Ω))dt

+ η

∫ T

0

‖∇△v0‖2L2(Ω)dt+ η

∫ T

0

‖∇△v−1‖2L2(Ω)dt+ C

(
‖u‖2H2(Ω) +

∥∥∥∥
∂u

∂t

∥∥∥∥
2

H1(Ω)

)
.

(4.19)
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Reusing inequalities (4.13), we obtain by Gronwall’s lemma that theL∞(0, T ;L2(Ω)) of vn,
△vn, and∇vn are bounded by a constantC(T ) independent ofn. By inequalities (4.13),
there exists a constantCT such that, for allT < T ∗,

‖v‖L∞(0,T ;H2(Ω)) ≤ CT , ‖D3v‖L2(Ω×(0,T )) ≤ CT . (4.20)

Reusing equation (4.1) and Lemma 3.6, we obtain thatvn is bounded inH3, 3
2 (Ω×(0, T )). We

can extract a subsequence that converge weakly inH3, 3
2 . We denote byv this limit. Suppose

that1
(
vnk andvnk+1 both weakly converge inH2,1(Ω× (0, T ))

)
=⇒ lim

k→∞
vnk = lim

k→∞
vnk+1

We extract a further subsequence such thatvnk+1 converges. According to our supposition,
the limit isv for both subsequences. OnΓ+,

∂vnk+1

∂ν
= DQ+(γ00m, γ0,′0 m) · (γ00v

nk + u, γ0,′0 v
nk + u). (4.21)

We take the limit and obtain

∂v

∂ν
= DQ+(γ00m, γ0,′0 m) · (γ00v + u, γ0,′0 v + u). (4.22)

Thus,w = v + u is a solution. The corresponding result holds onΓ−. We now prove
our previous assumption. For this, we defineδnv = vn+1 − vn, then we can obtain the same
estimate onδnv as obtained in equation (4.18) onv, but withu = 0 and null initial condition.
Instead of taking the upper bound, we sum these estimates. The initial conditions of this sum
is null. By Gronwall’s inequality, obtain that, for allT < T ∗, there existsCT > 0 such that,
for all n ≥ 1,

n∑

k=1

‖δnv‖2L∞(0,T ;H2(Ω)) ≤ CT ,
n∑

k=1

‖δnv‖2L2(0,T ;H3(Ω)) ≤ CT .

Thus, our assertion is proved. �

Proving Theorem 1.4 is equivalent to proving

Theorem 4.7. Letw0 in H1(Ω), θ in L2(Ω × (0, T )), andβ± in H
1
2
, 1
4 (Γ± × (0, T )). There

exists a uniquew solution to system(4.1), (1.5c), and(1.5d).

PROOF: We begin by proving the uniqueness. Letw andw′ be two solutions inH2,1(Ω×
(0, T )). Then,δw = w − w′ satisfy system (4.1), (1.5c), and (1.5d) withβ± = 0, θ = 0

andw0 = 0. We notice thatDQ±(γ00m, γ0,′0 m
′)(γ00δw, γ

0,′
0 δw) belongs toH

3
2
, 3
4

00, (Γ± ×

(0, T )). Let w′′ be theH3, 3
2 (Ω × (0, T )) solution to (4.1), (1.5c), and (1.5d) withβ± =

DQ±(γ00m, γ0,′0 m
′)(γ00δw, γ

0,′
0 δw), with theQ± of (1.5d) taken null, andθ = 0. w′′ exists

by Theorem 4.2. Thus,δw−w′′ satisfy (4.1), (1.5c),and (1.5d) withβ± = 0, theQ± of (1.5d)
taken null, andθ = 0. Thus, by the uniqueness part of Theorem 2.24 of [8],δw = w′′. δw
belongs toH3, 3

2 (Ω× (0, T )) and is null by the uniqueness part of corollary 4.3.
We now prove the existence. SinceDQ±(γ00m, γ0,′0 m)·(γ00w0, γ

0,′
0 w0) belongs toH

3
2
, 3
2 (B×

(−L−, L+) \ {0}), there exists, by Lemma 2.7 in part I,v0 in H2(Ω) such that∂v0

∂ν
is null on

∂Ω \ Γ± and is equal toDQ±(γ00m, γ0,′0 m) · (γ00w0, γ
0,′
0 w0) onΓ±. Besides, there exists a

1We will prove this assertion later
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constantC independent ofw0 such thatv0 can be chosen so that‖v0‖H2(Ω) ≤ C‖w0‖H1(Ω).
We defineu0 asw0−v0. There existsu in H2,1(Ω× (0, T )) that satisfy system (4.1), (1.5c),
and (1.5d) with same parameters exceptQ± = 0 and initial conditionu0. This was proved
by the author in the first part [8], Theorem 2.24. By Theorem (4.6), there existsv in
H3, 3

2 (Ω× (0, T )) with initial conditionv0, sameQ±, β± = dQ±(γ00m, γ0,′0 m) · (γ00u, γ
0,′
0 u)

belonging toH
3
2
, 3
4

00, andθ = 0. w = v + u is the solution. �

5 Convergence

We recall the reader about our problem stated in section 2. Wehave a continuum of solutions
mε to the Landau-Lifshitz system (1.3) on domainΩε with initial conditionsmε

0 satisfying
conditions (2.1). We know by [9] that, for allT < T ∗, theH3, 3

2 (Ωε × (0, T )) norm ofmε
0 is

bounded, uniformly inε. The aim of this section is to prove the convergence of the expansion
m(0) + εm(1) tomε. We do that in two steps.

1. We derive an upper bound of theH2,1(Ωε × (0, T )) norm of m
ε−m

(0)

ε
.

2. We prove that the weak limit inH2,1(Ω) of m
ε−m

(0)

ε
ism(1).

We denote by∆Q± the polynomial in four variables such thatQ±(a, b) − Q±(c, d) =
∆Q±(a, b, c, d) · (a − c, b − d). Givenm, m′, u0, β+ andβ−, andθ, we consider the
following auxiliary system inu.

∂u

∂t
− αA△u = −Au×△m− Am′ ×△u+ αA|∇m|2u+ αA((∇m+∇m′) · ∇u)m′

− u×Hd,a(m)−m′ ×Hd,a(u)− αm′ × (m′ ×Hd,a(u))

− αm′ × (u×Hd,a(m))− αu× (m×Hd,a(m)) + θ,
(5.1a)

u(·, ·, 0) = u0, (5.1b)

(5.1c)

and the initial condition

∂u

∂ν
=





∆Q+(γ00m, γ0,′0 m, γ00m
′, γ0,′0 m)(γ00u, γ

0,′
0 u) + β+ onB × {+ε} × (0, T ∗),

∆Q−(γ00m, γ0,′0 m, γ00m
′, γ0,′0 m)(γ00u, γ

0,′
0 u) + β− onB × {−ε} × (0, T ∗),

0 on∂Ωε \ (B × {±ε} × (0, T ∗)).
(5.1d)

First, we state a well-posedness result.

Theorem 5.1. Letm, m′ be inH3, 3
2 (Ω × (0, T )), let β+, β− be inH

3
2
, 3
4

00, (Γ × (0, T )), θ in

H1, 1
2 (Ω× (0, T )), andu0 be inH2(Ω) satisfying

∂u0

∂ν
=





∆Q+(γ00m, γ0,′0 m, γ00m
′, γ0,′0 m)(γ00u0, γ

0,′
0 u0) + β+ onB × {+ε},

∆Q−(γ00m, γ0,′0 m, γ00m
′, γ0,′0 m)(γ00u0, γ

0,′
0 u0) + β− onB × {−ε},

0 on∂Ωε \ (B × {±ε}).
(5.2)

Then, there exists a unique solutionu in H3, 3
2 (Ω × (0, T )). Furthermore, there exists a

constantC depending on theH3, 3
2 (Ω× (0, T )) norms ofm,m′ such that

‖u‖
H

3, 32 (Ω×(0,T ))
≤ C

(
‖β±‖

H
3
2 , 34
00, (Γ×(0,T ))

+ ‖θ‖
H

1, 12 (Ω×(0,T ))
+ ‖u0‖H2(Ω)

)
.
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Besides, suppose thatθ only belongs toL2(Ω × (0, T )), β+, β− only belongs toH
1
2
, 1
4 (Γ ×

(0, T )), andu0 only belongs toH2(Ω). Then, there exists a unique solutionu in H2,1(Ω ×

(0, T )). The problem is also well-posed, there exists a constantC depending on theH3, 3
2 (Ω×

(0, T )) norms ofm,m′ such that

‖u‖H2,1(Ω×(0,T )) ≤ C
(
‖β±‖

H
1
2 , 14 (Γ×(0,T ))

+ ‖θ‖L2(Ω×(0,T )) + ‖u0‖H1(Ω)

)
.

PROOF: We just adapt the proofs of Theorems 4.2, 4.6, and 4.7. �

The theorem holds for the domainsΩε, and the constantC(m,m′) while depending on the
domain can be chosen independently ofε for sufficiently smallε.

Proposition 5.2. TheH2,1(Ωε× (0, T )) norm ofm
ε−m

(0)

ε
remains bounded for small enough

ε.

PROOF: m
ε−m

(0)

ε
is solution to system (5.1) withm = m(0)

|Ωε
, m′ = mε, the initial

conditionm
ε
0−m

(0)
0

ε
, the boundary conditions

β± =
1

ε

(
γ1εm

(0) − γ10m
(0)
)

+∆Q±(γ00m
(0), γ0,′0 m

(0), γ0εm
(0), γ0,′ε m

(0)) ·
(γ0εm

(0) − γ0,′ε m
(0))

ε
,

onΓ± × (0, T ) and the affine term

θ =
1

ε
m(0) ×Hd,a(χB×(−ε,+ε)m

(0)) +
1

ε
αm(0) × (m(0) ×Hd,a(χB×(−ε,+ε)m

(0))).

TheH
1
2
, 1
4 (Γ±

ε × (0, T )) norm ofβ±, theL2(Ωε × (0, T )) norm ofθ, and theH1(Ωε) norm of
the initial condition areO(ε). This latter fact has the same proof as Proposition 3.2 in part
I. TheH1(Ωε × (0, T )) norm of the initial condition isO(ε) by hypothesis (2.1). We apply
Theorem 5.1. �

We now extendmε by reflections onΩ,

m̃ε =





mε onΩε × (0, T ),

3mε(·, ·, 2ε− ·, ·)− 2mε(·, ·, 3ε− 2·, ·) on (B × (−ε, 0))× (0, T ),

3mε(·, ·,−2ε− ·, ·)− 2mε(·, ·,−3ε− 2·, ·) on (B × (0,+ε))× (0, T ).

Then, by the same kind of considerations as those of Lemma 3.4[8], theH2,1(Ω × (0, T ))
norm of 1

ε
(m̃ε −m(0)) is bounded independently ofε asε tends to0.

Theorem 5.3. The quantitym̃
ε,(0))−m

(0)

ε
converges weakly tom(1), defined in section 2, in

H2,1(Ω× (0, T )).

PROOF: We extract a decreasing subsequenceεn tending to0 such thatmεn tends
weakly inH2,1(Ω) to m(1). We only need to prove thatm(1) is m(1). Sincem(1) is the
unique solution to system (1.5), it is sufficient to prove that m(1) is solution to (1.5) with
same parameters. As in the proof of 3.5 in part I,m(1) satisfy equation (4.1), withθ =

m(0)×Hd(γ
0
0m

(0)dσ(Γ))+m(0)×(m(0)×Hd(γ
0
0m

(0)dσ(Γ))). Besides,m(1)(·, 0) =m
(1)
0 ,
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see (2.1) for the definition ofm(1)
0 , m(1) obviously also verify the homogenous Neumann

boundary condition on∂Ω \ Γ± × (0, T ∗). OnΓ+, we have

∫ T

0

∫

Γ

∣∣∣∣
∂(m̃ε −m(0))

∂z
(x, ε, t)−

∂(m̃ε −m(0))

∂z
(x, 0+, t)

∣∣∣∣
2

dσ(x)dt

≤

∫∫ ∣∣∣∣
∫ ε

0

∂2(m̃ε −m(0))

∂z2
(x, z, t)dz

∣∣∣∣
2

dσ(x)dt

≤ ε

∫∫ ∫ ε

0

∣∣∣∣
∂2(m̃ε −m(0))

∂z2
(x, z, t)

∣∣∣∣
2

dzdσ(x)dt ≤ ε3
∥∥∥∥
m̃ε −m(0)

ε

∥∥∥∥
2

H0,2,0

.

Thus, onΓ+, we have

∂m(1)

∂z
(·, 0+, ·) = lim

εk→0

1

εk

∂(m̃εk −m(0))

∂z
(·, εk, ·),

= − lim
εk→0

1

εk

(
Q+(γ00m̃

εk , γ0,′0 m̃
εk)(·, εk, ·)−Q+(γ00m

(0), γ0,′0 m
(0))(·, εk, ·)

)

− lim
εk→0

1

εk

(
Q+(γ00m

(0), γ0,′0 m
(0))(·, εk, ·)−Q+(γ00m

(0), γ0,′0 m
(0))(·, 0+, ·)

)
−
∂2m(0)

∂z2

= −DQ+(γ00m
(0), γ0,′0 m

(0))

(
m(1) +

∂m(0)

∂z
,m(1) +

∂m(0)

∂z

)
−
∂2m(0)

∂z2
.

Hence,m(1) satisfy (2.2) onΓ+ and by symmetry also onΓ−. Thus,m(1) is them(1) solu-
tion of system (1.5) with theβ± of relations (2.3). Sincem(1) is unique, the whole sequence
converges. �

6 Simulations: schemes and numerical results

We use the same schemes as those found in section 4. of [8]. Thecomputation of the
discretized demagnetization field operator is done by the method found in [3]. The only
differences are found in the computation of the discretizedexchange operator asm(0) and
m(1) satisfy the nonhomogenous Neumann boundary conditions arising from super-exchange
and surface-anisotropy. The discretization of the exchange operator for order0 gives

H0
e,h(m)i =

A

h2

∑

j∈V (i)

(mi −mj) +
A

h

∑

j∈V C(i)

(Q(mi,mj)) , (6.1)

whereV (i) is the set of all the neighbors of celli in the mesh andV C(i) is the set of all
neighbors of celli across the split. We also define the discretization of the theexchange
operator of order1.

H1
e,h(m

0,m1)i =
A

h2

∑

j∈V (i)

(
m1

i −m
1
j

)

+ δ(i)
A

h2

(
m0

N(i) −m
0
i

h
+Q(m0

i ,m
0
N ′(i)

)

+
A

h

∑

j∈V C(i)

DQ(m0
i ,m

0
j) · (m

1
i −Q(mi,mj),m

1
j −Q(mj,mi)),

(6.2)
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whereδ(i) is 1 if cell i is adjacent to the interfaceΓ, and0 otherwise. In the former case, cell
N(i) is the adjacent cell to celli such that celli is between cellN(i) andΓ. CellN ′(i) being
the cell such that celli is between cellsN(i) andN ′(i). This discretization requires at least
two cells in thez direction on each side of the split.

Our aim in these simulations is to compute equilibrium states. We stop the simulation
when the derivative of the discrete energy crosses a threshold.

6.0.1 Physical parameters

We use the same physical parametersA,K as in section 4 of [8]. We consider a thin plate
with a mesh256×128×1, hence32768 grid points, with a step size of2.3nm. Their magnetic
parameters are

Ms = 1.4 ∗ 106, A = 10−11/µ0, K = 0.

We also takeKs = 0 — no surface anisotropy — andJ2 = 0. In the geometry considered in

Initial condition Transversal split

Figure 2: Possible position of the spacer

our computations, the split is transversal and crosses the domain in the middle . The initial
condition is given by a magnetization parallel to the longest side of the thin plate. Those are
represented in Figure 2. In the numerical results, we preferto representhm(1) instead of
m(1). We present the results of the simulations corresponding to

• a geometry with no split, as a reference.

• the transversal split drawn in Figure 2 with the following values ofJ1.

1.0× 10−5, 1.0× 10−4, 2.0× 10−4, 5.0× 10−4, 8.0× 10−4, 1.0× 10−3.

6.1 Analysis of the results

We analyze the equilibrium states obtained by our simulation. They represent the equilibrium
states and are presented in figures 3, 4, 5, 6, 7, 8, 9, and 10. When we raise the value ofJ1,
the term of order0 of the equilibrium point magnetization becomes nearer to the equilibrium
point of the magnetization with no split. It confirms that a strong super-exchange interaction
favors the alignment of the magnetization across the split.When the super-exchange is weak,
the reversal of the magnetization across the split is brutal, which was expected. The quanti-
ties of order1 show two unfinished vortices stretched across the transversal split, those two
vortices lower in intensity as the super-exchange become stronger.
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Projection onOx Projection onOy Projection onOz

Final state form(0)

Final state form(1)

Figure 3: Transversal split,J1 = 0

Projection onOx Projection onOy Projection onOz

Final state form(0)

Final state form(1)

Figure 4: Transversal split,J1 = 1.0× 10
−4

Conclusion

We have established here non trivial equivalent boundary conditions for a simpler geometry
when surface interactions such as surface anisotropy and super-exchange are present, gener-
alizing the results in part I [8]. We can now compute the effect of a split in a ferromagnetic
material with a more accurate physical model involving interactions arising near the split.
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Projection onOx Projection onOy Projection onOz

Final state form(0)

Final state form(1)

Figure 5: Transversal split,J1 = 1.0× 10
−3

Projection onOx Projection onOy Projection onOz

Final state form(0)

Final state form(1)

Figure 6: Transversal split,J1 = 2.0× 10
−3

Future research will be concerned with non-void weak magnetic material filling the split.
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Projection onOx Projection onOy Projection onOz

Final state form(0)

Final state form(1)

Figure 7: Transversal split,J1 = 5.0× 10
−3

Projection onOx Projection onOy Projection onOz

Final state form(0)

Final state form(1)

Figure 8: Transversal split,J1 = 8.0× 10
−3
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Projection onOx Projection onOy Projection onOz

Final state form(0)

Final state form(1)

Figure 9: Transversal split,J1 = 1.0× 10
−2

Final state with no split

Figure 10: No Split
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APPENDIX

A The Hr,s,t spaces

J.L. Lions et E. Magenes have in [5] introduce theHr,s spaces defined at (0.1) and proved
traces theorems. We refer the lector to this book for the details. We adapt this work to study
the Sobolev spaces on twice cylindrical domains, once in space and once in time.

A.1 Definition and traces theorems

LetO = B × (0,+L) andQT = O × (0, T ). Forr, s, t > 0, we define the spaces

Hr,s,t(QT ) = Ht(0, T ; L2(O)) ∩ L2(0, T ; Hs(0, L; L2(B))) ∩ L2(0, T ; L2(0, L; Hr(B))).

As in [5], we also define the spaces

Hr,s,t
00, , (QT ) = Ht(0, T ; L2(O)) ∩ L2(0, T ; Hs(0, L; L2(B))) ∩ L2(0, T ; L2(0, L; Hr

00(B))),

Hr,s,t
,00, (QT ) = Ht(0, T ; L2(O)) ∩ L2(0, T ; Hs

00(0, L; L
2(B))) ∩ L2(0, T ; L2(0, L; Hr(B))),

Hr,s,t
, ,00(QT ) = Ht

00(0, T ; L
2(O)) ∩ L2(0, T ; Hs(0, L; L2(B))) ∩ L2(0, T ; L2(0, L; Hr(B))),

and,

Hr,s,t
00,00, (QT ) = Hr,s,t

00, , ∩ Hr,s,t
,00, , Hr,s,t

00, ,00(QT ) = Hr,s,t
00, , ∩ Hr,s,t

, ,00,

Hr,s,t
,00,00(QT ) = Hr,s,t

,00, ∩ Hr,s,t
, ,00.

Lemma A.1 (Interpolation of theHr,s,t spaces).

[Hr1,s1,t1 ,Hr2,s2,t2 ]θ = H(1−θ)r1+θr2,(1−θ)s1+θs2,(1−θ)t1+θt2 , (A.1)

[Hr1,s1
00, ,H

r2,s2
00, ]θ = H

(1−θ)r1+θr2,(1−θ)s1+θs2
00, , (A.2)

[Hr1,s1
00,00,H

r2,s2
00,00]θ = H

(1−θ)r1+θr2,(1−θ)s1+θs2
00,00 . (A.3)

Theorem A.2 (Existence of traces). If v belongs toHr,s,t(QT ) then

1. If r > 1
2
, and for all0 ≤ j,

∂jv

∂νj
∈ Hµj ,νj ,λj(∂B × (0, L)× (0, T )),

with µj
r
=

νj
s
=

λj
t
=

r−j− 1
2

r
.

2. If s > 1
2
, then for all0 ≤ k < s− 1

2
,

∂kv

∂zk
∈ Hpk,qk(B × (0, T )),

with pk
r
= qk

t
=

s−k− 1
2

s
.

3. If s > 1
2
, then for all0 ≤ l < t− 1

2
,

∂lv

∂tl
∈ Hαl,βl(B × (0, L)),

with αl

r
= βl

s
=

t−l− 1
2

t
.
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Furthermore, the trace maps are linear continuous.

PROOF: We adapt the proof of Lions-Magenes [5]. The theorem is a direct consequence
of theorem 4.2 in Lions-Magenes [6]. To apply this theorem, we need interpolation results
provided in proposition 2.1 in [5] and Lemma A.1. �

A.2 Conditions of compatibility

Proposition A.3 (First compatibility conditions). Let

fl =
∂lv

∂tl
∈ Hαl,βl(B × (0, L)),

gk =
∂kv

∂zk
∈ Hpk,qk(B × (0, T )),

hj =
∂jv

∂νj
∈ Hµj ,νj ,λj(∂B × (0, L)× (0, T )).

Then

1. If 1− 1
2
(1
r
+ 1

s
) > 0, then for allj, k ≥ 0 such thatj

r
+ k

s
< 1− 1

2

(
1
r
+ 1

s

)
,

∂jgk
∂νj

=
∂khj
∂zk

2. If 1− 1
2
(1
r
+ 1

t
) > 0, then for allj, l ≥ 0 such thatj

r
+ l

t
< 1− 1

2

(
1
r
+ 1

t

)
,

∂jfl
∂νj

=
∂lhj
∂tl

.

3. If 1− 1
2
(1
s
+ 1

t
) > 0, then for allk, l ≥ 0 verifying k

s
+ l

t
< 1− 1

2

(
1
s
+ 1

t

)
,

∂jgk
∂tl

=
∂kfl
∂zk

.

PROOF: D(QT ) is dense inHr,s,t(QT ) and the trace maps are continuous. �

Proposition A.4 (Second compatibility conditions). With the same notations as the one used
for the first conditions. We suppose thatB is the semi-spaceB = Rn−1 × R+ and that
L, T = +∞.Then

1. For all j, k such thatj
r
+ k

s
= 1− 1

2

(
1
r
+ 1

s

)
,

∫ +∞

σ=0

∫

Rn−1

∫ +∞

0

∣∣∣∣
∂khj
∂zk

(x′, σr, t)−
∂jgk
∂νj

(x′, σs, t)

∣∣∣∣
2

dtdx′dσ

σ
< +∞.

2. For all j, l such thatj
r
+ l

t
= 1− 1

2

(
1
r
+ 1

t

)
,

∫ +∞

0

∫

Rn−1

∫ +∞

0

∣∣∣∣
∂lhj
∂tl

(x′, z, σr)−
∂jfl
∂νj

(x′, σt, z)

∣∣∣∣
2

dzdx′dσ

σ
< +∞.
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3. For all k, l such thatk
s
+ l

t
= 1− 1

2

(
1
s
+ 1

t

)
,

∫ +∞

0

∫

Rn−1

∫ +∞

0

∣∣∣∣
∂kfl
∂zk

(x′, xn, σ
t)−

∂lgk
∂tl

(x′, xn, σ
s, x′)

∣∣∣∣
2

dxndx
′dσ

σ
< +∞.

PROOF: It is a direct consequence of theorem 2.2 of Lions-Magenes [5]. We do it for

one inequality. We differentiateu and obtain that∂
k

∂zk

(
∂lu
∂tl

)
belongs toHµ,ν,λ(B×R+

z ×R+
t ),

with µ

r
= ν

s
= λ

t
= 1−

(
k
s
+ l

t

)
. Since,1

ν
+ 1

λ
= 2, we can conclude. �

Definition A.5. We define

F =
∏

j<r− 1
2

Hµj ,νj ,λj(∂B×(0, L)×(0, T ))×
∏

k<s− 1
2

Hpk,qk(∂B×(0, T ))×
∏

l<t− 1
2

Hαl,βl(∂B×(0, L)).

Let F0 be the subspace ofF comprising functions(hj, gk, fl) satisfying both compatibility
conditions stated in Propositions A.3 and A.4.

LetΣ = ∂B × (0, L)× (0, T ). We state the principal extension theorem.

Theorem A.6 (Surjectivity of the trace map). The trace map

γ : Hr,s,t(QT ) → F0

v 7→ (hj, gk, fl)

is onto and has a continuous right inverse.

PROOF: We need interpolations equalities (A.2) and (A.3). We onlyneed to prove the
surjectivity. Let(fl, gk, hj) be inF0. Then, there existsϕ in Hr,s,t(QT ) such that∂

jϕ

∂νj = hj
for all 0 ≤ j < r − 1

2
. And (fl − ∂ltϕ, gk − ∂kzϕ, 0) belongs toF0. Thus,gk − ∂kzϕ belongs

to Hpk,qk
00, (R+

t × B). Using theorem 4.2 of Lions-Magenes [6], there existsψ in Hr,s,t(QT )

such that∂
jψ

∂νj = 0 for all 0 ≤ j < r − 1
2
, and ∂kψ

∂zk
= gk − ∂kzϕ for all 0 ≤ k < s − 1

2
.

And (fl − ∂ltϕ− ∂tψ, 0, 0) belongs toF0. Thus,fl − ∂ltϕ− ∂ltψ belongs toHαl,βl
00,00(R

+
z ×B).

By Theorem 4.2 of Lions-Magenes [6], there existsΦ in Hr,s,t(QT ) such that∂
jψ

∂νj = 0 for all

0 ≤ j < r− 1
2
, ∂

kψ

∂zk
= 0 for all 0 ≤ k < s− 1

2
, and∂

lψ

∂tk
= hl−∂

l
tϕ−∂

l
tψ for all 0 ≤ l < t− 1

2
.

u = ϕ+ψ+Φ belongs toHr,s,t(QT ) and has traces(fj, gk, hl). The construction also provide
the continuous right inverse. �

We know for the spacesHr,s and these spacesHr,s,t the compatibility relations. However,
these relations ensure the surjectivity when all traces arepresents. Sometimes, we only wish
to extend a subset of all traces. If the direct compatibilityrelations are verified, can we
always complete the mandatory traces by dummy traces such that all compatibility relations
are satisfied? We prove in two particular cases that no new indirect compatibility relations
are necessary. From now, we denote byx a vector ofRn with decompositionx = (x′, xn)
wherex′ belongs toRn−1 andxn is scalar.z is the additional variable of space.t is the time
variable.

Theorem A.7. Let B be a bounded open set with a smooth boundary, andL and T two
positive real. Then, the maps

H2,2(B × (0, L)) → H
1
2 (B × {0})× H

1
2 (B × {L})× H

1
2 (∂B × (0, L)),

u 7→

(
∂u

∂ν
(x ∈ ∂B),

∂u

∂z
(·, ·, 0),−

∂u

∂z
(·, ·, L)

)
.

(A.4)
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and

H2,2,1(B × (0, L)× (0, T )) → H
1
2
, 1
2
, 3
4 (∂B × (0, L)× (0, T ))× H

1
2
, 3
4 (B × {0} × (0, T ))

× H
1
2
, 3
4 (B × {L} × (0, T )),

u 7→

(
∂u

∂ν
(x ∈ ∂B),

∂u

∂z
(·, ·, 0, ·),

∂u

∂z
(·, ·, L, ·)

)
.

(A.5)

are onto and have a continuous right inverse.

PROOF: By abstract consideration on Hilbert spaces, we only need toprove the surjec-
tivity. By local map and partition of the unity, we reduce bothproblems to the caseL = +∞,
T = +∞, andB = Rn−1×R+

xn
. Letf1, g1 be inH

1
2 (Rn−1

x
′ ×R+

z )H
1
2 (Rn−1

x
′ ×R+

xn
). To apply

the surjectivity theorems of Lions-Magenes for map (A.4), we must constructf0, g0 such that
(g1, f1, g0, f0) satisfy all compatibility relations. We first notice that there is no direct com-
patibility condition betweenf1 andg1. Then, we constructg0 andf0 with Theorem A.8. We
use the same method to prove the surjectivity of map (A.5). Toapply Theorem A.6, we use
Theorem A.9 to constructg0 and, h0 satisfying the compatibility condition. Constructingf0
is easy and anyway not necessary because of the way we proved Theorem A.6. �

A.3 Completion of traces for the spaceH2,2(Rn−1 × R+)

Theorem A.8. There exists a linear continuous mapY from L2(0,+∞; L2(Rn−1)) to the
spaceH1,1(Rn−1 × (0,+∞)) and fromH

1
2
, 1
2 (Rn−1 × (0,+∞)) to the spaceH

3
2
, 3
2 (Rn−1 ×

(0,+∞)). Moreover, there exists a constantC such thatY(f)(·, 0) = 0, and

∫ +∞

0

‖∂(Yf)
∂z

− f‖2L2(Rn−1)

z
dz ≤ C‖f‖

L2(0,+∞;H
1
2 (Rn−1))

.

PROOF: Hereû is the partial Fourier transform ofu in the first two variables. We de-

fineŶ(f)(ξ, z) = χ(z
√

1 + |ξ|2)
∫ z
0
f̂(ξ, z)dz, whereχ is a smooth real function satisfying,

0 ≤ χ ≤ 1, with Supp(χ) ⊂ [0, 2] andχ = 1 in [0, 1]. Y is the application we were looking
for. Verifying it is tedious but straightforward. �

Theorem A.9. There exists a linear continuous mapA from H
1
2
, 1
2
, 1
4 (Rn−1

x
× R+

z × Rt) to
H

3
2
, 3
2
, 3
4 (Rn−1

x
× R+

z × Rt) and a constantC > 0 such thatA(f)(·, 0, ·) = 0, and

∫

z=0

∫

t

∫

x

∣∣∣∣
∂A(f)

∂z
− f

∣∣∣∣
2

dxdt
dz

z
≤ C‖f‖2

L2(R+
z ×Rt;H

1
2 (Rn−1

x ))
, .

PROOF: We first define theB operator with help from Theorem A.8. For allf in
H

1
2
, 1
2
, 1
4 (Rn−1

x
×R+

z ×Rt), we defineB(f)(t) asY(f(t)) for all time t. We then defineA(f)

asÂf = χ(z(1 + |τ |2)
1
4 )B̂(f), where the Fourier transform is only in time and whereχ is

smooth and satisfies.χ = 1 in (−L/4, 5L/4), andχ = 0 in ∁ (−L/2, 3L/2). A has the
required properties. The verification is straightforward but tedious. �
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