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Abstract. We continue the study of equivalent boundary conditionseimdmag-
netic domains crossed by a thin split. In this second partadeé nonhomogenous
boundary conditions arising from interactions such asaserfanisotropy and super-
exchange. We expand the problem up to the first order andissteljuivalent bound-
ary conditions in presence of surface anisotropy and seyehrange. In particular, the
well-posedness of the expansion problem with equivalenhbary condition and the
convergence in some meaning of the expansion are proven.

Introduction

Following part | [8], we study the behavior of a ferromagonadomain crossed by a thin
split. In order to efficiently compute the evolution of thegnatization on such a geometry,
we expanded the magnetization®= = m© + ¢m on Q. and derived an equivalent
boundary condition on the contact surface:

In this second part of the article, we extend our results wiemdary interactions such
as super-exchange and surface anisotropy are presentijé]mathematical effect of these
interactions is to modify the Neumann boundary conditioa imonlinear way. The new terms
will be described in section 1. In the same paper, the existelout not the uniqueness, of
infinite time weak solutions is also proved.

We denote byn the dimensionless magnetization. In the expansioff) represents the
term of order) andm) the term of orded. Formallym = m(© + em), wheree is the
half-thickness of the split. The considered geometry is@méed in Figure 1. We use the
same notations as in part I. Let

e ¢ the half thickness of the split, always verifyiagg min(L*, L™).
e B abounded convex open setl®f, with a smooth boundary.

L*, L~ be two nonzero positive numbers.

Qf = Bx (g, LT)andQ; = B x (—L~,—¢) forall ¢ < min(L~,L")/2 are the
domains filled with the ferromagnetic material.

Qt =B x (0,L*)andQ™ = B x (—L™,0).
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Figure 1: Geometry of the problem

Q=0tuUQ andQ. =QF UQ- foralle < min(L~, LT)/2.

Q5 = Q. x (0,7), foralle < min(L~, L")/2andQr = 2 x (0,7).

o I'M = Bx{+¢e}, I = Bx{—c}andl'* = 'Y Ul'-. Whene is omitted, it corresponds
toe =0.

e 1V is the map that sends to its trace ori'=.

e 7%/ is the trace map that sends to +°(m o o), whereo is the application that sends
(x,y,z,t) t0 (z,y, —2,t).

e We define the surfacé = B x {0}. 12" is the trace map that sengis to 7 (mo1_.)
onT'*, wherer_.(z,y,2,t) = (x,y,2 + &,t). 72~ is the trace map that sends to
Y(mor,.)onl~,

e ~!is the map that sends to its normal tracé)a% onTZ.
e !/ is the trace map that sengeis to y!(m o o). (z,y, 2, t) to (z,y, — 2, t).

e " is the trace map that sends to vj(m o 7_.) onT'". v~ is the trace map that
sendsm toyj(mo.)onT .

e v represents the unitary exterior normal to the surface baynaf an open set, usually
Q. or Q.

In this second part, we use the same notations concerningléSogpaces as in section 2.1
of [8]. In particular, H*(Q2) are the classical Sobolev spaces as defined inH1{{2) =
(H*(22))?, and

HP9(Q % (0,T)) = H(0, T; L%(Q2)) N L2(0, T; HP(Q2)). (0.1)

as in Lions-Magenes [5]. We make an extensive use of the sfite(Q x (0,7))) and
H>1(Q x (0,7)). By LP(Q), we denoteL*(£2))3.

In section 1, we describe the super-exchange and surfasetapy interactions along
with their energies and operators. The description of theranteractions can be found in
section 1 of [8]. We also give the complete description ofithedau-Lifshitz system and its
linearization. We also state in this section the well possdrof the Landau-Lifchitz system
with super-exchange and surface anisotropy as proved.itr{8gction 2, we formally derive
the equivalent boundary condition. In section 3, we givataaithl inequalities which are not
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contained in section 2.3.1 of [8]. In section 4, we prove tRistence of the first order
term. Then, in section 5, we prove the welék! convergence of the expansion at first order.
Finally, in section 6, we provide the results of some nunastmulations which compute
the effect of super-exchange and surface anisotropy to #umetization terms of both order
0 andl.

1 The mathematical model

We only describe the additional material compared to pagttisn 1. Readers should refer
to it for more information.

1.1 The surface anisotropy interaction

The surface anisotropy energy, see [4], and the associperdtor are

B = (1= (yom - v)*)do (),

2 Jrzurs
Heo = K ((7dm - v)v —gm) onTZ UTT.

when the ferromagnetic material filf.. This operator has basically the same form as the
volume anisotropy uniaxis operator but with= v.

1.2 The super-exchange interaction
This interaction has its roots in quantum mechanics—se&\{2Juse the mathematical model

found in [4]. If the ferromagnetic material fillR., the energy and the operator associated to
the super-exchange operator are

Eu(m) = J; / (1= ~0m 7Y m)do(z) + Jo / (1= K" m 22 mP)do(a),
N T
Hee = J1(72'M — 42m) + 2J5((72m - 72'm)y'm — [ 'm|*ydm) on~ U T,

where.J;, J, are positive real numbers. In reality, and.J, depend on the distanegbut as
they converge astends ta), we will consider them to be constant throughout this agticl

1.3 The boundary condition
For the remaining part of the article, we define
Hd7a :Hd+Haa Hy :Hd+Ha+Hea Hs = Hsa + Hse (11)

whereH , H,, H. are defined in section 1.2 in part I. The boundary conditionsware

om 4

= 1.2a
o 00onoN. \ I's, (1.2a)
aa—y — % (Hs(m) — (vgm - Hy(m)) vom) onTF UT,. (1.2b)

These are obtained as the Euler-Lagrange conditions orotredary.
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1.4 The Landau-Lifshitz system

The Landau-Lifshitz system is

8:;;6 = —m° x H,(m?) —am® x (m® x H,(m?))in Q. x (0,7), (1.3a)

|m®| =1a.e.inQ. x (0,7), (1.3b)
m(-,0) = my, (1.3c)

O 0 onoQ\ T,

o QT (79ms,yy'me) onlt, (1.3d)

Q™ (1gm*,5'm?) onT;,

whereQ*(v'm,%'m) = Q*(7?m, " m) — (QF (v'm,+%'m) - 1°m)y m with Q, being
a polynomial in two variables. It is left to the reader to fetthat conditions (1.2) are a
particular case of conditions (1.3d). In [9], we proved tbkofving theorem of existence.

Theorem 1.1. If the initial conditionm belongs tdH?((2.) and satisfies the boundary con-
dition
0 onoN\ T'E,
=4 Q7 (12m§,72'm§) onlf, (1.4)
Q™ (1em§,72'mg) onl',

&
omg

ov

and|my| = 1, then there exists a uniqi& > 0 andms in H>2 (Q x (0, 7)) forall T’ < T*
satisfying(1.3). The system is well-posed.

Anticipating the expansion of the Landau-Lifshitz systeme, introduce a general form
of the linearized Landau-Lifshitz system.

a({)—t;] =—m X H,(w) —w X H,y(m) —am x (m x H,(w)) (1.5)
—am x (w X H,(m)) — aw x (m x H,(m))+0onQ x (0,T%),
m-w =0, (1.5b)
w(-,0) = wy. (1.5¢)
Sw 0 ondQ\ T x (0,7,
5, = | PQT(m.5'm) - (3w, w) + 4T onTF % (0,7), (1.5d)

DQ~(vim,v5'm) - (3w, v w) + 8~ onT~ x (0, 7).

wherew is the unknown.5*, 57, 6, w, m are in appropriate functions spaces with values
inR3. Q*, Q~ are the polynomials defined in (1.3d).is the differentiation operator.

33 2
Definition 1.2. We defineHz;* (I' x (0,7))) as the subset @7 (I' x (0, 7)) containing all
functionsg such that

r dz
g(x,t)|*—do(x)dt < 400,
| [lste.op o)
wherep(x) = dist(x, II).

This is to ensure compatibility relations, see Lions-Maggefb]. The existence and
uniqueness problem for the(!) are stated by the next two theorems.
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Theorem 1.3.Letm in H?2 (Q x (0,T)) be a solution to the Landau-Lifshitz system with
upper timeT*. Letd be inH"z (O X ( , 1)) forall T < T* such that) is orthogonal tom

almost everywhere. Lét", 5~ in Hgof (I'*t x (0,T)), orthogonal almost everywhere on the
boundaryl’ x (0,T) to m. Letw, in H?(Q2) orthogonal almost everywhere §ato m, such
that

Jwo

= Q\T
o 0onoQ\ T,
ow
8_1/0 = DQ* (gm0, 7 mo) (Y§wo, 7o we) + B (-, 0) onT™, (1.6)
ow _ - -
S0~ DQ™ (18w0,08 wo) (1§w0, 18 wo) + 57(-,0) on T

Then, there exists a unique in H*2 (Q x (0, T)) solution to systerfd..5)

The following theorem solves the existence problemwdt). It lowers the requirements
of the previous theorem on the regularity of the data as veetha regularity of the solution.

Theorem 1.4.Letm in H*2(Q x (0, T)) be a solution to Landau-Lifshitz system with upper
timeT*. Letd be inL?(Q x (0,7)) for all T < T* such that) is orthogonal torm almost

everywhere. Le*, 3~ belonging taHz'1 (I'* x (0, 7)), 8* - m = 0. Letw, in H'(Q) such
thatm, - wy = 0. Then, there exists a uniquein H*' (2 x (0,7")) solution to syster(i.5).

The complete proofs of both theorems can be found at section 4
Remarkl.5 Theorems 1.4 and 1.3 also hold if we replatby (..

2 The equivalent boundary condition

As in the first part, we consider far small enough an initial conditiom{ belonging to
H?($2), satisfying (1.4) oi'. We suppose that there exiﬁtsgl) such that

0 ,(0 0 ,(0
[mY” — mG @) = 01), M —my || o, = O(e), (2.1a)
m0e _ 00
0 0 (1)

— ujy, = my’ weakly inH'(Q,) for all £ > 0. (2.1b)

g
We then definen® as the solution to the Landau- Lifshitz system (1.3), witkiahcondition
m on Q.. If we formally expandm® = m© + em up to the first order, we obtain as
in [8], equations o™ andm(©). Formally, m(® = m® and is the solutionm to the
Landau-Lifshitz system (1.3) with initial conditiomzéo) = my on domainf. m® formally
satisfy

19(mf — m©) 1 + _ _
ET('»'767'> ~ __QJF(’YS meafyg m ) Q+(705 )7785 m(0)>
—~ —Q*(%E ©,49-m®) — Q* (7™M @, 1§ m©®)
1900 m 9 — 0Tm)
€ 0z

(0)
n _ " om -
~ -DQT (1) Mm@ A" m©). (78 mW 4 AT

om© 9*m)
0z ) a '

0z ov?



6 K. Santugini-Repiquet / Modelization of a split in a ferragmatic body. Part I

Hence, o'+ the boundary condition is

(1) _ om®
o= = DQ*(rym, 75'm®) - (5imV — 3gm®, A5 mY — 45 'm(0)

=DQ* (ym, 7y'm®) - (1pm — 1gm® AgmY —1p'm ). (2.2)

om

Thus, formallym () is the solutiomw of the linearized Landau-Lifshitz system (1.5) with
m =m(® and

om© omO
+ _ +(A0,,,0) 0/ (0)y .

om©® om©
- _ _ +0,0,,00) .07, (0)y .

Also, asin part |, formally) = m© xH,(7im O do (1)) +m @ x (m© xHy(vdmOde (T))) ]

3 Miscellaneous inequalities and Sobolev spaces

We recall here without proof some well-known properties ob&ev spaces. It can be ver-
ified [8] that the considered domain is regular enough for those inequalities to hold. In
particular, Sobolev embeddings hold.

Lemma 3.1. The spacél®2 (Q x (0, T)) is continuously embeddedd (0, 7; H2(2)) and in
L>(Q % (0,7)). Besides, the gradient application is linear continuowsrfti®2 (Q x (0, 7))
to L4(0, T; L>°(92)).

PROOF. This is a consequence of theorem 4.2 Lions-Magenes [6]Marlya [7] page
274. O

Lemma 3.2. H*2(Q x (0, 7)) is an algebra for the pointwise multiplication. Moreovereth
3

pointwise multiplication of a function if>2 (2 x (0,7")) and a function ifH*!(Q x (0, 7))
isinH>Y(Q x (0,7)).

The constants involved depend stronglyowhenT tends to0.
Definition 3.3. We defineHﬁo_rC% (09) as the subset af?(992) of functions whose restrictions
ondB x (0,L), B x {0} etB x {L} are inH™ 2,

The following regularity properties hold.

Proposition 3.4 (Elliptic regularity).
The space{v e HY(Q) | Av e L3(Q), & € H?nom((?ﬂ)} is equal toH?(Q2) and there exists
a constant’ such that for alk in H*(Q)

%
ov

B ) : (3.1a)
HI%O!‘C (aﬂ)

Proposition 3.5. The space{v e HY(Q),VAv e L?(Q), 8¢ € Hém(aQ)} is equal toH3(Q)I
and there exists a consta@tsuch that for allv in H3(Q)

Il < C (HUHLQ(Q) 1]y + ]

ov
[v][i30) < C (HUHLz(Q) + IVAY|L20) + H%

. (3.1b)
H3 (09)
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PROOF  This proposition is a trivial consequence of Propositio8 ia part | of this
article. H

Lemma 3.6. If A is a continuous bilinear operator from spac&sY into spaceZ thenA is
bilinear continuous from the spacés> N Hz)(X), (L N Hz)(Y) into (L N H2)(Z).

PROOF. The proof is left to the reader. It is similar to the proof afrhma 2.14 in the
first part [8]. O
This lemma allows to recover tHéz regularity in time from the Landau-Lifshitz equation
and theH' (0, 7; H' (Q2)) N L2(0, T; H3(2)) regularity of the solution.

4 Proof of the existence theorems

In this section, we prove the existence Theorems 1.3 and 1.4.

4.1 An equivalent problem

We first develop the second term of Landau-Lifshitz equatidris gives us a system equiv-
alent to (1.5). This new system includes equations (1.8c)d), (1.5b), and the following
developed form of Landau-Lifshitz.

ow

5 = —Am x Aw — Aw x Am + AalAw + Aalm|w + 2Aa(Vm - Vw)m

—m X Hyo(w) —w X Hge(m) —am x (m x Hg,a(w)) (4.1)

—am X (w X Hga(m)) — aw X (m X Hga(m)) + 6.
Lemma4.1. Lets™", 57, 6, andw, satisfy the hypothesis of Theorem 1.3wlfn H3’%(Q X

(0,T)) satisfies equationd.5c) (1.5d)and(4.1), thenw also satisfies the local orthogonal-
ity (1.5b) Thus,w is a solution to Theorem 1.3.

PROOF. The time equation is

W = aA (A(w - m) +2[Vm*(w - m)).
Moreover, the boundary condition is
W =00noQ\T x (0,7),
W = —2Q} (m, vg'm)ydm - yow onT™ x (0,T),
dlm - w B ) )
% = —20, (’78"71,78’ m)ygm - ypwonl~ x (0,7T).

We multiply equation (4.1) byw - m and integrate ove® x (0,7).

T
{/|w : m|2dw} + (A — 7])/ |V (w - m)’Qda: <
Q 0 T
r C
2aA/ ||Vm||]2Loo(Q) / lm - w|*dx + — lm - w|*dz.
0 Q " JQr
By Gronwall’s inequalityymn - w = 0. O
We need to prove the existence and uniqueness of solutidhsteew system. We basically
prove the theorem in four steps.
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1. Existence with the homogenous Neumann boundary conditio

2. Extension of the boundary condition, then existence aitlaffine Neumann boundary
condition.

3. Particular case with an affine Neumann boundary conditiah allow the construc-
tion of a sequencev™ ™! satisfying (4.1), (1.5¢) and a Neumann boundary condition

involving w™.
P 0 ondQ\T x (0,7),
5, = ) PQT(im. M) - (gw”, " w) + 5T onTE X (0,7),  (4.2)

DQ~ (vim,79'm) - (\w", v'w™) + B~ onT~ x (0,7).

4. Convergence of the sequence to the solution by provingthieatlifference between
two elements in the sequence tendio

4.2 The affine Landau-Lifshitz system

Theorem 4.2.Let0 < T*. Forall T < T*, letm anda in H>2(Q x (0,7)) and @ in
HYz(Q x (0, 7). Letwy in H2(), 2wo — () on 2. Then, there exists a unique satisfying
w(-,0) = wy, 22 =0 0ondN x (0,7*), and equatior(4.1).

PROOF. We use Galerkin’s method as in 2.24 in the first part [8]. Weoduce the
orthonormal base, . .., w,, ... of L?(Q) made of the eigenvectors of the Laplace operator
with Neumann boundary conditions. We denotdhyhe subspace generateddy, . . ., w,
and by?P, the orthogonal projection oW, in L?(Q2). P, is also an orthogonal projector in
H'(Q) and in{u € H*(Q), 3 = 0}. First, we introduce for each contributipn

FPIR () = —w x H,(m(0)) — m(0) x Hy(w) — aw x (m(0) x H,(m(0)))

m{0) (4.3)
—am(0) x (w x H,(m(0))) —am(0) x (m(0) x H,(w)).
We look forw™ in H'(0, T') ® V,, such that
QW' ADw" = Po(—Aw" x Am — Am x Aw" + 20A(Vim - V" )m)
ot (0% w = Fp w m m | w (0% m w )m (44)
+ AP, (|[Vm|*w" 4+ F&&m (™) 4 9),
w"(-,0) = P, (wy) (4.5)

In subsequent estimateswill be a positive real that can be chosen arbitrarily sm@llill
be a generic constant depending only on dontainTo make these estimates, we need the
inequalities

IE5 " (w) 2oy < C'(1+ Il @) l|w ]l 0. (4.6a)
IVEFR " (w) @) < C'(1+ [ml o) w0 (4.6b)

We already know from the proof of Theorem 2.24 in part |.thdt exists over{0, 7*)
and is unique. Besidesy” is bounded inH*!(Q2 x (0,7)). We only need the following
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additional estimate. We multiply (4.4) b§?>w" and integrate. Since&)\?w" belongsV,,

1d

n|2 n|2 _
at )l |Aw"| dm+aA/|VAw |*de =

A/(Vw" x Am) - VAw"dx +A /('w” x VAmM) - VAw"dx
Q 0
7 Vo

17

+ A /(Vm x Aw") - VAw"dx —2aA /(Vm -D*w™)m - VAw"dx
0 Q

~
117 v

—2aA /(Dzm -Vw")m - VAw"dx —2aA /(Vm -Vw")Vm - VAw"dzx
Q Q

N J/ N J/
e e

\% VI

—2aA / (D*m - Vm)w" - VAw"dz —aA / Vm/|*Vw" - VAw"dx
Q Q

J/

VII VIIT

- / Vo - VAw"dx — / VF&H0 (™) .V Aw"dz  (4.7)
Q Q

J/

g

IX ‘)g
We evaluatd = [(Vw" x Am) - VAw"dz.

| < [[Vw"|[Ls@[[Am||Ls o) |V AW" |12

< L lBmis 0" ey + 1750 (52
Then, we estimaté/ = [(w" x VAm) - VAw"dz.
(1] < J|w"[[Le (o) IVAM20) [V AW [12(0)
< IV AT " e + 1l VA" g (@50
Estimating/I] = [(Vm x Aw") - VAw"dx yields
(11| < [[Vm|ie o) | Aw" L2 (o) IV Aw" [[L2(q)
< 1D |50 [y + 1T 50" e (459
Then, we estimatéV = [,(Vm - D*w")m - VAw"dz.
IV < [lmli @) | Ve @) [[D*w0" L2 |V Aw™ [[12(q)
| (4.8d)
< El‘mHLm VM [f ) VW0 |22y + 1|V Aw" T2
If we estimatel” = [(D*m - Vw")m - VAw"dx, we obtain
V] < ID*m|lus o) I[Vw" [[Ls@) IV Aw™ |20
(4.8¢e)

< —lmlfEs @ lw"lf e + nllVAW" [E2q).
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Estimatingl’/ = [(Vm - Vw")Vm - VAw" andVIII = [ |[Vm[*Vw" - VAw"dx
yields

1 n n
\VI|,|VII] < %HVmeﬁw(mHV’w 22 + 1l VAW [[f2(q)- (4.8f)
When we estimat&’ /1 = [,(D*m - Vm)w" - VAw"dz, we obtain
1 n n
\VII| < %HDQmHHQﬁ(Q)vau]LG o[ w" iz + 1l VAW [F2q) (4.89)
Estimating/ X = [, V0 - VAw"dz yields
1 n
[IX] < E”VQH]%Q(Q) +l|VAW" 172 - (4.8h)
Eventually, we estimat& = [, VF&" (w") - VAw"dz using inequality (4.6).
[ X] < [ VFRM (w") |20 |V AW 120
C n n
< @( + [mf @) 10" [Fe @) + 1l VAW"[F2(q).
We combine inequalities (4.8).

n n O n n
i 18w e ra [ 198w dw < Soto) o -l 00" [y V81 0y

(4.9)
whereg belongs td.!(0, 7). Choosing; small enough, we can apply Gronwall’s lemma.

2dt

| Aw" ||Le 0,72 (0)) < Cr,s VAW |20, x0) < COr. (4.10)

The previous estimate, the regularity inequalities 3.1 lammhma 3.6 prove that the se-
quencew” remains bounded ifif®2(Q x (0,7)) for all ' < ™. Thus there exists a

subsequence such that, forlk T*, w? converges weakly tev in H*2 (Q x (0, 7). This
limit satisfies%2 = 0, w(-,0) = wy, and

// —¢dwdt A/ (w x Am +m x Awdzdt — aAw — 2a(Vm - Vw)m) pdadt

+ aA/ (IVm|*wdzdt + Fi'™ (w) + FE" (w) + 0) 9,
T

for all ¢ in C'(0,T;R*) @ |J;2, V.. Since this space is denselif(Q2 x (0,7)), w is a
solution.

We now prove the uniqueness. Letandw’ be solutions to the system (4.1) théw =
w' — w is solution to (4.1) affine terrh = 0 and initial conditionw, = 0. After multiplying
this equation byw and integrating ovef x (0,7"), we obtain the following estimate.

T
[ / |5w|2dwdt} +(ad—1) / 5V dadt
Q 0 Qr

T
SC(??)/O (Il o) [ VM Ee @) 10wl (o) .

The uniqueness follows from choosing= a«A/2 and Gronwall’s lemma. O
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Corollary 4.3. LetT < T*. Letm in H>2(Q x (0,7)) forall T < T*. Let3*, 3~ be in
3 3

Hg* (I x (0,7)). Letw, in H*(Q2) satisfy equatior(1.6) with Q*,Q~ = 0. Then, there

exists a uniquew solution to equationgl.5c) (4.1)and (1.5d)with Q*, @~ = 0.

PROOF. S+ and 3~ satisfy the compatibility relations of Theorem A.6. Thusere

exists an extension in H*2(Q2 x (0,7)), such thatw satisfy the boundary conditions af
in (1.5d) withQ*, @~ = 0. We then define

g = —2—1; — Am x Aw — Av X Am + AaAv + Aajm|w + 2Aa(Vm - Vv)m

—m X Hyo(v) —v X Hgo(m) —am x (m X Hya(v) —am x (v X Hga(m))
—av X (m x Hg.(m)) +6.

§ belongs taH"z (Q x (0, 7)), w, — v(-,0) satisfy the Neumann boundary conditions. By
Theorem 4.2, there existssuch thatw = u + v is the solution to our theorem. Sineeis
unique, so iaw. O

Corollary 4.4. Let0 < T*. Letm in H*2(Q x (0,7)) for all T < T*. Leta be in
H32 (2 x (0,T)). Let 3T, 5~ be inHg;* (I' x (0,7)). Letw, in H*(Q2) satisfying

0 ondQ\ T x (0,7),
= { DR (WMo, 7 'mo) - (Wa,v'a) + B+ onT* x (0,7), (4.11)
DQ~ (vdmo, 7 'mo) - (WJa,1y'a) + 6~ onT~ x (0,T).

(9'w0

v

Then, there exists a unique solution to equationgl.5c) (4.1)and

0 ondQ\ T x (0,7,
—— = DQT(dm,vy'm) - (1@, v"a) + BT onl* x (0,7), (4.12)
DQ~(vim,vy'm) - (v§a,v'a) + B~ onI'~ x (0,7).

33
PROOFE  DQ*(vdm,vy'm) - (v§a,vy’a) is in Hg* (I x (0,7)). The easiest way
3

to prove it is to construct the extension explicitly. Fins recall thatt®>(Q x (0,7)) is
an algebra. Givery in C°(—oc, +oo; R*) such thaty(z) = 0 if 2 > 2 min(L*, L~) and

4
X(2) = 1if z < 222LD) e define

DR (m,moo)-(a,acc) InQF,
|DQ (m,moos)-(a,acc) inQ,

whereo is the application that maps, y, z,t) to (z,y, —z,t). Then, the functiorv that
3

maps(z, y, z,t) to [ x(s)g(x,y, s, t)ds is in H*2(Q x (0,7)) and has the required proper-
ties. We apply corollary 4.3. O

We need the following lemma to provide a first element to ounveoging sequence.

Lemma 4.5. Letmn, in H*2 (Q x (0,7)) such that?e = 0 ondN \ T. Then, there exisis
in H32 such thata(-,0) = wy and%2 = 00ndQ\ T x (0,7).

PrRoOOF All the compatibility relations of Theorem A.6 are satisfi&Soa exists. [
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4.3 Existence and convergence of the sequence

Theorem 1.3 is a consequence of Lemma 4.1 and the followsdtre

Theorem 4.6. Let m in H32(Q x (0,7)). Letw, in H2(Q) satisfying(1.6). Then, there
exists a uniquew in ]I-]I?’%(Q x (0,T)) solution to systerd.1), (1.5c) and(1.5d)

PROOF We definew™ by induction. Letw ! in M3 be thea of Lemma 4.5. Then,
knowing w", we definew™"! as the unique solution to equations (4.1), (1.5c), and (4.2)
This is possible by corollary (4.4). We need estimates omsiteofw”. Letv, be inH?(2)
such thatZ2 vanishes od$2 \ I, and is equal tdQ* (7im, v5"m) - (v3wo, 7 wo) onT.
The existence of such, is given by the same construction as the one found in the moof
corollary 4.4. We define,, = w, — v,. We first defineu as theH>2 (Q x (0,7)) solution
to equations (1.5c), (4.1) and (1.5d) with* = 0, # = 0, and initial conditionu,, but with
sameS*. Note that if3* = 0 thenwu = 0. This solution exists by corollary (4.3). We make
all of our estimates omw™ = w" — uw. v" satisfy (1.5c), (4.1) and (4.2) with same initial
condition, @*, andé but 5* = DQ*(ydm,~'m) - (7du,~y'u). These are basically the
same estimates as those of the proof of Theorem 4.2. But, thigontogenous Neumann
boundary conditions force us to use more complicated forimsegjualities (3.1). Thus, an
upper bound on th&?2 norm of Av does not yield an upper bound on tHE norm. We
introduce our preliminary estimates.

[0 Fe() < C([0" M E2gq) + 120" [Eaq) + IDQ* (v0m, 70"m) - (ow™, 7o w™) |2 4

bl

But,

IDQ*(m, moo) - (w" w"o ">“§ﬂ%<r> < P ([mllgw) 0" + ullf g

Butm isinC([0,7*); H?(Q2)). Thus,

sup (o} < (s {1071

tsnsN (4.13a)
+ s {1801 } + lully + 10l
1<n<N
We do the same estimate for tHE norm.
0" sy < C (10" F20) + VAL [F2 g
+/.0 0,/ . 0,,.n 0/  ny\2
+IDQ* (yom, 3 m) - (w0 w") s 1)
But
IDQ*(m, mo o) - (w",w"o U)Hfﬁlgm < P ([lmllaw) 0" + ullf e
Thus,
s {10} <0 sup {0} + s {19801 )
<ns <n< <ns (4.13b)

Tl + ||v0||§{s<m)

With inequalities (4.13), we can make useful estimates. \&kahree estimates on the norm
of v™ forn > 1.
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1. We multiply equation (4.1) by™ and integrate oven.
2. We take the gradient of equation (4.1), multiply it¥y\v™ and integrate ove®.
3. We take the gradient of equation (4.1), multiply it¥ay" and integrate oveR.

The first two estimates have mostly been made in the proof ebfldm 4.2, except for the
nonzero Neumann boundary condition. The third is a simgpliie of the second estimate.
We do not detail the volume terms as it was done in the prooft@fofem 4.2. In these
estimates) represents a small positive real.

First estimate Using trace theorems, we obtain that

1d||vn|’ﬁ2(m n n
- + ad|Vv ||]I2_,2(Q) < Fo(l[mflgz0)[[v" [m2@) + oA

2 dt
< Pi([[v" ez (),

/Ov" N
1‘*81/ v

whereF,, P, are given polynomial.
Second estimateWe obtain

1 d||A'Un||12L2(Q) n 1 "
3 4 AT 80" By < € (14 1) Pullmll) 1Dl 10" e
0o

ovot Av

do(x).
(4.15)

T+

After integrating over0, T'), the boundary term has a meaning even before using the

boundary condition. & belongs tdH®2(Q x (0,T)), thenaaf—a’;/ belongs to the space

H-1(0,7;1.2(Q2)) and~ Av belongs tol1 (0, T; L2(2)). The evaluation of the inte-
gral onI'* for n > 1 gives

0?v" . 1 2
[ oo 00" |do(@) < 3180 e
2
1|{2(DQT(vgm, 15 m) - (w1 w™ ™))
2 ot ’
L2(T+)
[A H%ﬁ(rﬂ < Cl|Av Hﬁz(g)(HA’U lL2i@) + VAU [L2())?. l
And,
I(DQ* (gm, 5'm) - (yw" 3 w" "))
ot
L2(1 )
am n—1
< By(lml=@) || 57 0" 2
(@)
3 1
(vt +u)l|* (" +u)|*
Pl | 2[R
H*(€2) L2(©)
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By (4.1) if n > 1, there exist€’ depending on th&l>2 norm ofm such that
' a,vnfl a,vnfl
Thus,

ot ot
D*v" .
/ri ovdt Av

< Cllv" Hlmz)
L2(2)

< Cllv™ Mm@, ‘

H' ()

do(x) < C([[ml|L~)

1 n n—
(1 ; 5) (o™ ngey + 10" o)
)

n n— ou 2
010" o + o™ o) + |5

‘61& H(Q

(4.16)

Third estimate This is a simplification of the previous estimate

O A A 2ag) < (14 = ) Bollmlse) 0" |22 ) + 7D |2
2 dt i
ov"
A -Av"|d )
+a /ri ey v"|do(x)
(4.17)
But,
oo™ 1 1| ovm |2
A" do(x) < Z||Av™12, +—‘
> (@) < S 100" g .

< OHAv”HLz ||VA'U”||]L2 + Ps([[mlls2o) 0" + w2 g
< —HAU”HLz + Py([|mflsz@) 0" + w2 g
+7IHVAUn”L2(Q)7

where theP; are polynomials an@' a constant only depending on the (0, T; H?(2))
norm of m which is bounded for all’ < 7.

We choose) small enough, combine all estimates, and obtain fon aH 1
t t
9 e H80 Bt [ 180 st < [ (1079720, + D70 ) o
ou||?

1 ! n n—
(1+7) [ w0 + 110 1\|§p<m>dt+c(Hu|r§{1<m+H§ ) (4.18)
7 Jo ()

We take the upper bound far> n > N, use inequalities (4.13), and obtain

T
s (10" o + 180" ) + sup { [ 19807 Rt
o T
/ Cln( sup (1" i)+ 10" oy + 17" gt + | P21 o)

1<n<
T oul?
o 0 H* (€2)
(4.19)




K. Santugini-Repiquet / Modelization of a split in a ferragmetic body. Part Il 15

Reusing inequalities (4.13), we obtain by Gronwall’'s lemiret thelL>° (0, T'; .%(€2)) of v™,
Av", andVo™ are bounded by a constaf{T") independent of:. By inequalities (4.13),
there exists a constatt;: such that, for all” < T,

0|l 0,712 () < O ID*|l20x 0.1y < Cr- (4.20)

Reusing equation (4.1) and Lemma 3.6, we obtainghas bounded irfHl*2 (2% (0, 7). We

can extract a subsequence that converge wealw"i% We denote by this limit. Suppose
that

(fv"k andv"*! both weakly converge ifii>*(Q x (0, T))) = lim v = lim v™*!

k—o0 k—o0

We extract a further subsequence such #fat! converges. According to our supposition,
the limit is v for both subsequences. @,

Jv™tl B 10 0,/ 0. .nk 0/ n
oo = DQT(fm. A m) - (0™ + w2 0+ w). (4.21)
We take the limit and obtain
ov
5, = PQ* (gm, Yo m) - (Vv + u, v + u). (4.22)

Thus,w = v + w is a solution. The corresponding result holdslon We now prove
our previous assumption. For this, we defiii@ = v"*! — v™, then we can obtain the same
estimate o™ v as obtained in equation (4.18) enbut withw = 0 and null initial condition.
Instead of taking the upper bound, we sum these estimatesnikial conditions of this sum
is null. By Gronwall’s inequality, obtain that, for all < 7™, there exist€’; > 0 such that,
foralln > 1,

Z|l5nv||i°°(0,T;H2(Q)) < Cr, ZH‘SnUHIQﬂ(O,T;H?’(Q)) < Cr.
k=1 k=1
Thus, our assertion is proved. O

Proving Theorem 1.4 is equivalent to proving

Theorem 4.7. Letw, in H'(Q), 8 in L2(Q x (0, 7)), and* in Hz1(I'* x (0,7)). There
exists a uniquewv solution to systerty.1), (1.5c¢) and(1.5d)

PROOF. We begin by proving the uniqueness. keindw’ be two solutions iff?! (2 x
(0,T)). Then,fw = w — w’ satisfy system (4.1), (1.5¢), and (1.5d) with = 0,0 = 0
andw, = 0. We notice thabDQ*(7)m, vy'm’) (16w, vy 'dw) belongs toHéo’% (T x
(0,7)). Letw” be theH>(Q x (0,T)) solution to (4.1), (1.5c), and (1.5d) with~ =
DQ*(Ydm, vy'm/) (0w, 7y dw), with the Q* of (1.5d) taken null, and = 0. w” exists
by Theorem 4.2. Thusw —w" satisfy (4.1), (1.5¢),and (1.5d) witht = 0, the@Q= of (1.5d)
taken null, and) = 0. Thus, by the uniqueness part of Theorem 2.24 of{8],= w". dw
belongs tdd*2 (Q x (0, 7)) and is null by the uniqueness part of corollary 4.3.

We now prove the existence. Sind&)=(10m, v0'm)-(10wo, 7o"w,) belongs td2 2 (B x|
(=L, L*)\ {0}), there exists, by Lemma 2.7 in parti, in H?(¢2) such thatZ is null on
o0\ I't and is equal tdQ*(1dm,1)'m) - (7dwo, 13 wy) onT*. Besides, there exists a

1We will prove this assertion later
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) S CHw()HHl(Q).

We defineu, asw, — vy. There exista: in H2!(Q x (0, 7)) that satisfy system (4.1), (1.5c¢),
and (1.5d) with same parameters exc@pt = 0 and initial conditionu,. This was proved
by the author in the first part [8], Theorem 2.24. By Theorent)(4there exist in

H>2(Q % (0,T
belonging taH

N\Q,\_/

O

5 Convergence

)) with initial conditionv,, sameQ=, 5* =
3
. andd = 0. w = v + u is the solution.

dQ*(vgm, 75 'm

) (30,70 w)

0J

We recall the reader about our problem stated in section Zhate a continuum of solutions
m* to the Landau-Lifshitz system (1.3) on domain with initial conditionsm satisfying
conditions (2.1). We know by [9] that, for dll < 7™, the H33 2(Q x (0,7)) norm of mg is
bounded, uniformly irz. The aim of this section is to prove the convergence of thaesion
m© + em® to me. We do that in two steps.

1. We derive an upper bound of th#&'(Q. x (0,T")) norm of m=m®.

2. We prove that the weak limit iH?*!(2) o m€_€m<o>

We denote byAQ* the polynomial in four variables such th@t(a, b)
Givenm, m/, uy, ST and 3™,

AQ*(a,b,c,d) - (a — ¢,b — d).
following auxiliary system inu.
ou
E — OZAA'U/
—Uu X Hd@(m)
—am/ X (u X Hg.(m
'U/(', ) 0) = Uy,

and the initial condition

AQ*(Ym, vy'm
= ¢ AQ™(Ym,7y'm

00y’ A0+
770m770m
0o/ 05
y YoM, Yo M

ism),

—m' X Hyo(u) —am’ x (m' x Hga(u))

) — aw x (m x Hya(m)) + 6,

) (YW, v w)
)(Wu, 19 w) + B~

First, we state a well-posedness result.

Theorem 5.1.Letm, m’ be inH2 (2 x (0,

33
24

T)), let 5+, 5~ be inHg

+ 8T onB x {+e} x
onB x {—¢e} x

- Qi(ca

and @, we consider the

d) =

—Au x Am — Am' x Au+ aA|lVm|*u + aA((Vm + Vm/) - Vu)m/

(5.1a)

(5.1b)

(5.1c)}

<O7 T*)7
(0,17),
ono. \ (B x {£e} x

(0,77)).

(5.1d)

H" 2 (Q x (0,T)), andug be inH2(1) satisfying
9 AQT (Wm, vy m, im0 'm) (3 u0, 0 we) + 8T onB x {+e},
a_uo = S AQ™ (vm, v 'm, A g 'm) (e, 79 wo) + B~ onB x {—e},

Then, there exists a unique solutlaxnln H>2(Q x (0,7)).

T % (0,7)), 0in

onoQ. \ (B x {£e}).

constantC' depending on th&l*3 (Q x (0, 7)) norms ofm, m/’ such that

1llgo.3 0 0.

+
< (181,54 s oy +

1618 o,y T Hu0||H2(Q)> :

(5.2)

Furthermore, there exists a
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Besides, suppose thatonly belongs td.2(Q x (0, 7)), A+, 5~ only belongs tdHz1 (" x
(0,7)), andu, only belongs td?(§2). Then, there exists a unique solutiarin H*! (2 x
(0,T)). The problem is also well-posed, there exists a congtag¢pending on the3 3 (Qx
(0, 7)) norms ofm, m’ such that

|wllg21@x o) < C <||5i|! y T 10llez@xom) + ||uo||H1(Q)> :

11
H2 1 (' (0,T

PROOF. We just adapt the proofs of Theorems 4.2, 4.6, and 4.7. O
The theorem holds for the domaifes, and the constartt'(m, m’) while depending on the
domain can be chosen independently &br sufficiently smalle.

Proposition 5.2. TheH?*!(Q. x (0,7)) norm ome‘Tm(O) remains bounded for small enough
E.

PROOF, m‘T’"(O’ is solution to system (5.1) withh = m©) o, m’ = m*, the initial

o mE—m) .
condition™—"0—, the boundary conditions

0)

Bt =

oM | =

(r2m® —gm!®)

©) _ 07 (0)
+ AQF (gm0 Mm@ A 2m O 'm0 . Gem ™ —7e'm™)

onT* x (0,7) and the affine term

1 1
0 = gm(o) X Hd,a(XBX(—s,—i—e)m(o)) + g&m(o) X (m(o) X Hd,a(XBx(—s,+e)m(o)))-
TheHz1(I't x (0,7)) norm of 3%, thelL2(€2. x (0, 7)) norm ofé, and theH' (2.) norm of
the initial condition are)(s). This latter fact has the same proof as Proposition 3.2 ih par
I. The H' (2. x (0,7)) norm of the initial condition i< () by hypothesis (2.1). We apply
Theorem 5.1. OJ

We now extendn® by reflections o2,

m° on$. x (0,7),
me =< 3me(-,-,2e —-,-) — 2me(-, -, 3e — 2, ) on (B x (—¢,0)) x (0,7),
3me(-, -, —2e —-,-) —2m°(-,-,—3c —2-,-) on(B x (0,4¢)) x (0,7).

Then, by the same kind of considerations as those of Lemmp8B.the H*'(2 x (0,7))
norm of 1 (m® — m(") is bounded independently efase tends ta.

mm)—m

Theorem 5.3. The quantity™—2 " converges weakly ten(), defined in section 2, in
H21(Q x (0,T)).

PROOF  We extract a decreasing subsequengdending to0 such thatm tends
weakly in H2(Q) to m™. We only need to prove thak(® is m®. Sincem( is the
unique solution to system (1.5), it is sufficient to provettha® is solution to (1.5) with
same parameters. As in the proof of 3.5 in pamw satisfy equation (4.1), witld =

m© x Hy(10m©0do(T)) +m© x (m® x Hy(1dm©de(I))). Besidesm (-, 0) = m",
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see (2.1) for the definition ofn(()l), m) obviously also verify the homogenous Neumann
boundary condition 08 \ T'* x (0, 7%). OnT'*, we have

2

(0) (e — m©®
V(e t) — %(w,ott) do(z)dt
€ 92 e (0) 2
(m m )(m,z,t)dz do(x)dt
0%( —~ (0) 2 (0)
<€/// (m* —m )(a:zt) dzdo(z)dt < &° —m
072 € HO,2,0
Thus, onl'*, we have
om0 1 9(msr — m)
D) = lim — e
o (7 ) ) eklglo 1 Oz (7€k7 )7
1 — —
= = lim — (QF (om0 M) (5, ) = QF(im Y, A m ) (- e, )
1 82m(0)
= lim = (Q" (gm0 'm®)( ex, ) = QT (3m 3 M) (0%, ) - =
— om\ om0 9?m(0)
- 0, (0) 0/, (0
— _DQ+(70m( ),’Vo m/ )) (m(l) + 9, ,md + pe ) T T2

Hence,m(®) ) satisfy (2.2) o't and by symmetry also ofi~. Thus, m® is them® solu-
tion of system (1.5) with th&* of relations (2.3). Sincen(" is unique, the whole sequence
converges. n

6 Simulations: schemes and numerical results

We use the same schemes as those found in section 4. of [8].cdrhputation of the
discretized demagnetization field operator is done by th#hodefound in [3]. The only
differences are found in the computation of the discreti@echange operator as(®) and
m( satisfy the nonhomogenous Neumann boundary conditiosisgfrom super-exchange
and surface-anisotropy. The discretization of the exchagrator for orded gives

Hopm) = 55 3 (mo—my) 2 Y (Qmimy)), 61)
)

JEV (i JeEVC(i)

whereV (i) is the set of all the neighbors of celin the mesh and’C(:) is the set of all
neighbors of cell across the split. We also define the discretization of theetthange
operator of ordet.

A
JEV(i)
LA ’m’g\f(@)_m’O 0,0
+ 5@)@ 3 + Q(m;, my.;
Z DQ ) ( 1 Q(mivmj> m; Q(mjvmz))a
jEVC
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whered(i) is 1 if cell ¢ is adjacent to the interfadg and0 otherwise. In the former case, cell
N (i) is the adjacent cell to cellsuch that cell is between cellV (i) andI". Cell N'(i) being
the cell such that cellis between cellsV(i) and N’(i). This discretization requires at least
two cells in thez direction on each side of the spilit.

Our aim in these simulations is to compute equilibrium statéd/e stop the simulation
when the derivative of the discrete energy crosses a thicesho

6.0.1 Physical parameters

We use the same physical parametérg< as in section 4 of [8]. We consider a thin plate
with a mesh256 x 128 x 1, hence32768 grid points, with a step size @ft3nm. Their magnetic
parameters are

M, =1.4%10°, A=10""/pp, K =0.

We also takd<, = 0 — no surface anisotropy — anfj = 0. In the geometry considered in

Initial condition Transversal split

Figure 2: Possible position of the spacer

our computations, the split is transversal and crossesdh®uh in the middle . The initial
condition is given by a magnetization parallel to the lonngéde of the thin plate. Those are
represented in Figure 2. In the numerical results, we ptefeepresentm®) instead of
m(). We present the results of the simulations corresponding to

e a geometry with no split, as a reference.
¢ the transversal split drawn in Figure 2 with the followindues of J;.

1.0x107°, 1.0x107%, 2.0x107%, 50x107% 80x107% 1.0x 1073

6.1 Analysis of the results

We analyze the equilibrium states obtained by our simulafidney represent the equilibrium
states and are presented in figures 3, 4,5, 6, 7,8, 9, and 10 ¥Wéhemise the value of,
the term of ordef of the equilibrium point magnetization becomes nearerécetuilibrium
point of the magnetization with no split. It confirms that ebag super-exchange interaction
favors the alignment of the magnetization across the apliten the super-exchange is weak,
the reversal of the magnetization across the split is hrutiaich was expected. The quanti-
ties of orderl show two unfinished vortices stretched across the trarsvgpst, those two
vortices lower in intensity as the super-exchange becoroagsr.
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Figure 3: Transversal splitf; = 0

Projection orOz Projection orDy Projection orDz
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Figure 4: Transversal splitl; = 1.0 x 10~

Conclusion

We have established here non trivial equivalent boundangitions for a simpler geometry
when surface interactions such as surface anisotropy gred-sexchange are present, gener-
alizing the results in part | [8]. We can now compute the dftda split in a ferromagnetic
material with a more accurate physical model involving iat#ions arising near the split.
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Projection orOz Projection orOy Projection onOz
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Figure 5: Transversal spliff; = 1.0 x 1073
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Figure 6: Transversal spliff; = 2.0 x 1073

Future research will be concerned with non-void weak magmneaterial filling the split.

21
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Projection orOx Projection orOy Projection onOz
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Figure 7: Transversal splitl; = 5.0 x 1073
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APPENDIX

A The H"*! spaces

J.L. Lions et E. Magenes have in [5] introduce th®* spaces defined at (0.1) and proved
traces theorems. We refer the lector to this book for theildetd/e adapt this work to study
the Sobolev spaces on twice cylindrical domains, once inespad once in time.

A.1 Definition and traces theorems

LetO = B x (0,+L) andQr = O x (0,T). Forr, s,t > 0, we define the spaces
H™*'(Qr) = H'(0, T; L*(0)) N L*(0, T; H*(0, L; L*(B))) N L*(0, T; L*(0, L; H"(B))).
As in [5], we also define the spaces
Hep' (Qr) = H'(0, T: L*(0)) N L2(0, T3 H*(0, L; L*(B))) N L*(0, T3 L*(0, Ly Hyo(B))),
H'5, (Qr) = H(0, T3 12(0)) N L(0, T3 Hyo (0, L; L*(B))) N L*(0, T; L*(0, L; H'(B))),
H"*5(Qr) = Hyo(0, T; L(0)) N L2(0, T; H*(0, L; L2(B))) N L*(0, T; L2(0, L; H' (B))),
and,
Hioo, (Qr) = gt NHGy, Hegoo(Qr) = Hep?, N H ™,
H'50.00(@r) = Hgg, N H5,.

Lemma A.1 (Interpolation of the1"** spaces)

71,81, r9,82,t _ 1—-0)r1+0r2,(1—0)s1+0s2,(1—0)t1+0t
[H1117H222]9—H( )r1+0r2,(1-0)s1+0s2,(1-0)t1 2, (A.1)
71,51 79,52 _ (1—9)T1+9T27(1—9)51+082
[Hoo, vHoo, ]9 - Hoo, ) (A.2)
71,51 ro,s21 _ 17(1—0)r14+0r2,(1—0)s1+0s2
[H00,00= Hoo,oo]ﬂ - Hoo,oo : (A-3)

Theorem A.2 (Existence of traces)f v belongs toH"™**(Qr) then

1. Ifr > 1, and forall0 < j,

— € HMvN (9B x (0, L) x (0,T)),

2. Ifs> I, thenforall0 <k <s-— 3,

kv

W S Hpk’qk(B X (O,T)),
z

3. Ifs> 3, thenforall0 <l <t—3,

0
a,B
w cH (B X (O, L)),
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Furthermore, the trace maps are linear continuous.

PROOF. We adapt the proof of Lions-Magenes [5]. The theorem ise@atliconsequence
of theorem 4.2 in Lions-Magenes [6]. To apply this theorera,need interpolation results
provided in proposition 2.1 in [5] and Lemma A.1. O

A.2 Conditions of compatibility

Proposition A.3 (First compatibility conditions)Let

8l
fi = G € BB x (0, 1)),
ak
90 = 5o € WV (B x (0.1),
iy
h; = % € H*% (0B x (0, L) x (0,T)).

Then
1. If1— 42 +1)>0,thenforallj,k > 0suchthatl + £ <1 -1 (141

8jgk; o 8kh]
ovi 02k

2. 1f1— L4 +1)>0,thenforallj,i > 0suchthat! + ! <1—1(L4+1)

i 'hy
ovi ot

3. If1— (1 +1)> 0, thenforallk,i > 0verifying® + L <1 -1 (14+1)

& gi _ 9" fi
ot 9k’
PROOFE D(Qr) is dense irl™**(Q) and the trace maps are continuous. O

Proposition A.4 (Second compatibility conditionsWith the same notations as the one used
for the first conditions. We suppose thatis the semi-spac# = R"! x R, and that
L, T = +00.Then

1. Forall j,ksuchthatl + £ =1—1(141)

[l

2. Forallj,isuchthat +1=1-1(141)

/+00/ /+oo d'hy T) ajfl( )
Rn—1 8tl w770- aV]wO-Z

akh 8jgk

2
d
8Zk /7 T7t) - aI/] (wl,as,t) dtdwl—o- < 4o0.

o

2 do
dzdd'— < +o00.
o
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3. Forallk,lsuchthat§+§: 1-1(1 41,

s t
“+o00 —+00

PROOF Itis a direct consequence of theorem 2.2 of Lions-MagebgsWe do it for
one mequallty We differentiate and obtain tha’f’f <atl ) belongs tdl**(B x R} x R}),

with % =Z= ; =1- (; z) ) Slnce,; + X = 2, we can conclude. O

t) a gk ?

do
/
B dx,dx . < 400.

—= (', z,,0°, )

8zk

Definition A.5. We define
F =[] w%"%0Bx(0,L)x(0,T)x [] #**(@Bx(0,7)x [] Ho‘lvﬁl(@Bx(O,L)).I
j<r_, k<s—% l<t—%

Let Fy, be the subspace @f comprising functionsh;, gx, f;) satisfying both compatibility
conditions stated in Propositions A.3 and A.4.

Let¥ = 0B x (0, L) x (0,7). We state the principal extension theorem.

Theorem A.6 (Surjectivity of the trace map)The trace map

v HT’S’t(QT) — F()
v (h379k> fl)
is onto and has a continuous right inverse.

PrROOFR. We need interpolations equalities (A.2) and (A.3). We amied to prove the
surjectivity. Let(fl,gk, ;) bein FO Then, there existg in H*!(Qr) such thata o = h;
forall0 < j <r—21. And (f; — dlp, gr — 0%, 0) belongs toFy,. Thus,g, — ajcp belongs
to HEG (R x B). Usmg theorem 4.2 of Lions-Magenes [6], there existm H"5'(Qr)
suchthat% =0forall0 <j<r—3, anddazﬁf =gr — Ofpforall 0 < k < s— 1.
And (f; — dlo — 9,1, 0,0) belongs toFy,. Thus,fl Ol — Oy belongs tagy o (R x B).
By Theorem 4.2 of Lions-Magenes [6], there exitin H™*'(Q+) such thatgj—,ff = 0 for all

0<j<r— ;,g—f =0forall0 <k <s—1 andngﬁf:hl—aﬁgo—aiwforallogl<t—%.

u = p+1+ belongs tdl"**(Qr) and has traces;, g, ). The construction also provide
the continuous right inverse. O

We know for the spacdd”™* and these spaceék *! the compatibility relations. However,
these relations ensure the surjectivity when all tracepiaagents. Sometimes, we only wish
to extend a subset of all traces. If the direct compatibil@élations are verified, can we
always complete the mandatory traces by dummy traces sathltttompatibility relations
are satisfied? We prove in two particular cases that no neirertccompatibility relations
are necessary. From now, we denotexbg vector ofR" with decompositiore = (&', z,,)
wherez’ belongs taR"~! andx,, is scalar.z is the additional variable of spackis the time
variable.

Theorem A.7. Let B be a bounded open set with a smooth boundary, Arahd T two
positive real. Then, the maps

H22(B x (0,L)) — H2(B x {0}) x H2(B x {L}) x H2(dB x (0, L)),
U U U A4
w s (g—u(a:eE)B),%(-,-,O),—Z—(-,-,L)). (A4)

z
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and

H*>2YB x (0,L) x (0,T)) —

w\»—
m\»- M\»—A

FHOB x (0,1) x (0,1) x H¥(B x {0} x (0,7))

< HE (B x (L} % (0.7)),
u (g—Z(w € 6B),%(-,-,O,-),%(-,-,L,-))

(A.5)
are onto and have a continuous right inverse.

PROOF By abstract consideration on Hilbert spaces, we only neguidee the surjec-
tivity. By local map and partition of the unity, we reduce bptioblems to the case = +oo,
T = +oo,andB = R"' xR} . Let fy, g be inHz (R x RF)Hz (R x R} ). To apply
the surjectivity theorems of Lions-Magenes for map (A.48,must constructy, g, such that
(91, f1, 90, fo) satisfy all compatibility relations. We first notice thaetke is no direct com-
patibility condition betweerf; andg,. Then, we construgj, and f, with Theorem A.8. We
use the same method to prove the surjectivity of map (A.5)agm@y Theorem A.6, we use
Theorem A.9 to construgl and, hq satisfying the compatibility condition. Constructirfg
is easy and anyway not necessary because of the way we proeedem A.6. O

A.3 Completion of traces for the spadé?(R"~! x RT)

Theorem A.8. There exists a linear continuous map from L2(0, +oo; L2(R"1)) to the
spaceH" (R"~! x (0, +00)) and fromHz:z (R"~! x (0, 400)) to the spacels's (R x
(0, 4+00)). Moreover, there exists a constatitsuch tha¥ (f)(-,0) = 0, and

o |2
/+ || f||L2 R™— 1)d < CHfH
0

PROOF. Hereﬂ is the partial Fourier transform of in the first two variables. We de-

L2(0,4o00; H2 (Rn=1))"

fine?(?)(f, z) = x(zv/ 1+ [€]?) [J f(&, z)dz, wherey is a smooth real function satisfying,
0 < x <1, with Supp( ) C [0,2] andX = 11in[0,1]. Y is the application we were looking
for. Verifying it is tedious but straightforward. O

Theorem A.9. There exists a linear continuous mapfrom Hz'z'1 (R”~! x R} x R,) to
H221(R%! x RF x R,) and a constan” > 0 such thatA (f)(-,0,-) = 0, and

OA(f) dz
LS L[58 a2 <Ot i
PrROOF.  We first define theB operator with help from Theorem A.8. For aflin
H2:21(R™! x RF x Rt) we deflneB(f)(t) asY(f(t)) for all time¢. We then define\ (f)
asAf = x(z(1 + |72)1)B (f) where the Fourier transform is only in time and whegris
smooth and satisfiesy = 1in (—L/4,5L/4), andy = 0in C(—L/2,3L/2). A has the
required properties. The verification is straightforwaund tedious. O

N’
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