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Abstract: We obtain some microlocal estimates of the resonant states associated to a
resonance z¢ of an h-differential operator. More precisely, we show that the normalized
resonant states are O(4/[Im zo|/h +h*°) outside the set of trapped trajectories and are
O(h®) in the incoming area of the phase space.

As an application, we show that the residue of the scattering amplitude of a
Schrodinger operator is small in some directions under an estimate of the norm of
the spectral projector. Finally we prove such a bound in some examples.

1. Introduction

The original motivation of this paper is the study of the residue of the scattering ampli-
tude associated to a Schrodinger operator P (h) = —h2A + V(x) on R". The first works
treating this question are due to Lahmar-Benbernou [17] and Lahmar-Benbernou and
Martinez [18]. In these papers, they consider the case where the potential V(x) is a
“well in an island” with non-degenerate local minimum. In this situation, the form of
the resonances is given by the work of Helffer and Sjostrand [13]. Near a resonance z
simple, isolated and close to the energy of this local minimum, the scattering amplitude
can be written

£ (w, o, h)
Z—20

flo,o,z,h) = + ol w, o, 2, h),

with f"°! holomorphic near z(. Using the form of the resonant states associated to z,
Lahmar-Benbernou and Martinez proved that
|f" (@, &, W] = g(h)[Im zo],

where g (/) has an asymptotic expansion with respect to 4. Moreover, they showed that
for some directions (w, @), determined by the Agmon distance to the well, the residue
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is O(h*°) while for some other ones, they obtained an explicit non-vanishing principal
term for g(h). Their proof is based on the knowledge of the resonant states given by
[13].

In [30], Stefanov generalized some parts of this result and proved that for V €
Cg°(R") and z¢ a resonance which is simple and isolated in a sense made precise in
[30], one has

1F7 (. &' )| < Ch™"T |Im zo. (L)

This result was next improved by the second author in [23] where estimate (1.1) is
established for general long-range potentials under a weaker separation condition on
resonances. In [30] and [23], the method employed stands on the semiclassical maxi-
mum principle of Tang and Zworski [32] and a resolvent estimate of Burq [5].

In the case where |Im zo| < ChM for M > 1 and |Im z9| # O(h®), it shows only
that | f7| = ON) for N € R, whereas it is proven in [18] that the decay of the
residue may depend on the direction considered. In particular, one can think that there
exists some couple of directions (w, ') such that the associated residue is O(h*°). One
of our motivations is to show the existence of such directions for resonances “far” from
the real axis.

In the case where the potential V' is compactly supported, we have a nice represen-
tation formula for the scattering amplitude, so that one can easily see the link between
the problem of the residue and the estimate of the resonant states announced in the title.
Indeed, as is proven in [24], one has

fl@, 0,2, k) =czh) | e VEED RN Rz, BIRZA, xale Vel by,
Rll
(1.2)

where R(z, h) : L2, — H l%c denotes the meromorphic continuation of the resolvent
of P to a conic neighgorhood of the real axis and

n+1 . (n=3)

1 s
c(z;h):zz%(znh)*Te*l el (1.3)

Moreover, if one denotes by Py the operator obtained from P by analytic dilatation (see
[28]), and if one assumes that the dilatation is performed sufficiently far, one gets

flw, 0,2, h) =czh) | e VERD RN (P — )7 [WPA, xa)e!VEE Ty,
Rn
(1.4)

Assume that zg is a simple resonance and that there is no other resonance in a disk D
centered in zo, then the residue is given by the formula

Fre @, 0 1) = czos (IR A, i 1Tglh* A, yolet V@t giVaatelihy = s)
where Iy is the spectral projector associated to zg. Moreover, as Iy is a rank one
operator, there exist ug, vg € L? such that Ty = (., vg)ug and one can show that

(Py — z0)up = 0 and (P—g — Zo)vg = 0. It follows that

Fre (w, @', h) = —c(z0; h){ug, [R2A, x11e VORI ([RZA, yole Vol h
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On the other hand, it is easy to see that the functions [h2A, X*]eim (x.0")/ 1 are micro-
localized near {(x,&); R1 < |x| < Ry, &/|§] ~ w*} for * = w, @'. Our approach
consists to show that for suitable directions, the resonant state uy is microlocalized out
of this set. In fact, the microlocal estimate that we will prove holds for more general
operators than Schrodinger ones.

To state precisely our results, we need to introduce the following class of symbol (see
the book of Dimassi and Sjostrand [7] for more details). We say that g € C®(R?; R%)
is an order function if Vo € N¢, 0¢g(x) = O(g) uniformly on R?. A function a(x; h)
defined on RY x]0, hg] for some g > 0 is said to be a symbol in the class S;(g) if
a(x; h) depends smoothly on x and

Va e N4, 8% (x; h) = O(g),

uniformly with respect to (x, h) € R4 %10, ho]. We will say that a(x; h) belongs to
S;l (g) if there exists a sequence a;(x) € Sy(g) such that forall N € N,

N
ax;h) =) aj(x)h! € KNT1S,(g),
j=0
uniformly with respect to k. For a(x, &; h) € S2,(g), one can define the h-pseudodif-

ferential operator (in the Weyl quantization) A = Op}’(a) = a(x, hDy) associated with
a.For f € C°(R"),

1 r—y
Op @00 = o [ a2 ki) ) ds a.

In this case, we say that a is the Weyl symbol of A.
In this paper, we consider P (k) an h-differential operator on R”, having the form

P(h) =) aa(x; h)(hDy)", (1.6)

loe|<2

where aq (x; h) € S,‘il(l) and ay (x; h) does not depend on £ for || = 2. We assume
that P is formally self-adjoint on L2(R"), that is

Vu,v € Ci°(R") f(Pu)vdx = /u(Pv)dx. (1.7)
We suppose also that P is elliptic, that is,
D an(0E” > €17/ C. (1.8)
lor|=2

To define the resonances, we assume that the coefficients a, (x; &) extend holomor-
phically in x in the domain

Y = {x € C"; [Imx| < 8o(Rex) and |x| > Ry}, (1.9)

Ry > 0, 80 €]0, 1[ and that P converge to —h2A at infinity in the following sense:

> an(xi hEY — €7, (1.10)

loe|<2
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as |x| = 400, x € I', uniformly with respect to 4. Under these assumptions, it is clear
that P is a self-adjoint operator with domain H2(R") and one can define the resonances
associated to P by the method of analytic distortions (see Aguilar—Combes [1], Hunziker
[14] and Sjostrand—Zworski [28]).

Let F : R" — R”" be a smooth vector field such that F(x) = 0if |x| < Ry and
F(x) = |x| for |x| large enough. For v € R small enough, we consider the unitary
operator U, on L2(R") defined by:

Upo(x) = det(1 + vd F(x)) " 2¢(x + vF(x)).

Then, the operator U, P (h)U = ! has coefficients which are analytic with respect to v near
0 and can be continued to complex values of v. For v = i@, with & > 0 small enough,
we get a differential operator denoted by Py. It is well-known that the spectrum of Py
is discrete in the sector Sy = {z € C; Rez > 0 and — 20 < argz < 0} (see [28] and
[26]) and by definition, the resonances of P are the eigenvalues of Py.
We denote by p(x,&;h) € S5 cl ((5)2) the Weyl symbol of P and po(x,&) =

Z‘ o|<2 da, 0(x)&% is its principal symbol The Hamilton vector field associated with

pois Hpy = 05 po.0x — 0y po.0d¢ and exp(tH,,o) t € Ris the corresponding Hamiltonian
flow. We define the outgoing tail and the incoming tail at the energy E by

T4 (E) = {(x,§) € py (E); exp(tHpy)(x, £) = o0, 1 — Foo}.

Hence, the set of trapped trajectories is

TE)=T(E)NT_(E)={(x, &) Epa] (E); t — exp(tHp,)(x, &) is bounded on R}.

For E > 0,7 (E) is a compact set (see the appendix of the paper of C. Gérard-Sjostrand

[11]). Setting 7 ([a, b]) = UEe[a’b] T (E), we give another proof of a result of Stefanov
on the localisation of the resonant states:

Theorem 1. Let Eg > 0 be a fixed energy level, € > 0 small enough, 6 = h/C with
C > 0, let z € C be a resonance of P withRez € [Eg — €, Eg + €], [Imz| < €0, and
let ug € Lz(R”) be a resonant state associated to z:

(Py — 2)ug = 0. (1.11)

If w(x, &) € S, (1) withsuppw NT ([Eg — €, Eg + €]) = 0, then

|Imz|

Opy, (wug = O < o

+ h°°) llugll. (1.12)

Remark 1.1. For compactly supported perturbations of the Laplacian, this is a straight-
forward consequence of the estimate given in Proposition 3 of [30] and propagation of
singularities given in Lemma 4.1 of [31]. As remarked by Stefanov, the same arguments
can be adapted for long-range perturbations of the Laplacian in view of Sect. 8 of [31].

Remark 1.2. Tt seems also possible to obtain such type of results using the semi-classi-
cal measures introduced by P. Gérard [12] and Lions—Paul [19]. Assume that 8 = o(h)
and that z — Eg (as & — 0) is a resonance with |[Imz| < €6. Let uy satisfying
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(Ps — 2)ug = 0 and |lug|| = 1. Following the works of Burq [6] and Jecko [16], one
can perhaps show that any semiclassical measure u of the sequence (ug);, verifies

{ supp u C 7 (Ey),

(1.13)
Hpou = 0.

Then it is enough to write (P — 2)ug = (P — Py)ug with o (P — Py) € S2,(6(£)?) and,
as |lug|l g2 = O(1), we deduce (P — z)up = o(1) and one can apply the proof of Burq
or Jecko.

Before we state our second result, let us introduce the following subspaces of the
phase space. For R > 0,€ > 0 and o € [—1, 1], set

F1(R,€,0) ={(x,8) e T"R"); |x| > R, |po(x,§) — Eo| <€
and =+ (x, &) > o |x||&]}.

We have the following theorem which says that a resonant state is outgoing.

Theorem 2. Let Ey > 0 and ugy be a resonant state associated to a resonance z as in
(1.11). We assume thatRe z € [Eg—¢€, Eg+e€], |[Imz| < €6 andh/C <6 < Chln(1/h)
with e, C > 0. Let w(x, &) € S2,(1) and suppose that there exists T > 0 such that
exp(—THp,) (supp(w)) C I'_(R,€,0) with R > 1 and o < 0. Then for h > 0
sufficiently small, one has

lw(x, hDx)ug | = Oh™)|lug. (1.14)

In particular w € C3°(T*(R")) such that supp(w) C 't ([Eo — €, Eo + D¢ =

Ug c[Eo—e. Eg+e) T +(E ) satisfies the hypothesis of Theorem 2. Because, for each point
p el ([Eg—¢, Eg+e€))C, exp(—tHp,)(p) isinasetI'_(R, €, o) if ¢ is large enough.

Remark 1.3. It is possible to generalize this result to the black-box setting (see [28] and
[27] for a precise formulation). Assume that the black-box is contained in D (0, Rp),
let x € C3°(R™) with x = 1 near D(0, Ro) and let w be supported in {|x| > Ro}
and satisfying the assumptions of the above theorem. If uy is a resonant state, then
lw(x, ADx)(1 — x ()ugll = OR®)llug].

Remark 1.4. Another possible generalization concerns the case of multiple resonances.
Assume that z is a resonance whose multiplicity N = N (h) is bounded uniformly with
respect to A, then the conclusion of the theorem remains valid for all generalized reso-
nant states (i.e. the functions ug € LZ(R") such that (Py — 2)Yug = 0). We will give
the idea of the proof of this generalizations at the end of Sect. 3.

The plan of the paper is the following. In Sect. 2, we make precise the action of the
FBI transform on pseudodifferential operators. In particular, we give the form of the
term of order 4 in the expansion of the transformed symbol.

Section 3 is devoted to the proof of Theorem 2. The demonstration is based on the
construction of a suitable escape function and an application of the result of Sect. 2.
The main idea consists to choose a weight G which permits to gain ellipticity near 0,
whereas the dilatation F gives ellipticity at infinity.

In Sect. 4, we prove Theorem 1 using again the results of Sect. 2.

Applying Theorem 2, we obtain in Sect. 5 an estimate of the residue of the scattering
amplitude associated to a Schrédinger operator. We treat the case of resonances whose
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imaginary part is bounded by O(hin(1/h)). This estimate involves the norm of the
associated spectral projector on the space of resonant states.

In Sect. 6, we give some examples where the spectral projector above satisfies nice
estimates. These bounds on the projector permit to show that the associated residue is
O(h®®) for some particular directions.

2. Microlocal Exponential Estimate

In this section, we give a microlocal exponential weighted estimate for C*° symbols
using a Fourier—Bros—Iagolnitzer (in short FBI) transform, widely studied by Sjostrand
[25]. The result is a slight modification of Proposition 3.1 of Martinez [21] (see also the
book of Martinez [20] for a related presentation).

For u € S'(R™), the FBI transform of u is given by

Tulx, & 1) = an(h) / =2y (g @1

with a, () = 27"/ (wh)~3"/*. As proved in [20], we know that Tu € C°°(R?") and that
652/2hTu(x, &; h) is an holomorphic function of z = x — i&. Moreover, if u € L2(R")
then ||Tu||Lz(Rzn) = ||u||L2(Rn). -
Let A be a h-differential operator of Weyl symbol a(x, &; h) ~ ijo aj(x,&)h’ €

ngl((é ). As a is polynomial with respect to & with coefficients in S, (1), one can
find an almost analytic extension a(x, &;h) € S;Q((g)d) of a in a D, x C", where
D. = {x € C"; |Imx| < €}, which satisfies

a~|R2H =a, 2.2)

ogd = O(IIm x| ) (£)°. 2.3)
Theorem 3 (Martinez). Let f(x,&) € S2,(1) and G(x,&) € Cgo (R2"). Then there
exists a symbol q(x,&;t, h) ~ ijo qj(x,§&; Hhl e ngq((é)d) uniformly with respect
to t and an operator R(t, h) such that for all u, v € CSO(R”), one has

(fe_[G/hT OpZ}(a)us e_tG/hTU)LZ(R2n)

=((q(x, &8, h) + R(t, ) e ™"/ Tu, e 7'/ T0) (2.4)

LZ(RZ”)’

wheresupp g; C supp f forall j € N. Here, we have with the notation 8; = (0x~+idg)/2,
qo(x, &) =f (x,&)ap(x +210zG(x, §), & — 2it0zG(x, §)), (2.5)
10650 =(far = foda0/4 — foka0/4 — 0. foao/2 = s fza0/2) (+., €)

i

+ z(i)gaoaxf - Bxa08§f>(x, £)+ O, (2.6)

and
|| <$)GR(I, h)(s)—d—ﬂ' ‘|£(L2(R’l)) — O(hOO + h—3n/2|t|ooe2sup\G||t\/h)’ (27)

for all o € R, uniformly with respect to t and h small enough.
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Remark 2.1. Theorem 3 holds also for A = Op}’(a) witha(x, &; h) € Sgil(l), since one
can find an almost analytic extension of @ which satisfies (2.2) and (2.3) with d = 0.

Proof. This theorem is a slight adaptation of Proposition 3.1 of Martinez [20] and we
follow his proof.
Let

To = (fe™'/"T Au, ™'/ T0)
an(h)®

—+ (v ’
= (27-[]1)’1 /eq>/hf(x,§)a(y 5 Z’ n; h)u(Z)U(y/) dx ds dydr]dy s (28)

where

O =-2G, &) +i(x —yE—i(x —Y)E— (x —¥)?/2— (x —Y)2/2+i(y — .
(2.9)

We have, for Y = (y,7) € R* and X = (x 4+ 2:3zG(x, £), & — 2i9zG(x,§)) € C™",

a(Y; h) — @(X: h)
_/1 (Y —Re X) 82’J(Y (1-5)X) Imx 2
_0<_e gRex ¥ U T = Im A

LY+ ~ X)) ds

! dd Lo
=/0 (@ =X (Y + (1 -9)X) +20Im X = (sY + (1 ~ X)) ds
=Y —-X)b(x, &, y,mt,h) +r(x, & y,n;t, h), (2.10)

with b € ijl((é, n)?) and r € S4,(|t|>° (€, n)?) uniformly with respect to ¢. In addition

1
bo(x, &, y,m; 1) = /0 (3xao, dao)(sy + (1 —s)x, s+ (1 — $)&) ds + Ot (&, n)?).

2.11)
So, we have
Ty = (f(x. )A(X: h)e /" Tu, e7'C/"To) + 11 + R,
with
Oln(h)2 y4+2z
| = Q) /ed)/h(((y—i-z)/Z, n) —X)f(x,é)b(x,é, —,;7)
x u(2)v(y) dx dé dydndy', (2.12)
_ ay(h)? ®/h ) NdxdEdydndy'. (2.13
V= Qe | € fe,Erx, & (y+2)/2, pu@@v(y)dx dé dydndy’. (2.13)
We have

(0x @ +i0: D +i0,P)/2 = (y +2)/2 — x — 2t3zG (x, §),
—idy® —i(0x P +i0:P)/2=1n—&+2it3zG(x, ).
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Thus there exists a constant vector-field L(0y, d¢, dy, d5) such that L(®) = (((y +
2)/2,n) — X ) Making an integration by part with L in (2.12) and using

a'(e, & (y+2)/2m:t.h) ="L(f(x, ©)b(x. & (y +2)/2. n: 1, b)),
which satisfies a! € sz((é, n)?), SUPP(x £) a' C supp f and

aé(x,&,y, n;t) = (— 0x/2 —10:/2 —i0y/2,i0y/2 +10,/2 — 85/2)

2.14
(G E)bo(x, £ v, m: 1), 19

we get
Ty = hle™"“/" T u, 'O/ T), (2.15)
with

Tu(x, ) :a,,(h)/ei@ﬂ’)f/h*(*y)z/% OpP(a'(x, &, ., .;t, )u(y)dy. (2.16)

We repeat the same work for 77 as this done for Ty and, by induction, we can find, for

j=0,1,...,N,symbols g;(x,&;t) € §52,(1) uniformly with respect to . Moreover,
suppg; C supp f and
qo(x,&;1) = f(x,8&)ao(x +210zG(x, §), & — 2i1dzG(x, §)), (2.17)

qi(x, & 1) = f(x,8&)a(x +2t0zG(x, §), & — 2i13zG (x, §))
+aj(x, £, x +2t32G(x, ), & — 2it3zG (x, §); 1)

= (far = foZ.a0/4 — fokao/4 — o fixao/2 = B foear/2) (x. §)

i
+5 (9caud £ — dxaode £ ) (v, £) + O(0) 2.18)
such that, for each N € N,
N-1 '
Ty = < Z qj(x,&; t)h/e’G/hTu, etG/th> + hN<e_tG/hTaNu, e_tG/th) + Ry,
j=0

(2.19)

where a” and Ry satisfy the same properties as a' and R;. Using what T is an isometry
on L2(R?"), we write

Tov = (e "S/"T N T*Tu, e7'“/" ),
Ry = (e7"9/" T, T*Tu, e/ T ), (2.20)

where a¥, ry € S4,((£, n)?) have their support inside supp f. Applying Lemma 6.1 of
[21] with t = 0 and / = 0, we get

€)Y T T*(E) 77| = O(D),
I(E) T T*(E) 7 || = O(It]>), (2.21)

which give Theorem 3 since e ~*0/| < ¢soPIGlltl/h
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3. Proof of Theorem 2
We begin the proof with some geometric results.

Lemma 3.1 (C. Gérard-Sjostrand). Assume that K C Po ! ([Eg — €, Eg + €]) is com-
pact and satisfies K NT ([Eo — €, Eg+€]) = 0. Then, one can find a function f(x, &) €
Cp°(T*(R™)) such that Hpy f > 0 on po_l([Eo —e,Eg+e)andH, f > 1on K.

Proof. We follow the proof of Proposition A.6 of C. Gérard and Sjostrand [11]. We give
the proof for a reason of completeness and we use their notation. Let Hr = {(x,§) €
T*(R"); po(x, &) € [Eg—¢, Eg+€]and x.& = T} with T large enough. Let T > 0 and
0 < f1 € C%(py " (LEo—e. Eo+e)\I'- (IEo—€, Eq-+€])) beequal to x (x.£)Hp, (x.£)
outside a compact with x € C°([-T — T — 1,T + T + 1]; [0, 1]) equal to 1 near
[T — T T + T]. As in [11], we can solve Hp (G4) = f4 in pgl([Eo — €, Ey +
eD\['_([Ep — €, Eg+€]) withGy =T on Hr. Wehave Gy < T + T + 1 and, if f}
is large enough in a compact,

limsup G4 < —T. 3.1
I'_NH_t

We construct G_ with analogous properties.

Let x4+ € C®(R; RT) with supp x+ C [FT, +o0[ and with x4 (¢) + x— (t) =t.Put

G = X+(G+) + x— (G ). By (3.1), we have, near p, ([Eo —¢€, Eg + €]), G e Cb s
po(G) >Oande0(G) >c¢>0for(x,&) e {-T — T <x.& <-T}U{T <x.£ <
T+T).

As K is compact and K N T ([Ep — €, Eg + €]) = ¢, there is s > 0 and T > 0 such
that (x, 5) € K implies exp(sH,)(x,8) e (T <x.5 < T + T} orexp(—sHp)(x,§) €
=T — T < x.£ < —T}. Then, we can take f € C®°(T*(R")) with f(x,§) =
G (exp(sH,) (x, £))/c + G (exp(—sH,) (x, §)) /¢ near p~' ((Eg — €, Eg+€]). O

Leto €]—1,0[and a € C(‘)>o (R; [0, 1]) be a decreasing function such that «(x) = 1
if x <o and a(x) =0if x > o/2. We define

B, §) = (e f (pote, € (7 H‘;) (3:2)

where f € Ci°([Eg — €, Eg + €]) and p € C*(R; [0, 1]) is growing with p(x) = 1
for x > R and p(x) = 0 for x < R — 1. It is obvious that w € S,,(1). We have the
following lemma for w, that will be useful later.

Lemma 3.2. For o > 0 small enough and R large enough we have Hp,w < 0.

Proof. Using (1.10), one can show that, for po(x, §) € [Eg — €, Eg + €],

_ (28 +0(1)
Hp, —< o(1/x) ) (3.3)

where o(1) is a function which tends to 0 as |x| — +o00. Then
Hip(x, €) = £(poCx. £)p(1x ) Hpger(

€] > Eg — € +o(1).

x x&
wer) e ene(T (D
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For (x, &) € supp(Hp,w), we have

(i) = GO CRE 5+ )

|x[I€] x| 7\ x| |x[? |x|

< %0/( |;|‘é|) (ZEO —2¢4o(l) — 202) :

and, on the other hand,

’ x.§
Hpo (b)) = o/ (D (5 + (1)
< 0'(1xD)(@/2 + o(1).
If we fix 0 > 0 small enough and after R large enough, we have H,yw < 0. O

Now, we can begin the proof of Theorem 2. Consider z € C, ug € H*(R") and w as
in Theorem 2 such that (Py — z)ug = 0. For N € N, let w;(x,§),j =1,...,N,00
be of the form (3.2) with w < w; < -+ < wy < weo, Where the w; are defined by
wj(x, &) = @1(exp(tHp,)(x, £)). Here, the notation g; < g> means that go = 1 near
the support of g1 and one can easily see that Hp,w; < 0,V j. Denoting by (., .) the scalar
product on L2(R?"), we have

0 = (wix, &)e™"9/"T(Py — Dug, e 7'/ Tuy). (3.4)
We can apply Theorem 3 with Py to get
((qg(x, £:t,h) —2)e "9 " Tuy, eftG/hTug)
=O((h™ + t°°h’3”/2)e5“p|G”’|/h) He*’G/hTug H2 (3.5)
with
qo(x, €1, 1) = go.0(x, & 1) + hgp.1(x, € 0) + (hlt] + BPro(x, E: 1, h),  (3.6)

where gp o and g1 are given by (2.5) and (2.6) and ry € Sy, (1) uniformly with respect
to ¢, 0 and supprg C supp wi.

Lemma 3.3. We have the following expansions

Imgo0(x, &5 1) = —wi(x, §)H,, (1G(x, &) + OF ()€) + wi(x, §) OO +17),
3.7

and
1
Imgp,1(x, & 0) = szw%u, £) + w3 (x, £)O(O). (3.8)

Proof. First, we recall that P being formally self-adjoint, the symbols pg and p; are
real valued. We will denote by pg(x, &; k) the symbol of Py, and by definition, we have

Po.0(x. &) = polx +i0F (x), (1 + 00, F(x))"'&). (3.9)
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Notice that one has

Po.o(x, &) = po(x +i0F (x), & — 00, F(x)&) + O(0%)(€)*
= po(x, &) +i0(F(x)dx po(x, &) — 3 F(x)Ed po(x, &)) + OB (£)?
= po(x, &) — i0H,, (F(x)€) + O(6%)(£)2. (3.10)

Combining Egs. (3.10) and (2.5) one gets
go.0(x, & 1) =wi(x, &) pao(x +2t9.G(x, £), & —2itd,G(x,))
=w(x, g)(ﬁo(x +210.G(x, §), & —2i10,G(x, £))

— i0H ) (F(0)&) (x 4 29,G (x, §), & — 2i18.G(x, £)) + (9(92)).

By Taylor expansion, we obtain

go.0(x, & 1) = wi(x, &) (pox. ©) + 1(0: P00, G + e P02 G) (v, €)
—itHp, G (x, &) — i0H,y, (F (x)&) (x, §) + O(0* + t2)>. (3.11)

Taking the imaginary part, we obtain the announced expansion for gg 0. Now, let us
prove the formula on gg, 1. From formula (2.6), we know that

q0.1(x, £;0) = (wipg1 — w3, po.0/4 — w02 Po.0/4 — drwidxpo.0/2
i
—dsw}ds po.0/2)(x, &) + 5H,,e_ow%(x, £). (3.12)
By Taylor expansion, we get

Po.1(x, &) = pi(x, &) + OB (£)?),

and
HPe,()w%(xv §) = Hpow%(x’ &)+ O(Q)w%(x, £).

The symbols pi, po and w; being real valued, the result comes directly by taking the
imaginary part of (3.12). 0O

As x& is an escape function and F(x) = x for x large enough, we have, on
Py (LEo — €. Eo +€)),

c>0 for|x| >R,

Hp, (F(x)§) > { M forlx| <R (3.13)

with R > 0 large enough. We fix K = suppws N B(0, Ry) C po_l([Eo — €, Ey +
e)NT([Ey — €, Eg + €])¢ and we denote f(x, &) the function given by Lemma 3.1.
Let x1 € C5°(R", [0; 1]) such that 5 (x) = 1 for [x] < R+ 1 and x2 € Cj°(R; [0, 1])
with x2(E) = 1on[Eg — €, Eg + €]). Asin [21], we set

G(x, &) = 1) x2(polx, £)) f (x, ) € CFR™). (3.14)
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Since x1 can be chosen arbitrarily flat, the quantities

m = sup [x2(po(x, &) f(x, &) Hpy x1(x)l, (3.15)

can be chosen arbitrarily small. We take + = L6, and we have, on the support on wee,

—Lu+c for |x| > Ro,

L—Lu—M for x| < Ro. (3.16)

H,,(tG(x,§) +0F(x)§) > 0 {

We fix L > 2M and p small enough so that (3.16) becomes
Hpy(tG(x,8) +0F(x)§) = 0c/2, (3.17)

on Supp Weo.
Equations (3.6), (3.17) and Lemma 3.3 imply

—Im ((go(x, &1, h) — e Gy, e"G/hTua)
> 96/4Hw1(3_’G/hTu9 ||2 — h(lepowle_’G/hTug, e_’G/hTu9>

OO + 1) |wae "/ Tuy |, (3.18)
Since wiHp,w; < 0, by Lemma 3.2,
—Im((go(x, &5 1, h) — 2)e "/ " Tug, e/ " Tuy)
> Oc/4|wie™" " Tuy ||2 + OB* + h?)||wae™" M Ty ||2. (3.19)

Using (3.5), we get

2

’

||wle_tG/hTu9 H2 < (’)(0)” wae 19Ty, H2 + (’)(hoo)” Tug

and by induction,
|wie /" Tug|* < OOV ") |wwe ™" Tug | + OB Tug |
< O(pN 1 RT2CLSIGH) 4|17, (3.20)
which implies
[wiTug| = O*B™®)||us]. (3.21)
Now, choose wgy € S»,(1) such that w < wg < w; . One can write
IT Opy, (w)ug |l < lwoT Opj, (w)ugll + (1 — wo)T Opy (w)ug|.
Using two times Theorem 3 with A = Opj’ (w) and inequality (3.21), we have

llwoT Op}! (w)ug|I* = (woT Op} (w)ug, woT Opy’ (w)up)
= (q(x, & W) Tug, Tug) + Oh™)|lug|?
= Oh™)|lugl?, (3.22)
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since g (x, &; h) € S7,(1) satisfy ¢ < w;. On the other hand,

(1 —wo)T Opy (w)ug(x, &)

o (h
= % e®M (1 — wo)(x, &)w((y +2)/2, 1 h)ue(z) dzdy dn, (3.23)

with
D(x, &, y,m2) =ilx —yE— (x—y>/2+i(y — D). (3.24)

We notice that 9, ® —i/20,® = i(n — &) + (x — (y + 2)/2). So, making integrations
by parts in (3.23) with

x-=0+2/2)—-iln—-§) ,
L= 0y —i/20y), (3.25)
(= (+2/22+ =52 !
and using the fact that supp w N supp(l — wg) = ¥, we find, for each N € N,
a, (h)
Qmh)"
= hN Ty T*Tuy,

(1—w0)T Op}y (w)ug = h" e®Msy (x, €. (y+2)/2. 1 h)ug(2) dx d& dy dn

with sy € Sy, (1). So (2.21) implies (1 — wo)T Opy’ (w)ug = O(h™)|lug || and we get
Opj, (w)ug = Oh™)|lugll, (3.26)
which gives Theorem 2. 0O

Let us explain briefly how to generalize Theorem 2 to the black-box setting and to
multiple resonances. Assume that x, w and ug are as in Remark 1.3. We have (Py — z)
(1—x) = (Qp—2)(1—x), where Qg is adifferential operator satisfying the assumptions
of Theorem 2. Following the proof above we get

|Im (w1 (x, £)%e /" T (Q9 — 2)(1 = X)ug, e '“/*T (1 — y)uy)|
> Co ||w1e_tG/hT(1 — X)ug H2 — (9(6’2)||wze_’G/hT(l — X)ug ”2

On the other hand, we can always assume that supp x N supp, w; = ¥ and one deduces
from Theorem 3 that

(wi(x, 629" T (Qg — (1 — g, e '“/"T (1 — x)uo)
= (wi(x,§)2e " T[Qg, xlug, e 'O/ T (1 — x)ug) = OB™)|lug.
It follows that lw; (x, £)T (1 — )ugll = Oh™®)|lug|l + O |wa(x, )T (1 — x)ug|

and working as in the proof of Theorem 2 we show that ||w(x, hDy)(1 — Y)ug| =
O upll. O

Now, as in Remark 1.4, assume that z is a resonance whose multiplicity N = N (h) is
bounded uniformly with respect to / and that ug is a generalized resonant state associated
to zo. By definition, (Py — 20)Nup = 0 and we deduce from Theorem 2, that

lwy—1(x, hD)(Ps — )N ugll = O)[(Ps — )V ugll = O™) |lugll.
(3.27)
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Using this estimate and the proof of Remark 1.3, we obtain
lwy—2(e, kD) (Po = )N 2ugl = OG™)lug .
and repeating this argument N — 2 times (here we use that N is bounded with respect to

h), we deduce that if w satisfies the assumptions of Theorem 2 and ug is a generalized
resonant state associated to zg, then ||w(x, AD)ug|| = Oh®)|lug||. 0O

4. Proof of Theorem 1
The proof uses essentially the same arguments as in the proof of Theorem 2.
For N e Nyletw < wp < -+ < wy < Weo € Sz, (1) with supp weo NT" = ¥ and let

80 <+ < 8N < 8oo € CJ°([Epg—3€, Eg+3€]) with gg = 1 near [Eg —2¢ + Eo +2¢].
Applying Theorem 3 with f = g(z) (po(x,&))andt = Ch, we get

0 = Im(go(po(x, &))e "/ T (Py — 2)ug, e~/ " Tuy)
= Im (g0 (x, & Ch, h) + O(h™) — 2)e "9/ " Tug, "%/ M Tuy), (4.1)

with
qo(x.& Ch,h) =Y g j(x, & Ch)h/.
j=0
Following Lemma 3.3, one can choose G(x, §) € C§°(supp w2) as in (3.14) such that:
e 2 2 2y.2 2
Imgp o(x, &; Ch) < —g5(po)wgh + O(h~)g1 (po)wy. (4.2)
Using Remark 2.1 and the fact that Im g (x, §; 0) = 0, we get that
Im gy j(x,& Ch) = O(h*)g} (po)wi (4.3)
for j > 1. So (4.1) implies
lgo(po)woe ™" Tug > = O g1 (po)wie™ /" Tug|?
I
+0 (' iad +h°°) e Tugl2. (44

By induction,
ligo(po)woe ™"/ " Tug||> = OBM)Ign (po)ywye ™ /" Tug|?

Imz _
+O(| ; |+hoo) ||€ tG/hTMgHZ,

and since e 79/" = O(1) and ¢'9/" = O(1),

[Im z|
lgo(po)woTugl* = O (T + h°°) ITugl?. 4.5)
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Now,letg oo < gy < -+ < g_1 < g0 € C°(R) with g_oo = lon[Eg —¢, Eg +
€]. Applying Theorem 3 witht = O and f = (1 — go(po))zsign(po — Ep) € S2,(1), we
have

0 =Re((1 — go(p0))*T (Ps — 2)ua. Tug)
=Re((go(x,£; 0, h) — 2+ O™ (E)*) Tug, Tug). (4.6)

‘We have

Re (qo(x, £;0) — 2) = (1—go(po))?sign(po— Eo)(po—Re 2) + O(h)(1 — g—1(po))*
> (1 — go(po))*(£)2/C + Oh)(1 — g_1(po))?, 4.7)

with C > 0 large enough. On the other hand, we know that, for j > 1, gy, ;(x,£;0) €
Sz,,((é)z) satisfies supp gp, j C supp(1 — go(po)). So (4.6) proves that

(1 — go(po)) (&) Tugl> = O — g—1(po)(E)*Tugll* + Oh™®)|(E)* Tugll%,
4.8)

and by induction

(1 — go(po)) (&) Tugll* = OGM)I(1 — g—n (po))E)2Tugll* + Oh™®) (&) Tugl|*
= O™)I1€)* Tug . (4.9)

As Py is elliptic in the classical sense, (1.11) implies,

llug ||H2(Rn) =O0)|lug ||L2(]Rn),

which, in view of (2.21), implies

1(&)> Tug || = O1) [lugll. (4.10)
So (4.9) becomes
11 = go(po)) Tugll* = OB®)|lug |, (4.11)
which gives, with (4.5),
lwoTug|* = O ('IIZ—Z' - h°°> g 1. (4.12)

We conclude as at the end of the proof of Theorem 2. 0O

5. Residue Estimate of the Scattering Amplitude

In this section, we assume that P is a Schrodinger operator

P=—nA+ V), (S.1)
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where V(x) € S,(1) extends holomorphically to the domain Y defined in (1.9). To
define the scattering amplitude, we make a long-range assumption on V (x):

Pp>03C>0Vxel, |VE)|<Clx|™. (5.2)

In particular, P satisfies the assumptions of Sect. 1. We can define the scattering matrix
S(z; h), z € R*%, related to Py = —h>A and P, as a unitary operator:

S(z;h): LAS™ Y — L2(S" .

Next, introduce the operator T (z; &) defined by S(z; h) = Id — 2in T (z; h). It is well-
known (see [15]) that T'(z; ) has a kernel T(w, o', z; h), smooth in (w, ') € $"~! x
S"~1\ {w = '} and the scattering amplitude is given by

flw, o, z;h) =ci(z; T (w, &, 25 h),

with
(=3 3)71
c1(z; h) = =27 (2z)~ = (2nh)7 i . (5.3)
In [10], C. Gérard and Martinez have shown that for w # ' fixed, the scattering ampli-
tude has a meromorphic continuation to a conic neighborhood of R* , whose poles are
the resonances of P. Moreover, the multiplicity of each pole is exactly the multiplicity
of the resonance.

In this section, we still assume that zo(h) is a simple resonance of P such that
Rezg € [Eg —€,Eo+€]and 0 < —Imzp < Chln(1/h). Under this condition the
scattering amplitude takes the form

res , /; h
ooz = LT8G gt of oy, (5.4)
Z—20
where £/ (w, @', z; h) is holomorphic near zo. Our aim is to give an estimate of the
residue f"** in some special directions:

Definition 5.1. We say that € S"~! is an incoming direction (resp. outgoing direc-
tion) for the energy Eq iff there is €, R > 0 and W C S"~!, a neighborhood of w, such
that, for all (x,&) € p~ (IEg — €, Eg + €])

x| > R and é—l eW = . lim exp(tHp,)(x, §) = oo. (5.5)
——00

(resp. limexp(tHp,)(x, &) = co as t — +00).

Remark 5.2. If p > 1, w is an incoming direction iff there is R > 0 such that
p(x,&) = Ep, |x| > Rand é—| =w = . lim exp(tHp,)(x,&) = o0
— =00

This is a consequence of Proposition 6.1 of [22].

For6 > C|Im z| with C > O sufficiently large, we denote by [Ty the spectral projector
associated to the resonance zg:

/(Z—Pg) dz, (5.6)
2171

where D = D(zq, r(h)) C C is a small disk such that zg is the only resonance in D.
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Theorem 4. Let Eg > 0 and w, o' € "' with w # o'. If w is an outgoing direction
or if o' is an incoming direction, then there exists €, C' > 0 such that for all simple
resonance zog € [Eg— €, Eg+¢€]—i[0,0/C'Twithh/C <6 < ChIn(1/h), C > 0 one
has

[ (@, h) = O(h™)| T (5.7

Remark 5.3. As for Theorem 2, the assumption that z is simple is not necessary to esti-
mate the corresponding residue f¢. If we suppose only that zg is a resonance whose
multiplicity N is bounded with respect to &, then it is possible to show that

N
[ (w, o', h) = Oh™) Z A1, (5-8)
j=0

where A; = / (z — 20)/ (z — Py)~'dz is a finite rank operator. We will give the proof
aD
of this result at the end of Sect. 5.2.

For the proof of Theorem 4, we need a representation formula of the scattering ampli-
tude. This is the object of the next section.

5.1. Representation formula. In this section, we recall some results due to C. Gérard
and Martinez [10]. We just have to be careful with the fact that in our case, the dilatation
angle 6 may depend on h. Moreover, we recall only how to continue the meromor-
phic part of the scattering amplitude. The main idea consists to extend Isozaki-Kitada’s
formula to complex energies. For this purpose, C. Gérard and Martinez show that the
symbols and the phases involved in that formula can be chosen to be analytic in a complex
neighborhood of R
For R > 0 large enough, d > 0, ¢ > 0 and o €]0, 1[, we denote

TEZ(R.d,v,0) = {(x,“;‘) € C?; |Rex| > R, d”' <|Re&| <d, |Imx| < e(Rex),
Imé&| < e(Re&) and & (Rex,Re&) > :|:0|x||$|}_

Lete > 0,d >1,-1 <o, <of <0 <o, <o <1and Ry > 0 be suf-
ficiently large. For * = a, b, we denote I'* = FE(RO, d, e, 0:') U F(E(Ro, d,e, o).
C. Gérard and Martinez construct some phases ®, € C*®(C?") and some symbols
ke € C °°((C2”) N Sz, (1) satisfying the general assumptions of Isozaki-Kitada [15], and
such that the following properties hold:

The phases @, have an holomorphic extension to I'* and satisfy
(Va®y(x, €)% + V(x) = &2, »
8)‘335@)*(,(, £) — (x,£)) = O((x)!=Plel), .

uniformly in '*.

There exists 0 < § < 1and €; > 0 such that k, are supported in I'*, extend holomor-
phically in the variables |x]|, |£] to FE(ZRO, d/j2,e,0f +8)U Fc(Q2Ro,d/2, €, 0, —9)
and

ke(x, &5 h) = O(e™ 1t/ 1), (5.10)
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uniformly with respect to # €]0, 1] and (x, §) € FE(ZRO, d/2,e, oj +45)U I'E (2Ro,
d/2,e,0, —9).

With this construction, one can show that for real energies, the scattering amplitude
takes the form

flo, 0, z:h) = filw, 0, z;1) + fr(w, o', 23 h), (.11

where f](w, @', z; h) has an holomorphic continuation with respect to z € {|Imz| <
€o|Re z|} for €¢ sufficiently small independent on %, and

Lo, z; h)
=a@ (P -G+ iO))_lkb(., VZw)e PN (L Sz el PalVED D),
(5.12)
with

ez h) = —2m"F k) E e T

The function f> can be continued meromorphically by the following process. For . > 0
small enough, let U,, be defined as in Sect. 1 with F(x) = xx (|x]), x € C*[R), x =1
outside a big interval and x = O near 0, then one has

(@000, = ea DU = (a4 10)” U Ul ™). Ul ).
(5.13)

Using the above properties on ks and @, it is easy to see that Uy, (k*eih_lq’*) is well
defined for u complex and |Imz| <« |Imu| <« 1. A simple calculus shows that, for
Im z| < ¢g| Re z| and u = i, one has

Uso (ko (.. zw)e!" @) =Ty (x, , 23 60, hyel Brvorzid./h, (5.14)
with
kp(x, ®,72:6, h)
= Jig(x)kp(x + i0F (x), \/Ew)e%Re‘/ng(x)Hm Vax,0)/ h+O((O+m ﬁ)(x>17p)/h,
and

Dp(x, w,2;0,h) = Op(x, Re /zw) — 0 Im /Z(F (x), »).

From estimate (5.10), one deduces that there exists €, > 0 such that Eb (x,w,z;0,h) =
O(eg(c_("))/h) uniformly on C" and

kp(x,@,2;0,h) = O(e2/M), (5.15)

uniformly with respect to x € {|x| > 2Rp} N ({(x, w) > (al;Ir + 8)|x|} U {{x,w) <
(o, — 8)|x|}) and i €]0, 1]. Similarly, one can write

U—io (ka(.. /z)e! ®eCVZDI) =y (x, o 2; 0, hyel ol 0.0/,
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with
(. 0,70, 1) = Pa(¥, Rev/20) +6Im VZ(F (), o),
Ea(x, w,2:0,h) = O(ee(c_(x))/h) uniformly on C" and
Ru(x, @, 2: 0, h) = O(e~2/h),

uniformly with respect to x € {|x| > 2Ro} N ({(x, ') = (0,7 + &)Ix[} U {(x, &) <
(o, — 5)|x|}) and h €]0, 1]. It follows that f> can be written
Prlo, o,z h) = ez WPy — 2 Bpe /1, B ®alh), (5.16)

for & > 0 and | Im z| <« 6| Re z|. From this formula, one deduces easily the form of the
residue of f at a simple pole zg:

£ (@, o, h) = ca(z0; W)(Tgkpe! ®/h Tyei ®al ), (5.17)

where the functions %*, EIS* are evaluated in z = zo(h).

5.2. Proof of Theorem 4. Before going further, let us discuss the properties of [Ty when
zo is simple. If one denotes by up a resonant state associated to zg, the rank one operator
I1g can be written

[y = (., u—p)uy, (5.18)

where u_g satisfies (P_g — zg)u—g = 0. In particular, one has |Tlg|| = |jug||lu—g|l-
Let R > 0,d > 0,0 > 0and wt € S2,(1) such that exp(&THp)(suppw+) C
I't(R, €, +0) for some T > 0. It follows from (5.18) and Theorem 2 that

w—(x, hDx)p = Oh>) g,
Myw4 (x, hDx) = O(h™)[Tg]. (5.19)

The inequality (4.11) implies that for p € C(‘)’O(R), p = l near [Eg — €, Eg + €]),
[pp(P) = Oh™)|Ty]. (5.20)

Now, we consider y € CSO(R”) such that 1jy<or, < X < 1jx|<3r,- Then, one has the
following

Lemma 5.4. For Ry > 0 large enough and | Im z| < 6, one has
£ (@, 3 h) = c(zo; D)Mo xTpe' /", xRae! /M) + OBl (5.21)
Proof. First we prove that
(Mo (1 — x)kpe! /" Tye!®a/ M) = O(h) || T . (5.22)

Let us denote g = Ily(1 — X);heig)b/h. Using (5.20), we have, for p € C5°([Eo —
€, Eg + €]) with p = 1 near E,

g1 =Tg(1 — x)p(P)kpe'® + Oh™)| Ty
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Next, we introduce w4 € Sz,(1) such that suppwy C I't(Ro, €, 0, — 28) and that
wy =1onT'1 (2R, €/2,0, — §). It follows immediately from (5.19) that

I (1 — ) p(P)w (x. kD) || = Oh™) | Ty],
so that
g1 = Mpw_(x, hDy)kpe /" + O™ [T .

withw_(x,hDy) = (1—x)p(P)(1 —w4)(x, hDy). In particular, supp w— C I'_ (2R,
€, 0, — J). Moreover, the stationary phase method gives

w_ (e, hD) (ke /M) ~ 3 ok e P/ Mo w_ (x, V. D), (5.23)
o

with '/Eb,a = Zﬂga O(afEb). Now, if we assume that Re (x, V, 517) € supp w—_, we have
(x, V+®p) € To(2Ro, €, 0, —8). By (5.9), V. ®), = w + O({x) ) and assuming that

Ry is sufficiently large, we get (x, ) < (0, —8)|x|. By (5.15), w_(x, th)(Ebei5b/ M =
O(hoo)Ncomes and (5.22) follows. Using the same arguments, one proves that (1 —
Wkae!®a = O(h%) |y . It follows that

(Mo xkpe' /" (1 = x)kae! /) = O g,
and the proof is complete. 0O

Now, we are in position to prove Theorem 4 and we assume that w is outgoing. Let
w € S, (1) withsuppw C p~ ' ([Eo—e, E0+e])ﬂ{é—| e WiN{Ry < |x| < 4Rp} and
w=1on p_l([Eo —€/2,Ep+€/2) N {é—l e WIN{2Ry < |x| < 3Ry}, where W is

given by Definition 5.1 and w € W/ CcC W. Using the fact that V, @) = o + O((x)~°)
and an argument similar to (5.23), one can prove that

£ (@, 5 h) = ea(zo; W)(Tgxw(x, kD) /", yTuei®a/ M) + Oh™)|Tg)].

As x € Cj°(R") and w is outgoing, there exists T > 0 such thatexp(TH,,,) (supp xw) C
't (R,€,0),withR > 1and 0 < o < 1. Itfollows from (5.19) and from the estimates
on k. and &P, that

F7 @, o3 h) = ea(z0; WM xw(x, hDOKye /", xRy ®el)
+OH)|Tg || = OR™) | T,

and the proof of Theorem 4 is complete. O

Here, we give the arguments to show Remark 5.3 concerning multiple resonances.
In the situation that we deal with, we have

N

-1 § J hol



Microlocalization of Resonant States and Residue of Scattering Amplitude 395

where Ag = 1y, A" (z) is holomorphic near zo and the A; are finite rank operators
withIm A; C ImIlg. For j =0, ..., N fixed, one can write

with (Py —zo)N ug =0 and N; < N.In partlcular one can choose the sequence (u] 5. k) k

or (Ue )k orthogonal and one has ||v9 k||||u9 ¢l < A |l for all k. Moreover, it follows
from Remark 1.3 and the discussion following (5.18), that forsuppws+ C I'+(R, €, +0),
one gets

w_(x,hDy)Aj = Oh™) | A,
Ajwyp(x. hDy) = O(h™) Al (5.24)

Following the proof of Theorem 4, one can show that

N
Fre @0 =3 3 (Ajksp(zo, W™ P kq o (z0, W™ ),
j=latp=j

where the functions &, g, k4« have the same properties as k,, k. Hence, one can work
as in the proof of Theorem 4, to get

1f7 (@, &', )| = OK™) Y 114,
J

which proves Remark 5.3. O

6. Estimate on the Spectral Projector

In this section, we give some examples where the spectral projector I1y is bounded by
Oh=M).

6.1. Case of resonances at distance AM . In this section, we consider the case where
the resonance zq satisfies |Im zg| = O(hM) with M >> 1. In that case, it is possible
to obtain some a priori estimates of the spectral projector by using the semiclassical
maximum principle [32, 33, 29]. For this purpose, we need some exponential estimate
of the modified resolvent (Pg — z)~'in a suitable complex neighborhood of Ep. This
was done by Tang and Zworski in [32, 33] in the case where 0 is fixed. Here 6 depends
on h so that we have to check that this estimate is still available in our case.

Lemma 6.1 (Tang-Zworski). Assume that Ch < 0 < Mhlog(1/h), with C > 0 large
enough, and let Qyp = E 40, where E € [Eg—¢€, Eg+¢€] and Q2 C Cis a fixed simply
connected and relatively compact domain. Let g(h) be a strictly positive function such
that g(h) < 0, then there exists C = C(S2) such that

—n 6
vee@\  |J  D@Egt). NI(P—2)7 | < ce R am,
Z./ERCS(P)QQ()
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Proof. The demonstration follows closely [32] and we just sketch it. The only differ-
ence is that 6 (and so 2g) depends on £, so that we have to be careful with the constants
appearing in the proof. The main steps are the following.

As in [26] one can find K € £(L?, L?) with | K| = O(1) and rank(K) = O(h™™)
such that (Py + 6 K — z) is invertible for z € Q4 and

I(Py+ 0K —2) g2z = O1/6).
Using K as in [26, 32], we can construct, for z € g, an invertible operator

P(z):(P‘QR:Z%_):HZGBCNeLzeB(CN, 6.1)

where N = rank(K) = O(h™"). Using the fact that (Py +0K —z) "' (Py —z) = O(1),
one shows that its inverse

_( E@ Ef@ \.,2 N 2 N
5(z)—<E(Z) E+(z))'L oC" - H 9 C", (6.2)

satisfies | E(2)[|, IE- ()| = O@~") and | E4 @), [E—+ ()]l = O().
As|(Ps—2)7 | = 0(9_2)(1 + ||E:_l‘_(Z)||(CN’(CN), for z € Qy \ Res P, we obtain

I(Ps —2) M ov = OO 2h"e" ™) | det(E_1(2))| 7!, (6.3)

and it remains to estimate | det(E_ (z))| from below. For this purpose, we set

Dg(z,h): 1—[ (Z;Zj)

7;€Q¢NRes P

and det(E_4+(z)) = Gg(z, h)Dg(z, h). Using the change of variable Q9 > z > (z —
E)/6 € Q we work on a domain independent of 6. Following the arguments of [26],
one can show that |Gg(z, h)| > e €' uniformly with z € €y, which implies

g(h))o(h_")

vee\  |J DG, |det<E_+(z>)|zeCh‘”( ;

zj€Res(P)N
> Ce G (6.4
Combining estimates (6.3) and (6.4), one gets the announced result. O
Proposition 6.2. Assume that V is compactly supported and let Eq > 0. Let zg be a
simple resonance of P such that Res(P) N D(zg, My = {zo0}, for My sufficiently large
and |Im zo| < Ch™2 with My > My + 2n + 2. Then
Mgl = O)

uniformly with respect to h/C < 6 < Chlog(1/h).
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Proof. We can copy the proof of Proposition 3.1 of Stefanov [31] with 8y = hln(1/h)
to get

2
I(Ps —2)7 | < — (6.5)
mz

for all z satisfying Im z > 2¢~"' Letus denote Zo = o + 2i k™2 Following [31], we
want to apply the semiclassical maximum principle as it is presented in Stefanov [29]
to the function F(z, h) = Z:gg (Py — z)~ ! which is holomorphic on

Zz
Q(h) ={z € C; |[Rez — Rezo| < 2hM, —pM1=7=2 _ Im 7 < pM1}.

From (6.5), it follows that || F(z, h)|| < Ch~™1 onTIm z = K™, On the other hand, we
deduce from the exponential estimate of the resolvent proved in Lemma 6.1 below, that
|F(z, )| < CeCt ™"
that

on 2 (h). By the semiclassical maximum principle, it follows

I|F(z, )| < Ch~™" on Q(h),

with Q(h) = {z € C; |Rez — Rezo| < hM, —2hM1 < Imz < hM1}. In particular,
h) MMy || < =TT |l = | F(z0. k)| < Ch~™1 and the proof is complete. O

lz0—2ol
From Theorem 4 and Proposition 6.2, one deduces immediately the following.
Corollary 6.3. Assume that V is compactly supported and let Eq > 0. Suppose that w
is outgoing or «' is incoming and that w # «'. Let 7y be a simple resonance of P such

that Res(P) N D(zg, hM1) = {z0}, for My large enough, Re zg € [Eg — €, Eo + €] and
IIm zo| < ChM2 with My > My + 2n + 2. Then

[ (w, o, h) = O(h™). (6.6)

Remark 6.4. Let us notice that this result is not a consequence of the works [30] and
[23]. Indeed, if one applies the theorems of [30] and [23] to this situation, one can only

show that 7 (w, ', h) = O(th—%).

6.2. Estimate in dimension one.

Lemma 6.5. We assume that n = 1 and that the critical points of po(x, &) on the energy
level are non-degenerate (i.e. the points (x,&) € po_1 ({Eo}) such that Vpo(x, &) =0
satisfy Hess po(x, &) is invertible). Then there exists M, € > 0 such that, for E €
[Eo — €, Eg +€]land 0 = Nh with N > 0 large enough,

_ _ 0
I -2 =0a™ [ —— (6.7)
7j€Res(P)NQE e LT
where 7 € Qg g2, QE s = E + D(0, 8) and h is small enough.

Proof. Asfor Lemma 6.1, the proofis a slight modification of Lemma 1 of Tang—Zworski
[32]. It is shown in [2], that for a

A—-F
0

K = (0 f (5= )s(ax (),
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where x € C°(R"), f € S(R; Ry) with f e CP(R) (fis the Fourier transform of
f). g € Cg°(R) with g = 1 near E and A = Op}’(a) witha € ngl((é)z) elliptic in the
sense of (1.8), we have

I(Ps —i6K — )" < O©®h, (6.8)
for Rez — E| < €6,Imz > —e6 and
Py —2) 7 <O, (6.9)

for [Rez — E| < €6, Imz > (6. In addition, the critical points of ag(x, &) in
[Eop — €, Eg + €] are non degenerate.

Letb(x,&; h) € S;ﬁl(()c)2 + (£)%: R) be such that b = a for |x| < R, b(x, &; h) >
({(x)2 + (£)%)/C for |x| > 2R and the critical points of by(x, &) in [Eg — €, Eg + €] are
non-degenerate. We note B = Op;’’(b) which is self-adjoint and has only pure spectrum
near [Eg — €, Eg + €]. Since the symbol of g(A) and g(B) coincide modulo O(h*°)
near the support of x (x), we get

A—-E
K = x(0)g(B) f (== )sBx (@) + O™, (6.10)

and we have

18 B (7 (F55) = (255 )sBrx o)

1 —~ . .
=5 / FOx()g(B) ("4 — &"BI%)g(B)x (x) dt

1 . _ .
= %//0 FOxgBeAe MATB) gy ita-980) () gsar. (6.11)

0

Here (A — B)g(B) is a h-pseudodifferential operator whose symbol, in 55111 (1), vanishes

for |x| < R. On the other hand, we have |st| < C since fe C5°(R) and the symbol of
X (x)g(B), in S, (1), has compact support independent of R (modulo ~2*°). If we fix R
large enough, the theorem of Egorov implies

x(X)g(B)e"* 4% (A — B)g(B) = O(h™). (6.12)
So (6.10), (6.11) and (6.12) imply

B—-F
0

Letk € C3°(R; [0, 1]) with k = 1 near 0. As f € S(IR), the functional calculus implies

s () (5 smnco]

= omplsio (1K TN (5E sl

<O(A™™). (6.14)

K = x(08(B)f (=) g (B)x () + Oh™). (6.13)
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So (6.13) shows that

K =x g Bk ) (P57 )sBrx ) + O™ +5%)

=K + O(A~® + h™). (6.15)

Using (6.8), we get for |Rez — E| < €6 and Im z > —e0,
Py —i0K — 7 =Py — i0K — 7+ 0O(A~> + h™)
=Py —i0K —2)(1 + O(A™ + h™)). (6.16)
Now we fix A large enough and we have
|(Ps —i6K —2)7'| <067, 6.17)

for |[Rez — E| < €6,Im z > —e6 and h small enough. As by(x, &) has only non-degen-
erate critical point in the energy level Ey, the work of Brummelhuis—Paul-Uribe [4] or
[3] shows that the number of eigenvalues of B in [E — CO, E + CO]is O(In(1/0), so

B—-E

rank K < rankk( ) < #sp(B) N[E — CO, E + CO] < O(n(1/0)),  (6.18)

and
||§||[,(L2,L2) = O(). (6.19)

Now the end of the proof is a repetition of the proof of Lemma 6.1: we put a Gru-
shin problem like (6.1) which is well posed and we note £(z) is inverse as in 6.2. We
h~ave I(Py —2)~ Y = 002U + IIELIF(Z)II) with ||E_+(2)|| = O(1). As the minor
E_, =Oh°), we get

1Py — 27"l = Oh=)| det(E—4.(2))| " (6.20)
As usual, we set
Z—2Zj
Dy(z,h) = —
6 (2, h) I ( . )
7;€Q¢9NRes(P)

and det(E_4(z)) = Gg(z, h)Dg(z, h). Using the change of variable Qg > z
(z — E)/0 € Q. we work on a domain independent on 6. The majoration of the
number of resonances

#Res(P) N QE.co = O(n(1/h)), (6.21)

proved in [3] and the arguments of Sjostrand [26] show that |Gy(z, k)| > K¢ /5 uni-
formly with z € Qg ¢9/2. The lemma follows from (6.20). O

Corollary 6.6. Under the hypotheses of Lemma 6.5, if #Res(P) N D(Ey, 0) = O(1)
and z € Res(P) is separated by hC from the other resonances of P, then

My = O~ ). (6.22)
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Now we give an example in the 1 dimensional case where we can bound the projector
ITy. Consider a short range potential V (x) which is holomorphic in

{x € C; |Imz| < (Rez)/C},

and has the following form:

V(x)

At x., V(x) has a non-degenerate maximum. Such type of potential have been studied
by Fujjié and Ramond [8] and [9]. In particular, the formula (41) of [9] implies that the
resonances in 2g, ¢ are of the form

So— (2j + Drh +ih1n(2)

2
K In(h) + O(h/In(h)7), (6.23)

zj = Eo+

with j € Z and Sp, K are some fixed constants. Let jo € Z fixed and z € D(zj,, h/
In(1/h)C) with C > 0large enough. Using (6.23), we get |z—z ;| > (| jo—jDh/In(1/ h)C
for j # jo and we have

3

l-[ 0 l-[ Chn(l/h) _ (C In(1/ h))N+

= pEea
lz — zj] lj — Jol Nyt

2k €QE,e0 and j = jo 2j€QEy,e0 and j=jo

where Ny = #{j > jo; zj € QE,e0}. A similar formula can be obtained for the product
over j < jo and we get

(6.24)

1—[ o _ (CIn(1/h)N+(CIn(1/h))N-
lz =zl — NyIN_! '

ZKEQEG,c0

Equation (6.23) implies that the number of resonances in Qg ¢g, noted N = Ny + N_,
satisfy N ~ aIn(1/h), with o > 0 and, as jj is fixed,

INy —N/2| <Cand [N_. — N/2| < C, (6.25)

SO

N N
l—[ 0 - NC (ClIn(1/h)) < NC (CN) (6.26)

lz =zl — (N/2)D* ~ ((N/2)DH*

ZkESEG,c0
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The Stirling formula N! ~ NVe=V /27 N implies

I1 o _ v N <cVN =0mh% (6.27)
lz—z;l = (N/2)N/2)2 = ' '

ZkE€EQEY,c0
Using Lemma 6.5, we have proved

Corollary 6.7. Under the previous hypotheses, the projector associated to a resonance
zj satisfies, for h small enough,

Iy = O ). (6.28)

In this case +1 € SU is an incoming direction and —1 is an outgoing direction.
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