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Abstract: We obtain some microlocal estimates of the resonant states associated to a
resonance z0 of an h-differential operator. More precisely, we show that the normalized
resonant states are O(

√|Im z0|/h +h∞) outside the set of trapped trajectories and are
O(h∞) in the incoming area of the phase space.

As an application, we show that the residue of the scattering amplitude of a
Schrödinger operator is small in some directions under an estimate of the norm of
the spectral projector. Finally we prove such a bound in some examples.

1. Introduction

The original motivation of this paper is the study of the residue of the scattering ampli-
tude associated to a Schrödinger operator P(h) = −h2�+V (x) on R

n. The first works
treating this question are due to Lahmar-Benbernou [17] and Lahmar-Benbernou and
Martinez [18]. In these papers, they consider the case where the potential V (x) is a
“well in an island” with non-degenerate local minimum. In this situation, the form of
the resonances is given by the work of Helffer and Sjöstrand [13]. Near a resonance z0
simple, isolated and close to the energy of this local minimum, the scattering amplitude
can be written

f (ω, ω′, z, h) = f res(ω, ω′, h)

z− z0
+ f hol(ω, ω′, z, h),

with f hol holomorphic near z0. Using the form of the resonant states associated to z0,
Lahmar-Benbernou and Martinez proved that

|f res(ω, ω′, h)| = g(h)|Im z0|,
where g(h) has an asymptotic expansion with respect to h. Moreover, they showed that
for some directions (ω, ω′), determined by the Agmon distance to the well, the residue
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is O(h∞) while for some other ones, they obtained an explicit non-vanishing principal
term for g(h). Their proof is based on the knowledge of the resonant states given by
[13].

In [30], Stefanov generalized some parts of this result and proved that for V ∈
C∞

0 (Rn) and z0 a resonance which is simple and isolated in a sense made precise in
[30], one has

|f res(ω, ω′, h)| ≤ Ch−
n−1

2 |Im z0|. (1.1)

This result was next improved by the second author in [23] where estimate (1.1) is
established for general long-range potentials under a weaker separation condition on
resonances. In [30] and [23], the method employed stands on the semiclassical maxi-
mum principle of Tang and Zworski [32] and a resolvent estimate of Burq [5].

In the case where |Im z0| ≤ ChM for M � 1 and |Im z0| �= O(h∞), it shows only
that |f res | = O(hN) for N ∈ R, whereas it is proven in [18] that the decay of the
residue may depend on the direction considered. In particular, one can think that there
exists some couple of directions (ω, ω′) such that the associated residue is O(h∞). One
of our motivations is to show the existence of such directions for resonances “far” from
the real axis.

In the case where the potential V is compactly supported, we have a nice represen-
tation formula for the scattering amplitude, so that one can easily see the link between
the problem of the residue and the estimate of the resonant states announced in the title.
Indeed, as is proven in [24], one has

f (ω, ω′, z, h) = c(z;h)

∫
Rn

e−i
√

z〈x,ω′〉/h[h2�, χ1]R(z, h)[h2�, χ2]ei
√

z〈x,ω〉/hdx,

(1.2)

where R(z, h) : L2
comp → H 2

loc denotes the meromorphic continuation of the resolvent
of P to a conic neighborhood of the real axis and

c(z;h) = 1

2
z

n−3
4 (2πh)−

n+1
2 e−i

(n−3)π
4 . (1.3)

Moreover, if one denotes by Pθ the operator obtained from P by analytic dilatation (see
[28]), and if one assumes that the dilatation is performed sufficiently far, one gets

f (ω, ω′, z, h) = c(z;h)

∫
Rn

e−i
√

z〈x,ω′〉/h[h2�, χ1](Pθ − z)−1[h2�, χ2]ei
√

z〈x,ω〉/hdx.

(1.4)

Assume that z0 is a simple resonance and that there is no other resonance in a disk D

centered in z0, then the residue is given by the formula

f res(ω, ω′, h) = c(z0;h)〈[h2�, χ1]�θ [h2�, χ2]ei
√

z0〈x,ω〉/h, ei
√

z0〈x,ω′〉/h〉, (1.5)

where �θ is the spectral projector associated to z0. Moreover, as �θ is a rank one
operator, there exist uθ , vθ ∈ L2 such that �θ = 〈., vθ 〉uθ and one can show that
(Pθ − z0)uθ = 0 and (P−θ − z0)vθ = 0. It follows that

f res(ω, ω′, h) = −c(z0;h)〈uθ , [h2�, χ1]ei
√

z0〈x,ω′〉/h〉〈[h2�, χ2]ei
√

z0〈x,ω〉/h, vθ 〉.
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On the other hand, it is easy to see that the functions [h2�, χ∗]ei
√

z0〈x,ω∗〉/h are micro-
localized near {(x, ξ); R1 < |x| < R2, ξ/|ξ | ∼ ω∗} for ω∗ = ω, ω′. Our approach
consists to show that for suitable directions, the resonant state uθ is microlocalized out
of this set. In fact, the microlocal estimate that we will prove holds for more general
operators than Schrödinger ones.

To state precisely our results, we need to introduce the following class of symbol (see
the book of Dimassi and Sjöstrand [7] for more details). We say that g ∈ C∞(Rd;R∗+)

is an order function if ∀α ∈ N
d , ∂α

x g(x) = O(g) uniformly on R
d . A function a(x;h)

defined on R
d×]0, h0] for some h0 > 0 is said to be a symbol in the class Sd(g) if

a(x;h) depends smoothly on x and

∀α ∈ N
d , ∂α

x a(x;h) = O(g),

uniformly with respect to (x, h) ∈ R
d×]0, h0]. We will say that a(x;h) belongs to

Scl
d (g) if there exists a sequence aj (x) ∈ Sd(g) such that for all N ∈ N,

a(x;h)−
N∑

j=0

aj (x)hj ∈ hN+1Sd(g),

uniformly with respect to h. For a(x, ξ ;h) ∈ S2n(g), one can define the h-pseudodif-
ferential operator (in the Weyl quantization) A = Opw

h (a) = a(x, hDx) associated with
a. For f ∈ C∞

0 (Rn),

(Opw
h (a)f )(x) = 1

(2πh)n

∫∫
ei〈x−y.ξ〉/ha

(x + y

2
, ξ ;h

)
f (y) dξ dy.

In this case, we say that a is the Weyl symbol of A.
In this paper, we consider P(h) an h-differential operator on R

n, having the form

P(h) =
∑
|α|≤2

aα(x;h)(hDx)
α, (1.6)

where aα(x;h) ∈ Scl
n (1) and aα(x;h) does not depend on h for |α| = 2. We assume

that P is formally self-adjoint on L2(Rn), that is

∀u, v ∈ C∞
0 (Rn)

∫
(Pu)v dx =

∫
u(Pv) dx. (1.7)

We suppose also that P is elliptic, that is,
∑
|α|=2

aα(x)ξα ≥ |ξ |2/C. (1.8)

To define the resonances, we assume that the coefficients aα(x;h) extend holomor-
phically in x in the domain

ϒ = {x ∈ C
n; |Im x| ≤ δ0〈Re x〉 and |x| ≥ R0}, (1.9)

R0 > 0, δ0 ∈]0, 1[ and that P converge to −h2� at infinity in the following sense:
∑
|α|≤2

aα(x;h)ξα −→ ξ2, (1.10)
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as |x| → +∞, x ∈ �, uniformly with respect to h. Under these assumptions, it is clear
that P is a self-adjoint operator with domain H 2(Rn) and one can define the resonances
associated to P by the method of analytic distortions (seeAguilar–Combes [1], Hunziker
[14] and Sjöstrand–Zworski [28]).

Let F : R
n → R

n be a smooth vector field such that F(x) = 0 if |x| ≤ R0 and
F(x) = |x| for |x| large enough. For ν ∈ R small enough, we consider the unitary
operator Uν on L2(Rn) defined by:

Uνϕ(x) = det(1 + νdF (x))−
1
2 ϕ(x + νF (x)).

Then, the operator UνP (h)U−1
ν has coefficients which are analytic with respect to ν near

0 and can be continued to complex values of ν. For ν = iθ , with θ > 0 small enough,
we get a differential operator denoted by Pθ . It is well-known that the spectrum of Pθ

is discrete in the sector Sθ = {z ∈ C; Re z > 0 and − 2θ < arg z ≤ 0} (see [28] and
[26]) and by definition, the resonances of P are the eigenvalues of Pθ .

We denote by p(x, ξ ;h) ∈ Scl
2n(〈ξ〉2) the Weyl symbol of P and p0(x, ξ) =∑

|α|≤2 aα,0(x)ξα is its principal symbol. The Hamilton vector field associated with
p0 is Hp0 = ∂ξp0.∂x − ∂xp0.∂ξ and exp(tHp0), t ∈ R is the corresponding Hamiltonian
flow. We define the outgoing tail and the incoming tail at the energy E by

�±(E) = {(x, ξ) ∈ p−1
0 (E); exp(tHp0)(x, ξ) � ∞, t →∓∞}.

Hence, the set of trapped trajectories is

T (E)=�+(E) ∩ �−(E)={(x, ξ)∈p−1
0 (E); t �→ exp(tHp0)(x, ξ) is bounded on R}.

For E > 0, T (E) is a compact set (see the appendix of the paper of C. Gérard–Sjöstrand
[11]). Setting T ([a, b]) =⋃

E∈[a,b] T (E), we give another proof of a result of Stefanov
on the localisation of the resonant states:

Theorem 1. Let E0 > 0 be a fixed energy level, ε > 0 small enough, θ = h/C with
C > 0, let z ∈ C be a resonance of P with Re z ∈ [E0 − ε, E0 + ε], |Im z| < εθ , and
let uθ ∈ L2(Rn) be a resonant state associated to z:

(Pθ − z)uθ = 0. (1.11)

If w(x, ξ) ∈ S2n(1) with supp w ∩ T ([E0 − ε, E0 + ε]) = ∅, then

Opw
h (w)uθ = O

(√
|Im z|

h
+ h∞

)
‖uθ‖. (1.12)

Remark 1.1. For compactly supported perturbations of the Laplacian, this is a straight-
forward consequence of the estimate given in Proposition 3 of [30] and propagation of
singularities given in Lemma 4.1 of [31]. As remarked by Stefanov, the same arguments
can be adapted for long-range perturbations of the Laplacian in view of Sect. 8 of [31].

Remark 1.2. It seems also possible to obtain such type of results using the semi-classi-
cal measures introduced by P. Gérard [12] and Lions–Paul [19]. Assume that θ = o(h)

and that z → E0 (as h → 0) is a resonance with |Im z| ≤ εθ . Let uθ satisfying



Microlocalization of Resonant States and Residue of Scattering Amplitude 379

(Pθ − z)uθ = 0 and ‖uθ‖ = 1. Following the works of Burq [6] and Jecko [16], one
can perhaps show that any semiclassical measure µ of the sequence (uθ )h verifies

{
supp µ ⊂ T (E0),

Hp0µ = 0.
(1.13)

Then it is enough to write (P − z)uθ = (P −Pθ)uθ with σ
(
P −Pθ

) ∈ S2n(θ〈ξ〉2) and,
as ‖uθ‖H 2 = O(1), we deduce (P − z)uθ = o(1) and one can apply the proof of Burq
or Jecko.

Before we state our second result, let us introduce the following subspaces of the
phase space. For R > 0, ε > 0 and σ ∈ [−1, 1], set

�±(R, ε, σ ) = {(x, ξ) ∈ T∗(Rn); |x| > R, |p0(x, ξ)− E0| < ε

and ± 〈x, ξ〉 > ±σ |x||ξ |}.
We have the following theorem which says that a resonant state is outgoing.

Theorem 2. Let E0 > 0 and uθ be a resonant state associated to a resonance z as in
(1.11). We assume that Re z ∈ [E0−ε, E0+ε], |Im z| < εθ and h/C < θ < Ch ln(1/h)

with ε, C > 0. Let w(x, ξ) ∈ S2n(1) and suppose that there exists T > 0 such that
exp(−T Hp0)(supp(w)) ⊂ �−(R, ε, σ ) with R � 1 and σ < 0. Then for h > 0
sufficiently small, one has

‖w(x, hDx)uθ‖ = O(h∞)‖uθ‖. (1.14)

In particular w ∈ C∞
0 (T∗(Rn)) such that supp(w) ⊂ �+([E0 − ε, E0 + ε])C =⋃

E∈[E0−ε,E0+ε] �+(E)
C

satisfies the hypothesis of Theorem 2. Because, for each point
ρ ∈ �+([E0 − ε, E0 + ε])C , exp(−tHp0)(ρ) is in a set �−(R, ε, σ ) if t is large enough.

Remark 1.3. It is possible to generalize this result to the black-box setting (see [28] and
[27] for a precise formulation). Assume that the black-box is contained in D(0, R0),
let χ ∈ C∞

0 (Rn) with χ = 1 near D(0, R0) and let w be supported in {|x| > R0}
and satisfying the assumptions of the above theorem. If uθ is a resonant state, then
‖w(x, hDx)(1 − χ(x))uθ‖ = O(h∞)‖uθ‖.

Remark 1.4. Another possible generalization concerns the case of multiple resonances.
Assume that z is a resonance whose multiplicity N = N(h) is bounded uniformly with
respect to h, then the conclusion of the theorem remains valid for all generalized reso-
nant states (i.e. the functions uθ ∈ L2(Rn) such that (Pθ − z)Nuθ = 0). We will give
the idea of the proof of this generalizations at the end of Sect. 3.

The plan of the paper is the following. In Sect. 2, we make precise the action of the
FBI transform on pseudodifferential operators. In particular, we give the form of the
term of order h in the expansion of the transformed symbol.

Section 3 is devoted to the proof of Theorem 2. The demonstration is based on the
construction of a suitable escape function and an application of the result of Sect. 2.
The main idea consists to choose a weight G which permits to gain ellipticity near 0,
whereas the dilatation F gives ellipticity at infinity.

In Sect. 4, we prove Theorem 1 using again the results of Sect. 2.
Applying Theorem 2, we obtain in Sect. 5 an estimate of the residue of the scattering

amplitude associated to a Schrödinger operator. We treat the case of resonances whose
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imaginary part is bounded by O(hln(1/h)). This estimate involves the norm of the
associated spectral projector on the space of resonant states.

In Sect. 6, we give some examples where the spectral projector above satisfies nice
estimates. These bounds on the projector permit to show that the associated residue is
O(h∞) for some particular directions.

2. Microlocal Exponential Estimate

In this section, we give a microlocal exponential weighted estimate for C∞ symbols
using a Fourier–Bros–Iagolnitzer (in short FBI) transform, widely studied by Sjöstrand
[25]. The result is a slight modification of Proposition 3.1 of Martinez [21] (see also the
book of Martinez [20] for a related presentation).

For u ∈ S ′(Rn), the FBI transform of u is given by

T u(x, ξ ;h) = αn(h)

∫
ei(x−y)ξ/h−(x−y)2/2hu(y)dy, (2.1)

with αn(h) = 2−n/2(πh)−3n/4. As proved in [20], we know that T u ∈ C∞(R2n) and that
eξ2/2hT u(x, ξ ;h) is an holomorphic function of z = x − iξ . Moreover, if u ∈ L2(Rn)

then ‖T u‖L2(R2n) = ‖u‖L2(Rn).
Let A be a h-differential operator of Weyl symbol a(x, ξ ;h) ∼∑

j≥0 aj (x, ξ)hj ∈
Scl

2n(〈ξ〉d). As a is polynomial with respect to ξ with coefficients in Sn(1), one can
find an almost analytic extension ã(x, ξ ;h) ∈ Scl

2n(〈ξ〉d) of a in a Dε × C
n, where

Dε = {x ∈ C
n; |Im x| < ε}, which satisfies

ã|
R2n = a, (2.2)

∂xã = O(|Im x|∞)〈ξ〉d . (2.3)

Theorem 3 (Martinez). Let f (x, ξ) ∈ S2n(1) and G(x, ξ) ∈ C∞
0 (R2n). Then there

exists a symbol q(x, ξ ; t, h) ∼∑
j≥0 qj (x, ξ ; t)hj ∈ Scl

2n(〈ξ〉d) uniformly with respect
to t and an operator R(t, h) such that for all u, v ∈ C∞

0 (Rn), one has

〈
f e−tG/hT Opw

h (a)u, e−tG/hT v
〉
L2(R2n)

= 〈(
q(x, ξ ; t, h)+ R(t, h)

)
e−tG/hT u, e−tG/hT v

〉
L2(R2n)

, (2.4)

where supp qj ⊂ supp f for all j ∈ N. Here, we have with the notation ∂z = (∂x+i∂ξ )/2,

q0(x, ξ ; t) =f (x, ξ)ã0
(
x + 2t∂zG(x, ξ), ξ − 2it∂zG(x, ξ)

)
, (2.5)

q1(x, ξ ; t) =
(
f a1 − f ∂2

xxa0/4 − f ∂2
ξξ a0/4 − ∂xf ∂xa0/2 − ∂ξf ∂ξa0/2

)
(x, ξ)

+ i

2

(
∂ξa0∂xf − ∂xa0∂ξf

)
(x, ξ)+O(t), (2.6)

and
∥∥〈ξ〉σ R(t, h)〈ξ〉−d−σ

∥∥L(L2(Rn))
= O(h∞ + h−3n/2|t |∞e2 sup |G||t |/h), (2.7)

for all σ ∈ R, uniformly with respect to t and h small enough.
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Remark 2.1. Theorem 3 holds also for A = Opw
h (a) with a(x, ξ ;h) ∈ Scl

2n(1), since one
can find an almost analytic extension of a which satisfies (2.2) and (2.3) with d = 0.

Proof. This theorem is a slight adaptation of Proposition 3.1 of Martinez [20] and we
follow his proof.

Let

T0 =
〈
f e−tG/hT Au, e−tG/hT v

〉

= αn(h)2

(2πh)n

∫
e�/hf (x, ξ)a

(y + z

2
, η;h

)
u(z)v(y′) dx dξ dy dη dy′, (2.8)

where

� = −2tG(x, ξ)+ i(x − y)ξ − i(x − y′)ξ − (x − y)2/2 − (x − y′)2/2 + i(y − z)η.

(2.9)

We have, for Y = (y, η) ∈ R
2n and X = (

x + 2t∂zG(x, ξ), ξ − 2i∂zG(x, ξ)
) ∈ C

2n,

a(Y ;h)− ã(X;h)

=
∫ 1

0

(
(Y − Re X)

∂ã

∂Re X

(
sY + (1 − s)X

)− Im X
∂ã

∂Im X

(
sY + (1 − s)X

))
ds

=
∫ 1

0

(
(Y −X)

∂ã

∂Re X

(
sY + (1 − s)X

)+ 2iIm X
∂ã

∂X

(
sY + (1 − s)X

))
ds

= (Y −X)b(x, ξ, y, η; t, h)+ r(x, ξ, y, η; t, h), (2.10)

with b ∈ Scl
4n(〈ξ, η〉2) and r ∈ S4n(|t |∞〈ξ, η〉2) uniformly with respect to t . In addition

b0(x, ξ, y, η; t) =
∫ 1

0
(∂xa0, ∂ξ a0)

(
sy + (1 − s)x, sη + (1 − s)ξ

)
ds +O(t〈ξ, η〉d).

(2.11)

So, we have

T0 =
〈
f (x, ξ )̃a(X;h)e−tG/hT u, e−tG/hT v

〉+ T1 + R1

with

T1 = αn(h)2

(2πh)n

∫
e�/h

(
((y + z)/2, η)−X

)
f (x, ξ)b

(
x, ξ,

y + z

2
, η
)

× u(z)v(y′) dx dξ dy dη dy′, (2.12)

R1 = αn(h)2

(2πh)n

∫
e�/hf (x, ξ)r(x, ξ, (y + z)/2, η)u(z)v(y′) dx dξ dy dη dy′. (2.13)

We have
(
∂x�+ i∂ξ�+ i∂η�

)
/2 = (y + z)/2 − x − 2t∂zG(x, ξ),

−i∂y�− i
(
∂x�+ i∂ξ�

)
/2 = η − ξ + 2it∂zG(x, ξ).
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Thus there exists a constant vector-field L(∂x, ∂ξ , ∂y, ∂η) such that L(�) = (
((y +

z)/2, η)−X
)
. Making an integration by part with L in (2.12) and using

a1(x, ξ, (y + z)/2, η; t, h) = tL
(
f (x, ξ)b(x, ξ, (y + z)/2, η; t, h)

)
,

which satisfies a1 ∈ Scl
4n(〈ξ, η〉2), supp(x,ξ) a1 ⊂ supp f and

a1
0(x, ξ, y, η; t) = (− ∂x/2 − i∂ξ /2 − i∂η/2, i∂y/2 + i∂x/2 − ∂ξ /2

)
.
(
f (x, ξ)b0(x, ξ, y, η; t)), (2.14)

we get

T1 = h
〈
e−tG/hTa1u, e−tG/hT v

〉
, (2.15)

with

Ta1u(x, ξ) = αn(h)

∫
ei(x−y)ξ/h−(x−y)2/2h Opw

h (a1(x, ξ, ., .; t, h))u(y) dy. (2.16)

We repeat the same work for T1 as this done for T0 and, by induction, we can find, for
j = 0, 1, . . . , N , symbols qj (x, ξ ; t) ∈ S2n(1) uniformly with respect to t . Moreover,
supp qj ⊂ supp f and

q0(x, ξ ; t) = f (x, ξ)a0
(
x + 2t∂zG(x, ξ), ξ − 2it∂zG(x, ξ)

)
, (2.17)

q1(x, ξ ; t) = f (x, ξ)a1
(
x + 2t∂zG(x, ξ), ξ − 2it∂zG(x, ξ)

)
+a1

0

(
x, ξ, x + 2t∂zG(x, ξ), ξ − 2it∂zG(x, ξ); t)

=
(
f a1 − f ∂2

xxa0/4 − f ∂2
ξξ a0/4 − ∂xf ∂xa0/2 − ∂ξf ∂ξa0/2

)
(x, ξ)

+ i

2

(
∂ξa0∂xf − ∂xa0∂ξf

)
(x, ξ)+O(t) (2.18)

such that, for each N ∈ N,

T0 =
〈N−1∑

j=0

qj (x, ξ ; t)hj etG/hT u, etG/hT v
〉
+ hN

〈
e−tG/hTaN u, e−tG/hT v

〉+ RN,

(2.19)

where aN and RN satisfy the same properties as a1 and R1. Using what T is an isometry
on L2(R2n), we write

TaN = 〈
e−tG/hTaN T ∗T u, e−tG/hT v

〉
,

RN = 〈
e−tG/hTrN T ∗T u, e−tG/hT v

〉
, (2.20)

where aN , rN ∈ S4n(〈ξ, η〉2) have their support inside supp f . Applying Lemma 6.1 of
[21] with t = 0 and l = 0, we get

‖〈ξ〉σ TpN T ∗〈ξ〉−d−σ‖ = O(1),

‖〈ξ〉σ TrN T ∗〈ξ〉−d−σ‖ = O(|t |∞), (2.21)

which give Theorem 3 since |e−tG/h| ≤ esup |G||t |/h. ��
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3. Proof of Theorem 2

We begin the proof with some geometric results.

Lemma 3.1 (C. Gérard–Sjöstrand). Assume that K ⊂ p−1
0 ([E0 − ε, E0 + ε]) is com-

pact and satisfies K ∩T ([E0−ε, E0+ε]) = ∅. Then, one can find a function f (x, ξ) ∈
C∞b (T∗(Rn)) such that Hp0f ≥ 0 on p−1

0 ([E0 − ε, E0 + ε]) and Hp0f > 1 on K .

Proof. We follow the proof of Proposition A.6 of C. Gérard and Sjöstrand [11]. We give
the proof for a reason of completeness and we use their notation. Let HT = {(x, ξ) ∈
T∗(Rn); p0(x, ξ) ∈ [E0−ε, E0+ε] and x.ξ = T }with T large enough. Let T̃ > 0 and
0 < f+ ∈ C∞(p−1

0 ([E0−ε, E0+ε])\�−([E0−ε, E0+ε])
)

be equal to χ(x.ξ)Hp0(x.ξ)

outside a compact with χ ∈ C∞
0 ([−T − T̃ − 1, T + T̃ + 1]; [0, 1]) equal to 1 near

[−T − T̃ , T + T̃ ]. As in [11], we can solve Hp0(G+) = f+ in p−1
0 ([E0 − ε, E0 +

ε])\�−([E0 − ε, E0 + ε]) with G+ = T on HT . We have G+ ≤ T + T̃ + 1 and, if f+
is large enough in a compact,

lim sup
�−∩H−T

G+ ≤ −T . (3.1)

We construct G− with analogous properties.
Let χ± ∈ C∞(R;R±) with supp χ± ⊂ [∓T ,±∞[ and with χ+(t)+χ−(t) = t . Put

G̃ = χ+(G+) + χ−(G−). By (3.1), we have, near p−1
0 ([E0 − ε, E0 + ε]), G̃ ∈ C∞

b ,
Hp0(G̃) ≥ 0 and Hp0(G̃) > c > 0 for (x, ξ) ∈ {−T − T̃ < x.ξ < −T } ∪ {T < x.ξ <

T + T̃ }.
As K is compact and K ∩ T ([E0 − ε, E0 + ε]) = ∅, there is s > 0 and T̃ > 0 such

that (x, ξ) ∈ K implies exp(sHp)(x, ξ) ∈ {T < x.ξ < T + T̃ } or exp(−sHp)(x, ξ) ∈
{−T − T̃ < x.ξ < −T }. Then, we can take f ∈ C∞(T∗(Rn)) with f (x, ξ) =
G̃(exp(sHp)(x, ξ))/c + G̃(exp(−sHp)(x, ξ))/c near p−1([E0 − ε, E0 + ε]). ��

Let σ ∈]− 1, 0[ and α ∈ C∞
0 (R; [0, 1]) be a decreasing function such that α(x) = 1

if x < σ and α(x) = 0 if x > σ/2. We define

w̃(x, ξ) = ρ(|x|)f (p0(x, ξ))α
( x.ξ

|x||ξ |
)
, (3.2)

where f ∈ C∞
0 ([E0 − ε, E0 + ε]) and ρ ∈ C∞(R; [0, 1]) is growing with ρ(x) = 1

for x > R and ρ(x) = 0 for x < R − 1. It is obvious that w̃ ∈ S2n(1). We have the
following lemma for w̃, that will be useful later.

Lemma 3.2. For σ > 0 small enough and R large enough we have Hp0w̃ ≤ 0.

Proof. Using (1.10), one can show that, for p0(x, ξ) ∈ [E0 − ε, E0 + ε],

Hp0 =
(

2ξ + o(1)

o(1/x)

)
, (3.3)

where o(1) is a function which tends to 0 as |x| → +∞. Then

Hp0w̃(x, ξ) = f (p0(x, ξ))ρ(|x|)Hp0α
( x.ξ

|x||ξ |
)
+ f (p(x, ξ))α

( x.ξ

|x||ξ |
)

Hp0ρ(|x|)

|ξ |2 ≥ E0 − ε + o(1).
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For (x, ξ) ∈ supp(Hp0w̃), we have

Hp0α
( x.ξ

|x||ξ |
)
= α′

(x.ξ

|x|
)(2|ξ |2

|x| − 2(x.ξ)2

|x|3 + o(1)

|x|
)

≤ 1

|x|α
′
( x.ξ

|x||ξ |
) (

2E0 − 2ε + o(1)− 2σ 2
)

,

and, on the other hand,

Hp0ρ(|x|) = ρ′(|x|)
(x.ξ

|x| + o(1)
)

≤ ρ′(|x|)(σ/2 + o(1)).

If we fix σ > 0 small enough and after R large enough, we have Hp0w̃ ≤ 0. ��

Now, we can begin the proof of Theorem 2. Consider z ∈ C, uθ ∈ H 2(Rn) and w as
in Theorem 2 such that (Pθ − z)uθ = 0. For N ∈ N, let w̃j (x, ξ), j = 1, . . . , N,∞
be of the form (3.2) with w ≺ w1 ≺ · · · ≺ wN ≺ w∞, where the ωj are defined by
ωj (x, ξ) = ω̃1(exp(tHp0)(x, ξ)). Here, the notation g1 ≺ g2 means that g2 = 1 near
the support of g1 and one can easily see that Hp0ωj ≤ 0, ∀j . Denoting by 〈., .〉 the scalar
product on L2(R2n), we have

0 = 〈
w2

1(x, ξ)e−tG/hT (Pθ − z)uθ , e
−tG/hT uθ

〉
. (3.4)

We can apply Theorem 3 with Pθ to get

〈
(qθ (x, ξ ; t, h)− z)e−tG/hT uθ , e

−tG/hT uθ

〉
= O

(
(h∞ + t∞h−3n/2)esup |G||t |/h

)∥∥e−tG/hT uθ

∥∥2
, (3.5)

with

qθ (x, ξ ; t, h) = qθ,0(x, ξ ; t)+ hqθ,1(x, ξ ; 0)+ (h|t | + h2)rθ (x, ξ ; t, h), (3.6)

where qθ,0 and qθ,1 are given by (2.5) and (2.6) and rθ ∈ S2n(1) uniformly with respect
to t , θ and supp rθ ⊂ supp w1.

Lemma 3.3. We have the following expansions

Im qθ,0(x, ξ ; t) = −w2
1(x, ξ)Hp0(tG(x, ξ)+ θF (x)ξ)+ w2

1(x, ξ)O(θ2 + t2),

(3.7)

and

Im qθ,1(x, ξ ; 0) = 1

2
Hp0w

2
1(x, ξ)+ w2

2(x, ξ)O(θ). (3.8)

Proof. First, we recall that P being formally self-adjoint, the symbols p0 and p1 are
real valued. We will denote by pθ(x, ξ ;h) the symbol of Pθ , and by definition, we have

pθ,0(x, ξ) = p0
(
x + iθF (x), (1 + iθ∂xF (x))−1ξ

)
. (3.9)
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Notice that one has

pθ,0(x, ξ) = p0(x + iθF (x), ξ − iθ∂xF (x)ξ)+O(θ2)〈ξ〉2
= p0(x, ξ)+ iθ

(
F(x)∂xp0(x, ξ)− ∂xF (x)ξ∂ξp0(x, ξ)

)+O(θ2)〈ξ〉2
= p0(x, ξ)− iθHp0(F (x)ξ)+O(θ2)〈ξ〉2. (3.10)

Combining Eqs. (3.10) and (2.5) one gets

qθ,0(x, ξ ; t) =w2
1(x, ξ)p̃θ,0

(
x + 2t∂zG(x, ξ), ξ − 2it∂zG(x, ξ)

)
=w2

1(x, ξ)
(
p̃0
(
x + 2t∂zG(x, ξ), ξ − 2it∂zG(x, ξ)

)

− iθHp0(F (x)ξ)
(
x + 2t∂zG(x, ξ), ξ − 2it∂zG(x, ξ)

)+O(θ2)
)
.

By Taylor expansion, we obtain

qθ,0(x, ξ ; t) = w2
1(x, ξ)

(
p0(x, ξ)+ t

(
∂xp0∂xG+ ∂ξp0∂ξG

)
(x, ξ)

−itHp0G(x, ξ)− iθHp0(F (x)ξ)(x, ξ)+O(θ2 + t2)
)
. (3.11)

Taking the imaginary part, we obtain the announced expansion for qθ,0. Now, let us
prove the formula on qθ,1. From formula (2.6), we know that

qθ,1(x, ξ ; 0) = (
w2

1pθ,1 − w2
1∂2

xxpθ,0/4 − w2
1∂2

ξξpθ,0/4 − ∂xw
2
1∂xpθ,0/2

−∂ξw
2
1∂ξpθ,0/2

)
(x, ξ)+ i

2
Hpθ,0w

2
1(x, ξ). (3.12)

By Taylor expansion, we get

pθ,1(x, ξ) = p1(x, ξ)+O(θ〈ξ〉2),
and

Hpθ,0w
2
1(x, ξ) = Hp0w

2
1(x, ξ)+O(θ)w2

2(x, ξ).

The symbols p1, p0 and w1 being real valued, the result comes directly by taking the
imaginary part of (3.12). ��

As xξ is an escape function and F(x) = x for x large enough, we have, on
p−1

0 ([E0 − ε, E0 + ε]),

Hp0(F (x)ξ) ≥
{

c > 0 for |x| ≥ R,

−M for |x| ≤ R,
(3.13)

with R > 0 large enough. We fix K = supp w∞ ∩ B(0, R0) ⊂ p−1
0 ([E0 − ε, E0 +

ε]) ∩ T ([E0 − ε, E0 + ε])c and we denote f (x, ξ) the function given by Lemma 3.1.
Let χ1 ∈ C∞

0 (Rn, [0; 1]) such that χ2(x) = 1 for |x| ≤ R + 1 and χ2 ∈ C∞
0 (R; [0, 1])

with χ2(E) = 1 on [E0 − ε, E0 + ε]). As in [21], we set

G(x, ξ) = χ1(x)χ2(p0(x, ξ))f (x, ξ) ∈ C∞
0 (R2n). (3.14)
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Since χ1 can be chosen arbitrarily flat, the quantities

µ = sup |χ2(p0(x, ξ))f (x, ξ)Hp0χ1(x)|, (3.15)

can be chosen arbitrarily small. We take t = Lθ , and we have, on the support on w∞,

Hp0(tG(x, ξ)+ θF (x)ξ) ≥ θ

{−Lµ+ c for |x| ≥ R0,

L− Lµ−M for |x| ≤ R0.
(3.16)

We fix L ≥ 2M and µ small enough so that (3.16) becomes

Hp0(tG(x, ξ)+ θF (x)ξ) ≥ θc/2, (3.17)

on supp w∞.
Equations (3.6), (3.17) and Lemma 3.3 imply

−Im
〈
(qθ (x, ξ ; t, h)− z)e−tG/hT uθ , e

−tG/hT uθ

〉
≥ θc/4

∥∥w1e
−tG/hT uθ

∥∥2 − h
〈
w1Hp0w1e

−tG/hT uθ , e
−tG/hT uθ

〉
+O(θ2 + h2)

∥∥w2e
−tG/hT uθ

∥∥2
. (3.18)

Since w1Hp0w1 ≤ 0, by Lemma 3.2,

−Im
〈
(qθ (x, ξ ; t, h)− z)e−tG/hT uθ , e

−tG/hT uθ

〉
≥ θc/4

∥∥w1e
−tG/hT uθ

∥∥2 +O(θ2 + h2)
∥∥w2e

−tG/hT uθ

∥∥2
. (3.19)

Using (3.5), we get

∥∥w1e
−tG/hT uθ

∥∥2 ≤ O(θ)
∥∥w2e

−tG/hT uθ

∥∥2 +O(h∞)
∥∥T uθ

∥∥2
,

and by induction,

∥∥w1e
−tG/hT uθ

∥∥2 ≤ O(θN−1)
∥∥wNe−tG/hT uθ

∥∥2 +O(h∞)
∥∥T uθ

∥∥2

≤ O
(
θN−1h−2CL sup |G|)∥∥uθ

∥∥2
, (3.20)

which implies
∥∥w1T uθ

∥∥ = O(h∞)
∥∥uθ

∥∥. (3.21)

Now, choose w0 ∈ S2n(1) such that w ≺ w0 ≺ w1 . One can write

‖T Opw
h (w)uθ‖ ≤ ‖w0T Opw

h (w)uθ‖ + ‖(1 − w0)T Opw
h (w)uθ‖.

Using two times Theorem 3 with A = Opw
h (w) and inequality (3.21), we have

‖w0T Opw
h (w)uθ‖2 = 〈w0T Opw

h (w)uθ , w0T Opw
h (w)uθ 〉

= 〈q(x, ξ ;h)T uθ , T uθ 〉 +O(h∞)‖uθ‖2

= O(h∞)‖uθ‖2, (3.22)
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since q(x, ξ ;h) ∈ S2n(1) satisfy q ≺ w1. On the other hand,

(1 − w0)T Opw
h (w)uθ (x, ξ)

= αn(h)

(2πh)n

∫
e�/h(1 − w0)(x, ξ)w

(
(y + z)/2, η;h)uθ (z) dz dy dη, (3.23)

with

�(x, ξ, y, η, z) = i(x − y)ξ − (x − y)2/2 + i(y − z)η. (3.24)

We notice that ∂y�− i/2∂η� = i(η − ξ)+ (x − (y + z)/2). So, making integrations
by parts in (3.23) with

L = (x − (y + z)/2)− i(η − ξ)

(x − (y + z)/2)2 + (η − ξ)2 (∂y − i/2∂η), (3.25)

and using the fact that supp w ∩ supp(1 − w0) = ∅, we find, for each N ∈ N,

(1−w0)T Opw
h (w)uθ = hN αn(h)

(2πh)n

∫
e�/hsN

(
x, ξ, (y+z)/2, η;h)uθ (z) dx dξ dy dη

= hNTsN T ∗T uθ ,

with sN ∈ S4n(1). So (2.21) implies (1 − w0)T Opw
h (w)uθ = O(h∞)‖uθ‖ and we get

Opw
h (w)uθ = O(h∞)‖uθ‖, (3.26)

which gives Theorem 2. ��
Let us explain briefly how to generalize Theorem 2 to the black-box setting and to

multiple resonances. Assume that χ , w and uθ are as in Remark 1.3. We have (Pθ − z)

(1−χ) = (Qθ−z)(1−χ), where Qθ is a differential operator satisfying the assumptions
of Theorem 2. Following the proof above we get

∣∣Im 〈
w1(x, ξ)2e−tG/hT (Qθ − z)(1 − χ)uθ , e

−tG/hT (1 − χ)uθ

〉∣∣
≥ Cθ

∥∥w1e
−tG/hT (1 − χ)uθ

∥∥2 −O(θ2)
∥∥w2e

−tG/hT (1 − χ)uθ

∥∥2
.

On the other hand, we can always assume that supp χ ∩ suppx w1 = ∅ and one deduces
from Theorem 3 that

〈
w1(x, ξ)2e−tG/hT (Qθ − z)(1 − χ)uθ , e

−tG/hT (1 − χ)uθ

〉
= 〈

w1(x, ξ)2e−tG/hT [Qθ, χ ]uθ , e
−tG/hT (1 − χ)uθ

〉 = O(h∞)‖uθ‖.
It follows that ‖w1(x, ξ)T (1 − χ)uθ‖ = O(h∞)‖uθ‖ + O(h)‖w2(x, ξ)T (1 − χ)uθ‖
and working as in the proof of Theorem 2 we show that ‖w(x, hDx)(1 − χ)uθ‖ =
O(h∞)‖uθ‖. ��

Now, as in Remark 1.4, assume that z0 is a resonance whose multiplicity N = N(h) is
bounded uniformly with respect to h and that uθ is a generalized resonant state associated
to z0. By definition, (Pθ − z0)

Nuθ = 0 and we deduce from Theorem 2, that

‖wN−1(x, hDx)(Pθ − z)N−1uθ‖ = O(h∞)‖(Pθ − z)N−1uθ‖ = O(h∞)‖uθ‖.
(3.27)
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Using this estimate and the proof of Remark 1.3, we obtain

‖wN−2(x, hDx)(Pθ − z)N−2uθ‖ = O(h∞)‖uθ‖,
and repeating this argument N − 2 times (here we use that N is bounded with respect to
h), we deduce that if w satisfies the assumptions of Theorem 2 and uθ is a generalized
resonant state associated to z0, then ‖w(x, hDx)uθ‖ = O(h∞)‖uθ‖. ��

4. Proof of Theorem 1

The proof uses essentially the same arguments as in the proof of Theorem 2.
For N ∈ N, let w ≺ w0 ≺ · · · ≺ wN ≺ w∞ ∈ S2n(1) with supp w∞∩� = ∅ and let

g0 ≺ · · · ≺ gN ≺ g∞ ∈ C∞
0 ([E0−3ε, E0+3ε]) with g0 = 1 near [E0−2ε+E0+2ε].

Applying Theorem 3 with f = g2
0(p0(x, ξ)) and t = C̃h, we get

0 = Im
〈
g0(p0(x, ξ))e−tG/hT (Pθ − z)uθ , e

−tG/hT uθ

〉
= Im

〈(
qθ (x, ξ ; C̃h, h)+O(h∞)− z

)
e−tG/hT uθ , e

−tG/hT uθ

〉
, (4.1)

with

qθ (x, ξ ; C̃h, h) =
∞∑

j=0

qθ,j (x, ξ ; C̃h)hj .

Following Lemma 3.3, one can choose G(x, ξ) ∈ C∞
0 (supp w2) as in (3.14) such that:

Im qθ,0(x, ξ ; C̃h) ≤ −g2
0(p0)w

2
0h+O(h2)g2

1(p0)w
2
1 . (4.2)

Using Remark 2.1 and the fact that Im qj (x, ξ ; 0) = 0, we get that

Im qθ,j (x, ξ ; C̃h) = O(h2)g2
1(p0)w

2
1 (4.3)

for j ≥ 1. So (4.1) implies

‖g0(p0)w0e
−tG/hT uθ‖2 = O(h)‖g1(p0)w1e

−tG/hT uθ‖2

+O
( |Im z|

h
+ h∞

)
‖e−tG/hT uθ‖2. (4.4)

By induction,

‖g0(p0)w0e
−tG/hT uθ‖2 = O(hN)‖gN(p0)wNe−tG/hT uθ‖2

+O
( |Im z|

h
+ h∞

)
‖e−tG/hT uθ‖2,

and since e−tG/h = O(1) and etG/h = O(1),

‖g0(p0)w0T uθ‖2 = O
( |Im z|

h
+ h∞

)
‖T uθ‖2. (4.5)
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Now, let g−∞ ≺ g−N ≺ · · · ≺ g−1 ≺ g0 ∈ C∞
0 (R) with g−∞ = 1 on [E0− ε, E0+

ε]. Applying Theorem 3 with t = 0 and f = (1− g0(p0))
2sign(p0 −E0) ∈ S2n(1), we

have

0 = Re
〈
(1 − g0(p0))

2T (Pθ − z)uθ , T uθ

〉
= Re

〈(
qθ (x, ξ ; 0, h)− z+O(h∞)〈ξ〉2)T uθ , T uθ

〉
. (4.6)

We have

Re (qθ (x, ξ ; 0)− z) = (1−g0(p0))
2sign(p0−E0)(p0−Re z)+O(h)(1 − g−1(p0))

2

≥ (1 − g0(p0))
2〈ξ〉2/C +O(h)(1 − g−1(p0))

2, (4.7)

with C > 0 large enough. On the other hand, we know that, for j ≥ 1, qθ,j (x, ξ ; 0) ∈
S2n(〈ξ〉2) satisfies supp qθ,j ⊂ supp(1 − g0(p0)). So (4.6) proves that

‖(1 − g0(p0))〈ξ〉2T uθ‖2 = O(h)‖(1 − g−1(p0))〈ξ〉2T uθ‖2 +O(h∞)‖〈ξ〉2T uθ‖2,

(4.8)

and by induction

‖(1 − g0(p0))〈ξ〉2T uθ‖2 = O(hN)‖(1 − g−N(p0))〈ξ〉2T uθ‖2 +O(h∞)‖〈ξ〉2T uθ‖2

= O(hN)‖〈ξ〉2T uθ‖2. (4.9)

As Pθ is elliptic in the classical sense, (1.11) implies,

‖uθ‖H 2(Rn) = O(1)‖uθ‖L2(Rn),

which, in view of (2.21), implies

‖〈ξ〉2T uθ‖ = O(1)‖uθ‖. (4.10)

So (4.9) becomes

‖(1 − g0(p0))T uθ‖2 = O(h∞)‖uθ‖, (4.11)

which gives, with (4.5),

‖w0T uθ‖2 = O
( |Im z|

h
+ h∞

)
‖uθ‖2. (4.12)

We conclude as at the end of the proof of Theorem 2. ��

5. Residue Estimate of the Scattering Amplitude

In this section, we assume that P is a Schrödinger operator

P = −h2�+ V (x), (5.1)
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where V (x) ∈ Sn(1) extends holomorphically to the domain ϒ defined in (1.9). To
define the scattering amplitude, we make a long-range assumption on V (x):

∃ρ > 0 ∃C > 0 ∀x ∈ �, |V (x)| ≤ C|x|−ρ. (5.2)

In particular, P satisfies the assumptions of Sect. 1. We can define the scattering matrix
S(z;h), z ∈ R

∗+, related to P0 = −h2� and P , as a unitary operator:

S(z;h) : L2(Sn−1) −→ L2(Sn−1).

Next, introduce the operator T (z;h) defined by S(z;h) = Id − 2iπT (z;h). It is well-
known (see [15]) that T (z;h) has a kernel T (ω, ω′, z;h), smooth in (ω, ω′) ∈ S

n−1 ×
S

n−1 \ {ω = ω′} and the scattering amplitude is given by

f (ω, ω′, z;h) = c1(z;h)T (ω, ω′, z;h),

with

c1(z;h) = −2π(2z)−
n−1

4 (2πh)
n−1

2 e−i
(n−3)π

4 . (5.3)

In [10], C. Gérard and Martinez have shown that for ω �= ω′ fixed, the scattering ampli-
tude has a meromorphic continuation to a conic neighborhood of R

∗+, whose poles are
the resonances of P . Moreover, the multiplicity of each pole is exactly the multiplicity
of the resonance.

In this section, we still assume that z0(h) is a simple resonance of P such that
Re z0 ∈ [E0 − ε, E0 + ε] and 0 < − Im z0 < Ch ln(1/h). Under this condition the
scattering amplitude takes the form

f (ω, ω′, z;h) = f res(ω, ω′;h)

z− z0
+ f hol(ω, ω′, z;h), (5.4)

where f hol(ω, ω′, z;h) is holomorphic near z0. Our aim is to give an estimate of the
residue f res in some special directions:

Definition 5.1. We say that ω ∈ S
n−1 is an incoming direction (resp. outgoing direc-

tion) for the energy E0 iff there is ε, R > 0 and W ⊂ S
n−1, a neighborhood of ω, such

that, for all (x, ξ) ∈ p−1([E0 − ε, E0 + ε])

|x| ≥ R and
ξ

|ξ | ∈ W �⇒ lim
t→−∞ exp(tHp0)(x, ξ) = ∞. (5.5)

(resp. lim exp(tHp0)(x, ξ) = ∞ as t →+∞).

Remark 5.2. If ρ > 1, ω is an incoming direction iff there is R > 0 such that

p(x, ξ) = E0, |x| ≥ R and
ξ

|ξ | = ω �⇒ lim
t→−∞ exp(tHp0)(x, ξ) = ∞.

This is a consequence of Proposition 6.1 of [22].

For θ ≥ C|Im z|with C > 0 sufficiently large, we denote by �θ the spectral projector
associated to the resonance z0:

�θ = 1

2iπ

∫
∂D

(z− Pθ)
−1dz, (5.6)

where D = D(z0, r(h)) ⊂ C is a small disk such that z0 is the only resonance in D.
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Theorem 4. Let E0 > 0 and ω, ω′ ∈ Sn−1 with ω �= ω′. If ω is an outgoing direction
or if ω′ is an incoming direction, then there exists ε, C′ > 0 such that for all simple
resonance z0 ∈ [E0 − ε, E0 + ε]− i[0, θ/C′] with h/C < θ < Ch ln(1/h), C > 0 one
has

f res(ω, ω′, h) = O(h∞)‖�θ‖. (5.7)

Remark 5.3. As for Theorem 2, the assumption that z0 is simple is not necessary to esti-
mate the corresponding residue f res . If we suppose only that z0 is a resonance whose
multiplicity N is bounded with respect to h, then it is possible to show that

f res(ω, ω′, h) = O(h∞)

N∑
j=0

‖Aj‖, (5.8)

where Aj =
∫

∂D

(z− z0)
j (z−Pθ)

−1dz is a finite rank operator. We will give the proof

of this result at the end of Sect. 5.2.

For the proof of Theorem 4, we need a representation formula of the scattering ampli-
tude. This is the object of the next section.

5.1. Representation formula. In this section, we recall some results due to C. Gérard
and Martinez [10]. We just have to be careful with the fact that in our case, the dilatation
angle θ may depend on h. Moreover, we recall only how to continue the meromor-
phic part of the scattering amplitude. The main idea consists to extend Isozaki-Kitada’s
formula to complex energies. For this purpose, C. Gérard and Martinez show that the
symbols and the phases involved in that formula can be chosen to be analytic in a complex
neighborhood of R

2n.
For R > 0 large enough, d > 0, ε > 0 and σ ∈]0, 1[, we denote

�±
C

(R, d, ν, σ ) =
{
(x, ξ) ∈ C

2n; |Re x| > R, d−1 < |Re ξ | < d, | Im x| ≤ ε〈Re x〉,

|Im ξ | ≤ ε〈Re ξ〉 and ± 〈Re x, Re ξ〉 ≥ ±σ |x||ξ |
}
.

Let ε > 0, d > 1, −1 < σ−a < σ+a < 0 < σ−b < σ+b < 1 and R0 > 0 be suf-
ficiently large. For ∗ = a, b, we denote �∗ = �+

C
(R0, d, ε, σ+∗ ) ∪ �−

C
(R0, d, ε, σ−∗ ).

C. Gérard and Martinez construct some phases �∗ ∈ C∞(C2n) and some symbols
k∗ ∈ C∞(C2n) ∩ S2n(1) satisfying the general assumptions of Isozaki-Kitada [15], and
such that the following properties hold:

The phases �∗ have an holomorphic extension to �∗ and satisfy{
(∇x�∗(x, ξ))2 + V (x) = ξ2,

∂α
x ∂

β
ξ

(
�∗(x, ξ)− 〈x, ξ〉) = O

(〈x〉1−ρ−|α|), (5.9)

uniformly in �∗.
There exists 0 < δ � 1 and ε1 > 0 such that k∗ are supported in �∗, extend holomor-

phically in the variables |x|, |ξ | to �+
C

(2R0, d/2, ε, σ+∗ + δ)∪�−
C

(2R0, d/2, ε, σ−∗ − δ)

and

k∗(x, ξ ;h) = O
(
e−ε1〈x〉/h

)
, (5.10)
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uniformly with respect to h ∈]0, 1] and (x, ξ) ∈ �+
C

(2R0, d/2, ε, σ+∗ + δ) ∪ �−
C

(2R0,

d/2, ε, σ−∗ − δ).
With this construction, one can show that for real energies, the scattering amplitude

takes the form

f (ω, ω′, z;h) = f1(ω, ω′, z;h)+ f2(ω, ω′, z;h), (5.11)

where f1(ω, ω′, z;h) has an holomorphic continuation with respect to z ∈ {|Im z| ≤
ε0|Re z|} for ε0 sufficiently small independent on h, and

f2(ω, ω′, z;h)

= c2(z;h)
〈(
P − (z+ i0)

)−1
kb(.,

√
zω)ei�b(.,

√
zω)/h, ka(.,

√
zω′)ei�a(.,

√
zω′)/h

〉
,

(5.12)

with

c2(z;h) = −2πz
n−3

4 (2πh)−
n+1

2 e−i
(n−3)π

4 .

The function f2 can be continued meromorphically by the following process. For µ > 0
small enough, let Uµ be defined as in Sect. 1 with F(x) = xχ(|x|), χ ∈ C∞(R), χ = 1
outside a big interval and χ = 0 near 0, then one has

f2(ω, ω′, z;h) = c2(z;h)
〈
Uµ

(
P − (z+ i0)

)−1
U−1

µ Uµ

(
kbe

i�b/h
)
, Uµ

(
kae

i�a/h
)〉
.

(5.13)

Using the above properties on k∗ and �∗ it is easy to see that Uµ(k∗eih−1�∗) is well
defined for µ complex and | Im z| � | Im µ| � 1. A simple calculus shows that, for
|Im z| ≤ ε0|Re z| and µ = iθ , one has

Uiθ

(
kb(.,

√
zω)eih−1�b(.,

√
zω)
) = k̃b(x, ω, z; θ, h)ei�̃b(x,ω,z;θ,h)/h, (5.14)

with

k̃b(x, ω, z; θ, h)

= Jiθ (x)kb

(
x + iθF (x),

√
zω
)
e−〈Re

√
zθF (x)+Im

√
zx,ω〉/h+O((θ+Im

√
z)〈x〉1−ρ)/h,

and

�̃b(x, ω, z; θ, h) = �b(x, Re
√

zω)− θ Im
√

z〈F(x), ω〉.

From estimate (5.10), one deduces that there exists ε2 > 0 such that k̃b(x, ω, z; θ, h) =
O
(
eθ(C−〈x〉)/h

)
uniformly on C

n and

k̃b(x, ω, z; θ, h) = O
(
e−ε2〈x〉/h

)
, (5.15)

uniformly with respect to x ∈ {|x| ≥ 2R0} ∩
({〈x, ω〉 ≥ (σ+b + δ)|x|} ∪ {〈x, ω〉 ≤

(σ−b − δ)|x|}) and h ∈]0, 1]. Similarly, one can write

U−iθ

(
ka(.,

√
zω′)ei�a(.,

√
zω′)/h

) = k̃a(x, ω′, z; θ, h)ei�̃a(x,ω′,z;θ,h)/h,
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with

�̃a(x, ω′, z; θ, h) = �a(x, Re
√

zω′)+ θ Im
√

z〈F(x), ω′〉,
k̃a(x, ω, z; θ, h) = O(eθ(C−〈x〉)/h) uniformly on C

n and

k̃a(x, ω, z; θ, h) = O
(
e−ε2〈x〉/h

)
,

uniformly with respect to x ∈ {|x| ≥ 2R0} ∩
({〈x, ω′〉 ≥ (σ+a + δ)|x|} ∪ {〈x, ω′〉 ≤

(σ−a − δ)|x|}) and h ∈]0, 1]. It follows that f2 can be written

f2(ω, ω′, z;h) = c2(z;h)
〈
(Pθ − z)−1k̃be

i�̃b/h, k̃ae
i�̃a/h

〉
, (5.16)

for θ > 0 and | Im z| � θ |Re z|. From this formula, one deduces easily the form of the
residue of f at a simple pole z0:

f res(ω, ω′, h) = c2(z0;h)
〈
�θ k̃be

i�̃b/h, k̃ae
i�̃a/h

〉
, (5.17)

where the functions k̃∗, �̃∗ are evaluated in z = z0(h).

5.2. Proof of Theorem 4. Before going further, let us discuss the properties of �θ when
z0 is simple. If one denotes by uθ a resonant state associated to z0, the rank one operator
�θ can be written

�θ = 〈., u−θ 〉uθ , (5.18)

where u−θ satisfies (P−θ − z0)u−θ = 0. In particular, one has ‖�θ‖ = ‖uθ‖‖u−θ‖.
Let R > 0, d > 0, σ > 0 and w± ∈ S2n(1) such that exp(±T Hp)(supp w±) ⊂
�±(R, ε,±σ) for some T > 0. It follows from (5.18) and Theorem 2 that

w−(x, hDx)�θ = O(h∞)‖�θ‖,
�θw+(x, hDx) = O(h∞)‖�θ‖. (5.19)

The inequality (4.11) implies that for ρ ∈ C∞
0 (R), ρ = 1 near [E0 − ε, E0 + ε]),

�θρ(P ) = O(h∞)‖�θ‖. (5.20)

Now, we consider χ ∈ C∞
0 (Rn) such that 1|x|≤2R0 ≺ χ ≺ 1|x|≤3R0 . Then, one has the

following

Lemma 5.4. For R0 > 0 large enough and | Im z| � θ , one has

f res(ω, ω′;h) = c(z0;h)
〈
�θχk̃be

i�̃b/h, χk̃ae
i�̃a/h

〉+O(h∞)‖�θ‖. (5.21)

Proof. First we prove that
〈
�θ(1 − χ)̃kbe

i�̃b/h, k̃ae
i�̃a/h

〉 = O(h∞)‖�θ‖. (5.22)

Let us denote g1 = �θ(1 − χ)̃kbe
i�̃b/h. Using (5.20), we have, for ρ ∈ C∞

0 ([E0 −
ε, E0 + ε]) with ρ = 1 near E0,

g1 = �θ(1 − χ)ρ(P )̃kbe
i�̃b +O(h∞)‖�θ‖.
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Next, we introduce w+ ∈ S2n(1) such that supp w+ ⊂ �+(R0, ε, σ
−
b − 2δ) and that

w+ = 1 on �+(2R0, ε/2, σ−b − δ). It follows immediately from (5.19) that

‖�θ(1 − χ)ρ(P )w+(x, hDx)‖ = O(h∞)‖�θ‖,
so that

g1 = �θw−(x, hDx)̃kbe
i�̃b/h +O(h∞)‖�θ‖,

with w−(x, hDx) = (1−χ)ρ(P )(1−w+)(x, hDx). In particular, supp w− ⊂ �−(2R0,

ε, σ−b − δ). Moreover, the stationary phase method gives

w−(x, hDx)
(̃
kbe

i�̃b/h
) ∼∑

α

h|α|Cαk̃b,αei�̃b/h∂α
ξ w−(x,∇x�̃b), (5.23)

with k̃b,α =
∑

β≤α O(∂
β
x k̃b). Now, if we assume that Re (x,∇x�̃b) ∈ supp w−, we have

(x,∇x�̃b) ∈ �−
C

(2R0, ε, σ
−
b − δ). By (5.9), ∇x�̃b = ω+O(〈x〉−ρ) and assuming that

R0 is sufficiently large, we get 〈x, ω〉≤(σ−b −δ)|x|. By (5.15), w−(x, hDx)
(̃
kbe

i�̃b/h
) =

O(h∞) comes and (5.22) follows. Using the same arguments, one proves that (1 −
χ)̃kae

i�̃a = O(h∞)‖�θ‖. It follows that

〈
�θχk̃be

i�̃b/h, (1 − χ)̃kae
i�̃a/h

〉 = O(h∞)‖�θ‖,
and the proof is complete. ��

Now, we are in position to prove Theorem 4 and we assume that ω is outgoing. Let
w ∈ S2n(1) with supp w ⊂ p−1([E0− ε, E0+ ε])∩{ ξ

|ξ | ∈ W }∩ {R0 < |x| < 4R0} and

w = 1 on p−1([E0 − ε/2, E0 + ε/2]) ∩ { ξ
|ξ | ∈ W ′} ∩ {2R0 < |x| < 3R0}, where W is

given by Definition 5.1 and ω ∈ W ′ ⊂⊂ W . Using the fact that ∇x�b = ω+O(〈x〉−ρ)

and an argument similar to (5.23), one can prove that

f res(ω, ω′;h) = c2(z0;h)
〈
�θχw(x, hDx)̃kbe

i�̃b/h, χk̃ae
i�̃a/h

〉+O(h∞)‖�θ‖.

As χ ∈ C∞
0 (Rn) and ω is outgoing, there exists T > 0 such that exp(T Hp0)(supp χw) ⊂

�+(R, ε, σ ), with R � 1 and 0 < σ < 1. It follows from (5.19) and from the estimates
on k̃∗ and �̃∗ that

f res(ω, ω′;h) = c2(z0;h)
〈
�θχw(x, hDx)̃kbe

i�̃b/h, χk̃ae
i�̃a/h

〉
+O(h∞)‖�θ‖ = O(h∞)‖�θ‖,

and the proof of Theorem 4 is complete. ��
Here, we give the arguments to show Remark 5.3 concerning multiple resonances.

In the situation that we deal with, we have

(Pθ − z0)
−1 =

N∑
j=1

Aj

(z− z0)j
+ Ahol(z),
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where A0 = �θ , Ahol(z) is holomorphic near z0 and the Aj are finite rank operators
with Im Aj ⊂ Im �θ . For j = 0, . . . , N fixed, one can write

Aj =
Nj∑
k=1

〈., vj
θ,k〉uj

θ,k

with (Pθ−z0)
Nu

j
θ,k = 0 and Nj ≤ N . In particular, one can choose the sequence (u

j
θ,k)k

or (v
j
θ,k)k orthogonal and one has ‖vj

θ,k‖‖uj
θ,k‖ ≤ ‖Aj‖ for all k. Moreover, it follows

from Remark 1.3 and the discussion following (5.18), that for supp ω± ⊂ �±(R, ε,±σ),
one gets

ω−(x, hDx)Aj = O(h∞)‖Aj‖,
Ajω+(x, hDx) = O(h∞)‖Aj‖. (5.24)

Following the proof of Theorem 4, one can show that

f res(ω, ω′, h) =
N∑

j=1

∑
α+β=j

〈Ajkb,β(z0, h)eih−1�b, ka,α(z0, h)eih−1�a
〉
,

where the functions kb,β , ka,α have the same properties as ka , kb. Hence, one can work
as in the proof of Theorem 4, to get

|f res(ω, ω′, h)| = O(h∞)
∑
j

‖Aj‖,

which proves Remark 5.3. ��

6. Estimate on the Spectral Projector

In this section, we give some examples where the spectral projector �θ is bounded by
O(h−M).

6.1. Case of resonances at distance hM . In this section, we consider the case where
the resonance z0 satisfies | Im z0| = O(hM) with M >> 1. In that case, it is possible
to obtain some a priori estimates of the spectral projector by using the semiclassical
maximum principle [32, 33, 29]. For this purpose, we need some exponential estimate
of the modified resolvent (Pθ − z)−1in a suitable complex neighborhood of E0. This
was done by Tang and Zworski in [32, 33] in the case where θ is fixed. Here θ depends
on h so that we have to check that this estimate is still available in our case.

Lemma 6.1 (Tang–Zworski). Assume that Ch < θ < Mh log(1/h), with C > 0 large
enough, and let �θ = E+θ�, where E ∈ [E0−ε, E0+ε] and � ⊂ C is a fixed simply
connected and relatively compact domain. Let g(h) be a strictly positive function such
that g(h) � θ , then there exists C = C(�) such that

∀z ∈ �θ \
⋃

zj∈Res(P )∩�θ

D(zj , g(h)), ‖(Pθ − z)−1‖ ≤ Ce
Ch−n log θ

g(h) .
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Proof. The demonstration follows closely [32] and we just sketch it. The only differ-
ence is that θ (and so �θ ) depends on h, so that we have to be careful with the constants
appearing in the proof. The main steps are the following.

As in [26] one can find K ∈ L(L2, L2) with ‖K‖ = O(1) and rank(K) = O(h−n)

such that (Pθ + θK − z) is invertible for z ∈ �θ and

‖(Pθ + θK − z)−1‖L(L2,H 2) = O(1/θ).

Using K as in [26, 32], we can construct, for z ∈ �θ , an invertible operator

P(z) =
(

Pθ − z R−
R+ 0

)
: H 2 ⊕ C

N → L2 ⊕ C
N, (6.1)

where N = rank(K) = O(h−n). Using the fact that (Pθ +θK−z)−1(Pθ −z) = O(1),
one shows that its inverse

E(z) =
(

E(z) E+(z)

E−(z) E−+(z)

)
: L2 ⊕ C

N → H 2 ⊕ C
N, (6.2)

satisfies ‖E(z)‖, ‖E−(z)‖ = O(θ−1) and ‖E+(z)‖, ‖E−+(z)‖ = O(1).
As ‖(Pθ − z)−1‖ = O(θ−2)

(
1 + ‖E−1

−+(z)‖CN ,CN

)
, for z ∈ �θ \ Res P , we obtain

‖(Pθ − z)−1‖CN ,CN = O
(
θ−2h−neCh−n)| det(E−+(z))|−1, (6.3)

and it remains to estimate | det(E−+(z))| from below. For this purpose, we set

Dθ(z, h) =
∏

zj∈�θ∩Res P

(
z− zj

θ

)

and det(E−+(z)) = Gθ(z, h)Dθ(z, h). Using the change of variable �θ  z �→ (z −
E)/θ ∈ � we work on a domain independent of θ . Following the arguments of [26],
one can show that |Gθ(z, h)| ≥ e−Ch−n

uniformly with z ∈ �θ , which implies

∀z ∈ �θ \
⋃

zj∈Res(P )∩�θ

D(zj , g(h)), | det(E−+(z))| ≥ e−Ch−n

(
g(h)

θ

)O(h−n)

≥ Ce
−C log( θ

g(h)
)h−n

. (6.4)

Combining estimates (6.3) and (6.4), one gets the announced result. ��
Proposition 6.2. Assume that V is compactly supported and let E0 > 0. Let z0 be a
simple resonance of P such that Res(P )∩D(z0, h

M1) = {z0}, for M1 sufficiently large
and |Im z0| ≤ ChM2 with M2 ≥ M1 + 2n+ 2. Then

‖�θ‖ = O(1)

uniformly with respect to h/C < θ < Ch log(1/h).
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Proof. We can copy the proof of Proposition 3.1 of Stefanov [31] with θ0 = h ln(1/h)

to get

‖(Pθ − z)−1‖ ≤ 2

Im z
, (6.5)

for all z satisfying Im z > 2e−h−1/3
. Let us denote z̃0 = z0 + 2ihM2 . Following [31], we

want to apply the semiclassical maximum principle as it is presented in Stefanov [29]
to the function F(z, h) = z−z0

z−z̃0
(Pθ − z)−1 which is holomorphic on

�(h) = {z ∈ C; |Re z− Re z0| < 2hM1 ,−hM1−n−2 < Im z < hM1}.
From (6.5), it follows that ‖F(z, h)‖ ≤ Ch−M1 on Im z = hM1 . On the other hand, we
deduce from the exponential estimate of the resolvent proved in Lemma 6.1 below, that
‖F(z, h)‖ ≤ CeCh−n ln(1/h)

on �(h). By the semiclassical maximum principle, it follows
that

‖F(z, h)‖ ≤ Ch−M1 on �̃(h),

with �̃(h) = {z ∈ C; |Re z − Re z0| < hM1 ,−2hM1 < Im z < hM1}. In particular,
(2h)−M1‖�θ‖ ≤ 1

|z0−z̃0| ‖�θ‖ = ‖F(z0, h)‖ ≤ Ch−M1 and the proof is complete. ��
From Theorem 4 and Proposition 6.2, one deduces immediately the following.

Corollary 6.3. Assume that V is compactly supported and let E0 > 0. Suppose that ω

is outgoing or ω′ is incoming and that ω �= ω′. Let z0 be a simple resonance of P such
that Res(P ) ∩D(z0, h

M1) = {z0}, for M1 large enough, Re z0 ∈ [E0 − ε, E0 + ε] and
|Im z0| ≤ ChM2 with M2 ≥ M1 + 2n+ 2. Then

f res(ω, ω′, h) = O(h∞). (6.6)

Remark 6.4. Let us notice that this result is not a consequence of the works [30] and
[23]. Indeed, if one applies the theorems of [30] and [23] to this situation, one can only

show that f res(ω, ω′, h) = O
(
hM2− n−1

2
)
.

6.2. Estimate in dimension one.

Lemma 6.5. We assume that n = 1 and that the critical points of p0(x, ξ) on the energy
level are non-degenerate (i.e. the points (x, ξ) ∈ p−1

0 ({E0}) such that ∇p0(x, ξ) = 0
satisfy Hess p0(x, ξ) is invertible). Then there exists M , ε > 0 such that, for E ∈
[E0 − ε, E0 + ε] and θ = Nh with N > 0 large enough,

‖(Pθ − z)−1‖ = O(h−M)
∏

zj∈Res(P )∩�E,εθ

θ

|z− zj | , (6.7)

where z ∈ �E,εθ/2, �E,δ = E +D(0, δ) and h is small enough.

Proof. As for Lemma 6.1, the proof is a slight modification of Lemma 1 of Tang–Zworski
[32]. It is shown in [2], that for a

K = χ(x)g(A)f
(A− E

θ

)
g(A)χ(x),
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where χ ∈ C∞
0 (Rn), f ∈ S(R;R+) with f̂ ∈ C∞

0 (R) (f̂ is the Fourier transform of
f ), g ∈ C∞

0 (R) with g = 1 near E0 and A = Opw
h (a) with a ∈ Scl

2n(〈ξ〉2) elliptic in the
sense of (1.8), we have

‖(Pθ − iθK − z)−1‖ ≤ O(θ−1), (6.8)

for |Re z− E| ≤ εθ , Im z ≥ −εθ and

‖(Pθ − z)−1‖ ≤ O(θ−1), (6.9)

for |Re z − E| ≤ εθ , Im z ≥ Cθ . In addition, the critical points of a0(x, ξ) in
[E0 − ε, E0 + ε] are non degenerate.

Let b(x, ξ ;h) ∈ Scl
2n(〈x〉2 + 〈ξ〉2;R) be such that b = a for |x| ≤ R, b(x, ξ ;h) ≥

(〈x〉2 + 〈ξ〉2)/C for |x| ≥ 2R and the critical points of b0(x, ξ) in [E0 − ε, E0 + ε] are
non-degenerate. We note B = Opw

h (b) which is self-adjoint and has only pure spectrum
near [E0 − ε, E0 + ε]. Since the symbol of g(A) and g(B) coincide modulo O(h∞)

near the support of χ(x), we get

K = χ(x)g(B)f
(A− E

θ

)
g(B)χ(x)+O(h∞), (6.10)

and we have

χ(x)g(B)
(
f
(A− E

θ

)
− f

(B − E

θ

))
g(B)χ(x)

= 1

2π

∫
f̂ (t)χ(x)g(B)

(
eitA/θ − eitB/θ

)
g(B)χ(x) dt

= 1

2π

∫∫ 1

0
f̂ (t)χ(x)g(B)eitsA/θ it (A− B)

θ
g(B)eit (1−s)B/θχ(x) ds dt. (6.11)

Here (A−B)g(B) is a h-pseudodifferential operator whose symbol, in Scl
2n(1), vanishes

for |x| ≤ R. On the other hand, we have |st | ≤ C since f̂ ∈ C∞
0 (R) and the symbol of

χ(x)g(B), in S2n(1), has compact support independent of R (modulo h∞). If we fix R

large enough, the theorem of Egorov implies

χ(x)g(B)eitsA/θ (A− B)g(B) = O(h∞). (6.12)

So (6.10), (6.11) and (6.12) imply

K = χ(x)g(B)f
(B − E

θ

)
g(B)χ(x)+O(h∞). (6.13)

Let k ∈ C∞
0 (R; [0, 1]) with k = 1 near 0. As f ∈ S(R), the functional calculus implies

∥∥∥χ(x)g(B)
(

1 − k
(B − E

�θ

))
f
(B − E

θ

)
g(B)χ(x)

∥∥∥
≤ O(1) sup

t∈R

∣∣∣g(t)
(

1 − k
( t − E

�θ

))
f
( t − E

θ

)
g(t)

∣∣∣
≤ O(�−∞). (6.14)
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So (6.13) shows that

K =χ(x)g(B)k
(B − E

�θ

)
f
(B − E

θ

)
g(B)χ(x)+O(�−∞ + h∞)

=K̃ +O(�−∞ + h∞). (6.15)

Using (6.8), we get for |Re z− E| ≤ εθ and Im z ≥ −εθ ,

Pθ − iθK̃ − z =Pθ − iθK − z+ θO(�−∞ + h∞)

=(Pθ − iθK − z)(1 +O(�−∞ + h∞)). (6.16)

Now we fix � large enough and we have

∥∥(Pθ − iθK̃ − z
)−1∥∥ ≤ O(θ−1), (6.17)

for |Re z−E| ≤ εθ , Im z ≥ −εθ and h small enough. As b0(x, ξ) has only non-degen-
erate critical point in the energy level E0, the work of Brummelhuis–Paul–Uribe [4] or
[3] shows that the number of eigenvalues of B in [E − Cθ, E + Cθ ] is O(ln(1/θ), so

rank K̃ ≤ rank k
(B − E

�θ

)
≤ #sp(B) ∩ [E − Cθ, E + Cθ ] ≤ O(ln(1/θ)), (6.18)

and

‖K̃‖L(L2,L2) = O(1). (6.19)

Now the end of the proof is a repetition of the proof of Lemma 6.1: we put a Gru-
shin problem like (6.1) which is well posed and we note E(z) is inverse as in 6.2. We
have ‖(Pθ − z)−1‖ = O(θ−2)(1 + ‖E−1

−+(z)‖) with ‖E−+(z)‖ = O(1). As the minor
Ẽ−+ = O(h−C), we get

‖(Pθ − z)−1‖ = O(h−C)| det(E−+(z))|−1. (6.20)

As usual, we set

Dθ(z, h) =
∏

zj∈�θ∩Res(P )

(
z− zj

θ

)

and det(E−+(z)) = Gθ(z, h)Dθ(z, h). Using the change of variable �E,εθ  z �→
(z − E)/θ ∈ �0,ε we work on a domain independent on θ . The majoration of the
number of resonances

#Res(P ) ∩�E,εθ = O(ln(1/h)), (6.21)

proved in [3] and the arguments of Sjöstrand [26] show that |Gθ(z, h)| ≥ hC/C̃ uni-
formly with z ∈ �E,εθ/2. The lemma follows from (6.20). ��
Corollary 6.6. Under the hypotheses of Lemma 6.5, if #Res(P ) ∩ D(E0, θ) = O(1)

and z0 ∈ Res(P ) is separated by hC from the other resonances of P , then

�θ = O(h−C′
). (6.22)
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Now we give an example in the 1 dimensional case where we can bound the projector
�θ . Consider a short range potential V (x) which is holomorphic in

{x ∈ C; |Im z| ≤ 〈Re z〉/C},
and has the following form:

x

E0

V (x)

xc

At xc, V (x) has a non-degenerate maximum. Such type of potential have been studied
by Fujjié and Ramond [8] and [9]. In particular, the formula (41) of [9] implies that the
resonances in �E0,εθ are of the form

zj = E0 + S0 − (2j + 1)πh+ ih ln(2)

K ln(h)
+O(h/ ln(h)2), (6.23)

with j ∈ Z and S0, K are some fixed constants. Let j0 ∈ Z fixed and z ∈ D(zj0 , h/

ln(1/h)C) with C >0 large enough. Using (6.23), we get |z−zj |≥(|j0−j |)h/ ln(1/h)C

for j �= j0 and we have

∏
zk∈�E0,εθ and j≥j0

θ

|z− zj | ≤
∏

zj∈�E0,εθ and j≥j0

C ln(1/h)

|j − j0| ≤ (C ln(1/h))N+

N+!
,

where N+ = #{j ≥ j0; zj ∈ �E0,εθ }. A similar formula can be obtained for the product
over j ≤ j0 and we get

∏
zk∈�E0,εθ

θ

|z− zj | ≤
(C ln(1/h))N+(C ln(1/h))N−

N+!N−!
. (6.24)

Equation (6.23) implies that the number of resonances in �E0,εθ , noted N = N+ +N−,
satisfy N ∼ α ln(1/h), with α > 0 and, as j0 is fixed,

|N+ −N/2| ≤ C and |N− −N/2| ≤ C, (6.25)

so

∏
zk∈�E0,εθ

θ

|z− zj | ≤ NC (C ln(1/h))N

((N/2)!)2 ≤ NC (CN)N

((N/2)!)2 , (6.26)
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The Stirling formula N ! ∼ NNe−N
√

2πN implies

∏
zk∈�E0,εθ

θ

|z− zj | ≤ CN NN

((N/2)N/2)2 ≤ CN = O(h−C). (6.27)

Using Lemma 6.5, we have proved

Corollary 6.7. Under the previous hypotheses, the projector associated to a resonance
zj satisfies, for h small enough,

�θ = O(h−C). (6.28)

In this case +1 ∈ S
0 is an incoming direction and −1 is an outgoing direction.
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