Ann. Henri Poincaré Online First
(© 2011 Springer Basel AG I A A S
DOI 10.1007/s00023-011-0085-4 Annales Henri Poincaré

Random Walk on Surfaces with Hyperbolic
Cusps

Hans Christianson, Colin Guillarmou and Laurent Michel

Abstract. We consider the operator associated with a random walk on
finite volume surfaces with hyperbolic cusps. We study the spectral gap
(upper and lower bound) associated with this operator and deduce some
rate of convergence of the iterated kernel towards its stationary distribu-
tion.

1. Introduction

In this work, we study the operator of random walk on finite volume surfaces
with hyperbolic cusps. On a Riemannian manifold (M, g) with finite volume,
the h-random walk operator is simply defined by averaging functions on geo-
desic balls of size h > 0 as follows:

1 ! /
K f(m) == Bl (/ | F(m'ydwg ()

where By, (z) := {m’ € M;d(m’,m) < h} is the geodesic ball of center m € M
and radius h, and d(.,.),|Br(m)| denote, respectively, the Riemannian dis-
tance and the Riemannian volume of Bj(m). This operator appeared in the
recent work of Lebeau and Michel [5], in which they study the random walk
operator on compact manifolds. They studied in particular the spectrum of
this operator for small step A > 0, and prove the existence of a sharp spectral
gap for Kj, which provides the exponential rate of convergence of the kernel
KN (m,m")dv,(m’) of the iterated operator to a stationary probability mea-
sure, in total variation norms. Related works on Metropolis algorithm were
studied in [2] on the real line and [3] in higher dimension. All these results rely
on a very precise analysis of the spectrum of these operators (localization of
eigenvalues, Weyl type estimates, eigenfunction estimates in L> norm). For
an overview of this subject and more references on convergences of iterated
Markov kernels, we refer to [1].
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More recently, the two last authors studied such random walk operators
on unbounded domain of the flat Euclidian space endowed with a smooth
probability density [4]. In this situation and for certain densities, since the
domain is unbounded, the random walk operator may have essential spectrum
at distance O(h?) from 1 and the uniform total variation estimate fails to be
true.

The motivation of the present work is to consider the simplest case of
non-compact manifolds for which the kernel

1

kn(m,m’) = mﬂd(m,m’)<hdvg(m/)

is still a Markov kernel, and which have a radius of injectivity equal to 0. The
non-compactness of the manifold should create some essential spectrum for
K}, and it is not clear a priori that a spectral gap even exists in that case.
Intuitively, the walk could need infinitely many steps to fill the whole manifold
and approach the stationary measure in a total variation norm. For surfaces,
the radius of injectivity tending to 0 at infinity makes the geometric structure
of balls near infinity more complicated, and they will typically change topology
from something simply connected to some domains with non trivial 7y. It is
then of interest to study what types of result one can or cannot expect in this
setting.

Let us now be more precise. Consider a surface (M, g) with finite volume
and finitely many ends Ey, ... E,, with F; isometric to a hyperbolic cusp

(ti,00); x (R/AZ),  with metric g = dt? + e *'d2?.

for some t; > 0. Each end can also be viewed as a subset of the quotient
(v)\H? of H? by an abelian group generated by one translation v : (x,y) €
H? — (z,y + ) € H? where the hyperbolic plane is represented by H? =
{(z,y) € Ry x R}.

We denote by By (m) the geodesic ball in M of radius A > 0 and center
m; then |Bp(m)| will denote its volume with respect to g. Let div, be the

probability measure on M defined by dv, = %dvg(m)7 where Zj, is a
normalizing constant. We define the random walk operator K}, by
1
Knf(m) i= s [ ') duy o)
| Br(m)] !
Bp(m)

Then, Kj, maps L* (M, dvy,) into itself, L' (M, dvy,) into itself, both with norm
1. Hence, it maps L?(M, dvy,) into itself with norm 1. Moreover, it is self-adjoint
on L?(M,dvy,). Hence, the probability density dvj, is stationary for Kj,, that
is K} (dvy) = du, for any € M, where K| denotes the transpose operator
of K} acting on Borel measures. In that situation, it is standard that the iter-
ated kernel KJ!(x,dy) converges to the stationary measure dvy, when n goes to
infinity. The associated rate of convergence is closely related to the spectrum
of K} and more precisely to the distance between 1 and the largest eigenvalue
less than 1. The main result of this paper is the following:

Theorem 1.1. There exists hg > 0 and § > 0 such that the following hold true:
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(i) For any h€]0, ho|, the essential spectrum of K, acting on L*(M,dvy,) is
given by the interval

I = [Smﬁ(h)A sinﬁ(h)]

where A = ming~q sin(@) 1.

(ii) For any h €10, hol, Spec(K) N [—1,—1+ §] = 0.
(i) There exists ¢ > 0 such that for any h €0, hol,1 is a simple eigenvalue
of Ky, and the spectral gap g(h) := dist(Spec(K,)\{1},1) enjoys

(A1 + a(h))h? h
8 1= sinh(h))

ch? < g(h) < min (

where A1 is the smallest non-zero L? eigenvalue of A, on M and a(h) a
function tending to 0 as h — 0.

Compared with the results of [5] in the compact setting, our result is
weaker since we are not able to provide a localization of the discrete spectrum
of K} in terms of the Laplacian spectrum. This is due to the fact that in the
cusp, the form of the geodesic balls of radius h changes dramatically and, in
some sense, the approximation of Kj by a function of the Laplacian is not
correct anymore in this region of the surface.

This paper is organized as follows: in the next section we describe the
form of the operator in the cusp part of the manifold. In Sect. 3, we study the
essential spectrum of K} acting on L?(M,dvy,). In Sect. 4, we prove part (ii)
of the above theorem and we start the proof of (iii). The upper bound on the
gap is shown by computing the operator K} on smooth functions (in fact on
the eigenfunctions of the Laplace operator). The left lower bound is obtained
by showing a Poincaré inequality:

<(1 - Kh)f’ f>L2 (dvp) > C’hQ(Hf”L2 (dvy) <f7 >L2 (dvp) )

For the proof of this inequality, we study separately the compact region of the
manifold and the cusp. The cusp study is detailed in Sect. 4.

In Sect. 5, we construct some quasimodes for K, (namely the eigenfunc-
tions of the Laplace operator). This permits to exhibit some eigenvalues of K}
close to 1 and to give a sharp upper bound on the spectral gap. In Sect. 6,
we use the previous results to study the convergence of KJ'(x,dy) towards
dvy. We prove that the difference between these two probabilities is of order
C(z)e~ ™) in total variation norm and that the constant C(x) cannot be
chosen uniformly with respect to 2 (contrary to the case of a compact mani-
fold).

In the last section, we give some smoothness results on the eigenfunc-
tions of K. This should be the first step towards a more precise study of the
spectrum in the spirit of [5].

Finally, we observe that it will be clear from the proofs that we only need
to consider the case with a unique end E := Fj for M, and so we shall actually
assume that there is only one end to simplify exposition.
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2. Geometry of Balls and Expressions of the Random Walk
Operator

2.1. Geometry of Geodesic Balls in the Cusp

In this section we study geodesic balls in the cusp. First we briefly recall what
balls look like in the hyperbolic space H? = {(z,y) € R; x R} with the same
metric (dz? + dy?)/z2. It is convenient to use coordinates z = e!, in which
case the volume element becomes

dvy = e tdtdy.

A ball B((e',y),r) centered at (e, y) and of radius r in H? is a Euclidean ball
centered at (efcoshr,y) and of Euclidean radius efsinhr. That is, a ball of
radius r and center e’ has its “top” at (e!™",y) and its “bottom” at (e!™", y).
By changing to polar coordinates, it is easy to see that a ball in H? has volume
,
|B((e!,y),7)| = QW/sinh(r’)dr’ = 27(cosh(r) — 1).
0

The cusp end Ep of M is identified with the region x > x; inside ()\H?,
where v(z,y) = (z,y+¢) and 21 > 0 is a fixed number. A fundamental domain
of the cyclic group () in H? is given by the strip S := {z > 0,£ > y > 0}.
The end Ej can thus be seen as the quotient (v)\(SN{x > x1}). The geodesic
ball By(m) in the cusp end Ey can be obtained by considering

Bp(m) = n({m’ € H?; dg=(m,m’) < h})

if we view m as being in S, and where 7 : H? — (y)\H? is the canonical
projection of the covering.

As a consequence, we see that, as long as the Euclidean diameter of By (m)
is less than or equal to the width ¢ of the strip S, By (m) can be considered as
a ball of diameter h in H?, while when the Euclidean diameter is greater than
or equal to ¢, i.e. when t > log(¢/2) — log(sinh(h)), then the ball overlaps on
itself and can be represented in S by

1
Bum) = | {(@,y/) € i |e" cosh(h) —a'[2 + |y + j€ — /[ < ¢ sinh(h)2}
j=—1

(2.1)

if m = (ef,y) € S and there are at most two of these three regions which have
non-empty interior.

In particular, if (x = e,y = ¢/2), then the ball Bj(m) is given by the
region

{0 <y < t;]2" — et cosh(h)| < y/e2tsinh?(h) — |y — €/2]2}.

See Figs. 1, 2 and 3.
We are now in a position to give a couple of explicit expressions for Kj
which will be used later.
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t+r

et r Yy

FicURE 1. The hyperbolic ball in Euclidean coordinates.
The center in hyperbolic coordinates is at height e, and in
Euclidean coordinates at e’ cosh r

6t+r
el cosh|r
el sinhr
o
S —

F1GURE 2. The hyperbolic ball of radius r is tangent to
itself when the center is at ¢ = log(¢/2sinh(r)). For t >
log(¢/2sinh(r) the ball overlaps on itself

etJr’r

FiGure 3. The hyperbolic ball of radius r for ¢>
log(¢/2sinh(r)) with shifted center
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2.2. First Expression of K} in the Cusp

Let us use the coordinates (¢,y) in the strip S defined above so that Ey :=
(M\S = {(e?,y) € (z0,00) x (R/FZ)}, for some zq > 0. The first expression
is obtained by integrating the function on vertical lines covering the geodesic
ball. Let us denote by By (t,y) the geodesic ball on Ey centered at (ef,y) of
radius h. It is easily seen that the operator K} acting on a function ¥(t,y)
with support in the cusp Ey can be written in the form

y+¢/2 t+tq (e y—y'|)

1 i (t) ~ /

[log(€/ sinh(h)),00) 1o —t ! 3.,
K t = t dt'd
w(ty) [ [ e taray
y—L£/2 t+t_(e"t|y—y’|)

T (0,10g(¢/ sinh(r))) (t) —~ /

TG / B,y )e " ardy,

|Br(t,y)|

| cosh(h)et —et’ |2+ |y—y’|2 <et sinh(h)
(2.2)

where 1) is the lift of ¥ to the covering H2 — (z — z + ¢)\H2, and
t+(z) = log(cosh(h) £ y/sinh(h)? — |z]?).

We write Kp1 as a sum of two parts: Ky = K1y + K79 where K4 is
supported in {t > log(¢/2sinh(h))} and K71 in {t < log(¢/2sinh(h))}. The
action of K ,1 on 1 can be written, using change of variables,

Ky (t,y)
e;té log(cosh(h)44/sinh(h)2—22)
1 ~
- |Bu(t,y)| / / Yt + T,y + zeh)e TdTdz. (2.3)
h\l,

—Cgté log(cosh(h)—4/sinh(h)2—22)

Decomposing w in Fourier series in y, one can write w (ty) => e € P
ax(t) and one has
2mik
Ky (t,y) Z et UKL par(t)
k=—o00
Kj, pax(t)
e—2tz log(cosh(h)++/sinh(h)2—22)
1 / 2mikzel / T
T 1Bty e ! ap(t + T)e TdTdz.

|Bh (ta y)|

*%w log(cosh(h)—+/sinh(h)2—22)

(2.4)
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Using Plancherel theorem and computing the Fourier transform of
e’Tﬂ[tﬂtJr](T), we obtain

ty(2)
/ ar(t + T)e TdT = / e a1 (€)o (2, £)dé
t_(z)

~ (cosh(h) + /sinh(h)? — 22)1+€ — (cosh(h) — /sinh(h)2 — 22)1F¢
o(z,§) = 00T 2 :

(2.5)

Therefore, |Bp| K ,1% corresponds to a pseudo-differential operator on R with
symbol

e~ te

ou(t ) = / = (2, )z,

e—te
2

The operator K7 can be written in the same way
sinh(h) t4(2)

1 ~

K2t y) = ———— /, l/ t+T, He TdTdz. (2.6

n(ty) Tr(sinh(5))? Yt +T,y+ze)e z. (2.6)
—sinh(h) t_(2)

Remark 2.1. Note that, taking ¢» = 1 in (2.3), one has

e~ ty
2
24/sinh(h)? — 22
Byl = [ R (2.7
_e—te

2

For t > log(¢/2sinh(h)), we thus obtain the estimate
|Bi(t,y)| = 2¢sinh(h)e™" + O(e™ 3 /sinh(h)) = |Ru(t,y)| + O(e™*/sinh(h))
(2.8)

where |Ry,(t,)| denotes the volume of Ry (t,y) := {(e",v/) € S;|t/ —t| < h},
which is the ‘smallest’ cylinder of the cusp containing By, (t,y).

On the other hand, there exists C' > 0 such that for all ¢ > log(¢/2sinh(h)),
| By (t)] > Che ™.
2.3. Second Expression of K}, in the Cusp

We give another expression of K}, by integrating along horizontal lines instead.
Writing as above

u(t,y) = Ze%?m ug(t)
k

when u is supported in an exact cusp {t > T'}, the operator K}, can be decom-
posed as a direct sum written near this region by

2im

ky
Kpu(t,y) ZZG o K pug(t).
k
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Let us define the following:

T (t) := cosh(h) + y/sinh?(h) — e=2t42 /4,

a(T) = %\/sinhz(h) — (cosh(h) — eT)2;

then an easy computation by integrating on horizontal lines ¢ = cst in the
cusp gives that the operator Kj,  decomposes into Z?=1 Kj . where

logT_(t) «(T)

14 ot
Kj, ju(t) = S5 / u(t 4 T)e'™ = e~ TdzdT,
g —h —a(T)
' h a(T)
K7 qu(t) = o5 / / u(t 4 T)e™ = e~ TdzdT, (2.9)
h
log Ty (t) —a(T)
p log Ty (t) 1
K} u(t) = / /u(t + T)ei™ e~ T=td2dT
’ 2|By|
logT—_(t) —1
when e’ sinh(h) > ¢/2 while
' h a(T)
K pu(t) = |Bh|—15 / / u(t + T)e'™ > e~ TdzdT (2.10)

—h —a(T)

when e’ sinh(h) < £/2. Suppose first e’ sinh(h) > £/2, then when k # 0 the
terms K,Jhk can be simplified by integrating in z to

(Kh i + K g )ult)

g n(kreta(T))
SIN(RTe ¢
=5 t+T)——— L To(T)dT
| Bn| " / ut+T) wketa(T) e T,
—h  logTy(t)
Kj qu(t) =0 (2.11)
while if k = 0,
log T—(t) h
(Kho+ Kiou@) =18 [+ [ ues Da@eTar
—h log (T4 (t
g(T (1)) (2.12)
log Ty (t)
Kj gu(t) = |By| ¢ / u(t +T)e T1dT.
log T (t)

The obvious similar expression holds when e’ sinh(h) < £/2.
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3. Essential Spectrum of K; on L?(M)

Recall that K}, is a self-adjoint bounded operator on L?(M,dvy,), with norm
equal to 1. Moreover, 1 € Spec(K}). In this section we show that the essential
spectrum of K}, is well separated from 1.

Theorem 3.1. The essential spectrum of K, acting on L?(M,dvy,) is given by
the interval

h h
Iy == A .
g Linh(h) ’ sinh(h)}
with A := ming~g w
Proof. The operator K, acting on L?(M,dvy,) is unitarily equivalent to the
operator

Ky f— Kpf(m):= dvg(m”)

acting on L?(dv,). Now, using (¢,y) variables in the cusp, let us take to > 0
arbitrarily large and let xy, (¢, y) := 1—1[;, ) (t) which is compactly supported.
Clearly, from the fact that K}, propagates supports at distance at most h, we
can write

K =Tjt0,00) BT 1tg,00) T Xto B Xto T Xto Bl jt0,t04+0] T Vto,to+n] KXt -
Since x+,, Xt,+h are compactly supported, it is obvious that the integral kernel
of the last three operators is in L?(M x M;dv, ® dv,) and so these opera-
tors are Hilbert—Schmidt and thus compact. Now by a standard theorem, the
essential spectrum of I?h is then the essential spectrum of 1 [to,oo)f(hﬂ [to,00) fOT
all large ¢y > 0. Let us consider the operator T}, on L?*(M,dv,) defined by

) y+5 t+h )
thy') _p
Thu(t,y) = ——— 11y oo (t / /1] ()BT =t gy dy
hu(t,y) RO o (1) ] [t0,00) ( )|Rh(t,)|% y
ooe el

where | Ry, (t)| = 2¢e~* sinh(h) is the measure of the rectangle t' € [t—h, t+h] as
in Remark 2.1. If e’ is chosen much bigger than h~!, we have from Remark 2.1
that | By (t)| = |Ry(t)|(1+O(h~2e~2%)) which implies from Schur’s Lemma that
the operator Ty, — (1 — x4y ) Kn(1 — x¢,) has L? norm bounded by C'h™2e~2t0
for some C' > 0. Therefore, this norm can be made as small as we like by
letting ty) — oo and it remains to study the essential spectrum of T, when tg
is chosen very large. We remark that T}, can be decomposed in Fourier modes
in the S' variable y like we did for K}, in the cusp, and only the component
corresponding to the constant eigenfunction of S' is non-vanishing. Therefore,
the norm of T}, is bounded by the norm of the following operator acting on
L2(R,e~tdt):

t+h
1 (t) /

_ [to,o0) / Nt /2 347

— u(t) = 1 4 t dt

f—u®) 2sinh(h)e~t/2 / fto-00) (£) f(F)e ’
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or equivalently
t+h
[to, (t) / ’ AW
f — u(t) 72 Slnh(h) ﬂ[to,oo)(t )f(t )dt

t—h

acting on L?(R,dt). This can also be written as a composition T, o)A
T(t9,00) Where Ay, is the operator which is a Fourier multiplier on R

1 sin(hg)

sinh(h)&
From the spectral theorem, it is clear that this operator has only continu-
ous spectrum and its spectrum is given by the range of the smooth function
& — sin(h€)/sinh(h)¢, ie. by I, and its operator norm is h/ sinh(h). Suppose
now that \ € Speccss(f(h), then X belongs to the spectrum of 1 [tmoo[f(hﬂ[tmm[
for all to. If the spectrum of 1}y, oo[AnTt,,00 is included in I, then letting
to — oo implies that A € I, by the norm estimate on the difference of the two
operators. Since

h
sinh(h)

the spectrum of 11 o[ Anl[1y,00[ is included in Iy, we just have to prove the
other inclusion. To prove it is exactly Ij,, we have to construct Weyl sequences
for Kj,. Consider the orthonormalized sequence (uy, ),en of L? orthonormalized
functions

A, =F F.

AllfIIZ2 < (Al oo f Tito.oo f) < ( )Ilfllm

Up(t) := 2_"/Qei’\tﬂ[2n72n+1](t), n € N;

then a straightforward computation shows that
sin(Ah
‘ (ﬂ 27 —1,00) AnT[2n —1,00) — H) u

=027 "?).
Asinh(h) ( )
But also Kpu, = 1][lefl’oo)kh(ﬂ[znfl’oo)un) and thus by taking n large and

L2(R,dt)

using the norm estimate on Tjan 1 o) Knljgn 1,00y — Th with &5 := 2" — 1 in
the definition of T}, we obtain

and letting n — oo, we can apply the Weyl criterion to deduce that I, is the
essential spectrum of K. O

< C(Z—n/2 + h—2e—2"+1)
L2

4. Spectral Gap of Order h2 for K, on L?

In this section, we show the existence of a spectral gap of order h? for Kj
acting on L?(M, dvy,). Recall that dv,(m) = deg where 7, is a positive
constant such that this duy, is a probability measure. In particular, in our case
h?/C < Zy, < Ch? for some C > 0.
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Let us first show that the bottom of the spectrum of K} is uniformly
bounded away from —1.

Proposition 4.1. There exists 6 > 0,hg > 0 such that for all 0 < h < hg
Spec(Kp) N [—1,—1+ 6] = 0. (4.1)
Proof. This amounts to prove an estimate of the form

Gn(f) > 5||f|\2L2(M,dyh)

where
1
Grn(f)=((1+ Kp)f, f)r2(mdvm) = 27, / (f(m)+ f(m'))?dvg(m)duvg(m).
Ld(m,m’)gh
We proceed as in [3] and consider a covering Ujw; = M of M by geode-

sic balls of diameter h/4 and such that for any j, the number of k such
that w; Nwy # 0 is less than N for some N independent of h. Then,
using that the volume of |Bj(m)| is constant of order h? when t(m) €
[to,log(£/2sinh(h))] (for some t; > 0 independent of h), we deduce eas-
ily that Voly(w;) > Cmaxew,; |By(m)| for some uniform C' > 0 when w;
has center in {¢t < log(2/¢sinh(h))}, while when it has center m; such that
t(m;) > log(2/£sinh(h)), we have Voly(w;) > Ce " h > C' maxpew, |Br(m)]
for some C,C’" > 0 uniform in h, by using (2.8). As a consequence, we obtain

Gi(f) > 3 / (F(m) + F(m'))2dvg(m)dvy (m)

2N Z;, ~
" I wixwj,d(m,m!)<h
)2 I
> vz 2 [ () + ') Pau(myde, ()
AL)JXQ)J
2 ZVOI (wj) /|f )|?dv, (m)

By ( C
6i(f) = < / 2 2l )' 0g(m) = 1A aramy

and this achieves the proof. O

Let us define the following functionals on L?(M,dwy,):
Va(f) = 1122 (ar iy = (s D2 ()

=5 [ G = s ammanon) (12)
M x M
gh(f) = <(1 - Kh)f’ f>L2(M,dyh)

1 o /
= E / (f(m> — f(im )) dvg(m)dvg(m ). (4_3)

d(m,m’)<h
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The spectral gap g(h) can be defined as the largest constant such that

Vi(f) < En(f), VfeL*(M,dvy)

1
g(h)
with the convention g(h) = oo if 1 has multiplicity greater than 1.

For the convenience of the reader, let us first give a brief summary of
the method we are going to use to obtain a lower bound on g(h): we will split
the surface into two surfaces with boundary, one of which is compact (call it
My), the other being an exact cusp (call it Fy); then we shall double them
along their respective boundary to obtain X = My U My and W = Ey U Ey,
and extend smoothly the metric g from My to X and from Ey to W in such
a fashion that W is a surface of revolution R x (R/¢Z) with two isometric
cusps near infinity. We will reduce the problem of getting a lower bound on
g(h) to that of obtaining a lower bound on the spectral gap of both random
walk operators on X and W. The compact case X has been studied in [5],
and the main difficulty will be to analyse W, which will be done in the next
section. To that aim, we will use Fourier decomposition in the R/¢Z variable
and show that only the 0-Fourier mode plays a serious role; then we will reduce
the analysis of the operator acting on the 0-Fourier mode to the analysis of a
random walk operator with an exponentially decaying measure density on the
real line, which is a particular case of the setting studied in [4].

Let us now prove the

Theorem 4.2. There exists 0 < C' < 1/6 and ho > 0 such that for any h €]0, ho]
h h?
—————=—+0(hY).
sy~ 6 O

In particular, 1 is a simple eigenvalue of K.

Ch* < g(h) <1

Proof. The upper estimate on g(h) is a corollary of Theorem 3.1 (using the
Weyl sequences in the proof). Let us then study the lower bound, which is
more involved. The surface M decomposes into a disjoint union M = My U Ej
with My compact and Ej isometric to the cusp ~ {(¢,y) € (to —1,00) x R/(Z}
with metric dt? + e~2!dy? (see Fig. 4). In particular, the region M is com-
pact with diameter independent of h. Let us extend the function m — ¢(m)
smoothly to the whole surface M so that 0 < ¢(m) <ty — 1 for all m € M.

M,

FIGURE 4. The decomposition M = My U Ejy
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We then decompose the functional V;,(f) according to this splitting of M
and we define for 0 <a <c<b< oo

V=g ) = )i m)du '),
t(m)€la,b],t(m’)€Ea,b]
B =5 [ (lm— ) mdn ()

t(m)€lacl,t(m’)€lc,b]
One then has for ¢ € (a,b)

V) = Vi) + ) + 285(). (44)
Let us deal with the interaction term : If(f) = m Joce, Ii(f)dvn(s) where
C.:={me M;c—1<t(m) <c+ 1} and thus
Ii(f)

<2 / / (Fm) — F(3)) + (F(s) — F(m"))2dvp (m)d (m)

s€Cec t(m)€la,d],
t(m’)€le,b]

which implies fora+1<c¢<b-—1,

¢ 2vp(t(m) € [c,b]) 2vp(t(m) € la,c]) ¢ fe—1.]

Ih(f) < l/h(Cc) Vh(Cc) Vh (f)

Assume now that ¢ satisfies e°h < C for some C' > 0 independent of h. Since
the measures satisfy ¢y < dvp/dvg < ¢f in {t < log(¢/2sinh(h))} for some
co,¢h > 0 and cre”t/h < dv/dvg < coe”'/h in {t > log(¢/2sinh(h))} for
some c¢1,co > 0, we immediately deduce (using also (4.4)) that there exists
C' > 0 such that for all f € C§°(M) and h small

Vo) < 0 (Ve 4 emevi ).

Using this estimate with ¢ = ¢y (which is independent of h), we obtain

V}Ea,c-‘rl](f) +

Vi(f) < € (Vi) + eov o) (4.5)
We also notice the inequality
6(f) > 7 (E () + o), (46)
where, for any a,b € [0, 0],
V() = o / (f(m) — (")) dug (m)dvy ().
h 2Zh g g

t(m’),t(m)€la,bl,d(m,m’)<h
Using the preceding observations, it remains to prove the inequalities
£ = on v ), gl 2 ey T ). (@)

where we have used the fact that e’ is independent of h.
Let us prove the following Lemma, which will deal with the non-compact
region:
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Lemma 4.3. For any f € L>(M), the following inequality holds:
&) z ey ).

Proof. We are going to prove

1

" / (F(m) — F(m’))2dvg(m)du, (m)

m,m’€Eqy,d(m,m’)<h

> Cop? / (f(m) — F(m'))?dun (m)du, (m).
m,m’€FEqy

Recall that Ey = [t — 1,00 xR/¢Z is endowed with the metric g = dt? +
e~ 2t dy?. Without loss of generality, we can assume that to = 1. Let us con-
sider the surface W :=R; x (R/{Z),, and view Ej as the subset ¢ > 0 of W.
We equip W with a warped product metric extending g (and then still denoted
g) to t <0 as follows: g := dt? + e~2#()dy? where p(t) is a smooth function
on R which is equal to |t| in {t > 0} U {t < —1} and such that e #®*) > ¢pe~?
in t € [—1,0] for some constant ¢y > 0 (see Fig. 5). As a consequence, there
exists some constant C' > 0 such that

1
vt € R, ae*"(t) < e HEt < Cemr® (4.8)

We denote by d(m,m’) the distance for the metric g on W,dv, the volume
form, |By(m)| = vy(B(m, h)) the volume of the geodesic ball of radius h and
center m associated with this metric g on W. Consider also the probability
measure dv}V = %dvg(m), where Z}V € [h?/C,Ch?] (for some C > 1) is
a renormalizing congtant.

For g € L*(Ep), let us define

&V (g) = le / (g(m) — g(m'))2duwy(m)dvy(m')
m,m’eW,d(m,m’)<h
ViV (g) = / (g(m) — g(m"))?*dwll (m)dvlY (m).
m,m’eW

| | | |
1 1 1

—tn -1 0=ty—1 th

Fi1GURE 5. The surface of revolution W, which is a doubling
of the cusp region Ey = {¢ > to — 1 = 0} in these coordinates.
For later applications in Sect. 5, we write W = W7 UW, U W3,
with Wa, W3 the regions where [t| > ¢, = log(¢/2sinh(h)) — 1
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Any function f € L?(Ey) can be extended to a function f* € L?(W), symmet-
ric with respect to the involution ¢ — —t. Splitting W x W in four regions, we
have

& (f°)
Zh

Wz [ m) = £ ) duy )y )

t(m)>0,t(m’)<0,
d(m,m’)<h
1 S S
b [ ) ) m)duy(m)
g t(m)<0,t(m’)<0,

d(m,m’)<h

We denote o : W — W the involution o(t,y) := (—t,y) and use the change
of variables m — o(m),m’ — o(m') in the last term, and m’ — o(m’) in the
second term. Using the assumptions on the metric g, we observe the following
inclusions:
{(m,m") e W x W;t(m) > 0,t(m’) > 0,d(c(m),o(m')) < h}
c{(m,m’) e W x W;t(m) > 0,t(m’) > 0,d(m,m") < 2h}, and
{(m,m') € W x W;t(m) > 0,t(m’) > 0,d(m,o(m')) < h}
C{(m,m') e W x W;t(m) > 0,t(m’) > 0,d(m,m’) < 2h}.
The first inclusion comes from e~ #(*) > ¢~ Il /2, while the second follows simply
from d(m,m’) < d(m,o(m’)) + d(m’,o(m’)) and the fact that d(m’,o(m’))
= 2t(m’) < h if d(m,o(m’)) < h. Combined with (4.8) and the fact that
c < Zp/Z}V < 1/cfor some 0 < ¢ < 1, we see that the terms in the right-hand

side of (4.9) are bounded above by 052[(])1,00)”) for some C', and we then deduce
that for all small A > 0

eV (1) < cel= (). (4.9)
The proof of the following proposition is deferred to the next section:

Proposition 4.4. There exists C > 0 and ho > 0 such that for all f € L*(W)
and all h €10, hol, we have

CR2VY (f) < &Y (f)

Combining this Proposition with (4.9) and the inequality VJO’OO]( f) <

VW (f%) < OV (f*) which is a consequence of dv} /dvlV < /C for some
2 2

C > 0, we have proved Lemma 4.3. O

We now analyse the compact regions which have diameter bounded uni-
formly with respect to h, i.e. My.

Lemma 4.5. There exists C' independent of h such that for all f € C§°(My)
& (f) = CR V().
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Proof. We shall use the same arguments as for the non-compact part, which
is to reduce the problem to a closed compact surface which doubles M. We
start by defining the surface X := M, U M, obtained by doubling M, along
the circle t = to, and we equip it with a smooth structure extending that of M,
and with a metric extending g, which we thus still denote g. We shall assume
that g has the form ¢ = dt? +e~2#(1)dy? in a small open collar neighbourhood
of {t = to} (with size independent of h), where p(t) is a function extending ¢
to a neighbourhood tg — € <t < to + € of {t = to} with e #(®) > coe™t, ¢g > 0.
Now repeating the same arguments as those of the proof of Lemma 4.3, we see
that it suffices to show that

<(1 - K}f)fv f>L2(X,duﬁF) 2 Ch2(||f||%2(X’dy <f, >L2 X,dvit ))

for any f € L?(X), where K;* is the random walk operator on X for the
metric g, defined just like for M, and dv;* (m) := Vol({m € X;d,(m,m’) <
h})dv,/Zy, x for some normalizing constant Z;* > 0 so that dv; is a proba-
bility measure. Now this estimate follows from the main Theorem of Lebeau
and Michel [5], where they show a spectral gap of order h? for the random
walk operator K;* on any compact manifold (X, g). O

The proof of the Theorem is thus achieved, provided we have shown
Proposition 4.4, i.e. the spectral gap on the surface of revolution W. O

5. Spectral Gap for the Random Walk on a Surface
of Revolution

In this section, we consider the surface of revolution W = R, x (R/{Z),
equipped with a metric ¢ = dt2 + e~ 2#()dy? where p is a function equal
to |t] in |t| > to for some fixed ¢y (a priori not necessarily the to of previ-
ous Sections). This can be considered as the quotient (y — y + £)\R? of R?
equipped with the metric dt? + e~ 2#(!)dy? by a cyclic group G of isometries
generated by one horizontal translation. We shall consider the random walk
operator K }:V on W, defined as usual by

w
K ) = g [ ' o)
Bh(m)

where Bp,(m) denotes the geodesic ball of center m and radius h and | By (m)]
its volume for the measure dv,. We assume that h is small enough so that the
ball By (m) is diffeomorphic to a Euclidean ball of radius h in || < 2.

To simplify notations we will drop the superscripts W referring to W,
noting that we just have to remember we are working on the surface of revo-
lution W in this section.

The Dirichlet form and the variance associated with this operator are
defined as usual by &, (f) = (1=Kp) f, f) L2 (w,dv,) and Vi, (f) = Hf||2L2(W,duh)_
(f, 1>%Q(W,dyh), where dvy, (m) denotes the probability measure %dvg (m)
for a certain normalizing constant Zj,.
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The main result of this section is the following:

Proposition 5.1. There exists C > 0 and hg > 0 such that for all f € L?*(W)
and all h €10, hol, we have

Ch*Vi(f) < En(f)- (5.1)

Proof. The expression of the operator acting on functions supported in |¢| >
to + 1 is given in Sect. 2.3, since it corresponds to the random walk opera-
tor on a hyperbolic cusp. In particular, the operator K} preserves the Fourier
decomposition in the R/¢Z variable when acting on functions supported in
{lt| > to + 1}.

Let us then study its form when acting on functions supported in || <
to + 2. For any v € R, the translation y — y + v on R? = R; x R, descends to
an isometry of (W), g), and thus the geodesic ball By (t,y) on W has the same
volume as By (t,y’) for all y,y" € R/{Z, i.e. the volume |By,(t,y)| is a function
of t, which we will denote |By,(t)| instead.

As long as h is smaller than the radius of injectivity at (¢,y) (i.e. when
t < log(¢/2sinh(h))), the ball By (t,y) is included in a fundamental domain
of the group G centered at y, i.e. a vertical strip |y — y| < £ of width ¢,
and Bj(t,y) corresponds to a geodesic ball of center (¢,y) and radius h in
R? for the metric dt? + e~ 2#(1)dy?. The reflection (t,7') — (t,2y — ') with
fixed line 3 = y is an isometry of the metric dt? 4+ e 2" dy? on R?, and thus
d((t,y), (t',y")) = d((t,y), (t',2y —y')) where d is the distance of the metric g.
In particular, the ball By (t,y) is symmetric with respect to the line y' = y. It
can thus be parameterized by

Bh(tvy) e {(tl7y/); ‘t - t/‘ < h, |y - y/| < Oéh(t’t/)}
for a certain continuous function oy, (¢,¢') which satisfies oy (¢, —h) = ap (¢, t+
h) = 0 (this corresponds the bottom and top of the ball) and ay,(t,t) = he #®)
(this corresponds to the ‘middle’ of the ball). It is easily seen that «y, (¢,t") > eh
for some € > 0 if |t/ —¢| < h/2. Let us now check that K}, preserves the Fourier
decomposition in the y variable. Here we first suppose that f € L? is supported
in [t| < to+2 Then f =3, fu(t)e? ™ ¥/¢ for some fi(t) € L2(R,e +Mdt),
and we have
. t+h y+an(t,t’)
_ - N 2imky’ )0 —u(t') 3, 14/

kez toh y—an(tt’)

t+h

, 2 sin(2mkay (t,t')/0) i

— e“‘”’“y/fi/ t/ ’ an(t,t)e ) gy’
;0 |Bi(t)] hf’“() arkan ()0 1)

t—

9 t+h
REe] / an(t, 1) fo(t)e ) ar’
IBh(t)It_h

Knf(ty) = Y (Knpfr)(t)e*™ /", (5.2)

keZ
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Notice in particular that
t+h
|Bp(t)| = / 2a(t,t e At (5.3)
t—h
Moreover, combining with the computations in Sect. 2.3, the expression (5.2)
and (5.3) can be extended to the whole surface W by setting

an(t,t') = min <et\/sinh(h)2 — (cosh(h) — et ~1)2, 13/2) (5.4)

when t >ty + 1.
We start by proving the statement on the non-zero Fourier modes in
R/(Z.

Lemma 5.2. There exists € > 0, hg > 0 such that for all k # 0, all 0 < h < hg
and f € L*(R)

1Kh s fllpe < (1—eh®)|[fllze
and for all f € L*(R,|By,(t)|e=*®)dt) the following L? estimate holds true:

N En sk fll L2, o ()e-mwar < (1 — e fll L2, By @)e-rwan-  (5:5)
Finally, there exists ¢ > 0,hg > 0 such that for all 0 < h < hg, all K # 0, all
T >t and all f € L*(R,|By(t)le *1dt) supported in |t| > T, we have

Kk fl 2 B () )e—n0ary < (1 — emin(k*e*h?, 1)) £l 12w, B, (1)je—n0dr)-
(5.6)
Proof. The proof uses the expression for Kj, ; given in the equations (5.2),

with a(t,t) given by (5.4) in {|t| > to + 1}. If f € L*°(R), one easily has
from (5.2)

[| K ni fl| oo

<l swp | 5 |/

where v, 1 (t,T) = 2mkay,(t,t + T)/L. Now, if |T| = |t — t'| < h/2, then
an(t,t') > eel!lh for some ¢ > 0 uniform in ¢,#'; thus, v, (¢, T) > eelln
for some € > 0 uniform in ¢ and k, but since |sin(z)/z| <1 — emin(z?,1) if €
is chosen small enough above, one deduces that

sup  sup sin(yx(t, 7))
iri<hsz t | k()
Therefore, combining with (5.7), we have that ||Kp i f|[z~®) < Allfllz~®)

where
2
A = su 7/1] TIN(1— h2
tp<Bh(t)| o,/ (1T (1 —€h?)

+ﬂ[h/g,h]aﬂ»ah(t,tw)eWde)

sin(yk(t, 1))
Yk (t,T)

‘ an(t,t+T)e *HDAT | (5.7)

<1-—¢eh.
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and using (5.3), the integral A can be bounded above as follows:
h/2
/ 2o (t,t 4 T)e *FTAT,
—h/2

1
A<1—eh?
| Br(t)]

But now the integral on the right is exactly the volume for dv, of any region

R(t,yo) :==A{(t",y); [t = t' < h/2,[y" — ol < an(t, 1)}

when yo € R/¢Z. When t < log(¢/2sinh(h)) =: ¢, we see directly that this
region contains a geodesic ball of radius eh centered at (¢,yg) for some yo €
R/VZ if € is chosen small enough (note that ¢ = 1/2 works out when ¢;, >
[t| > top+ 1) and thus the volume is bounded below by |Bep(t)|; when [t| > tp,
the region R(t,y0) contains a rectangle {|t — t'| < h/2, |y — yo| < a} for some
a > 0 independent of h and thus with volume 2asinh(h/2)e™"; therefore,
R(t,yo) has volume bounded below by |By,(t)|/C for some C' > 0. Since we
also have |Be(t)|/|Bp(t)] > 1/C for some C > 0 when [t| < tj, we deduce
that

A<1—e€h?/C.

which proves the first estimate of the Lemma. The L2(R, |By,(t)[e™#()dt) esti-
mate (5.5) can be obtained by interpolation. Indeed, since K, 1, is self-adjoint
with respect to the measure |Bj(t)le #®dt on R, the L™ — L opera-
tor bound implies that K}, is bounded on LY(R, |By,(t)[e”#®)dt) with norm
bounded by A, and by interpolation it is bounded on L2(R,|By,(t)[e *®)dt)
with norm bounded by A.

Now for (5.6), we apply the same reasoning, but when f is supported in
[t| > T, we replace (5.7) by

|| K e 1| Lo

< |Ifllz~ sup /
ol [t|>7—h IBh )l

and we use the same techniques as above except that now we use the bound

sin(yn,x (¢, T))
’Yh,k(t7 T)

sin (ya (t
Yhi(t, T

) ‘ an(t,t+ T)e M+

sup  sup ‘ <1 —emin(h?e¥ k%) 1).

IT|<h/2 |t|>T
This yields an estimate
|1 |t|2‘rKh,k’1] \t|2‘r| |[Loopoe <1—¢ min(h2627k2, 1)

and using self-adjointness of this operator and interpolation as above, we
obtain the desired L? — L? estimate for 11¢j>+ Kn k1j¢j>7. But this con-
cludes the proof since this implies the same estimate (by changing €) on
Kn i Vy>r = V> r—n Kn il > if we take 7 — h instead of 7 above. O
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In the remaining part of the proof, we shall analyse the operator Kj, g
acting on functions constant in y. We split the surface in 3 regions (see Fig. 5):

Wy = {(t,y) € (*th,th) X R/@Z} with ¢, = 10g(£/2 smh(h)) -1
Wy = {(t,y) € (tn,0) x R/¥Z}, and W3 := {(t,y) € (—o0, —t}) x R/IZ}.

Let us define the functionals for ¢ = 1,2,3 acting on functions f €
L?*(W, dvy,) which are constant in the y variable

S =oy [ ()= SRy (v, ()
m,m’eW;,d(m,m’)<h
Vi =g [ ) = ) m)du '),
m,m’eW;
Using the arguments used to obtain (4.5) and (4.6), we easily deduce that it
suffices to prove that

EL(f) > CR2VI(f), and  E(f) > Ch%e™Vi(f) fori=2,3

hold for any f € L?(W,dv;,) constant in the R/¢Z variable to obtain, combined
with (5.5), the estimate (5.1).

We start with the regions W5, W3, which are non-compact. We will reduce
to a random walk operator on the line with a measure decaying exponentially
fast as [t| — oo.

Lemma 5.3. There exists C > 0 such that for any f € L?*(Wa,dvy,) constant
in the R/{Z variable

EL(f) = Ch2e™Vi(f),  fori=2,3.

Proof. Tt suffices to prove the estimate for i = 2, since clearly ¢ = 3 is similar.
Let f be a function depending only on the variable ¢t and supported in Ws.

We first reduce the problem by changing variable: we define f(t) := f(¢t + tp)
on R and using that dvy,(t)/dtdy < Ce=2!/h in {t > t;,} and et = O(h), we
obtain
e V2(f) < Ce™'n / (f(t) — F(t)2e 2D dtdt’ =: Ce " V2(f).
t>0,t/>0
Similarly, changing variable as above in £7(f) and using the inclusion

{(m,m) € My x My; [t(m) — t(m)] < h/2,[y(m) —y(m)| < o}

C {(m,m’) € My x My;d(m,m’) < h} (5.8)
for some « > 0 independent of h, we get
ethh . . L L~ .
&)=~ (F() = F(t))%e~ " dedt’ =: e~ &}/ (f)

£>0,t/>0,|t—t'|<h/2
We are thus reduced to prove an estimate of the form

EN(f) = CR2VI(]) (5.9)
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for all f € C§°(RT). Let p = p(t)dt be a smooth non vanishing measure on R
equal to e~*dt on (—1,00) and e !l on (—o0, —2) and dvf(t) := p([t — h,t +
h))p/Z}, where Zj is chosen such that 1 = [; 1dv} (¢). In particular, dv) (t) =
2e~2!sinh(h)dt/Z} when t > 0 and c1h < ZJ < coh for some c1,co > 0. Let
us now define the self-adjoint one-dimensional random walk operator K on
L2(R,dvf)

O ey wn Il BV QLY

|t—t/|<h

For f supported in RT, let f* be the even extension of f to R. Then since
p does not vanish and is symmetric at infinity, there exists C' > 0 such that
p(t)/p(—t) < C and it is then easy to see (just like in the proof of Lemma 4.3)
that there exists C' > 0 such that

(1=K ) 2 mave) = Zi / (F2(t) — f2())p(t)p(t))dtdt’
[t—t'|<h
C B ,
<= (f(t) = f(t')%e” T ded’.
Zh

t>0,t/>0,|t—t'|<h

Since et = Bsinh(h) for some 3 > 0, we deduce that there exists C' > 0
independent of A such that for all functions f compactly supported in ¢ > 0
and depending only on ¢

gf(f) >C<( %)fsva>L2(R,dl/ﬁ)'
But we also notice that for the same class of functions
e [ (o - rerao)
t,t'€R
= C(”sz%?(R,du <fs >L2 Rduh))

for some C, thus, to prove (5.9), it remains to show that

<(1 — K%)f, f>L2(R,dVZ) > Chz(”szL?(]R{,du,‘Z) <f’ >L2 Rd”;))

:

We conclude by observing the measure p(t) is tempered in the sense of [4];
hence the above estimate follows from Theorem 1.1 in [4] and the fact that

€ < h/2

< ¢y for some ¢q1,co > 0. O

And finally, we need to prove the last estimate:

Lemma 5.4. There exists C > 0 such that for any f € C§°(W1) depending only
ont

EL(F) = CRAVE(S).
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Proof. We proceed in a way similar to the previous Lemma. We easily notice
from (2.1) the inclusion

{(m;m') € Wy x Wis [t(m) — t(m')| < h/2,[y(m) — y(m')| < aelln}
C {(m,m') € Wy x Wy;d(m,m’) < h}
for some 0 < « < 1 independent of h and ¢, where |y — y| denotes the dis-

tance in R/¢Z. Consequently, since dv,(m)/dtdy > Ce~l!l, we have for any
f € C§°(W1) depending only on ¢

& = 57 / (Fm) = ')y () )
t(m),t(m’)€[~tp tr],d(m,m’)<h
> Z% (F(t) = fF(E))2e =1 anellatar  (5.10)
Lt E€[—tn,tn],[t—t/|<h/2
OE (F(8) — F(#)Ve 55 dtar

tt E[—tn,ty],|[t—t' |<h/2

Let p := p(t)dt be a smooth positive measure on R defined like in the proof of
Lemma 5.3 but with p(t) = e~1/2 in R\ (~1,0) instead of e~ !!l. Let us define
the random walk operator on R

1 ) o
iy | e

[t—t'|<h

Ky (f)(t) =

which is self-adjoint on L?(R,dv? (1)) if dvi(t) := M p(t)dt and Z; is
chosen such that dv) is a probability measure (in partlcular c1h < ZJ < coh).
For f supported in [—t,, ], let fP be the periodic extension of f deﬁned by
fP(2jtn +1t) = f(t) when t € [~t,,t,] and j € Z. We set for g € L*(R)

E0(g) = <<1—Kﬁ)g,g>m,dy;;>=les / (9(t) — g(t'))p(t)p(t')dtdt.

tt ER,|t—t'|<h

For j € N, let F; = 2jtp, + [—tp, t]. Using the changes of variable ¢ — t + 2jt
and t' — t' + 2kt;,, we get

En(fP) < % > / () — f2(¢)) % 515 drat’
" k,j=0 tEFy ' €Fj |t—t'|<h
<7 Z [ ww-pwype T
k,j=0 tEFy,t' €Fy,|t—t'|<h
<o (F(0) = 1) %5 drar
Zh

tt E[—tn,ty],[t—t'|<h
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where we have use in the last line that for ¢t € Fy and any j € Z
e t/2=itnif 5> 0
el _ L2t —1tl/26=(I31-1)tn
e 2 =< e ' ifj<0 <e e .
e~ 1t/2 if j=0
Since coh > ZJ > cyh, this shows using (5.10) that £ (fP) < CEL(f). More-
2
over, defining V/(f) = Hf||2L2(dV£) — (£, 1) L2®.avp), and using that for [t| <
th, p([t — h/2,t + h/2]) > Csinh(£)e~ /2 for some C, we have

veun = [ (0 - ey v )
t,t’eR
>C / (F(t) — (') 2 e ¥ latar. (5.11)
tt'€[—tn,th]

Since V;}(f) is easily seen to be bounded above by C' times the right-hand

side of (5.11) (in view of the assumptions on the metric g on Wy), this shows

that V' (f?) > CV,}(f). Combining this with the estimate on Dirichlet form, it
2

remains to show that V{(f) < Ch2&" (f). Since the measure p is tempered in
2 2
the sense of [4], this is again a consequence of Theorem 1.1 of this paper. O

Combining Lemmas 5.3, 5.4 and 5.2, we have proved the estimate (5.1).
O

6. Upper Bound on the Gap and Discrete Eigenvalues
of the Laplacian

In this section, we shall give a sharper upper bound on the gap g(h) when the
Laplacian has an eigenvalue smaller than 4/3 (beside 0). More precisely, we
are going to prove the following:

Theorem 6.1. Let 0 = \g < A\ < --- < Mg be the L? eigenvalues of the
Laplacian Ay on (M, g) which are contained in [0,1/4) and Ax41,..., Ak+L
those contained in [1/4,4/3). Then for all ¢ > 0, there is hg such that for all
he0,hy) and K+1<k<K+1L

h? h?
1 <Spec(1 —Kp)N [Akg AkS

For all ¢ > 0 there exists hy such that for all0 < h < hg and 0 < k < K,
2 2
ﬂ(Spec(l — Kh) N |:)\k8h _ Ch2+\/m, )\ksh + chZ—i—m])

> dimker(Ag — Ag).

— ch?, + ch4]> > dimker(Ay; — Ag).

We shall first need a few results relating Kj to the Laplacian and some
estimates on the eigenfunctions of A, in the cusp.
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6.1. Asymptotic Expansion in h of K1)

Lemma 6.2. For all 7 > to, there is C > 0 and hg > 0 such that for any
€ C§° (M) with support in {t < 7} for h € (0, hg)

< Ch4\|¢|\H4(M)- (6.1)
L2(M)

h2
‘Kw — (= g A)

Proof. If the cusp is denoted by [0, 00); x R/¢Z, the support of v is contained
in {t < 7} for some 7 > 0. Let us define a smooth Riemannian compact surface
(X, gx) which is obtained by cutting the cusp end {t > 741} of M and gluing
instead a half sphere, and such that the metric gx on X is an extension of the
metric g in the sense that gx is isometric to g in ¢ < 7+ 1. Then, since the
support of K1 is larger than supp(¢) by at most a set of diameter h, one
has that for h < e~7, the function K} has support inside {t < 7+ h} and
thus can be considered as a function on X in a natural way, and it is given
by K;¥1 where K;¥ is the random walk operator associated with (X, gx). We
can use the results of Lebeau and Michel [5], i.e. Lemma 2.4 of this article
which describes K ff as a semiclassical pseudo-differential operator on X; in
particular, this provides the expansion of the operator K ,i( in powers of h to
fourth order, and shows (6.1) when acting on smooth functions . O

In the next lemma we give an approximation for functions supported in
the region where the geodesic balls of radius h do not overlap.

Lemma 6.3. Let us choose ty > 0 such that the metric g is constant curvature
in the region {t > to/2} of the cusp and let h € (0, hg) where hy is fized small.
Consider x, € C§° (M) supported in {e'* < e! < 25%;1(}0 —1}, and xp, depend-

ing only on t with ||3! xu||L=~ < C; for all h € (0,hg) and all j € No. Then
there is C' > 0 such that for ally € C*(M) and all h € (0, ho)

< CR[Y| sy
L2(M)

HKh(tﬁxh) - (wxh - }gAg(ilth))

where My, := {e' < m -1

Proof. Let us use the coordinates (x = e!,y) in the half-plane model of H? and
define zg := e'o and x(h) := ﬁ;ﬂh) — 1. Let ¢,. be smooth and supported in
the part r/2 < x < 2r of the cusp where r € (z¢,2(h)) NN is fixed. Consider
$ the lift to H?, i.e.  is periodic under the translation v : y — y + £ and
projects down to ¢ under the quotient of H? by this translation. If K n denotes
the random walk operator on H?, we have that K n@ is periodic under v and
Kpp is its projection under the quotient map. The squared Sobolev norm
H‘PH?%(C) (for k € Np) of a smooth function ¢ in the cusp C = (y)\H? sup-
ported in /2 < x < 2r is equal to %H&H%{,Q(WT) where W, = {(z,y) € H%;z €
(37,2r), |ly| < rl}. Let G, be the isometry (z,y) — #(z,y) of H? which maps
W, to a domain included in a geodesic ball By of H? centered at (1,0) and of
radius independent of r and h. Now it is clear that ij?hG;l* = I?h since G,
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is an isometry of H?. From Lemma 2.4 of [5], which is purely local, we deduce
that for u € C°°(H?), we have

_ 2
||Khu —u— @AHTL‘HL%BO) < Ch4||u||H4(31)

where By is a hyperbolic geodesic ball centered at (1,0) containing By and of
Euclidean radius « for some a > 0 independent of h,r. Since G} commutes
also with Ap: and since it is also an isometry for the L?(H?) and H*(H?)
norms, we deduce easily that

~ _  _ h? - -
|Knp — @ — gAHﬂPHLz(WT) < ChH|Bl ga(way)

for some B > 0 independent of r, h, which implies directly

h2
[[Kne — o — §A9<P|\L2(c) < Ch /Bl e

and thus the desired result for a function supported in {r/2 <z < 2r} in the
cusp. Now it suffices to sum over a dyadic covering of the region {zy < = <
x(h)} of the cusp. O

We end this part with another estimate in the part of the cusp where the
balls By (t) overlap:

Lemma 6.4. Let A > 0, then there is C > 0 and hy > 0 such that for all

smooth functions ¥ supported in {ﬁ > el > ﬁ;ﬂh) — 2} depending only

on the variable t and all h € (0, hg)
IKn — Yl L2 (vav,) < CR [ 20,0,

Proof. Using the fact that ¥ depends only on ¢, a Taylor expansion of ¥ gives
Bt +1T) = $(t) + TO(t) + T2Qrip(t) with Qror(t) = § f5 (1 — u)0Pu(t +

Tu)du for T small, then we can use the expressions (2.3) and (2.6) to deduce
that

Kntp(t) = (t) + an0pp(t) + Ra(t)
with ay, given, for e sinh(h) < £/2 by

sinh(h) log(cosh(h)-++/sinh(h)2—|z]?)

1
Te TdTdz

47 (sinh(h/2))2
—sinh(h) Jog(cosh(h)—+/sinh(h)2—|z|2)

ap =

and for e’ sinh(h) > ¢/2

e~ Jog(cosh(h)++/sinh(h)2—|z|?)

2

1

ap = Te TdTdz
" Bu(®)] / /

—%tl log(cosh(h)—4/sinh(h)2—|z|2)
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while the Ry, (t) term satisfies the bound for e’ sinh(h) < £/2 (here the Sobolev
norms are taken with respect to the measure e~*dt)

CH,L/}” sinh(h) h
H? 2,-T
< — T dTd
1Bnllee < G2y 72 / / ¢ :
—sinh(h) —h
< CP?||y| 12
and for e’ sinh(h) > £/2
5 £/2  h
OF(t
[[Rnllrz < C‘ 7;#}( ) / /T2e—Tdez
Br(®)] |22 (e~rar)
—0/2 —h
< CR?|[¢]| 2

where we used that |By(t)] > ce”th for some ¢ > 0 combined with the fact
that T2e~7 is increasing for T < 2. Now we have to evaluate aj,. Let us write
the part e’ sinh(h) > ¢/2, the other one being even simpler, and this can be
done by observing that a primitive of Te~7 is given by —(1 +T)e~ T
e~ te
" 2

anl <5 [ 10+ et O - (@t Ola:

_e—te
3

where t4(z) = log(cosh(h) &+ /sinh(h)2 — |z]2). We can remark that

t4(2) = £/sinh(h)? — 22 + O(h?)
uniformly in |z| < sinh(h) and thus
(144 (2))e™ D = (L4t (2)e™= | =]t1(2)® —t-(2)°| + O(h*) = O(h?),
proving that |aj| = O(h?). This achieves the proof. O

6.2. The Laplacian Eigenfunctions

For a surface with hyperbolic cusps, the spectral theory of the Laplacian A,
is well known (see for instance [6]). The essential spectrum of A, is given by
Oess(Ag) = [1/4,00), there are finitely many L?-eigenvalues A\g = 0, A1, ..., Ax
in [0,1/4) and possibly infinitely many embedded eigenvalues (A;);>xk+1 in
[1/4,00). Moreover, one has

Lemma 6.5. Let T" > 0 be large and x1 be a smooth function supported in
{t > T}. The L*>(M,dv,) normalized eigenfunctions associated with \; with
j > K satisfy the estimates in the cusp

x5l 2 (0av,) < Cnge N, ¥N € No,¥T > 0 (6.2)

for some constants Cy ; depending on N, j. The normalized eigenfunctions 1;
for an eigenvalue \; € [0,1/4) satisfy for some C; > 0 depending on j

X5l 20,0,y < Cie” VA2 WT > 0. (6.3)
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Proof. This is a well-known fact, but we recall the arguments for the con-
venience of the reader. We use the Fourier decomposition in the R/¢Z vari-
able of the cusp C := [tg,00): X (R/{Z)y and, since the metric is isometric to
dt? 4+ e72'dh?, the operator A, decomposes as the direct sum of operators

i, (o 05 ) = 3 Pt

kEZ kEZ

2.2
Puu(t) = (—af + 47;2k e* + i) u(t).
and the L?(C) space in the cusp decomposes as L?(C) ~ @&yezHy where Hy, ~
L?*([tg, 00),dt). We decompose a normalized eigenfunction v; for the eigen-
value \; into the form wg(t) + ¢;(t,y) where ug is the & = 0 component of
®; in the Fourier decomposition. When u is a function supported in the cusp
and with only k # 0 components, we observe that (Pyu,u) > Ce*"||u||7. and
so if xr is a function which is supported in {t > T}, we use the fact that
@]y < C(14 Aj)" for all n € Ny and we deduce that for all N € Ny

lIxT@jlle < Cnje T

for some constants Cn,; depending on N, j. Now the & = 0 components are
solutions of (=97 — \; + 1/4)u(t) = 0, and there is a non-zero L? solutions in
the cusp only if \; € [0,1/4), and they are given by

u(t) = Be V4% BeC
this achieves the proof. O

6.3. Proof of Theorem 6.1

We are now in position to prove the Theorem. Let v, be an L? eigenfunction
for A, with eigenvalue 4/3 > A, > 1/4. By Lemma 6.5 with T' = |log h|/4 and
N > 16 we see that || Ky x7vk||z2 = O(h*) where xr is a cutoff which is equal
to 1in {¢t > T+1}. With ¢y > 0 chosen like in Lemma 6.3, we let xo+x1+xT =
1 be a partition of unity associated with {t < to}U{T >t > to}U{t > T} and
let X; be equal to 1 on the a region containing {m € M;d(m,suppy;) < 1}
and with support in {m € M;d(m,suppy;) < 2} (for j = 0,1,T). Since K},
propagates the support at distance h < 1 at most, we can write

(Kn—1+hNe/8) = D xG(Kn — 1+ h?Ag /8)X01.
§=0,1,T

We can then combine this with the results of Lemma 6.3 and 6.2 (since
|[k]|ge < CA2) and Lemma 6.5 to obtain by partition of unity

A
| Knib — (1 — h%’“mnm < Ch*.

By applying the spectral theorem above the essential spectrum of Kj, this
implies that for all ¢ > 0, there is hg such that for all h € (0,hg) with
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1 — h2(\p/8 + ch?) > h/sinh(h),
Ak

A
gk —ch?, 3 + chﬂ) > dimker(A, — Ag).

It remains to deal with the orthonormalized eigenfunctions v; of Ay for
eigenvalues \; € [0,1/4). We proceed as before, but we use a partition of unity

i (Spec(h_2(1 —Kp))N

Z?:O x; = 1 associated with

{t <to} U {to <t <ty =log(2/¢sinh(h)) — 1}
U{ti <t <ty = Alog(1/h)} U {t > ta}

for some large A > 0 independent of . By Lemmas 6.3, 6.2 and the arguments
used above, we have

A
10x0 +x1) (K = 1+ h25E) g2 < OB,

then by Lemma 6.4 one has for Y2 defined like above (but for x2)
A - =
o — 14+ W2 il 12 < CR2[Ratllgs = OV ITE)

where we have use (6.3) for the last estimate, and we finally have for Y3 defined
like above but with respect to xs

A it —
X3 (K — 1+ h2§k)¢k\|m < C|[Xatn| 2 = O(RAVI/A2)

as a consequence of (6.3). Taking Ay/1/4 — A, > 3, this achieves the proof of
Theorem 6.1 by the same arguments as above.

7. Total Variation Estimates

In this section we address the problem of getting some estimate on the dif-
ference between the iterated Markov kernel and its stationary measure, in the
total variation distance. Recall that since K}, is selfadjoint on L?(M, duy,) and
Kp(1) =1, dvy, is a stationary measure for Kj. Let us recall that if 4 and v
are two probability measure on a set F, their total variation distance is defined
by

I = vy = sup |u(A) = v(A)]

where the sup is taken over all measurable sets. Then, a standard computation
shows that

sup  |u(f) —v(f) (7.1)

[[flloeo=1

| = vy =

N[ =

Until the end of this section, we use the function m € M — t(m) € [0, oo[
defined in the proof of Theorem 4.2. For 7 > tg, let M, = {m € M, t(m) < 7}.

Theorem 7.1. There exists hg > 0 such that the following hold true:
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(i) There exists C' > 0 such that for all h€]0, hg] and n € N,
sup ||K7(m,dm’) — du||ry < Cmax(h™', h=2e?)e™ "9
me
i ere exists C > 0 such that for an S ol and n € there exists
(i) Th ists C > 0 h that f y h €]0, ho] and N, th ]
m € Mo, such that
| K (m,dm') — duvp||py > 1 — Ch~te™2nh

Proof. Let hg > 0 such that the results of the previous sections hold true, and
define the orthogonal projection Iy onto the subspace of constant functions in
L2(dwy,):

= [ fem)au o
M
Let us start with the proof of (i). Let 7 > tg be fixed. Thanks to (7.1), we have
1
sup |17 (m, dm’) — dvnllry = 5 sup - sup [KR(f)(m) = o(f)l
meM; mEM || fllLoo (ar)=1

1 n
= 510 (Ki = o)l = an—r=any - (7:2)
Denote E the spectral resolution of K. From the spectral theorem combined
with Theorem 4.2 and Proposition 4.1 we have
1—g(h)
Kp 2 =Tl = / A" 2dEy,
—1+0
and hence ||K}Zi2 —TIlol| 22 (avp)—L2(dvy) <€ ng(h) Moreover, ||Kj, — o || oo — 12
<2 and we have only to show that ||Tas, (Kj — Hp)||p2—p~ < Cmax(h™1,
h~2e%). For this purpose, let f € L%(M,dvy,) be such that || f]z> = 1. Then
1
o ()] < 1fll2(dwyva(M)z =1

and it remains to estimate 1,7, K3, f. For m € M., we have

Kyf(m) = /f o) = i [ ') s ('
Bh Bh(m)
hence,
1 Z ,
(K ()] < 1 2(awn) T B / i)

If t(m) < log(¢/2sinh(h)), since |Bp(m)| > Ch?, we get | K, f(m)| < Ch~L.
If t(m) > log(¢/2sinh(h)), since |By(m)| > Che '™ and du(t,y) <
Che~2tdtdy, an easy calculation shows that |Kj f(m)| < Ch=ze% and the
proof of (i) is complete.
Let us prove (ii). Let n € N and m,, j, € M such that ¢(m, ) = 2nh. Let
fn,h(m) = 1]t(m)>nh - ﬂt(m)<nh' Then ” f’n,h ||L°°: 1 and K}T;fn,h(mnyh) =L
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On the other hand, II(f,.n) = -1+ 2ft(m)>nh dvp(m) = —1 + O(h~te=2nh).

Therefore, K'(fun)(mnn) — Oo(fun) = 2+ O(h~te2"") and the proof is
complete. 0

8. Smoothing Estimates for Kj,

In this last section, we shall show that K, regularizes L? functions in the sense
that it gains 1-derivative. In particular this implies that the eigenfunctions of
K}, are in HY(M). It is actually possible to prove C*° regularity of eigenfunc-
tions outside the line ¢ = log(¢/2sinh(h)) where the balls start to overlap, but
we do not include it here since it is quite technical and not really useful for our
purpose. On the other hand, it is unlikely to get much better than H' or H?
global regularity for eigenfunctions since the operator itself (as a Fourier inte-
gral operator) has a singularity at ¢ = log(¢/2sinh(h)), as well as the volume
of the ball |By(m)].

Proposition 8.1. There exists C > 0 and hg > 0 such that for all 0 < h < hg
and f € L*(M,dv,)

K fll 1 (vdog) < CHTHIF I 2 (01,doy) (8.1)

where the Sobolev norm H' is taken with respect to the metric g.

Proof. It My = {m € M;t(m) < to} is a compact part such that M\ M is
isometric to the cusp (tg,00): x (R/¢Z), with metric dt* + e~2'dy? as before,
then the estimate (8.1) for f supported in My (or a slightly bigger compact
set in general) is proved in [5] using microlocal analysis. It then remains to
analyse the cusp part. We decompose the proof in two Lemmas.

Lemma 8.2. Let L > (/2 and to > 0 be as above. Then for any f € L* sup-
ported in the region {to <t <log(L/sinh(h))}, we have

10K n fl|L2(vdv,) < CR Il 20,0,
while for all f € L? supported in {t > to}
e’ 0y Kn fll2(at,dv,) < ChTHI L2 (01 ,d0,)-

Proof. We shall use the Fourier decomposition in the R/¢Z variable and the
expression of K} in Sect. 2.3 according to this decomposition. Let us start
with the part e'd,K},. Since e'd, amounts to multiplication by 2mike’ /¢ on
the Fourier k-th mode in vy, it suffices to get a bound of the form

' kKp i fr ()| 2 (e-tary < Ch™H | fe(®)]|22(e-rar)»
but this is straightforward from the expression (2.11) by using ||f(- +
T\ 2(e-tar) = ||/ |L2(C—tdt)eT/2, the fact that the size of integration in 7" is less
than h and |By(t)] > ee"th for some € > 0 in the region {e’sinh(h) > ¢/2}.
Now we have to consider the operators with 0,K} j, say acting on smooth
functions, and this needs a bit more care because of the lack of smoothness on
the line {e’sinh(h) = ¢/2}. First, observe that |By(t)| is a C* function of ¢,
which is smooth outside {e sinh(h) = ¢/2}, and we have 0;|By|/|Bn| € [0,€e}]
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for some € > 0; this follows directly from the explicit formula (2.7). As a
consequence, when the derivative 9; hits |By(t)|~! or e *=T in (2.11) or in
(2.12), one obtains terms which are estimated like we did above for ke! K}, .
Now let us assume e sinh(h) > ¢/2. Then, using a(log T (t)) = e~* we have
sin(rke'a(log T (t))) = 0 and we thus obtain from (2.11) that for k # 0

Oi(|Bule" K 1. f(t))

|Bh|et = (Kh,katf)(t)
log T (t) h
+0|By| ! / + / F(t+T)a(T) cos(krela(T))e-TdT.  (8.2)
—h log Ty (t)

Using similar arguments as above and the fact that |a(T)| < |a(log T4 (t))| =
e~ on the interval of integration in T, the last term in (8.2) is a bounded
operator on L%(e~*), with norm bounded by Ch~!. Now for the first term of
(8.2), it suffices to integrate by parts in T and use the fact that a(£h) =0 to

obtain

(Kn k0 f)(t) = Kn i f(t)

log T (t) h
— Byt / + / f(t+T)(0ra)(T) cos(kre'a(T))e TdT.
—h log T4 (t)

If we cut-off to the region e’sinh(h) < L, this is an operator bounded on
L?(e~'dt) with norm bounded by

h
Ch™? / |0ra(T)|dT = O(h™1)
—h

where we used that «(7T) is monotone on each of the 2 intervals [—h, 0] and
[0,h] and that its maximum is «(0) = O(h). Finally, the case k = 0 is dealt
with in the same way: the boundary terms in the integrals (K} , + K7 o) f(t)
cancel out those of K 2’0 f(t) and the other terms are estimated exactly like we
did for k # 0. This finishes the proof for the region {e’sinh(h) > ¢/2}. As for
the region efo < e’sinh(h) < ¢/2, we consider the expression (2.10) and apply
the same exact method, this is even simpler. O

Then, we end the proof of the Proposition with the

Lemma 8.3. Let L > (/2; then for any f € L* supported in the region {t >
log(L/sinh(h))}, we have

O K [l 2 (1,doy) < ChTHIFI 200 ,d0,)-

Proof. We use the Fourier decomposition f(t,y) = >, fix(t)e?™ /¢ in the
R/{Z variable and the expression of K}, in Sect. 2.2. We shall work on L*(R, dt)
on each Fourier mode, which amounts to conjugate by e*/? to pass unitarily
from L2(e~'dt) to L2(dt): let K, := e"/2K,e /2 and Kj , its decomposition
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on the k Fourier mode fi(t) of f(t,y). Then from (2.4) and similar arguments
as for identity (2.5), we have

| Bh ()| K i fa(t) = / o T / e f(6)o (2, £)dedz
with
o(z,€)

(cosh(h) + y/sinh(R)2 — 22)2 € — (cosh(h) — y/sinh(h)2 — 22)2 i
G +io+ 2hee |

Then we obtain
3 (| B (8)| K o fro) (1)

e~ te
2

_ o, / o / ¥ fi ()0 (2, €)ded2

— / et / e f(&)ico(z,€)dEd

_ ety
2

e"te

[ e / ¢ f(€)20(2, £)dEdz
(—1)ke te e e 'l

SEEEE [R50 + o= S5 o)

The term in the second line is clearly bounded by Ce™||fi|[r2ar) since
|€o(2,€)] < C uniformly in |z| < e ¢/2 and k. The same is true for the
term in the last line while for the middle one, one can use integration by
parts in z, which makes a boundary term of the same type as the last line
term, plus a term similar to the first term but now with 0,(zo(z,¢)) instead
of £o(z,€). Since |0, (20(z,€))| < C uniformly in |z|e~*¢/2 and k, this achieves
the proof. O

The Proposition is then proved by combining the two Lemmas above. [
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