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Abstract This paper gives geometric tools: comparison, Nash and Sobolev
inequalities for pieces of the relevant Markov operators, that give useful
bounds on rates of convergence for the Metropolis algorithm. As an exam-
ple, we treat the random placement of N hard discs in the unit square, the
original application of the Metropolis algorithm.

1 Introduction and results

Let � be a bounded, connected open subset of R
d . We assume that its

boundary, ∂�, has Lipschitz regularity. Let B1 be the unit ball of R
d and

ϕ(z) = 1
vol(B1)

1B1(z) so that
∫

ϕ(z) dz = 1. Let ρ(x) be a measurable positive

bounded function on � such that
∫
�

ρ(x) dx = 1. For h ∈]0,1], set

Kh,ρ(x, y) = h−dϕ

(
x − y

h

)

min

(
ρ(y)

ρ(x)
,1

)

, (1.1)
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and let Th,ρ be the Metropolis operator associated with these data, that is,

Th,ρ(u)(x) = mh,ρ(x)u(x) +
∫

�

Kh,ρ(x, y)u(y) dy,

mh,ρ(x) = 1 −
∫

�

Kh,ρ(x, y) dy ≥ 0. (1.2)

Then the Metropolis kernel Th,ρ(x, dy) = mh,ρ(x)δx=y + Kh,ρ(x, y) dy

is a Markov kernel, the operator Th,ρ is self-adjoint on L2(�,ρ(x) dx), and
thus the probability measure ρ(x) dx on � is stationary. For n ≥ 1, we de-
note by T n

h,ρ(x, dy) the kernel of the iterated operator (Th,ρ)n. For any x ∈ �,
T n

h,ρ(x, dy) is a probability measure on �, and our main goal is to get some
estimates on the rate of convergence, when n → +∞, of the probability
T n

h,ρ(x, dy) toward the stationary probability ρ(y) dy.
A good example to keep in mind is the random placement of N non-

overlapping discs of radius ε > 0 in the unit square. This was the original
motivation for the work of Metropolis et al. [8]. One version of their algo-
rithm goes as follows: from a feasible configuration, pick a disc (uniformly at
random) and a point within distance h of the center of the chosen disc (uni-
formly at random). If recentering the chosen disc at the chosen point results
in a feasible configuration, the change is made. Otherwise, the configuration
is kept as it started. If N is fixed and ε and h are small, this gives a Markov
chain with a uniform stationary distribution over all feasible configurations.
The state space consists of the N centers corresponding to feasible configu-
rations. It is a bounded domain with a Lipschitz boundary when Nε is small
(see Sect. 4, Proposition 4.1). The scientific motivation for the study of ran-
dom packing of hard discs as a way of understanding the apparent existence
of a liquid/solid phase transition for arbitrarily large temperatures (for suit-
ably large pressure) is clearly described in Uhlenbeck [12, Sect. 5, p. 18]. An
overview of the large literature is in Lowen [7]. Entry to the zoo of modern
algorithms to do the simulation (particularly in the dense case) with many ex-
amples is in Krauth [5]. Further discussion, showing that the problem is still
of current interest, is in Radin [9].

We shall denote by g(h,ρ) the spectral gap of the Metropolis operator
Th,ρ . It is defined as the largest constant such that the following inequality
holds true for all u ∈ L2(ρ) = L2(�,ρ(x) dx).

‖u‖2
L2(ρ)

− 〈u,1〉2
L2(ρ)

≤ 1

g(h,ρ)
〈u − Th,ρu,u〉L2(ρ), (1.3)

or equivalently,
∫

�×�

|u(x) − u(y)|2ρ(x)ρ(y) dx dy

≤ 1

g(h,ρ)

∫

�×�

Kh,ρ(x, y)|u(x) − u(y)|2ρ(x) dx dy. (1.4)
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Definition 1 We say that an open set � ⊂ R
d is Lipschitz if it is bounded

and for all a ∈ ∂� there exists an orthonormal basis Ra of R
d , an open set

V = V ′× ]−α,α[ and a Lipschitz map η : V ′ →]−α,α[ such that in the co-
ordinates of Ra , we have

V ∩ � = {
(y′, yd < η(y′)), (y′, yd) ∈ V ′× ]−α,α[},

V ∩ ∂� = {
(y′, η(y′)), y′ ∈ V ′}.

(1.5)

Our first result is the following:

Theorem 1.1 Let � be an open, connected, bounded, Lipschitz subset of R
d .

Let 0 < m ≤ M < ∞ be given numbers. There exists h0 > 0, δ0 ∈]0,1/2[ and
constants Ci > 0 such that for any h ∈]0, h0], and any probability density ρ

on � which satisfies for all x, m ≤ ρ(x) ≤ M , the following holds true.

(i) The spectrum of Th,ρ is a subset of [−1 + δ0,1], 1 is a simple eigen-
value of Th,ρ , and Spec(Th,ρ) ∩ [1 − δ0,1] is discrete. Moreover, for any
0 ≤ λ ≤ δ0h

−2, the number of eigenvalues of Th,ρ in [1 − h2λ,1] (with
multiplicity) is bounded by C1(1 + λ)d/2.

(ii) The spectral gap g(h,ρ) satisfies

C2h
2 ≤ g(h,ρ) ≤ C3h

2 (1.6)

and the following estimates hold true for all integer n:

(1 − g(h,ρ))n ≤ sup
x∈�

‖T n
h,ρ(x, dy) − ρ(y) dy‖T V ≤ C4e

−ng(h,ρ). (1.7)

The above results have to be understood as results for small h, other pa-
rameters of the problem being fixed. In particular, our estimates are certainly
not sharp with respect to the dimension d of the space. For instance, a care-
full look at the proof of estimate (1.7) shows that the constant C4 depends
badly on the dimension d (if one tracks the dependance with respect to d , the
bound obtained by the Nash estimates can not be better than dd , [4]). Proving
estimate on C4 with respect to the dimension would be of great interest.

The next result will give some more information on the behavior of the
spectral gap g(h,ρ) when h → 0. To state this result, let

αd =
∫

ϕ(z)z2
1 dz = 1

d

∫
ϕ(z)|z|2 dz = 1

d + 2
(1.8)

and let us define ν(ρ) as the largest constant such that the following inequality
holds true for all u in the Sobolev space H 1(�):

‖u‖2
L2(ρ)

− 〈u,1〉2
L2(ρ)

≤ 1

ν(ρ)

αd

2

∫

�

|∇u|2(x)ρ(x) dx, (1.9)
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or equivalently,

∫

�×�

|u(x) − u(y)|2ρ(x)ρ(y) dx dy ≤ αd

ν(ρ)

∫

�

|∇u|2(x)ρ(x) dx. (1.10)

Observe that for a Lipschitz domain �, the constant ν(ρ) is well-defined
thanks to Sobolev embedding. For a smooth density ρ, this number ν(ρ) > 0
is closely related to the unbounded operator Lρ acting on L2(ρ).

Lρ(u) = −αd

2

(

�u + ∇ρ

ρ
.∇u

)

D(Lρ) = {
u ∈ H 1(�), −u ∈ L2(�), ∂nu|∂� = 0

}
.

(1.11)

We now justify and explain the choice of domain in (1.11). Background for
the following discussion and tools for working in Lipschitz domains is in [1].

When � has smooth boundary, standard elliptic regularity results show
that for any u ∈ H 1(�) such that −u ∈ L2(�), the normal derivative of
u at the boundary, ∂nu = −→

n (x).∇u|∂� is well defined and belongs to the
Sobolev space H−1/2(∂�). Here, we denote by −→

n (x) the incoming unit nor-
mal vector to ∂� at a point x. In the case where ∂� has only Lipschitz reg-
ularity, the Sobolev spaces Hs(∂�) are well defined for all s ∈ [−1,1]. The
trace operator, γ0(u) = u|∂� maps H 1(�) onto H 1/2(∂�) = Ran(γ0), and its
kernel is Ker(γ0) = H 1

0 (�). Equipped with the norm ‖u‖H 1/2 = inf{‖v‖H 1,

γ0(v) = u} it is an Hilbert space. Then, for any ϕ ∈ H 1/2(∂�)∗, there exists
a unique v ∈ H−1/2(∂�) such that ϕ(u) = ∫

∂�
vudσ for all u ∈ H 1/2(∂�)

(where σ is the measure induced on the boundary). For v ∈ H−1/2(∂�), the
support of v can be defined in a standard way. The trace operator acting on
vector fields u ∈ (L2)d with div(u) ∈ L2,

γ1 : {u ∈ (L2(�))d,div(u) ∈ L2(�)
} → H−1/2(∂�), (1.12)

is then defined by the formula

∫

�

div(u)(x)v(x) dx

= −
∫

�

u(x).∇v(x) dx −
∫

∂�

γ1(u)v|∂� dσ(x), ∀v ∈ H 1(�). (1.13)

In particular, for u ∈ H 1(�) satisfying u = div∇u ∈ L2(�) we can de-
fine ∂nu|∂� = γ1(∇u) ∈ H−1/2(∂�) and the set D(Lρ) is well defined. From
(1.13) we deduce that for any u ∈ H 1(�) with u ∈ L2 and any v ∈ H 1(�)
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we have

〈Lρu, v〉L2(ρ) = αd

2

(〈∇u,∇v〉L2(ρ) + 〈∂nu,ρv〉H−1/2(∂�),H 1/2(∂�)

)
. (1.14)

Then, it is standard that Lρ is the self-adjoint realization of the Dirichlet form

αd

2

∫

�

|∇u(x)|2ρ(x) dx. (1.15)

A standard argument [10, Sects. 13, 14] using Sobolev embedding show that
Lρ has a compact resolvant. Denote its spectrum by ν0 = 0 < ν1 < ν2 < · · ·
and by mj the multiplicity of νj . In particular, ν(ρ) = ν1. Observe also that
m0 = 1 since KerL is spanned by the constant function equal to 1.

To state our theorem, we need a basic definition:

Definition 2 Let � be a Lipschitz open set of R
d . We say that ∂� is quasi-

regular if ∂� = �reg ∪ �sing,�reg ∩ �sing = ∅ with �reg a finite union of
smooth hypersurfaces, relatively open in ∂�, and �sing a closed subset of
R

d such that

v ∈ H−1/2(∂�) and supp(v) ⊂ �sing =⇒ v = 0. (1.16)

Observe that (1.16) is obviously satisfied if ∂� is smooth, since in that case
one can take �sing = ∅. More generally, the boundary is quasi-regular if it is
‘piece-wise smooth’ in the following sense: suppose � is a Lipschitz open set
of R

d such that ∂� = �reg ∪ �sing, �reg ∩ �sing = ∅, where �reg is a smooth
hypersurface of R

d , relatively open in ∂�, and �sing a closed subset of R
d

such that �sing = ⋃
j≥2 Sj where the Sj are smooth disjoint submanifolds of

R
d such that

codimRd Sj ≥ j,
⋃

k≥j

Sk = Sj , (1.17)

then � is quasi-regular, since in that case, if v ∈ H−1/2(∂�) is such that near
a point x0, the support of v is contained in a submanifold S of codimension
≥ 2 in R

d , then v = 0 near x0. This follows from the fact that the distribu-
tion 〈u,φ〉 = 〈v,φ|∂�〉 on R

d belongs to H−1(Rd), and if u ∈ D′(Rd) is such
that u ∈ H−1(Rd) and supp(u) ⊂ {x1 = x2 = 0}, then u = 0. As an exam-
ple, a cube in R

d is quasi-regular. This ‘piece-wise smooth’ condition (often
called “stratified”) is easy to visualize. In our applications (Sect. 4) it was
hard to work with products of stratified sets. The definition we give works
easily with products and is exactly what is needed in the proof.

Theorem 1.2 Let � be an open, connected, bounded and Lipschitz subset
of R

d , such that ∂� is quasi-regular. Assume that the positive density ρ is
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continuous on �. Then

lim
h→0

h−2g(h,ρ) = ν(ρ). (1.18)

Moreover, if the density ρ is smooth on �, then for any R > 0 and ε > 0 such
that νj+1 − νj > 2ε for νj+2 < R, there exists h1 > 0 such that one has for
all h ∈]0, h1],

Spec

(
1 − Th,ρ

h2

)

∩]0,R] ⊂
⋃

j≥1

[νj − ε, νj + ε], (1.19)

and the number of eigenvalues of
1−Th,ρ

h2 in the interval [νj − ε, νj + ε] is
equal to mj .

Theorem 1.1 is proved in Sect. 2. This is done from the spectrum of the
operator by comparison with a ‘ball walk’ on a big box B containing �. One
novelty is the use of ‘normal extensions’ of functions from � to B allow-
ing comparison of the two Dirichlet forms. When the Dirichlet forms and
stationary distributions for random walk on a compact group are compara-
ble, the rates of convergence are comparable as well [3, Lemma 5]. Here, the
Metropolis Markov chain is far from a random walk on a group. Indeed, be-
cause of the holding implicit in the Metropolis algorithm, the operator does
not have any smoothing properties. The transfer of information is carried out
by a Sobolev inequality for a spectrally-truncated part of the operator. This
is transfered to a Nash inequality and then an inductive argument is used to
obtain decay bounds on iterates of the kernel. A further technique is the use of
crude Weyl type estimates to get bounds on the number of eigenvalues close
to 1. All of these enter the proof of the total variation estimate (1.7). All of
these techniques seem broadly applicable.

Theorem 1.2 is proved in Sect. 3. It gives rigorous underpinnings to a gen-
eral picture of the spectrum of the Metropolis algorithm based on small steps.
This was observed and proved in special cases [2, 6]. The picture is this:
because of the holding (or presence of the multiplier mh,ρ in (1.2)) in the
Metropolis algorithm, the operator always has continuous spectrum. This is
well isolated from 1 and can be neglected in bounding rates of convergence.
The spectrum near 1 is discrete and for h small, merges with the spectrum
of an associated Neumann problem. This is an analytic version of the weak
convergence of the discrete time Metropolis chain to the Langevin diffusion
with generator (1.11).

In Sect. 4, we return to the hard disc problem showing that a suitable power
of the operators and domains involved satisfies our hypothesis. Precisely, in
Theorem 4.6 we shall prove that the results of Theorem 1.1 and Theorem 1.2
hold true in this case.
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2 A proof of Theorem 1.1

Let us recall that

Kh,ρ(x, y) = h−dϕ

(
x − y

h

)

min

(
ρ(y)

ρ(x)
,1

)

, (2.1)

so that

Th,ρ(u) = u − Qh,ρ(u),

Qh,ρ(u)(x) =
∫

�

Kh,ρ(x, y)(u(x) − u(y)) dy,

〈(1 − Th,ρ)u,u〉L2(ρ) = 1
2

∫ ∫

�×�

|u(x) − u(y)|2Kh,ρ(x, y)ρ(x) dx dy.

(2.2)

Observe that since � is Lipschitz, there exists δ0 > 0 such that for any
density ρ with 0 < m ≤ ρ(x) ≤ M one has supx∈� mh,ρ(x) ≤ 1 − 2δ0 for all
h ∈]0,1]. Indeed, it follows from (1.2) and (2.1) that

1 − mh,ρ(x) ≥ mh−d

M vol(B1)

∫

�

1|x−y|<h dy. (2.3)

For x ∈ � such that dist(x, ∂�) > 2h, it follows that 1 − mh,ρ(x) ≥
1 − m/M . If dist(x, ∂�) < 2h, using a Lipschitz local parametrization of
the boundary, one shows easily that there exists a constant c > 0, independent
of h such that

∫
�

1|x−y|<h dy ≥ chd . Moreover, by a simple compactness
argument, this constant c can be chosen independent of x.

Since supx∈� mh,ρ(x) ≤ 1 − 2δ0, the essential spectrum of Th is a subset
of [0,1 − 2δ0] and the spectrum of Th in [1 − δ0,1] is discrete. From the last
line of (2.2), we get that if u ∈ L2 is such that u = Th,ρ(u), then u(x) = u(y)

for almost all x, y ∈ �, |x − y| < h and since � is connected, u is constant.
Therefore, 1 is a simple eigenvalue of Th,ρ . In particular, for any h > 0, the
spectral gap satisfies

g(h,ρ) > 0. (2.4)

For the proof of Theorem 1.1, we will not really care about the precise choice
of the density ρ. In fact, if ρ1, ρ2 are two densities such that m ≤ ρi(x) ≤ M

for all x, then

ρ2(x) ≤ ρ1(x)

(

1 + ‖ρ1 − ρ2‖∞
m

)

,

Kh,ρ1(x, y)ρ1(x) ≤ Kh,ρ2(x, y)ρ2(x)

(

1 + ‖ρ1 − ρ2‖∞
m

)

,

(2.5)
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and this implies, using the definition (1.4) of the spectral gap and of ν(ρ),

g(h,ρ1)

g(h,ρ2)
≤

(

1 + ‖ρ1 − ρ2‖∞
m

)3

,

ν(ρ1)

ν(ρ2)
≤

(

1 + ‖ρ1 − ρ2‖∞
m

)3

.

(2.6)

In particular, it is sufficient to prove (1.6) for a constant density.
The proof that for some δ0 > 0, independent of ρ, one has Spec(Th,ρ) ⊂

[−1 + δ0,1] for all h ∈]0, h0] is the following: one has

〈u + Th,ρu,u〉L2(ρ) = 1

2

∫

�×�

Kh,ρ(x, y)|u(x) + u(y)|2ρ(x) dx dy

+ 2〈mh,ρu,u〉L2(ρ). (2.7)

Therefore, it is sufficient to prove that there exists h0,C0 > 0 such that the
following inequality holds true for all h ∈]0, h0] and all u ∈ L2(�):

∫

�×�

h−dϕ

(
x − y

h

)

|u(x) + u(y)|2 dx dy ≥ C0‖u‖2
L2(�)

. (2.8)

Let ωj ⊂ �,
⋃

j ωj = � be a covering of � such that diam(ωj ) < h and for

some Ci > 0 independent of h, vol(ωj ) ≥ C1h
d , and for any j , the number

of k such that ωj ∩ ωk �= ∅ is less than C2. Such a covering exists as � is
Lipschitz. Then

C2

∫

�×�

h−dϕ

(
x − y

h

)

|u(x) + u(y)|2 dx dy

≥
∑

j

∫

ωj×ωj

h−dϕ

(
x − y

h

)

|u(x) + u(y)|2 dx dy

≥
∑

j

h−d 1

|B1|
∫

ωj×ωj

|u(x) + u(y)|2 dx dy

≥
∑

j

2h−d 1

|B1| vol(ωj )‖u‖2
L2(ωj )

≥ 2C1

|B1|‖u‖2
L2(�)

. (2.9)

From (2.9), we get that (2.8) holds true.
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For the proof of (1.6) we need a suitable covering of �. Given ε > 0
small enough, there exists some open sets �0, . . . ,�N such that {x ∈ R

d,

dist(x,�) ≤ ε2} ⊂ ⋃N
j=0 �j , where the �j ’s have the following properties:

1. �0 = {x ∈ �,d(x, ∂�) > ε2}.
2. For j = 1, . . . ,N , there exists rj > 0, an affine isometry Rj of R

d and
a Lipschitz map ϕj : R

d−1 → R such that, denoting φ̃j (x
′, xd) = (x′,

xd + ϕj (x
′)) and φj = Rj ◦ φ̃j , we have

φj is injective on B(0,2rj )×]−2ε,2ε[,
�j = φj (B(0, rj )×]−ε, ε[),

�j ∩ � = φj (B(0, rj )×]0, ε[),
φj (B(0,2rj )×]0,2ε[) ⊂ �.

(2.10)

We put our open set � in a large box B =]−A/2,A/2[d and define an
extension map E : L2(�) → L2(B). For j = 0, . . . ,N we let χj ∈ C∞

0 (�j )

be such that
∑

j χj (x) = 1 for dist(x,�) ≤ ε2. For any function u ∈ L2(�),
let uj , j = 0, . . . ,N be defined in a neighborhood of �j by uj = u ◦ φj ◦ S ◦
φ−1

j , where S(x′, xd) = (x′,−xd) if xd < 0 and S(x′, xd) = (x′, xd) if xd ≥ 0.
For x ∈ � ∩ �j , one has uj (x) = u(x) and we define

E(u)(x) =
N∑

j=0

χj (x)uj (x). (2.11)

We observe that φ̃−1
j (x) = (x′, xd − ϕj (x

′)). Consequently, as ϕj is

Lipschitz-continuous, then φj and φ−1
j are also Lipschitz-continuous. Hence,

formula (2.11), gives us an extension map from L2(�) into L2(B), which is
also bounded from H 1(�) into H 1(B). For u ∈ L2(�), v ∈ L2(B), set

Eh,ρ(u) = 〈(1 − Th,ρ)u,u〉L2(ρ),

Eh(v) =
∫ ∫

B×B,|x−y|≤h

h−d |v(x) − v(y)|2 dx dy.
(2.12)

Since for A large, E(u) vanishes near the boundary of B , we can extend
v = E(u) as an A-periodic function on R

d , and write its Fourier series v(x) =
E(u)(x) = ∑

k∈Zd ck(v)e2iπkx/A with ck(v) = A−d
∫
B

e−2iπkx/Av(x) dx.
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Then

‖E(u)‖2
L2(B)

= Ad
∑

k

|ck|2,

‖E(u)‖2
H 1(B)

= Ad
∑

k

(1 + 4π2k2/A2)|ck|2
(2.13)

and since E is bounded from H 1(�) into H 1(B), then ‖u‖2
L2(�)

�
Ad

∑
k |ck|2 and ‖u‖2

H 1(�)
� Ad

∑
k(1 + 4π2k2/A2)|ck|2, where f (u) �

g(u) means that there exists some constant C > 0 independent of u, such
that 1

C
f (u) ≤ g(u) ≤ Cf (u).

Moreover, one gets

Eh(v) = Ad
∑

k

|ck|2θ(hk), (2.14)

with

θ(ξ) =
∫

|z|≤1
|e2iπξz/A − 1|2 dz.

Observe that the function θ is nonnegative, quadratic near 0. Moreover, it
vanishes if and only if ξ = 0 and it has a positive lower bound for |ξ | ≥ 1.

The next two lemmas show that the Dirichlet forms for u ∈ L2(�) and its
extension to L2(B) are comparable.

Lemma 2.1 For all α > 1, there exists C > 0 and h0 > 0 such that

Eαh,ρ(u) ≤ CEh,ρ(u) ∀u ∈ L2(�), ∀h ∈]0, h0]. (2.15)

Proof Using (2.2) and (2.5), we observe that it suffices to prove the lemma in
the case where ρ(x) = ρ is constant, and we first show the result when � is
convex. In that case, since |u(x)−u(y)| ≤ |u(x)−u(

x+y
2 )|+|u(

x+y
2 )−u(y)|,

one has

Eαh,ρ(u) = (hα)−d

2 vol(B1)

∫

�

∫

�

1|x−y|≤αh|u(x) − u(y)|2ρ dx dy

≤ 2(hα)−d

vol(B1)

∫

�

∫

�

1|x−y|≤αh

∣
∣
∣
∣u(x) − u

(
x + y

2

)∣
∣
∣
∣

2

ρ dx dy

= 2(hα/2)−d

vol(B1)

∫

φ(�×�)

1|x−y|≤ αh
2
|u(x) − u(y)|2ρ dx dy, (2.16)

where φ(x, y) = (x,
x+y

2 ). As � is convex φ(� × �) ⊂ � × � and we get
Eαh,ρ(u) ≤ 4E αh

2 ,ρ
(u). Iterating this process we obtain the announced result

for convex domains.
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In the general case, we use the local covering introduced in (2.10). Let
�+

i = �i ∩ � (respectively �−
i = �i ∩ (Rd \ �)) and Ui(h) = {(x, y) ∈

�+
i × �, |x − y| ≤ αh}. Since by (2.2), � ⊂ ⋃

i �
+
i , we have Eαh,ρ(u) ≤

∑N
i=0 E i

αh,ρ(u) with

E i
αh,ρ(u) = (αh)−d

2 vol(B1)

∫

Ui(h)

1|x−y|≤αh|u(x) − u(y)|2ρ dx dy. (2.17)

Let us estimate E 0
αh,ρ(u). For h ∈]0, ε2/α[ and (x, y) ∈ U0(h), we have

[x, y] ⊂ �. Therefore, the change of variable φ(x, y) = (x,
x+y

2 ) maps U0(h)

into �0 × � and we get as above

E 0
αh,ρ(u) ≤ 2(αh)−d

vol(B1)

∫

U0(h)

1|x−y|≤αh

×
∣
∣
∣
∣u(x) − u

(
x + y

2

)∣
∣
∣
∣

2

ρ dx dy ≤ 4E αh
2 ,ρ

(u). (2.18)

For i �= 0 and h > 0 small enough, we remark that Ui(h) ⊂ �̃+
i × �̃+

i , where
�̃±

i = φi(B(0,2ri) × {0 < ±xd < 2ε}). Denoting Qi = B(0, ri)×]0, ε[,
Q̃i = B(0,2ri)×]0,2ε[, we can use the Lipschitz-continuous change of vari-
able φi : Q̃i → �̃+

i ⊂ � to get

E i
αh,ρ(u) ≤ (αh)−d

2 vol(B1)

∫

Q̃i

∫

Q̃i

Jφi
(x)Jφi

(y)1|φi(x)−φi(y)|≤αh

× |u ◦ φi(x) − u ◦ φi(y)|2ρ dx dy (2.19)

where the Jacobian Jφi
of φi is a bounded function defined almost every-

where. As both φi,φ
−1
i are Lipschitz-continuous, there exists Mi,mi > 0

such that for all x, y ∈ Q̃i we have mi |x − y| ≤ |φi(x) − φi(y)| ≤ Mi |x − y|.
Therefore,

E i
αh,ρ(u) ≤ Ch−d

∫

Q̃i

∫

Q̃i

1|x−y|≤ αh
mi

|u ◦ φi(x) − u ◦ φi(y)|2ρ dx dy, (2.20)

where C denotes a positive constant changing from line to line. As Q̃i is
convex, it follows from the study of the convex case that

E i
αh,ρ(u) ≤ Ch−d

∫

Q̃i

∫

Q̃i

1|x−y|≤ h
Mi

|u ◦ φi(x) − u ◦ φi(y)|2ρ dx dy
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≤ Ch−d

∫

Q̃i

∫

Q̃i

1|φi(x)−φi(y)|≤h|u ◦ φi(x) − u ◦ φi(y)|2ρ dx dy

≤ Ch−d

∫

�̃+
i

∫

�̃+
i

1|x−y|≤h|u(x) − u(y)|2ρ dx dy ≤ Ci Eh,ρ(u),

(2.21)

and the proof is complete. �

Lemma 2.2 There exist C0, h0 > 0 such that the following holds true for any
h ∈]0, h0] and any u ∈ L2(ρ).

Eh,ρ(u)/C0 ≤ Eh(E(u)) ≤ C0
(

Eh,ρ(u) + h2‖u‖2
L2

)
. (2.22)

As a byproduct, there exists C1 such that for all h ∈]0, h0] and any function
u ∈ L2(ρ) such that

‖u‖2
L2(ρ)

+ h−2〈(1 − Th,ρ)u,u〉L2(ρ) ≤ 1,

the function u admits a decomposition u = uL + uH with uL ∈ H 1(�),
‖uL‖H 1 ≤ C1, and ‖uH‖L2 ≤ C1h.

Proof Using the second line of (2.5), we may assume that the density ρ is
constant equal to 1. The proof of the left inequality in (2.22) is obvious. For
the upper bound, we remark that there exists C > 0 such that Eh(E(u)) ≤
C

∑N
j=0(E j,1

h + E j,2
h ) with

E j,1
h = h−d

∫

B×B

1|x−y|≤h|χj (x) − χj (y)|2|uj (x)|2 dx dy (2.23)

and

E j,2
h = h−d

∫

B×B

1|x−y|≤h|χj (y)|2|uj (x) − uj (y)|2 dx dy. (2.24)

As the functions χj are regular, there exist some χ̃j ∈ C∞
0 (B) equal to 1 near

the support of χj such that

E j,1
h ≤ Ch−d

∫

B

χ̃j (x)|uj (x)|2
(∫

B

1|x−y|≤h|x − y|2 dy

)

dx

≤ Ch2‖u‖2
L2(�)

. (2.25)

In order to estimate E j,2
h one has to estimate the contribution of the points

x ∈ �,y /∈ � and x /∈ �,y /∈ �. All the terms are treated in the same way
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and we only examine

E j,3
h = h−d

∫

�×(B\�)

1|x−y|≤h|χj (y)|2|uj (x) − uj (y)|2 dx dy

= h−d

∫

�̃+
j ×�−

j

1|x−y|≤h|χj (y)|2|u(x) − u ◦ φj ◦ S ◦ φ−1
j (y)|2 dx dy,

(2.26)
with S defined below (2.10). Let σ : R

d → R
d be the symmetry with respect

to {yd = 0}, so that Sσ = Id on {yd < 0}. We use the Lipschitz-continuous
change of variable ψj : y ∈ �+

j �→ φj ◦ σ ◦ φ−1
j (y) ∈ �−

j to get

E j,3
h ≤ Ch−d

∫

�̃+
j ×�+

j

1|x−ψj (y)|≤h|χj ◦ ψj(y)|2|u(x) − u(y)|2 dx dy.

(2.27)
We claim that there exists β > 0 such that

|ψj(y) − x| ≥ β−1|x − y| ∀(x, y) ∈ �̃+
j × �+

j . (2.28)

Indeed, as both φj and φ−1
j are Lipschitz-continuous, (2.28) is equivalent to

finding β > 0 such that

|σ(y) − x| ≥ β−1|x − y| ∀(x, y) ∈ φ−1
j (�̃+

j × �+
j ), (2.29)

which is obvious with β = 1. From (2.28) it follows that for some α > 1, one
has

E j,3
h ≤ Ch−d

∫

�̃+
j ×�+

j

1|x−y|≤αh|u(x) − u(y)|2 dx dy ≤ CEαh,ρ(u), (2.30)

and the upper bound is then a straightforward consequence of Lemma 2.1.
The proof of the decomposition of u goes as follows. Start from u ∈ L2(ρ)

such that ‖u‖2
L2(ρ)

+h−2〈(1−Th,ρ)u,u〉L2(ρ) ≤ 1 and let v = E(u). It follows
from (2.14) and (2.22) that

∑

k∈Zd

|ck|2θ(hk) ≤ C′
0h

2 = A−dC0h
2. (2.31)

Let vL = ∑
|hk|≤1 cke

2iπkx/A and vH = v − vL. Since θ is quadratic near 0
and only vanishes at the origin, there exists some constant C > 0 such that
θ(ξ) ≥ C|ξ |2 and hence

Ch2
∑

|hk|≤1

|ck|2|k|2 ≤ C′
0h

2. (2.32)
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Dividing by h2, this shows that ‖vL‖2
H 1(B)

≤ C′
0/C and hence, uL = (vL)|∂�

is bounded in H 1(�) uniformly with respect to h.
Similarly, since θ is bounded from below by some C > 0 on |ξ | ≥ 1, it

follows from (2.31) that

‖vH‖2
L2(B)

≤ C
∑

h|k|>1

|ck|2 ≤ C′
0h

2. (2.33)

Setting uH = (vH )|∂�, this shows that ‖uH‖L2(�) = O(h) and the proof of
Lemma 2.2 is complete. �

We are in position to prove the estimate (1.6) on the spectral gap. Once
again, using the second line of (2.5), we may assume that the density ρ

is constant equal to 1. To show the right inequality, it suffices to plug a
function u ∈ C∞

0 (�) with support contained in a ball Q ⊂ � and such that∫
�

u(x)ρ(x) dx = 0 into (1.3). As Q is convex, it follows from Taylor’s for-
mula that for such u, we have 〈u − Thu,u〉 = O(h2).

To show the left inequality in (1.6), we first observe that it is clearly satis-
fied when � is convex. Indeed, given u ∈ L2(�) we have by Cauchy-Schwarz

∫

�×�

|u(x) − u(y)|2 dx dy

≤ Ch−1
K(h)−1∑

k=0

∫

�×�

∣
∣u(x + k�(y − x))

− u(x + (k + 1)�(y − x))
∣
∣2

dx dy, (2.34)

where K(h) is the greatest integer ≤ h−1 and � = 1/K(h). With the new
variables x′ = x + k�(y − x), y′ = x + (k + 1)�(y − x), one has dx′ dy′ =
�

d dx dy and we get
∫

�×�

|u(x) − u(y)|2 dx dy

≤ Ch−d−1K(h)

∫

�×�

1|x′−y′|<� diam(�)|u(x′) − u(y′)|2 dx′ dy′, (2.35)

By Lemma 2.1, this proves the left inequality in (1.6) in the case where � is
convex.

In the general case, we can find some open sets contained in �, ωj

∑
�

�+
j � �̃+

j , j = 1, . . . ,N + M such that for j = 1, . . . ,N , �+
j , �̃+

j are

given in the proof of Lemma 2.1, (�+
j )j=N+1,...,N+M are convex �0 ⊂
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⋃M+N
j=N+1 �+

j , � ⊂ ⋃N+M
j=1 ωj , and where A � B means that A

� ⊂ B . Hence
for h > 0 small enough,

Eh,ρ(u) ≥ C

N+M∑

j=1

h−d

∫

�+
j ×�̃+

j

1|x−y|<h(u(x) − u(y))2 dx dy

≥ C

N∑

j=1

h−d

∫

Qj×Q̃j

1|φj (x)−φj (y)|<h(u ◦ φj (x) − u ◦ φj (y))2 dx dy

+ C

N+M∑

j=N+1

h−d

∫

�+
j ×�̃+

j

1|x−y|<h(u(x) − u(y))2 dx dy,

(2.36)
where Qj, Q̃j are as in the proof of Lemma 2.1. From the estimate proved
above in the convex case, we know that there exists a > 0 independent of h

such that the second sum in (2.36) is bounded from below by

Ch2
N+M∑

j=N+1

∫

ωj×�+
j

(u(x) − u(y))2 dx dy

≥ Ch2
N+M∑

j=N+1

∫

ωj×�,|x−y|<a

(u(x) − u(y))2 dx dy. (2.37)

On the other hand, thanks to the fact that φj is a Lipschitz diffeomorphism,
there exists α > 0 such that 1|x−y|<h/α ≤ 1|φj (x)−φj (y)|<h ≤ 1|x−y|<αh. Using
the convexity of Qi and Lemma 2.1 it follows that the first sum in the right
hand side of (2.36) is bounded from below by

Ch2
N∑

j=1

∫

ωj×�,|x−y|<a

(u(x) − u(y))2 dx dy. (2.38)

Combining (2.36), (2.37) and (2.38), we get

Eh,ρ(u) ≥ Ch2
∫

�×�,|x−y|<a

(u(x) − u(y))2 dx dy (2.39)

for some fixed a > 0 independent of h. Since by (2.4) we have g(a,ρ) > 0,
we get

Eh,ρ(u) ≥ Ch2
∫

�×�

(u(x) − u(y))2 dx dy. (2.40)

The proof of (1.6) is complete.
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Lemma 2.3 There exists δ0 ∈]0,1/2[ and some constants Ci independent on
λ and h such that Spec(Th,ρ) ∩ [1 − δ0,1] is discrete, and for any 0 ≤ λ ≤
δ0/h2, the number of eigenvalues of Th,ρ in [1 − h2λ,1] (with multiplicity)
is bounded by C1(1 + λ)d/2. Moreover, any eigenfunction Th,ρ(u) = λu with
λ ∈ [1 − δ0,1] satisfies the bound

‖u‖L∞ ≤ C2h
−d/2‖u‖L2 . (2.41)

Proof To get (2.41), we just write that since λ is not in the range of mh, one
has

u(x) = 1

λ − mh(x)

∫

�

h−dϕ

(
x − y

h

)

min

(
ρ(y)

ρ(x)
,1

)

u(y) dy,

and we apply Cauchy–Schwarz. The important point here is the estimate
on the number of eigenvalues in [1 − h2λ,1] by a power of λ. This is ob-
tained by the min-max and uses (2.22). The min-max gives: if for some
closed subspace F of L2(ρ) with codim(F ) = N one has for all u ∈ F ,
h−2〈(1 − Th,ρ)u,u〉L2(ρ) ≥ λ‖u‖2

L2(ρ)
, then the number of eigenvalues of Th

in [1 − h2λ,1] (with multiplicity) is bounded by codim(F ) = N . Then, we
fix c > 0 small enough, and we choose for F the subspace of functions u

such that their extension v = E(u) is such that the Fourier coefficients sat-
isfy ck(E(u)) = 0 for |k| ≤ D with hD ≤ c. The codimension of this space
F is exactly the number of k ∈ Z

d such that |k| ≤ D, since if p is a trigono-
metric polynomial such that E∗(p) = 0, we will have

∫
�

p(x)u(x) dx = 0
for any function u with compact support in � and such that E(u) = u,
and this implies p = 0. Thus codim(F ) � (1 + D)d . On the other hand,
the right inequality in (2.22) gives for u ∈ F , h−2〈(1 − Th,ρ)u,u〉L2(ρ) ≥
C0(D

2 −C1)‖u‖2
L2(ρ)

for universal C0,C1, since by (2.14), there exists C > 0

such that one has θ(hk)h−2 ≥ CD2 for all D ≤ c/h and all |k| > D. The
proof of our lemma is complete. �

We are now ready to prove the total variation estimate (1.7). We use the
notation Th = Th,ρ . Let �0 be the orthogonal projector in L2(ρ) on the space
of constant functions

�0(u)(x) = 1�(x)

∫

�

u(y)ρ(y) dy. (2.42)

Then

2 sup
x0∈�

‖T n
h (x0, dy) − ρ(y) dy‖T V = ‖T n

h − �0‖L∞→L∞ . (2.43)
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To show the left hand side, it suffices to consider an eigenfunction eh as-
sociated to the eigenvalue (1−g(h,ρ)) and normalized in L∞(�). Since eh is
orthogonal to constant functions, we get immediately 2 supx0∈� ‖T n

h (x0, dy)−
ρ(y) dy‖T V ≥ ‖T n

h eh − �0eh‖L∞ = (1 − g(h,ρ))n.
Let us now prove the right inequality. We have to show that there exist

C0, h0, such that for any n and any h ∈]0, h0], one has

‖T n
h − �0‖L∞→L∞ ≤ C0e

−ngh,ρ . (2.44)

Observe that since we know that for h0 small, the estimate (1.6) holds true for
any ρ, we may assume n ≥ Ch−2. In order to prove (2.44), we split Th into
three pieces, using spectral theory.

Let 0 < λ1,h ≤ · · · ≤ λj,h ≤ λj+1,h ≤ · · · ≤ h−2δ0 be such that the eigen-
values of Th in the interval [1 − δ0,1[ are the 1 − h2λj,h, with associated
orthonormal eigenfunctions ej,h,

Th(ej,h) = (1 − h2λj,h)ej,h, (ej,h|ek,h)L2(ρ) = δj,k. (2.45)

Then we write Th − �0 = T1,h + T2,h + T3,h with

T1,h(x, y) =
∑

λ1,h≤λj,h≤h−α

(1 − h2λj,h)ej,h(x)ej,h(y),

T2,h(x, y) =
∑

h−α<λj,h≤h−2δ0

(1 − h2λj,h)ej,h(x)ej,h(y),

T3,h = Th − �0 − T1,h − T2,h.

(2.46)

Here α > 0 is a small constant that will be chosen later. One has T n
h − �0 =

T n
1,h+T n

2,h+T n
3,h, and we will get the bound (2.44) for each of the three terms.

We start by very rough bounds. Since there are at most Ch−d eigenvalues λj,h

and using the bound (2.41), we get that there exists C independent of n ≥ 1
and h such that

‖T n
1,h‖L∞→L∞ + ‖T n

2,h‖L∞→L∞ ≤ Ch−3d/2. (2.47)

Since T n
h is bounded by 1 on L∞, we get from T n

h − �0 = T n
1,h + T n

2,h + T n
3,h

‖T n
3,h‖L∞→L∞ ≤ Ch−3d/2. (2.48)

Next we use (1.2) to write Th = mh + Rh with

‖mh‖L∞→L∞ ≤ γ < 1,

‖Rh‖L2→L∞ ≤ C0h
−d/2.

(2.49)
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From this, we deduce that for any p = 1,2, . . . , one has T
p
h = Ap,h +

Bp,h, with A1,h = mh,B1,h = Rh and the recurrence relation Ap+1,h =
mhAp,h,Bp+1,h = mhBp,h + RhT

p
h . Thus one gets, since T

p
h is bounded by

1 on L2,

‖Ap,h‖L∞→L∞ ≤ γ p,

‖Bp,h‖L2→L∞ ≤ C0h
−d/2(1 + γ + · · · + γ p) ≤ C0h

−d/2/(1 − γ ).
(2.50)

Let θ = 1 − δ0 < 1 so that ‖T3,h‖L2→L2 ≤ θ . Then one has

‖T n
3,h‖L∞→L2 ≤ ‖T n

3,h‖L2→L2 ≤ θn,

and for n ≥ 1, p ≥ 1, one gets, using (2.50) and (2.48),

‖T p+n

3,h ‖L∞→L∞ = ‖T p
h T n

3,h‖L∞→L∞

≤ ‖Ap,hT
n
3,h‖L∞→L∞ + ‖Bp,hT

n
3,h‖L∞→L∞

≤ Ch−3d/2γ p + C0h
−d/2θn/(1 − γ ). (2.51)

Taking p = n, we get ‖T 2n
3,h‖L∞→L∞ ≤ Ch−αθ̃n for some α > 0 and 0 <

θ̃ < 1. This shows that there exists some constants C > 0, μ > 0, such that

‖T n
3,h‖L∞→L∞ ≤ Ce−μn, ∀h, ∀n ≥ 1/h, (2.52)

and thus the contribution of T n
3,h is far smaller than the bound we have to

prove in (2.44).
Next, for the contribution of T n

2,h, we just write, since there are at most

Ch−d eigenvalues λj,h and using the bound (2.41),

T n
2,h(x, y) =

∑

h−α<λj,h≤h−2δ0

(1 − h2λj,h)
nej,h(x)ej,h(y),

‖T n
2,h‖L∞→L∞ ≤ Ch−3d/2(1 − h2−α)n.

(2.53)

Thus we get for some Cα > 0,

‖T n
2,h‖L∞→L∞ ≤ Cαe− nh2−α

2 , ∀h, ∀n ≥ h−2+α/2, (2.54)

and thus this contribution is still neglectible for h ∈]0, h0] for h0 small. It
remains to study the contribution of T n

1,h.

Let Eα be the (finite dimensional) subspace of L2(ρ) spanned by the eigen-
vectors ej,h, λj,h ≤ h−α . By Lemma 2.3, one has dim(Eα) ≤ Ch−dα/2. We
next prove a Sobolev-type inequality for the form Eh,ρ . For background on
Sobolev and the following Nash inequality, see [4, 11].
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Lemma 2.4 There exist α > 0, p > 2 and C independent of h such that for
all u ∈ Eα , the following inequality holds true:

‖u‖2
Lp ≤ Ch−2(Eh,ρ(u) + h2‖u‖2

L2

)
. (2.55)

Proof Clearly, one has for u = ∑
λ1,h≤λj,h≤h−α aj ej,h ∈ Eα ,

Eh,ρ(u) + h2‖u‖2
L2 =

∑

λ1,h≤λj,h≤h−α

h2(1 + λj,h)|aj |2.

Take u ∈ Eα such that h−2(Eh,ρ(u) + h2‖u‖2
L2) ≤ 1. Then by (2.22), one

has h−2Eh(E(u)) ≤ C0. Let ψ(t) ∈ C∞
0 (R) be equal to 1 near t = 0, and for

v(x) = ∑
k∈Zd ck(v)e2iπkx/A, set

v = vL + vH , vL(x) =
∑

k∈Zd

ψ(h|k|)ck(v)e2iπkx/A. (2.56)

Then v = vL + vH is a decomposition of the extension v = E(u) in low
frequencies (vL) and high frequencies (vH ). One has vL(x) =∫

Rd h−dθ(
x−y

h
)v(y) dy, where θ is the function in the Schwartz space de-

fined by θ̂ (2πz/A) = ψ(|z|). Hence, the map v �→ vL is bounded uniformly
in h on all the spaces Lq for 1 ≤ q ≤ ∞. Using the definition of ψ , it follows
from (2.32) that

‖vL‖H 1(B) ≤ C. (2.57)

Thus, with uL = vL|� and uH = vH |�, we get ‖uL‖H 1(�) ≤ C so by Sobolev

for p < 2d
d−2 ,

‖uL‖Lp ≤ C. (2.58)

One the other hand, one has also by (2.22),

h−2Eh(E(ej,h)) ≤ C0(1 + λj,h), (2.59)

and this implies, by (2.33),

h−2‖E(ej,h)H‖2
L2 ≤ C0(1 + λj,h) ≤ C0(1 + h−α). (2.60)

Thus for α ≤ 1, we get ‖E(ej,h)H‖L2 ≤ Ch1/2. On the other hand, since
‖ej,h‖L∞ ≤ Ch−d/2, using the definition of the low frequency cut-off we get

‖E(ej,h)H‖L∞ ≤ ‖E(ej,h)‖L∞ + ‖E(ej,h)L‖L∞

≤ C‖E(ej,h)‖L∞ ≤ Ch−d/2.
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By interpolation we can find some p > 2 such that

‖E(ej,h)H‖Lp ≤ C0h
1/4. (2.61)

Thus one gets, for u = ∑
λ1,h≤λj,h≤h−α aj ej,h ∈ Eα with h−2(Eh,ρ(u) +

h2‖u‖2
L2) ≤ 1,

‖uH‖Lp ≤
∑

λ1,h≤λj,h≤h−α

|aj |‖E(ej,h)H‖Lp

≤ C0h
1/4 dim(Eα)1/2‖u‖L2 ≤ Ch1/4h−dα/4. (2.62)

Our lemma follows from (2.58) and (2.62) if one takes α small. Observe that
here, the estimate on the number of eigenvalues (i.e., the estimation of the
dimension of Eα) is crucial. The proof of Lemma 2.4 is complete. �

From Lemma 2.4, using the interpolation inequality ‖u‖2
L2 ≤

‖u‖
p

p−1
Lp ‖u‖

p−2
p−1

L1 , we deduce the Nash inequality, with 1/D = 2 − 4/p > 0,

‖u‖2+1/D

L2 ≤ Ch−2(Eh,ρ(u) + h2‖u‖2
L2

)‖u‖1/D

L1 , ∀u ∈ Eα. (2.63)

For λj,h ≤ h−α , one has h2λj,h ≤ 1, and thus for any u ∈ Eα , one gets
Eh,ρ(u) ≤ ‖u‖2

L2 − ‖Thu‖2
L2 and thus we get, from (2.63),

‖u‖2+1/D

L2 ≤ Ch−2(‖u‖2
L2 − ‖Thu‖2

L2 + h2‖u‖2
L2

)‖u‖1/D

L1 , ∀u ∈ Eα.

(2.64)
For 0 < α ≤ 2, we deduce from (2.52), (2.54), and T n

h −�0 = T n
1,h+T n

2,h+
T n

3,h, that there exists C2 such that

‖T n
1,h‖L∞→L∞ ≤ C2, ∀h, ∀n ≥ h−2+α/2, (2.65)

and thus since T1,h is self adjoint on L2,

‖T n
1,h‖L1→L1 ≤ C2, ∀h, ∀n ≥ h−2+α/2. (2.66)

Fix p � h−2+α/2. Take g ∈ L2 such that ‖g‖L1 ≤ 1 and consider the se-
quence cn, n ≥ 0,

cn = ‖T n+p

1,h g‖2
L2 . (2.67)

Then 0 ≤ cn+1 ≤ cn, and from (2.64) and (2.66), we get

c
1+ 1

2D
n ≤ Ch−2(cn − cn+1 + h2cn)‖T n+p

1,h g‖1/D

L1

≤ CC
1/D

2 h−2(cn − cn+1 + h2cn).

(2.68)
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From this inequality, we deduce that there exist A � CC2 sup0≤n≤h−2(2 +
n)(1 +h2 − (1 − 1

n+2)2D) which depends only on C, C2, D, such that for all

0 ≤ n ≤ h−2, one has cn ≤ (Ah−2

1+n
)2D , and thus there exist C0 which depends

only on C, C2, D, such that for N � h−2, one has cN ≤ C0. This implies

‖T N+p

1,h g‖L2 ≤ C0‖g‖L1, (2.69)

and thus taking adjoints,

‖T N+p

1,h g‖L∞ ≤ C0‖g‖L2, (2.70)

and so we get, for any n and with N + p � h−2,

‖T N+p+n

1,h g‖L∞ ≤ C0(1 − h2λ1,h)
n‖g‖L2 . (2.71)

And thus for n ≥ h−2,

‖T n
1,h‖L∞→L∞ ≤ C0e

−(n−h−2)h2λ1,h = C0e
λ1,he−ng(h,ρ), ∀h, ∀n ≥ h−2

≤ C1e
−nC2h

2
(2.72)

for some C1,C2 > 0 independant on h, by (1.6). This concludes the proof of
Theorem 1.1.

Remark 1 We believe that (2.41) is true with a power of � instead of a power
of h with λ = 1−h2�. We have no proof for this which is why we use a Nash
inequality for T1,h.

Remark 2 The above proof seems to apply for a more general choice of the
elementary Markov kernel h−dϕ(

x−y
h

). Replace ϕ by a positive symmet-
ric measure of total mass 1 with support in the unit ball, and let Th be the
Metropolis algorithm with this data. Assume that one is able to prove that
for some δ0 > 0 one has Spec(Th) ⊂ [−1 + δ0,1] for all h ≤ h0, and that for
some power M , one has for some C,c > 0,

T M
h (x, dy) = μh(x, dy) + Ch−d1|x−y|≤chρ(y) dy, μh(x, dy) ≥ 0.

Then there exists γ < 1 such that ‖μh‖L∞ ≤ γ . Moreover, the right inequal-
ity in (2.22) and (2.41) are still valid for T M

h . Also, the spectral gap of T M
h is

given by formula (1.4) with T M
h (x, dy) in place of Kh,ρ(x, y) dy, and there-

fore the left inequality in (1.6) holds true, and the right one is true, since if ρ

is constant, for any θ ∈ C∞
0 (�), one has u − Thu ∈ O(h2).

We shall use these remarks in the study of the hard disc problem, in Sect. 4.
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3 A proof of Theorem 1.2

In this section, we suppose additionally that � is quasi-regular (Definition 2).
For a given continuous density ρ, using (2.6) and an approximation of ρ in
L∞ by a sequence of smooth densities ρk on �, one sees that the first asser-
tion (1.18) of Theorem 1.2 is a consequence of the second one (1.19). Assume
now that ρ is smooth.

Lemma 3.1 Let θ ∈ C∞(�) be such that supp(θ) ∩ �sing = ∅ and
∂nθ |�reg = 0. Then, with Qh,ρ defined in (2.2) and Lρ defined in (1.11), we
have

Qh,ρ(θ) = h2Lρ(θ) + r, ‖r‖L2 = O(h5/2). (3.1)

Proof For θ ∈ C∞(�) and x ∈ �, we can use the Taylor formula to get

Qh,ρ(θ)(x) = 1

vol(B1)

∫

A(x,h)

min

(

1 + h
∇ρ(x)

ρ(x)
.z + O(h2|z|2),1

)

×
(

−h∇θ(x).z − h2

2

∑

i,j

zizj ∂xi
∂xj

θ(x) + O(h3|z|3)
)

dz,

(3.2)

with A(x,h) = {z ∈ R
d, |z| < 1, x + hz ∈ �}. As A(x,h) = A+(x,h) ∪

A−(x,h), with A±(x,h) = {z ∈ A(x,h), ±(ρ(x + hz) − ρ(x)) ≥ 0}, it fol-
lows by an easy computation that

Qh,ρ(θ)(x) = − h

vol(B1)
∇θ(x).

∫

A(x,h)

z dz

− h2

2 vol(B1)

d∑

i,j=1

∂xi
∂xj

θ(x)

∫

A(x,h)

zizj dz

− h2

vol(B1)

∫

A−(x,h)

∇ρ(x)

ρ(x)
.z∇θ(x).z dz + r(x)

=f1(x) + f2(x) + f3(x) + r(x), (3.3)

with ‖r‖L∞(�) = O(h3). Let χ = 1d(x,∂�)<2h, then for j = 2,3,

‖χfj‖L2(�) ≤ ‖χ‖L2(�)‖fj‖L∞(�) = O(h5/2), (3.4)

thanks to the support properties of χ . Moreover, for x ∈ supp(1 − χ),
A(x,h) = {|z| < 1} and the change of variable z �→ −z shows that (1 −
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χ)f2 = −(1 − χ)
αd

2 h2θ(x) thanks to (1.8). Hence,

f2(x) = −αd

2
h2θ(x) + r(x), (3.5)

with ‖r‖L2 = O(h5/2).
To compute f3(x) for x ∈ supp(1 − χ), we first observe that |f3(x)| ≤

Ch2|∇ρ(x)||∇θ(x)|. We thus get ‖1|∇ρ|≤h1/2f3‖L∞ ≤ Ch5/2‖∇θ‖L∞ . At a

point x where |∇ρ(x)| ≥ h1/2, we may write z = t
∇ρ(x)
|∇ρ(x)| + z⊥,

t = z.∇ρ(x)
|∇ρ(x)| and z⊥.∇ρ(x) = 0. In these coordinates, one has A−(x,h) =

{|z| < 1, (t, z⊥), t |∇ρ(x)| + O(h(t2 + |z⊥|2)) ≤ 0}. From |∇ρ(x)| ≥ h1/2

we get that the symmetric difference R between A−(x,h) and {t ≤ 0} sat-
isfies meas(R) = O(h1/2) (the symmetric difference of two sets A,B is
A ∪ B \ A ∩ B). Therefore

1|∇ρ|≥h1/2(1 − χ)f3(x)

= −h21|∇ρ|≥h1/2
(1 − χ)(x)

vol(B1)

∫

{|z|<1,∇ρ(x).z≤0}
∇ρ(x)

ρ(x)
.z∇θ(x).z dz + r(x),

(3.6)

with ‖r‖L∞ = O(h5/2). Using the change of variable z �→ z − 2z⊥, we get

1|∇ρ|≥h1/2(1 − χ)f3(x)

= −h21|∇ρ|≥h1/2
αd

2
(1 − χ)(x)

∇ρ(x)

ρ(x)
.∇θ(x) + r(x), (3.7)

and therefore, using (3.4), we get

f3(x) = −h2 αd

2

∇ρ(x)

ρ(x)
.∇θ(x) + r(x), (3.8)

with ‖r‖L2 = O(h5/2). It remains to show that ‖f1‖L2(�) = O(h5/2). Using
the change of variable z �→ −z we easily obtain (1 − χ)f1 = 0. Hence, it
suffices to show that f ′

1(x,h) = χ
∫
A(x,h)

z.∇θ(x) dz satisfies ‖f ′
1‖L∞(�) =

O(h). As �sing is compact and supp(θ) ∩ �sing = ∅, this is a local problem
near any point x0 of the regular part �reg of the boundary. Let ψ be a smooth
function such that near x0 = (0,0) one has � = {xd > ψ(x′)}. For x close to
x0 one has

A(x,h) = {
z ∈ R

d, |z| < 1, xd + hzd > ψ(x′ + hz′)
}
. (3.9)

Set

A1(x,h) = {
z ∈ R

d, |z| < 1, xd + hzd > ψ(x′) + h∇ψ(x′)z′}, (3.10)
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then the symmetric difference R between A(x,h) and A1(x,h) satisfies
meas(R) = O(h) uniformly in x close to x0. This yields

f ′
1(x,h) = ∇θ(x).v(x,h) + r(x), v(x,h) =

∫

A1(x,h)

z dz, (3.11)

with ‖r‖L∞ = O(h). Let ν(x) be the vector field defined by ν(x) =
(−∇ψ(x′),1). Observe that v(x,h) = φ(

ψ(x′)−xd

h|ν(x)| )
ν(x)
|ν(x)| with φ(a) =

∫
|z|<1,z1>a

z1 dz, vanishes for dist(x, ∂�) > Ch and that for x ∈ ∂�, ν(x)

is collinear to the unit normal to the boundary −→
n (x). Since ∂nθ |�reg = 0, we

thus get ‖f ′
1‖L∞ = O(h). The proof of our lemma is complete. �

Let us recall that we denote 1 = ν0 < ν1 < · · · < νj < · · · the eigenvalues
of Lρ and mj the associated multiplicities. We introduce the bilinear form

aρ(u, v) = αd

2
〈∇u,∇v〉L2(ρ) + 〈u, v〉L2(ρ). (3.12)

This defines an Hilbertian structure on H 1(�) which is equivalent to the usual
one. We write ‖.‖H 1

ρ
for the norm induced by aρ . We denote

D0 = {
θ ∈ C∞(�), θ = 0 near �sing, ∂nθ|�reg = 0

}
. (3.13)

Lemma 3.2 D0 is dense in H 1(�).

Proof Let f ∈ H 1(�) be orthogonal to D0 for the inner product aρ defined
above. Then, it is orthogonal to C∞

0 (�) so that (Lρ + 1)f = 0 in the sense
of distributions. In particular −f ∈ L2(�). Hence we can use the Green
formula (1.14) to get for any θ ∈ D0, since aρ(f, θ) = 0,

〈∂nf,ρθ〉H−1/2,H 1/2 = 0. (3.14)

For any ψ ∈ C∞
0 (�reg), using smooth local coordinates we can find ψ̃ in D0

such that ψ̃|∂� = ψ . Consequently,

〈∂nf,ρψ〉H−1/2,H 1/2 = 〈∂nf,ρψ̃〉H−1/2,H 1/2 = 0. (3.15)

Hence, ∂nf|�reg = 0. This shows that ∂nf|∂� ∈ H−1/2 is supported in �sing.
From (1.16) this implies ∂nf|∂� = 0. This shows that f ∈ D(Lρ). As the op-
erator Lρ + 1 is strictly positive, this implies f = 0. The proof of our lemma
is complete. �

We are now in position to complete the proof of Theorem 1.2. Let K ∈ N

be fixed (independent of h). We first observe that if νh ∈ [0,M] and ψk,h ∈
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L2(ρ), k = 1, . . . ,K satisfy ‖ψk,h‖L2 = 1, h−2Qh,ρψk,h = νhψk,h and ψi,h

orthogonal to ψj,h for any j �= i, then thanks to Lemma 2.2 the family
(ψk,h)h∈]0,1] is relatively compact in L2(ρ) for any k, so that we can suppose
(extracting a subsequence hn) that νh → ν, ψk,h → ψk in L2(ρ), ‖ψk‖L2 = 1
and ψi orthogonal to ψj for any j �= i. Moreover by Lemma 2.2, the limit
ψk belongs to H 1(ρ). Given θ ∈ D0, it follows from self-adjointness of Qh,ρ

and Lemma 3.1 that

0 = 〈(h−2Qh,ρ − νh)ψk,h, θ〉L2(ρ) = 〈ψk,h, (Lρ − νh)θ〉L2(ρ) + O(h1/2).

(3.16)
Making h → 0 we obtain 〈ψk, (Lρ − ν)θ〉L2(ρ) = 0 for all θ ∈ D0. It follows
that (Lρ − ν)ψk = 0 in the distribution sense, and integrating by parts that
∂nψk vanish on �reg. Since ψk ∈ H 1(ρ), we get as above using (1.16) that
∂nψk = 0, and it follows that ψk ∈ D(Lρ). This shows that ν is an eigenvalue
of Lρ , and thus (1.19) is satisfied. Moreover, the inequality dim(Ker(Lρ −
ν)) ≥ K , shows that for any ε > 0 small enough, there exists hε > 0 small
enough such that

�Spec(h−2Qh,ρ) ∩ [νj − ε, νj + ε] ≤ mj, (3.17)

for h ∈]0, hε]. It remains to show that there is equality in (3.17), and we shall
proceed by induction on j .

Let ε > 0, small, be given such that for 0 ≤ νj ≤ M + 1, the intervals
I ε
j = [νj − ε, νj + ε] are disjoint. Let (μj (h))j≥0 be the increasing sequence

of eigenvalues of h−2Qh,ρ , σN = ∑N
j=1 mj and (ek)k≥0 the eigenfunctions of

Lρ such that for all k ∈ {1 + σN, . . . , σN+1}, one has (Lρ − νN+1)ek = 0. As
0 is a simple eigenvalue of both Lρ and Qh,ρ , we have clearly ν0 = μ0 = 0
and m0 = 1 = �Spec(h−2Qh,ρ) ∩ [ν0 − ε, ν0 + ε].

Suppose that for all n ≤ N , mn = �Spec(h−2Qh,ρ)∩[νn−ε, νn+ε]. Then,
one has by (1.19), for h ≤ hε ,

μ1+σN
(h) ≥ νN+1 − ε. (3.18)

By the min-max principle, if G is a finite dimensional subspace of H 1 with
dim(G) = 1 + σN+1, one has

μσN+1(h) ≤ sup
ψ∈G,‖ψ‖=1

〈h−2Qh,ρψ,ψ〉L2(ρ). (3.19)

Thanks to Lemma 3.2, for all ek,0 ≤ k ≤ σN+1 and all α > 0, there exists
ek,α ∈ D0 such that ‖ek − ek,α‖H 1

ρ
≤ α. Let Gα be the vector space spanned

by the ek,α,0 ≤ k ≤ σN+1. For α small enough, one has dim(Gα) = 1+σN+1.
From Lemma 3.1, one has

〈h−2Qh,ρek,α, ek′,α〉L2(ρ) = 〈Lρek,α, ek′,α〉L2(ρ) + Oα(h1/2). (3.20)
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Since ek,α ∈ D0, one has 〈Lρek,α, ek′,α〉L2(ρ) = αd

2 〈∇ek,α,∇ek′,α〉L2
ρ

and
〈∇ek,α,∇ek′,α〉L2

ρ
= 〈∇ek, ∇ek′ 〉L2

ρ
+ O(α). Therefore, for ψ ∈ Gα ,

‖ψ‖ = 1, we get

〈h−2Qh,ρψ,ψ〉L2(ρ) ≤ νN+1 + Cα + Oα(h1/2). (3.21)

Taking α > 0 small enough and h < hα � 1, we obtain from (3.19) and
(3.21), μσN+1(h) ≤ νN+1 + ε. Combining this with (3.18) and (3.17), we get
mN+1 = �Spec(h−2Qh,ρ)∩[νN+1 − ε, νN+1 + ε]. The proof of Theorem 1.2
is complete.

4 Application to random placement of non-overlapping balls

In this section, we suppose that � is a bounded, Lipschitz, quasi-regular, con-
nected, open subset of R

d with d ≥ 2. Let N ∈ N,N ≥ 2 and ε > 0 be given.
Let ON,ε be the open bounded subset of R

Nd ,

ON,ε = {
x = (x1, . . . , xN) ∈ �N,∀1 ≤ i < j ≤ N, |xi − xj | > ε

}

and recall that B1 denotes the unit ball in R
d and ϕ(z) = 1

vol(B1)
1B1(z). We

introduce the kernel

Kh(x, dy) = 1

N

N∑

j=1

δx1 ⊗ · · · ⊗ δxj−1 ⊗ h−dϕ

(
xj − yj

h

)

dyj

⊗ δxj+1 ⊗ · · · ⊗ δxN
, (4.1)

and the associated Metropolis operator on L2(ON,ε)

Th(u)(x) = mh(x)u(x) +
∫

ON,ε

u(y)Kh(x, dy), (4.2)

with

mh(x) = 1 −
∫

ON,ε

Kh(x, dy). (4.3)

The operator Th is Markov and self-adjoint on L2(ON,ε). The configuration
space ON,ε is the set of N disjoint closed balls of radius ε/2 in R

d , with cen-
ters at the xj ∈ �. The topology of this set, and the geometry of its boundary
is generally hard to understand, but since d ≥ 2, ON,ε is clearly non-void and
connected for a given N if ε is small enough. The Metropolis kernel Th is
associated to the following algorithm: at each step, we choose uniformly at
random a ball, and we move its center uniformly at random in R

d in a ball of
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radius h. If the new configuration is in ON,ε , the change is made. Otherwise,
the configuration is kept as it started.

In order to study the random walk associated to Th, we will assume that
N and ε are such that Nε is small enough. Under this condition, we prove
in Proposition 4.1 that the open set ON,ε is connected, Lipschitz and quasi-
regular, and in Proposition 4.4 we prove that the kernel of the iterated operator
T M

h (with M large, but independent of h) admits a suitable lower bound, so
that we will be able to use Remark 2 at the end of Sect. 2. The main results
are collected together in Theorem 4.6 below.

We define �reg and �sing the set of regular and singular points of ∂ON,ε as
follows. Denote NN = {1, . . . ,N}. For x ∈ ON,ε set

R(x) = {i ∈ NN, xi ∈ ∂�},
S(x) = {

τ = (τ1, τ2) ∈ NN, τ1 < τ2 and |xτ1 − xτ2 | = ε
}
,

r(x) = �R(x), s(x) = �S(x).

(4.4)

The functions r and s are lower semi-continuous and any x ∈ ON,ε belongs
to ∂ON,ε iff r(x) + s(x) ≥ 1. Define

�reg = {
x ∈ ON,ε, s(x) = 1 and r(x) = 0

}

∪ {
x ∈ ON,ε, s(x) = 0, R(x) = {j0} and xj0 ∈ ∂�reg

}
(4.5)

and �sing = ∂ON,ε \ �reg. Then �sing is clearly closed, and the �reg is the
union of smooth disjoint hypersurfaces in R

Nd .

Proposition 4.1 There exists α > 0 such that for Nε ≤ α, the set ON,ε is
arcwise connected, Lipschitz and quasi-regular.

Remark 3 Observe that in the above Proposition, the smallness condition on
ε is Nε ≤ α where α > 0 depends only on �. The condition Nεd ≤ c, which
says that the density of the balls is sufficiently small, does not imply that
the set ON,ε has Lipschitz regularity. As an example, if � =]0,1[2 is the unit
square in the plane, then x = (x1, . . . , xN), xj = ((j −1)ε,0), j = 1, . . . ,N ,
with ε = 1

N−1 is a configuration point in the boundary ∂ON,ε . However,
∂ON,ε is not Lipschitz at x: otherwise, there would exist νj = (aj , bj ) such
that (x1 + tν1, . . . , xN + tνN) ∈ ON,ε for t > 0 small enough, and this implies
a1 > 0, aj+1 > aj and aN < 0 which is impossible.

Proof For ν ∈ Sp−1, p ≥ 1 and δ ∈]0,1[, denote

�±(ν, δ) = {
ξ ∈ R

p, ±〈ξ, ν〉 > (1 − δ)|ξ |, |〈ξ, ν〉| < δ
}
. (4.6)
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We remark [1] that an open set O ⊂ R
p is Lipschitz if and only if it satisfies

the cone property: ∀a ∈ ∂O,∃δ > 0,∃νa ∈ Sp−1,∀b ∈ B(a, δ) ∩ ∂O we have

b + �+(νa, δ) ⊂ O and b + �−(νa, δ) ⊂ R
p \ O. (4.7)

Let us first show that ON,ε is connected for Nε small. For x ∈ ON,ε define

I (x) = inf
i �=j

|xi − xj |. (4.8)

Then I (x) > ε and we have the following lemma.

Lemma 4.2 There exists α0 > 0 such that for any N ∈ N, ε > 0 with Nε ≤
α0, there exists δN,ε > 0 such that for any x ∈ ON,ε with I (x) < α0/N , there
exists a continuous path γ : [0,1] → ON,ε such that γ (0) = x and I (γ (1)) ≥
I (x) + δN,ε .

Proof As � is bounded and Lipschitz, a compactness argument shows that
there exists δ0 > 0, r0 > 0 such that

∀x0 ∈ �,∃ν ∈ Sd−1,∀x ∈ B(x0, r0) ∩ �, x + �+(ν, δ0) ⊂ �,

∀x0 ∈ ∂�,∃ν ∈ Sd−1,∀x ∈ B(x0, r0) ∩ ∂�, x + �−(ν, δ0) ⊂ R
d \ �.

(4.9)
Let 0 < α0 < min(δ0, r0)/100. For K ∈ N

∗ denote δK = α0/K
3, ρK =

10α0/K
2. Observe that it suffices to show the following statement:

∀K ∈ N
∗,∀ε ∈]0, α0/K],∀N ∈ NK,∀x ∈ ON,ε s.t. I (x) < α0/K,

∃γ ∈ C([0,1], ON,ε), s.t.

γ (0) = x, I (γ (1)) ≥ I (x) + δK and ∀t ∈ [0,1],
|x − γ (t)|∞ ≤ NρK. (4.10)

Let K ≥ 1 and 0 < ε < α0/K . We proceed by induction on N ∈ NK . (Re-
call that NK = {0,1, . . . ,K}.) In the case N = 1, there is nothing to show.
Suppose that the above property holds true at rank N − 1 and let x ∈ ON,ε

be such that I (x) < α0/K (this is possible since ε < α0/K). Introduce the
equivalence relation on NN defined by i �x j iff xi and xj can be connected
by a path lying in

⋃
k∈NN

B(xk,40α0/K) and denote by c(x) the number of
equivalence class.

Suppose that c(x) ≥ 2. Then there exists a partition NN = I ∪ J , such that
NI = �I ≥ 1, NJ = �J ≥ 1 and for all i ∈ I , j ∈ J , |xi − xj | > 40α0/K .
By induction, there exists a path γI : [0,1] → �NI ∩ {(xi)i∈I , ∀i �= j, |xi −
xj | > ε} such that γI (0) = (xi)i∈I , I (γI (1)) ≥ I (γI (0)) + δK and |γI (0) −
γI (t)|∞ < NIρK . The same construction for the set J provides a path γJ
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with the same properties. Define the path γ̃ on [0,1] by (γ̃ (t))i = (γI (t))i
for i ∈ I and (γ̃ (t))j = (γJ (t))j for j ∈ J . Since 40α0/K − (NI + NJ )ρK >

α0/K + δK > ε, γ̃ has values in ON,ε and we have I (γ̃ (1)) ≥ I (x) + δK as
well as

|x − γ (t)|∞ < max(NI ,NJ )ρK ≤ (N − 1)ρK. (4.11)

Suppose now that there is only one equivalence class. Then for all k ∈ NN ,
|x1 − xk| ≤ 40α0N/K ≤ 40α0 < r0, where r0 is defined in (4.9). In par-
ticular, there exists ν ∈ Sd−1 such that for all y ∈ B(x1,40α0) ∩ �, y +
�+(ν, δ0) ⊂ �. On the other hand, we can suppose without loss of generality
that

〈x1, ν〉 ≤ · · · ≤ 〈xN, ν〉. (4.12)

For j ∈ {1, . . . ,N} set aj = jρK and

γ (t) = (x1 + ta1ν, . . . , xN + taNν), t ∈ [0,1]. (4.13)

Then, one has |x − γ (t)|∞ ≤ supaj = NρK , xj + taj ν ∈ � since NρK ≤ δ0,
and for i < j

|(xj + taj ν) − (xi + taiν)|2
= |xj − xi |2 + 2t (aj − ai)〈xj − xi, ν〉 + t2|aj − ai |2
≥ |xj − xi |2 + t2|aj − ai |2. (4.14)

Thus one has

I (γ (1))2 ≥ I (x)2 + ρ2
K ≥ (I (x) + δK)2. (4.15)

The proof of Lemma 4.2 is complete. �

Using this lemma, it is easy to show that ON,ε is arcwise connected for Nε

small. For x ∈ ON,ε , define

Ix = {
y ∈ ON,ε,∃γ ∈ C([0,1], ON,ε), γ (0) = x, γ (1) = y

}
. (4.16)

We first show easily that there exists y ∈ Ix such that I (y) ≥ α0/N if
Nε < α0. Let M = maxy∈Ix I (y). As I is a bounded function, M is finite
and given γ ∈]0, δN,ε/2[, there exists y1 ∈ Ix such that I (y1) ≥ M − γ .
If I (y1) < α0/N , Lemma 4.2 shows that there exists y2 ∈ Ix such that
I (y2) ≥ I (y1) + δN,ε > M which is impossible. This shows that there ex-
ists y ∈ Ix such that I (y) ≥ α0/N . Now by 4.9, for any x ∈ �, there exists
νx ∈ Sd−1 such that x+ tνx ∈ � for t ∈ [0, δ0] and dist(x+ tνx, ∂�) ≥ t sin θ0
with cos θ0 = 1 − δ0. Let α1 = α0 sin θ0/20. Then for Nε ≤ α1, and I (y) ≥
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α0/N , γ (t) = (y1 + t (α0/4N)νy1, . . . , yN + t (α0/4N)νyN
), t ∈ [0,1] is a

path in ON,ε and one has with γ (1) = y′ = (y′
1, . . . , y

′
N), I (y′) ≥ α0/2N ,

and dist(y′
j , ∂�) > 3ε for all j .

Let CN,ε be the set of x ∈ ON,ε such that I (x) ≥ α0/2N and dist(xj , ∂�) >

3ε for all j . It remains to show that for any x, y ∈ CN,ε there exists a continu-
ous path γ from x to y, with values in ON,ε for Nε ≤ α1. Decreasing α0 we
may assume 6cdαd

0 < vol(�) with cd = vol(B(0,1)). Decreasing α1, we get
that for any x, y ∈ CN,ε with Nε ≤ α1, there exists z ∈ CN,ε such that

|xp − zq | ≥ α0/2N and |yp − zq | ≥ α0/2N ∀p,q ∈ NN. (4.17)

One can easily choose the zj by induction, since for any x, y ∈ ON,ε and
any z1, . . . , zl ∈ � with 0 ≤ l ≤ N − 1 we have vol(

⋃N
j=1 B(xj ,α0/N)

⋃N
j=1 B(yj ,α0/N)

⋃l
j=1 B(zj ,α0/N)) ≤ 3Ncdαd

0 N−d < vol(�)/2 <

vol({x ∈ �,dist(x, ∂�)} > 3ε).
Thus we are reduce to show that if y, z ∈ CN,ε satisfy (4.17), there exists a

continuous path γ from y to z, with values in ON,ε if Nε ≤ α1. We look for
a path γ of the form γ = γN ◦ · · · ◦ γ1, where the path γj moves only the j th
ball from yj to zj . Let us explain how to choose γj . As � is connected, there
exists an analytic path γ̃1 which connect y1 to z1 in �. We have to modify the
path γ̃1 into a new path γ1 in order that

|γ1(t) − yj | > ε ∀j ∈ {2, . . . ,N}. (4.18)

Let K = {t ∈ [0,1],∃j0 ∈ {2, . . . ,N}, |γ̃1(t) − yj0 | ≤ 2ε}. If K is empty,
we set γ1 = γ̃1. If K is non empty, since the path γ̃1 is analytic and I (y) ≥
α0/2N > 4ε, K is a disjoint union of intervals, K = [a1, b1] ∪ · · · ∪ [aL, bL]
and for any l ∈ {1, . . . ,L} there exists a unique jl such that |γ̃1(t) − yjl

| ≤ 2ε

for t ∈ [al, bl]. For t /∈ K we set γ1(t) = γ̃1(t) and for t ∈ [al, bl] we re-
place γ̃1 by a continuous path γ1 connecting γ̃1(al) to γ̃1(bl) on the sphere
|x − yjl

| = 2ε which is contained in �. Then γ1(t) is continuous. Moreover,
as I (y) > 4ε, for any j ∈ {2, . . . ,N} and t ∈ [0,1] we have |γ1(t)−yj | ≥ 2ε.
In particular, the path t ∈ [0,1] �→ (γ1(t), y2, . . . , yN) has values in ON,ε

and connects y and ỹ := (z1, y
′). From (4.17) it is clear that ỹ ∈ CN,ε and

that (4.17) holds true with y replace by ỹ. This permits iterating the con-
struction to build a continuous path from y to z. Thus ON,ε is connected for
Nε < α1.

Let us now prove that ∂ON,ε has Lipschitz regularity for Nε ≤ r0/2, where
r0 is such that (4.9) holds. For a given ε, we will prove this fact by induction
on N ∈ [1, r0/2ε]. The case N = 1 is obvious since ∂� is Lipschitz. Let
x ∈ ∂ON,ε . The equivalence relation i � j iff xi and xj can be connected by
a path lying in the union of closed balls of radius ε/2, gives us a partition
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{1, . . . ,N} = ⋃r
k=1 Fk such that

|xi − xj | > ε ∀k �= l,∀i ∈ Fk,∀j ∈ Fl;
|xnl

− xnl+1 | = ε

∀k,∀i �= j ∈ Fk,∃(nl) ∈ Fk,1 ≤ l ≤ m,n1 = i, nm = j.

(4.19)

The Cartesian product O1 × O2 of two bounded Lipschitz open subsets
Oi ⊂ R

di has Lipschitz regularity. Thus, if r ≥ 2, the induction hypothesis
on N shows that ∂ON,ε has Lipschitz regularity near x. Thus we may assume
r = 1, and therefore, for all i, j one has |xi − xj | ≤ ε(N − 1) ≤ r0/2.

Thus there exists x0 ∈ � such that xi ∈ B(x0, r0/2), and (4.9) gives us a
unit vector ν and δ0 > 0. We set

ξ i = αxi + ν (4.20)

with α > 0 small such that tξ i ∈ �+(ν, δ0/2) for t > 0 small. We choose
β > 0, ρ > 0, t0 > 0 such that β � αε2, β � δ0, ρ � αε2, ρ � r0,
t0|ξ i |2 � αε2, t0 � δ0.

Let x ∈ ∂ON,ε such that |xj − xj | ≤ ρ and θi ∈ R
d such that |θi | ≤ β . Let

ξi = ξ i + θi , and ξ = (ξ1, . . . , ξN). One has tξi ∈ �+(ν, δ0) for t ∈]0, t0] and
tξi ∈ �−(ν, δ0) for t ∈ [−t0,0[. From

〈xi − xj , ξi − ξj 〉 = 〈xi − xj , ξ i − ξj 〉 + O(β)

= α|xi − xj |2 + O(β + ρ) (4.21)

and

|(xi + tξi) − (xj + tξj )|2
= |xi − xj |2 + 2t〈xi − xj , ξi − ξj 〉 + t2|ξi − ξj |2 (4.22)

we get that the function t ∈ [−t0, t0] �→ gi,j (t) = |(xi + tξi) − (xj + tξj )|2
is strictly increasing. Since by (4.9) we have xi + tξi ∈ � for t ∈]0, t0], we
get x + tξ ∈ ON,ε for t ∈]0, t0]. It remains to show x + tξ /∈ ON,ε for t ∈
[−t0,0[. If there exists two indices i, j such that |xi − xj | = ε, this follows
from gi,j (t) < ε2 for t < 0. If there exists one indice i such that xi ∈ ∂�,
this follows from tξi ∈ �−(ν, δ0) and the second line of (4.9) which implies
xi + tξi /∈ � for t ∈ [−t0,0[. Thus ∂ON,ε is Lipschitz.

Let us finally prove that ON,ε is quasi-regular. Let u ∈ H−1/2(∂ON,ε)

be supported in �sing. We have to show that u is identically zero. This is
a local problem near any point x ∈ �sing. Let x be such that s(x) = 0,
R(x) = {j0} (say j0 = 1) and xj0 ∈ ∂�sing. Denote DN,ε = {x ∈ (Rd)N ,
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|xi − xj | > ε, ∀1 ≤ i < j ≤ N}. Let χ be a cut-off function supported near
x such that supp(χ) ⊂ (Rd × �N−1) ∩ DN,ε . Then, for any ψ ∈ C∞

0 (�N−1)

the linear form uψ defined on H 1/2(∂�) by

〈uψ,f 〉 = 〈χu,f (x1)ψ(x2, . . . , xN)〉 (4.23)

is continuous and supported in ∂�sing. As ∂� is quasi-regular, it follows that
uψ is equal to zero for all ψ and hence, χu = 0. Therefore, we can suppose
that u is supported in the set {r(x) + s(x) ≥ 2}. Let v be the distribution on
R

Nd

〈v,ϕ〉 = 〈u,ϕ|∂ON,ε
〉. (4.24)

Then v ∈ H−1(RNd) and its support is equal to supp(u). The Sobolev space
H−1 is preserved by bi-Lipschitz maps. Therefore, if there exists a bi-
Lipschitz map � defined near x such that locally one has �(supp(u)) ⊂
{y1 = y2 = 0}, then u is identically 0 near x. For n ∈ N, n ≥ 2, introduce
the following property:

(Pn) : for any x ∈ �sing with r(x) + s(x) = n,

we have u = 0 near x. (4.25)

This property is proved by induction on n. By lower semicontinuity of the
functions r and s, we may assume in the proof that for x ∈ supp(u) closed
to x, one has r(x) = r(x) and s(x) = s(x) and hence R(x) = R(x) and
S(x) = S(x). Therefore, we are reduced to prove that for x ∈ �sing with
r(x) + s(x) ≥ 2 and u ∈ H−1/2(∂ON,ε) supported in R(x) = R(x) and
S(x) = S(x), we have u = 0 near x .

First assume r(x) = s(x) = 1. Then, we can suppose without losing gen-
erality, that u is supported near x in G = (∂� × �N−1) ∩ {|xi − x2| = ε} for
some i ∈ {1,3, . . . ,N}. Denoting xi = (xi,1, . . . , xi,d), we may assume that
near x, G is given by two equations,

x1,1 = α(x′
1), x′

1 = (x1,2, . . . , x1,d),

x2,k = β(x′
2, xi), x′

2 = (x2,1, . . . , x2,k−1, x2,k+1, . . . , x2,d),
(4.26)

with α Lipschitz and β smooth. Then, ν(x) = (x1,1 −α(x′
1), x2,k −β(x′

2, xi),
x′

1, x′
2, x3, . . . , xN) defines a local bi-Lipschitz homeomorphism of R

Nd such
that ν ◦ G ⊂ {0}2 × R

Nd−2. Therefore, ν∗(v) vanishes identically near ν(x)

and hence u is null near x.
We may thus assume that s(x) ≥ 2 or r(x) ≥ 2. In the case s(x) ≥ 2, the

support of u near x is contained in a set A of the form |x1 −x2| = |x2 −x3| = ε

or |x1 −x2| = |x3 −x4| = ε. Since A is a subvariety of R
Nd of codimension 2,
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we get as above that u is null near x. In the case r(x) ≥ 2, the support of u

near x is contained in a set B of the form ∂� × ∂� × R
(N−2)d which is near

x bi-Lipschitz homeomorphic to (y1 = y2 = 0) × R
Nd−2, and thus u is null

near x. The proof of Proposition 4.1 is complete. �

Define for j ∈ NN the two functions πj from R
Nd to R

Nd and σj from R
d

to R
Nd by

πj (x1, . . . , xj , . . . , xN) = (x1, . . . ,0, . . . , xN),

σj (y) = (0, . . . , y, . . . ,0),
(4.27)

so that x = πj (x)+σj (xj ). The following geometric lemma will be the main
ingredient of the proof of Proposition 4.4.

Lemma 4.3 Let α0 = r0/10 with r0 given by (4.9). For all N ∈ N and ε ∈
]0, α0/N], there exists δN,ε > 0 and a finite covering (Ul)l of ON,ε such that
for all l, there exists j and ν ∈ Sd−1 such that

x + σj (�+(ν, δN,ε)) ⊂ ON,ε ∀x ∈ Ul ∩ ON,ε, (4.28)

where �+ is defined in (4.6)

Proof Since ON,ε is compact, we have to prove that for any given x0 ∈ ON,ε ,
there exist r > 0, δ = δN,ε > 0, j and ν ∈ Sd−1 such that (4.28) holds true
for x ∈ ON,ε ∩ B(x0, r). This means that we can select one ball, and that
moving only this ball by a vector in �+(ν, δ) while keeping the other balls
fixed, results in an admissible configuration. We shall proceed by induction
on N ≥ 1. For N = 1, this is true since � is Lipschitz. Let N ≥ 2. If one can
write {1, . . . ,N} as the disjoint union I ∪ J with �I ≥ 1, �J ≥ 1, and

|x0
i − x0

j | ≥ 5ε ∀i ∈ I,∀j ∈ J, (4.29)

then, by the induction hypothesis, the result is true for some δN,ε ∈]0,4ε[.
Thus, using the definition of α0, we may assume that all the x0

i are in a small
neighborhood of a given point y0 ∈ � and supk |x0

k − y0| ≤ r0/2. By (4.9)
there exist ν, δ0 > 0, r0 > 0 such that

y ∈ � and |y − y0| ≤ r0 =⇒ y + �+(ν, δ0) ∈ �. (4.30)

It remains to show that there exist j, r ′
0 ∈]0, r0[, and ν′, δ′

0 > 0, with
�+(ν′, δ′

0) ⊂ �+(ν, δ0), such that for all x = (x1, . . . , xN) ∈ ON,ε with
dist(x, x0) ≤ r ′

0, and all z ∈ xj + �+(ν′, δ′
0), one has |z − xk| > ε for all
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k �= j . This will be a consequence of the following property:

∀β > 0, ∃j, ∃ν′ ∈ Sd−1 s.t. |ν′ − ν| ≤ β

and ν′.(x0
j − x0

k ) > 0 ∀k �= j. (4.31)

In fact, if (4.31) holds true, first take β small enough, such that for all
ν′ ∈ Sd−1 with |ν′ − ν| ≤ β there exists δ′

0 > 0 with �+(ν′, δ′
0) ⊂ �+(ν, δ0);

then (4.31) gives us a pair ν′, j such that ν′.(x0
j − x0

k ) > 0 ∀k �= j . For
r ′

0 > 0, δ′
0 > 0 small enough, we get for all ξ ∈ �+(ν′, δ′

0) and all x ∈
ON,ε,dist(x, x0) ≤ r ′

0, that infk �=j ξ.(xj − xk) ≥ δ′
0|ξ |, and thus there exists

t0 such that for t ∈ [0, t0] and k �= j , the function t �→ |xk − (xj + tξ )|2 is
strictly increasing for all x ∈ ON,ε,dist(x, x0) ≤ r ′

0 and all ξ ∈ �+(ν′, δ′
0).

Let us show that (4.31) holds true. If j �→ ν.x0
j achieves its maximum at

a single j , then (4.31) is obvious with ν = ν′. Otherwise, the set A = {ν′ ∈
Sd−1,∃j �= k, ν′.(x0

j − x0
k ) = 0} is contained in a finite union of equators

in the sphere Sd−1, with ν ∈ A, and thus (4.31) is still obvious by taking
ν′ ∈ Sd−1 \ A close to ν. The proof of Lemma 4.3 is complete. �

Proposition 4.4 Let N,ε be such that Lemma 4.3 holds true. There exists
h0 > 0, c0, c1 > 0 and M ∈ N

∗ such that for all h ∈]0, h0], one has

T M
h (x, dy) = μh(x, dy) + c0h

−Ndϕ

(
x − y

c1h

)

dy, (4.32)

where for all x ∈ ON,ε , μh(x, dy) is a positive Borel measure.

Proof For k ∈ N
∗ denote Bk = BRk (0,1) the unit Euclidean ball and ϕk(z) =

1
vol(Bk)

1Bk (z). For x, y ∈ ON,ε , we set dist(x, y) = sup1≤i≤N |xi − yi |. For
N ≥ 1, denote by Kh,N the kernel given in (4.1). It is sufficient to prove the
following: there exists h0 > 0, c0, c1 > 0 and M(N) ∈ N

∗ such that for all
h ∈]0, h0], one has for all nonnegative function f ,

K
M(N)
h,N (f )(x) ≥ c0h

−Nd

∫

y∈ON,ε,dist(y,x)≤c1h

f (y) dy. (4.33)

First note that it is sufficient to prove the weaker version: for all x0 ∈ ON,ε ,
there exist M(N,x0), r = r(x0) > 0, c0 = c0(x0) > 0, c1 = c1(x0) > 0, h0 =
h0(x0) > 0 such that for all h ∈]0, h0], all x ∈ ON,ε and all nonnegative func-
tion f

dist(x, x0) ≤ 2r =⇒ K
M(N,x0)
h,N (f )(x)

≥ c0h
−Nd

∫

y∈ON,ε,dist(y,x)≤c1h

f (y) dy. (4.34)
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Let us verify that (4.34) implies (4.33). Decreasing r(x0) if necessary,
we may assume that any set {dist(x, x0) ≤ 2r(x0)} is contained in one
of the open set Ul of Lemma 4.3. There exists a finite set F such that
ON,ε ⊂ ⋃

x0∈F {dist(x, x0) ≤ r(x0)}. Let M(N) = supx0∈F M(N,x0), c′
i =

minx0∈F ci(x0) and h′
0 = minx0∈F h0(x0). One has to check that for any

x0 ∈ F and any x with dist(x, x0) ≤ r(x0), the right inequality in (4.34) holds
true with M(N) = M(N,x0) + n in place of M(N,x0) for some constants
c0, c1, h0. Let l be such that dist(x, x0) ≤ r(x0) implies x ∈ Ul . Let j and
�+(ν, δ) be given by Lemma 4.3. Clearly, if f is nonnegative, one has

K
M(N,x0)+1
h,N (f )(x)

≥ 1

N
h−d

∫

x+σj (z)∈ON,ε

ϕ(z/h)K
M(N,x0)
h,N (f )(x + σj (z)) dz. (4.35)

For dist(x, x0) ≤ 2r(x0) − c′
1h/2, and |z| ≤ c′

1h/2, z ∈ �+(ν, δ), one has
dist(x + σj (z), x

0) ≤ 2r(x0) and by (4.28), x + σj (z) ∈ ON,ε . Moreover,
dist(y, x) ≤ c′

1h/2 =⇒ dist(y, x + σj (z)) ≤ c′
1h. From (4.35) and (4.34) we

thus get, with a constant Cδ depending only on the δ given by Lemma 4.3,
and for h ≤ h′

0,

dist(x, x0) ≤ 2r(x0) − c′
1h/2 =⇒ K

M(N,x0)+1
h,N (f )(x)

≥ Cδ

N
c′

0h
−Nd

∫

y∈ON,ε,dist(y,x)≤c′
1h/2

f (y) dy. (4.36)

By induction on n, we thus get

dist(x, x0) ≤ 2r(x0) − c′
1h =⇒ K

M(N,x0)+n
h,N (f )(x)

≥
(

Cδ

N

)n

c′
0h

−Nd

∫

y∈ON,ε,dist(y,x)≤c′
1

h
2n

f (y) dy.
(4.37)

Since n is bounded, we get the desired result with h0 = min(minx0∈F r(x0)/

c′
1, h

′
0).

To complete the proof, let us show (4.34) by induction on N . The case
N = 1 is obvious. Suppose that (4.34) holds for N − 1 discs. Let x0 ∈ ON,ε

be fixed. Thanks to Lemma 4.3, we can suppose that there exists an open
neighborhood U of x0 a direction ν ∈ Sd−1 and δ > 0 such that (4.28) holds
with j = 1. Let us denote x = (x1, x

′) and

Kh,N = Kh,N,1 + Kh,N,> (4.38)
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with

Kh,N,1f (x) = h−d

N

∫

(y1,x
′)∈ON,ε

ϕ

(
x1 − y1

h

)

f (y1, x
′) dy1. (4.39)

We also denote G(ν, δ) = {x1 ∈ �+(ν, δ), |x1| > δ
2}. Then, we have the fol-

lowing:

Lemma 4.5 For any δ′ ∈ ]0, δ/2], there exists C > 0, α > 0, h0 > 0 and
r0 > 0 such that ∀r ∈]0, r0], ∀h ∈]0, h0], ∀x ∈ U ∩ ON,ε , ∀x̃ ∈ x +
h(G(ν, δ′) × B(0, r)N−1) with x̃′ ∈ ON−1,ε , we have x̃ ∈ ON,ε and

Kh,N,>f (x̃) ≥ CKαh,N−1(f (x̃1, .))(x̃
′), (4.40)

for any nonnegative function f . In particular, for all M ∈ N
∗, there exists

C, r0, h0, α as above such that ∀x ∈ U ∩ ON,ε and ∀x̃ ∈ x + h(G(ν, δ′) ×
B(0, r)N−1), we have

KM
h,N,>f (x̃) ≥ CKM

αh,N−1(f (x̃1, .))(x̃
′). (4.41)

Proof Inequality (4.41) is obtained easily from (4.40) by induction on M . To
prove (4.40), observe that for nonnegative f and α ∈]0,1[ we have

Kh,N,>f (x̃) ≥ h−d

N

N∑

j=2

∫

Aj,α,h(x̃)

f (x̃1, . . . , yj , . . . , x̃N ) dyj , (4.42)

with Aj,α,h(x̃) = {z ∈ �, |x̃j − z| < αh and ∀k �= j, |x̃k − z| > ε}. Let
Bj,α,h(x̃) = {z ∈ �, |x̃j − z| < αh and ∀k �= 1, j, |x̃k − z| > ε}. Then
Aj,α,h ⊂ Bj,α,h and we claim that for α, r > 0 small enough and x̃ ∈ x +
h(G(ν, δ′) × B(0, r)N−1) with x̃′ ∈ ON−1,ε , we have Bj,α,h(x̃) = Aj,α,h(x̃).
Indeed, let x̃1 = x1 + hu1 with u1 ∈ G(ν, δ′) and x̃′ ∈ ON−1,ε be such that
|x̃j − xj | < hr . Then for z ∈ Bj,α,h(x̃),

|x̃1 − z| = |x1 − xj + hv1|, (4.43)

with v1 = u1 + xj−x̃j

h
+ x̃j−z

h
. Taking α, r small enough (w.r.t. δ) it follows

that v1 ∈ �+(ν, δ). Consequently, Lemma 4.3 shows that |x̃1 − z| > ε and
hence z ∈ Aj,α,h(x̃) (the same argument shows that x̃ ∈ ON,ε). Therefore,

Kh,N,>f (x̃) ≥ h−d

N

N∑

j=2

∫

Bj,α,h(x̃)

f (x̃1, . . . , yj , . . . , x̃N ) dyj

= (N − 1)vol(Bd)

N
Kαh,N−1(f (x̃1, .))(x̃

′), (4.44)

and the proof of Lemma 4.5 is complete. �
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Using this lemma we can complete the proof of (4.34). In the following
computations, C denotes a strictly positive constant independent of h, whose
value may change from line to line. Let p ∈ N, α ∈]0, α0] and x ∈ ON,ε ,
then

K
p+1
h,N f (x) ≥ Kh,N,1K

p
h,N,>f (x)

≥ h−d

N

∫

(z1,x
′)∈ON,ε,z1∈x1+hG(ν,δ′)

K
p
h,N,>f (z1, x

′) dz1

≥ C
h−d

N

∫

(z1,x
′)∈ON,ε,z1∈x1+hG(ν,δ′)

K
p

αh,N−1(f (z1, .))(x
′) dz1,

(4.45)

thanks to Lemma 4.5. From the induction hypothesis we can choose p ∈ N so
that

K
p+1
h,N f (x)

≥ Ch−Nd

∫

(z1,x
′)∈ON,ε,z1∈x1+hG(ν,δ′)

∫

|x′−y′|<αh,y′∈ON−1,ε

f (z1, y
′) dy′ dz1.

(4.46)

Hence, for any β ∈]0,1] we get

K
p+2
h,N f (x) ≥ K

p+1
h,N Kh,N,1f (x)

≥ Ch−Nd

∫

Dα,β,h(x)

f (y1, y
′)γh(x, y1) dy1 dy′, (4.47)

with

Dα,β,h(x) = {
y ∈ ON,ε, |x′ − y′| < αh, |x1 − y1| < βh

}
(4.48)

and

γh(x, y1) = h−d

∫

(z1,x
′)∈ON,ε,z1∈x1+hG(ν,δ′)

1|z1−y1|<h dz1. (4.49)

We have to show that γh is bounded from below by a positive constant, uni-
formly with respect to (x, y1) when |x1 − y1| < βh. For z1 ∈ x1 + hG(ν, δ′),
one has |z1 − y1| ≤ |z1 − x1| + |x1 − y1| ≤ hδ′ + hβ < h for β and δ′ small.
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Thus for |x1 − y1| < βh one has

γh(x, y1) = h−d

∫

(z1,x
′)∈ON,ε,z1∈x1+hG(ν,δ′)

dz1

=
∫

u∈G(ν,δ′)
1(x1+hu,x′)∈ON,ε

du. (4.50)

Using Lemma 4.3 again, we get for |x1 − y1| < βh

γh(x, y1) =
∫

u∈G(ν,δ′)
du = C0 > 0. (4.51)

Plugging this lower bound into (4.47), gives

K
p+2
h,N ≥ Ch−Nd

∫

Dα,β,h(x)

f (y) dy, (4.52)

and the proof of (4.34) is complete. This completes the proof of Proposi-
tion 4.4. �

By Proposition 4.1, we can consider the Neumann Laplacian ||N on ON,ε

defined by

||N = − αd

2N
,

D(||N) = {
u ∈ H 1(ON,ε), −u ∈ L2(ON,ε), ∂nu|∂ON,ε

= 0
}
.

(4.53)

We still denote 0 = ν0 < ν1 < ν2 < · · · the spectrum of ||N and mj the
multiplicity of νj . Our main result is the following.

Theorem 4.6 Let N ≥ 2 be fixed. Let ε > 0 be small enough such that
Proposition 4.1 and Proposition 4.4 hold true. Let R > 0 be given and
β > 0 such that the spectrum νj of the Neumann Laplacian (4.53) satisfies
νj+1 − νj > 2β for all j such that νj+2 ≤ R.

There exists h0 > 0, δ0 ∈]0,1/2[ and constants Ci > 0 such that for any
h ∈]0, h0], the following hold true:

(i) The spectrum of Th is a subset of [−1 + δ0,1], 1 is a simple eigenvalue
of Th, and Spec(Th) ∩ [1 − δ0,1] is discrete. Moreover,

Spec

(
1 − Th

h2

)

∩]0,R] ⊂
⋃

j≥1

[νj − β, νj + β];

�Spec

(
1 − Th

h2

)

∩ [νj − β, νj + β] = mj ∀νj ≤ R; (4.54)
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and for any 0 ≤ λ ≤ δ0h
−2, the number of eigenvalues of Th in

[1 − h2λ,1] (with multiplicity) is bounded by C1(1 + λ)dN/2.
(ii) The spectral gap g(h) satisfies

lim
h→0+ h−2g(h) = ν1 (4.55)

and the following estimate holds true for all integer n:

sup
x∈ON,ε

∥
∥
∥
∥T n

h (x, dy) − dy

vol(ON,ε)

∥
∥
∥
∥

T V

≤ C4e
−ng(h). (4.56)

The rest of this section is devoted to the proof of Theorem 4.6.
Let μh(x, dy) be given by (4.32) and μh(f )(x) = ∫

ON,ε
f (y)μh(x, dy).

Thanks to the positivity of μh(x, dy), using the Markov property of T M
h and

Lipschitz-continuity of the boundary, we get for some δ′
0 > 0, independant of

h > 0, small enough

‖μh‖L∞,L∞ ≤ 1 − inf
x∈ON,ε

∫

ON,ε

c0h
−NdϕNd

(
x − y

c1h

)

dy < 1 − δ′
0. (4.57)

Since by (4.32) μh is self-adjoint on L2(ON,ε), we also get

‖μh‖L1,L1 ≤ 1 − δ′
0, (4.58)

and by interpolation it follows that ‖μh‖L2,L2 ≤ 1 − δ′
0. In particular the

essential spectrum of T M
h is contained in [0,1 − δ′

0] so that σess(Th) ⊂
[0,1 − 2δ0] with 2δ0 = 1 − (1 − δ′

0)
1/M . Thus Spec(Th) ∩ [1 − δ0,1] is dis-

crete. Let us verify that, decreasing δ0 > 0, we may also assume

Spec(Th) ⊂ [−1 + δ0,1]. (4.59)

Thanks to the Markov property of T M
h , to prove this, it suffices to find M ∈

2N + 1 such that
∫

ON,ε

∫

ON,ε

(u(x) + u(y))2T M
h (x, dy) dx ≥ δ0‖u‖2

L2, (4.60)

for any u ∈ L2(�). Thanks to the proof of Proposition 4.4, there exists M ∈
2N + 1 such that

∫

ON,ε

∫

ON,ε

(u(x) + u(y))2T M
h (x, dy) dx

≥ c0h
−Nd

∫

ON,ε×ON,ε

(u(x) + u(y))2ϕNd

(
x − y

c1h

)

dx dy. (4.61)

Hence, (4.59) follows from (4.61) and (2.8).
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Following the strategy of Sect. 2 we put ON,ε in a large box B =
]−A/2,A/2[Nd and, thanks to Proposition 4.1, there is an extension map
E : L2(ON,ε) → L2(B) which is also bounded from H 1(ON,ε) into H 1(B).
Define

Eh,k(u) = 〈(1 − T k
h )u,u〉L2(ON,ε)

, (4.62)

and define Eh as in Sect. 2. Moreover, the identities (2.13) and (2.14) remain
true with obvious modifications.

Lemma 4.7 There exist C0, h0 > 0 such that the following holds true for any
h ∈]0, h0] and any u ∈ L2(ON,ε):

Eh(E(u)) ≤ C0
(

Eh,M(u) + h2‖u‖2
L2

)
. (4.63)

Proof Thanks to Lemma 2.2 we have

Eh(E(u)) ≤ C0

(∫

ON,ε×ON,ε

(u(x) − u(y))2c0h
−Nd

ϕNd

(
x − y

c1h

)

dy dx + h2‖u‖L2(ON,ε)

)

. (4.64)

Combined with (4.32), this shows that

Eh(E(u)) ≤ C0

(∫

ON,ε×ON,ε

(u(x) − u(y))2T M
h (x, dy) dx

+ h2‖u‖L2(ON,ε)

)

, (4.65)

and the proof is complete. �

Lemma 4.8 For any 0 ≤ λ ≤ δ0/h2, the number of eigenvalues of Th in
[1 − h2λ,1] (with multiplicity) is bounded by C1(1 + λ)Nd/2. Moreover, any
eigenfunction Th(u) = λu with λ ∈]1 − δ0,1] satisfies the bound

‖u‖L∞ ≤ C2h
−Nd/2‖u‖L2 . (4.66)

Proof Suppose that Th(u) = λu with λ ∈ [1 − δ0,1], then T M
h u = λMu and

thanks to (4.32), we get

‖(μh − λM)u‖L∞ = O(h−Nd/2). (4.67)

The estimate (4.66) follows from (4.57). Let ζk(λ,h) be the number of eigen-
values of T k

h in the interval [1 − h2λ,1] for h2λ < δ0. Thanks to Lemma 4.7,
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we can mimick the proof of Lemma 2.3 to get

ζM(λ,h) ≤ C(1 + λ)Nd/2. (4.68)

Then from (4.59), one has

ζ1(λ,h) = ζk

(
1 − (1 − h2λ)k

h2
, h

)

. (4.69)

Combining (4.68) and (4.69), we easily obtain the announced estimate. The
proof of Lemma 4.8 is complete. �

The rest of the proof of Theorem 4.6 follows the strategy of Sects. 2 and 3.
Using the spectral decomposition (2.45), (2.46) we get easily the estimates
(2.52) and (2.54), and it remains to estimate T n

1,h. Following the proof of
Lemma 2.4, we can find α > 0 small enough and C > 0 such that the follow-
ing Nash inequality holds with 1/D = 2 − 4/p > 0:

‖u‖2+1/D

L2 ≤ Ch−2(Eh,M(u) + h2‖u‖2
L2

)‖u‖1/D

L1 , ∀u ∈ Eα. (4.70)

From this inequality, we deduce that for k ≥ h−2,

‖T kM
1,h ‖L∞,L∞ ≤ Ce−kMg(h), (4.71)

and this implies for k ≥ h−2, since the contributions of T kM
2,h , T kM

3,h are negli-
gible,

‖T kM
h ‖L∞,L∞ ≤ C′e−kMg(h). (4.72)

As Th is bounded by 1 on L∞ we can replace kM by n ≥ h−2 in (4.72) and
(4.56) is proved. Assertion (4.55) is an obvious consequence of (4.54). The
proof of (4.54) is the same as the one of Theorem 1.2. Thus, the following
lemma will end the proof of Theorem 4.6.

Lemma 4.9 Let θ ∈ C∞(ON,ε) be such that supp(θ) ∩ �sing = ∅ and
∂nθ |�reg = 0. Then

(1 − Th)θ = h2||Nθ + r, ‖r‖L2 = O(h5/2). (4.73)

Proof Let θ ∈ C∞(ON,ε) be such that supp(θ) ∩ �sing = ∅ and ∂nθ |�reg = 0

and denote Qh = 1 − Th. Then Qh = 1
N

∑N
j=1 Qj,h with

Qj,hθ(x) = h−d

vol(B1)

∫

�

1|xj−y|<h

∏

k �=j

1|xk−y|>ε(θ(x)−θ(πj (x)+σj (y))) dy.

(4.74)
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Let χ0(x) = 1dist(x,∂ON,ε)<2h. The same proof as in Sect. 3 shows that

(1 − χ0)Qj,hθ(x) = −αd

2
h2∂2

j θ(x) + OL∞(h3), (4.75)

so that

(1 − χ0)Qhθ(x) = h2||Nθ(x) + OL2(h
3). (4.76)

We study χ0Qhθ . As ‖χ0‖L2 = O(h1/2) it suffices to show that
‖χ0Qhθ‖L∞ = O(h2). On the other hand, by Taylor expansion we have

χ0Qj,hθ(x) = − hχ0(x)

vol(B1)

∫

|z|<1

∏

k �=j

1|xj+hz−xk |>ε1xj+hz∈�z.∂j θ(x) dz

+ OL∞(h2). (4.77)

Hence, it suffices to show that

v(x) = χ0(x)

N∑

j=1

∫

|z|<1

∏

k �=j

1|xj+hz−xk |>ε1xj+hz∈�z.∂j θ(x) dz (4.78)

satisfies ‖v‖L∞ = O(h). Since dist(suppϕNd(θ),�sing) > 0, there exists dis-
joint compact sets Fl ⊂ {s(x) = 0,R(x) = l}, and Fi,j ⊂ {r(x) = 0, S(x) =
(i, j)} such that

supp(χ0θ) ⊂
⋃

l

{
x,dist(x,Fl) ≤ 4h

}⋃

i,j

{
x,dist(x,Fi,j ) ≤ 4h

}
.

If x ∈ supp(χ0θ) is in {x,dist(x,F1) ≤ 4h}, then the same parity arguments
as in Sect. 3 show that

v(x) = χ0(x)

∫

|z|<1,x1+hz∈�

z.∂1θ(x) dz = O(h). (4.79)

If x ∈ supp(χ0θ) is in {x,dist(x,F1,2) ≤ 4h}, then

v(x) = χ0(x)

∫

|z|<1
z.(∂1θ(x)1|x1+hz−x2|>ε + ∂2θ(x)1|x2+hz−x1|>ε) dz

(4.80)
and the result follows from (x1 − x2).(∂1θ − ∂2θ)(x) = 0(h) for
{x,dist(x,F1,2) ≤ 4h}, since ∂nθ vanishes on the boundary |x1 − x2| = ε.
The proof of Lemma 4.9 is complete. �
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