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ABSTRACT. In this work, we analyse the metastability of non-reversible diffusion processes
dX; = b(X,)dt + VhdB,

on a bounded domain © when b admits the decomposition b=-(Vf+£) and Vf-£=0. In this
setting, we first show that, when h — 0, the principal eigenvalue of the generator of (X;)>q with
Dirichlet boundary conditions on the boundary 92 of €2 is exponentially close to the inverse of
the mean exit time from €2, uniformly in the initial conditions X = x within the compacts of (2.
The asymptotic behavior of the law of the exit time in this limit is also obtained. The main
novelty of these first results follows from the consideration of non-reversible elliptic diffusions
whose associated dynamical systems X = b(X) admit equilibrium points on 9. In a second
time, when in addition div £ = 0, we derive a new sharp asymptotic equivalent in the limit A - 0
of the principal eigenvalue of the generator of the process and of its mean exit time from €.
Our proofs combine tools from large deviations theory and from semiclassical analysis, and
truly relies on the notion of quasi-stationary distribution.
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1. INTRODUCTION

1.1. Purpose of this work. Let L >0 and M = (LT)?, where T = R/Z is the one dimensional
torus. Let (X;)sso be the solution on M of the stochastic differential equation

(1.1) dX, = b(X,)dt +VhdB,,

where h > 0, (By)0 denotes the Brownian motion on M, and b: M — R? is a vector field. Such
an equation is one of the most important models in statistical physics. In all this work, 2 c M
is a C* domain and we denote by

TQc = lnf{t > O,Xt ¢ Q}
the first exit time from Q for the process (1.1).

When £ is small, due to the existence of stable equilibrium points of the system X = b(X),
the process (1.1) remains trapped during a very long time in a neighborhood of such a point
in M, called a metastable region, before going to another metastable region. For this reason,
the process (1.1) is said to be metastable. This phenomenon of metastability has been widely
studied through the asymptotic behavior in the zero white noise limit A — 0 of the law of 7.
and of the principal eigenvalue —/\f , of the infinitesimal generator of the diffusion (1.1) with
Dirichlet boundary conditions on 9€2. When the w-limit set of each trajectory of the dynamical
system X = b(X) lying entirely in € is contained in Q, the limit of AInE[rqc] when h — 0
has been studied in [20] (see also [21, 11]). When in addition b-ng < 0 on 02 (where ng is
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the unit outward normal vector to 9), it is proved in [10] that A\F, E[7g:] - 1 when h — 0
(see also [28, 29]). We also mention [13, 11] where formulas were obtained through formal
computations.

When the process (1.1) is reversible, i.e. when there exists a function f such that b=-Vf,
we refer to [52, 26, 15, 17] for sharp asymptotics formulas on )\f , or on E[7qc| when the system
does not have equilibrium points on 0€2, and to [12, 35, 18] when it does (see also [38]). When
b-ng =0, the cycling effect of a two-dimensional randomly perturbed system has been studied
in [12]. We refer to [1, 14, 13] for a comprehensive review of the literature on this topic.

Remark. For asymptotic estimates of eigenvalues and transition times in the boundaryless
case, we refer to [27, 16, 6, 18,5, 2,22, 25 45] when elliptic reversible processes are considered,
and to [1, 31, 34, 36] when the considered process is elliptic, non-reversible, and admits the
Gibbs measure (1.2) as invariant measure.

The purpose of this work is to investigate the asymptotic behaviors when h — 0 of )\f , and
of the law and the expected time of 7. for non-reversible processes of the form (1.1) when the
smooth vector field b : M — R¢ decomposes into the pointwise orthogonal sum of a smooth
gradient field with a vector field (see (Ortho)).

First, we prove in this case the following: when 2 is roughly a single well (see (One-Well))
of the potential energy function f (see Theorem 1, which is the first main result of this work):

R1. In the limit 2 - 0, A}, E[7q-] converges to 1 and the law of A{,Toc converges to an
exponential law of mean 1, both exponentially fast and uniformly w.r.t. the initial
conditions z living in the (relevant) compacts of 2. The asymptotic behavior of the
spectral gap is also investigated.

When in addition the Gibbs measure

Jue !
is invariant (see (Div-free)) and under an additional assumption on the shape of 02 near its
lowest energy points (see (Normal)), we prove that (see Theorem 2, which is the second main
result of this work):

R2. In the limit A — 0, )\fh, and thus E[7qc], satisfy an Eyring-Kramers type formula.

Concerning item R1 above, the main novelty compared to the existing literature arises from
the fact that these results are derived when, simultaneously, the process (1.1) is non-reversible
and the dynamical system X = b(X) is allowed to admit equilibrium points on dQ'. The
latter situation, which is known to introduce several technical difficulties [11], is natural for
applications [11]. For instance, this situation occurs when one is interested in the so-called
state-to-state dynamics associated with (1.1). In this case, the set €2, which is associated with a
macroscopic state, is indeed typically defined as the basin of attraction of some asymptotically
stable equilibrium point zo € M for the dynamical system X = b(X), so that 992 contains
equilibrium points of X = b(X). We refer for instance to [19, 33, 10, 13] for more material
and references on state-to-state dynamics. Let us also mention that the condition (Normal)

'We mention that in our setting (more precisely under (Ortho)), every w-limit set is composed of a single
equilibrium point, see Section 1.3.
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is automatically satisfied when (2 is a basin of attraction, see the discussion after (Normal) on
this subject.

Finally, concerning item R2 above, the Eyring-Kramers type formula we derive for )\f h
in Theorem 2, which leads to the inverse formula for E[7q:] according to item R1, is new
when considering such non-reversible processes, whether or not there are equilibrium points of
X = b(X) on 99Q. Tt exhibits the precise effect of the boundary 02 on the sharp equivalent as
h = 0 of both A{, and E[7q-].

1.2. Assumptions. For p € R, we use the notation

{f<pp=AazeM, f(x)<p}, {f<p}:={zeM, f(z)<p}, and {f=p}={xeM, f(z)=pn}.

Moreover, for r >0 and y € M, B(y,r) denotes the open ball of radius r centered at y in M:
B(y,r):={ze M, |y—z|<r}.

Throughout this work, we assume that there exist a smooth vector field £ : M — R¢ and a
smooth Morse function f : M — R such that the vector field b: M — R? satisfies the following
orthogonal decomposition:

(Ortho) b(z)=—(Vf(xz)+£(x)) and L(z)-Vf(z)=0  for every x e M.

We recall that a smooth function is a Morse function if all its critical points are non degenerate.

Let us now define
(1.3) Ciin ::Qr‘l{f<n81si)nf}.

Notice that Cp, = QN {f <mingq f} and that, when C,,;, is nonempty and connected, it is a
connected component of {f < mingg f}.

Our second main assumption roughly says that €2 looks like a single well of the potential f:

(One-Well) f: M — R admits precisely one critical point xg in 2 and 0C,;, N 0€) + @.

Note that when (One-Well) holds, C,,;, is nonempty and connected, xy belongs to C.y,, and
(1.4) f (o) = min ().

We refer to Figure 1.1 for a schematic representation of C,,;, when (One-Well) holds.

........ {f =mingg [}

FIGURE 1.1. Schematic representation of C,,;, when (One-Well) holds. On this
figure, OCin N O = {21, 22} and mq, my € I are the local maxima of f in M.



4 D. LE PEUTREC, L. MICHEL, AND B. NECTOUX

The first main result of this work, namely Theorem 1, only requires the assumptions (Ortho)
and (One-Well). Our second main result, namely Theorem 2, requires two additional assump-
tions which are the topic of the rest of this section. The first one implies the invariance of the

2
Gibbs measure pg(dr) = /e }ifgf dx defined in (1.2):
h

M€

(Div-free) For every z € M, div£(x) =0.

It is well-known that a process solution to an elliptic stochastic differential equation on M with
sufficiently smooth coefficients admits a unique invariant probability measure. Furthermore,
using the standard characterization? of an invariant probability measure with the adjoint of the
operator —2A+b-V, the conditions (Ortho) and (Div-free) are necessary and sufficient to en-
sure that the measure p is an (and thus the) invariant probability measure of the process (1.1)
for all h > 0.

Throughout this work, we say that z € M is a saddle point of f when z is a critical point
of f of index 1, i.e. when the matrix Hess f(z), which is invertible according to (Ortho),
admits precisely one negative eigenvalue. Our last assumption (Normal) below deals with the
points z € 9C;, N IS, These points, which are global minima of f|sq, play a crucial role in the
asymptotic equivalents of the mean exit time from € resulting from Theorems 1 and 2. Let us
mention that, according to [35, Item (b) in Proposition 12|, when such a z is a critical point
of f, it is a saddle point.

For x € M, we define the Jacobian matrix
L(z) = Jacl(x).

In order to state our last assumption, we need some elements of the following proposition
resulting from [31, Lemma 1.8] and [3, Lemma 1.4] (see also [32] for a similar result) on the
Jacobian matrix of the vector field b at a saddle point of f.

Lemma 1. Assume (Ortho) and let z € M be a critical point of f with index p € {0,...,d}.
Then, the matriz Hess f(2) +tL(z) admits precisely p eigenvalues in {z€ C, Rez< 0} and d-p
eigenvalues in {z € C, Rez > 0}.

When z is a saddle point, we denote by u(z) the eigenvalue of Hess f(z) + tL(z) in {z €
C, Rez< 0} and by A(z) the negative eigenvalue of Hess f(z). We have moreover in this case:

(1) The eigenvalue p(z) is real, and thus negative.

(2) Let £(z) be a real unit eigenvector of Hess f(z) +tL(z) associated with pu(z). Then, the
matriz Hess f(2)+2|pu(2)|£(2)E(2)t is positive definite and of determinant — det Hess f(z).

(3) It holds |u(2)| > |\(2)|, with equality if, and only if, 'L(2)£(z) = 0.
Let us now formulate our last assumption, on the local shape of f near the points of 0C,,;,,nOS2

when (Ortho) holds. In the following, for any z € 0%, nq(z) denotes the unit outward normal
vector to 0f) at z.

when Vf(z) =0, £(z) € Span (nq(z)),
when Vf(z) #0, det Hess(f|sa)(z) # 0 and £(z) =0,

where £(2) is an eigenvector of Hess f(z) +fL(z) associated with its unique negative eigenvalue,
see Lemma 1.

(Normal) Vz € 9C,,;, N 01, it holds: {

2See for instance [53, page 259].
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We end this section by discussing the geometric consequences of (Normal).

Let z € OCm N 0N be such that Vf(z) = 0. When (Normal) holds, the tangent space
T.09 to 0N at z satisfies 7,00 = z + {£(2)}*. Since £(z) is an eigenvector of Hess f(z) + L(2)
associated with its unique eigenvalue in {z € C, Rez < 0} and, according to Lemma 1, the
d — 1 remaining eigenvalues of Hess f(z) + 'L(z) belong to {z € C, Rez > 0}, it follows that
the (complexification of the) hyperplane {£(z)}* is the sum of the generalized eigenspaces of
—Jacbh(z) = Hess f(z) + L(z) corresponding to its eigenvalues in {z € C, Rez> 0}. Moreover, it
follows from [34, Lemma 4.1] that, in a neighborhood O, of z in M,

(1.5) (20O~ {2} c{f> f(2)}-
In particular, z is a strict global minimum of f|sg. We refer to Figure 1.2 for a schematic
representation of £(z) and C,;, near such a point z when (Normal) holds.

Let us also mention here that, as explained in Section 1.3 below, Vf(z) = 0 implies that z
is an equilibrium point for the dynamical system X = b(X), i.e. that b(z) = 0. Hence, from a
dynamical point of view, the above discussion simply says that, when (Normal) holds: at every
2 € OC i NI such that V f(z) = 0, the boundary 0f of €2 is tangent to the stable manifold of z
for the dynamical system X = b(X), which has dimension d—1. We recall that the stable (resp.
unstable) manifold of an equilibrium point z is defined as the set of the elements of M whose
trajectories (for the dynamics X = b(X)) converge to z in the future (resp. in the past), and
that (the complexification of) its tangent space at z is the sum of the generalized eigenspaces
of Jacb(z) corresponding to its eigenvalues in {z € C, Rez< 0} (resp. in {z€C, Rez> 0}).

Let us now consider z € 9C,;, nOS2 such that V f(z) # 0. Since z is a global minimum of f|sq,
the tangent space 1,09 satisfies T,0Q = z + {Vf(2)}", 0nf(2) >0, and b(z) = -V f(2) - £(2)
is inward-pointing. Thus, according to (Ortho), the condition £(z) = 0 in the second part of
(Normal) is equivalent to b(z) € Span (ng(z)). It is thus in a way the counterpart of the first
assumption of (Normal) when z is not an equilibrium point for the dynamics X = b(X), since
it gives the condition for b(z) to be orthogonal to T,052.

In particular, when (Normal) holds, any z € 9C,;, N 0f is a strict global minimum of flsq,
whether Vf(2) #0 or Vf(z) =0. Thus, since 2 is compact:

(1.6) (Normal) = Card (9Cyuin N0ON) < +00.

1.3. The deterministic dynamical system. We give here basic properties on the w-limit
sets of the deterministic dynamical system X = b(X) associated with the stochastic differential
equation (1.1) when (Ortho) holds.

For every x € M, we denote by ¢;(z) the solution on M to the ordinary differential equation
d
(1.7) Egpt(x) = b(p¢()) with initial condition py(z) = .

Notice that, since b is (globally) Lipschitz continuous over M, such curves are defined globally.

Let us now describe the w-limit set of some x € M for the dynamical system (1.7). This set,
denoted by w(x), is defined by (see e.g. [51, Definition 8.1.1})

w(z) ={y e M, 3(5,)nen € (RN, lim s, = +o0, lim ¢, (z) =y}.

Let us recall that, for all z € M, w(x) is nonempty, connected, closed, and invariant under the
flow of (1.7) (see e.g. [, Proposition 8.1.3]). Moreover, since £-V f = 0 according to (Ortho):
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{f>f(=)}
T,,0Q = {£(21) 1

....... {f = mingq f}

by G ) {F s
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. . -
. ‘e -
-

nQ’(zl) =&(=1)

of)
{f > f(Zl)}

FiGURE 1.2. Schematic representation of 02 near z; € 0C.;, N 02 when
(Normal) holds and Vf(z;) =0 (recall that z; is then a saddle point of f).

for every x € M and t € R,

(19 o)) = -V f ().

Hence, following the proof of [54, Theorem 15.0.3], we have, as for gradient vector fields: for all
xeM,w(x)c{yeM, Vf(y) =0} Since the Morse function f: M — R has a finite number of
critical points in M and w(z) is nonempty and connected: for all x € M, there exists a critical
point y € M of f such that w(x) = {y}, so in particular lim,_, ¢i(x) = y.

Now, recall that an equilibrium point for the dynamical system (1.7) is by definition a point
z € M such that b(z) =0, that is such that w(z) = {z}. It follows that

(e M,b(z) =0} c {ze M,V f(2) =0}.

Moreover, since Hess f is invertible at any critical point of f, a Taylor expansion of £-Vf =0
around such a point shows that £(z) = 0 whenever V f(z) = 0. Thus, when (Ortho) holds, we
have the equality {z € M,V f(z) =0} ={z € M,b(z) =0} and, for all x € M, there exists y € M
such that

(1.9) w(z)={y}c{ze M, Vf(2)=0}={z¢eM,b(z) =0}.

With the same reasoning when ¢t — —oco: for all x € M, there exist two critical points y, of f
such that

(1.10) 1;1_520 vi(x) =y, and 1;1_1{20 o) =y-.

Definition 2. For every x € ), we set t, == inf{t >0, ¢i(z) ¢ Q} >0. The domain of attraction
of F c () is defined by

(1.11) A(F) :={zeQ, t, = +00 and w(x) c F}.

Notice that when (Ortho) and (One-Well) hold, (1.8) and (1.9) imply that
(1.12) Chin € A({z0}).
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1.4. Main results. We denote by L?(2) the space of functions which are square integrable
on ) for the Lebesgue measure on 2. The associated Sobolev spaces of regularity k£ > 1 are
denoted by H*(Q). The space HJ(€2) denotes the spaces of functions w € H'(€2) such that
w =0 on 092. We also denote by L2 (2) the space of functions which are square integrable on

Q for the measure e #/dx on Q. The notation w indicates that the weight el dy appears in
the inner product. The associated weighted Sobolev spaces of regularity k > 1 are denoted by

According to (Ortho), it is natural to work in L2 () to study the spectral properties of
(minus) the infinitesimal generator Ly of the process (1.1) with Dirichlet conditions on 02

h
Ly = —§A +Vf-V+£-V with domain D(Ly) = H2(Q) n{we H.(Q),w =0 on 9Q}.
Its adjoint Lj on L2 (€2), whose domain is still D(Lj), has indeed the rather nice form

h
L;’L=—§A+va—£v—d1v£

In particular, when (Div-free) holds, L} is Lj, with £ replaced by —£, and the process (1.1) is
reversible when £ = 0.

To study the spectral properties of Lj,, we actually use a unitary transformation to work in
the flat space L?(£2), where computations such as integrations by parts are easier to perform.

We denote by V¢ = hehvek = hv + V f the distorted gradient a la Witten and
(1.13) Appi=VipVin=-h*A+|Vf[P-hAf

the Witten Laplacian associated with f, where adjoints are now taken on L?(€2). Let us then
define

(114) Ph = 2h6_£ Lh 6% = Af?h +2£ - vf,h = Af,h +2h€-V

with domain D(P,) = H2(Q) n H}(Q) on L2(2). According to (1.14), the operators 2h L,
and P, are unitarily equivalent, and thus have the same spectral properties. In particular, for
all h >0, Aeo(Ly) if and only if 2h A € 0(P,), and the algebraic and geometric multiplicities
of A are the same for both L, and (2h)~' P,.

The following result describes general spectral properties of (P, D(P,)), and thus of (L, D(Ly,)),
for every fixed h > 0.

Proposition 3. Assume that (Ortho) holds. Then, for every h > 0:

e The operator Py, : D(P,) — L?(Q2) is mazimal quasi-accretive. More precisely, the
operator P, + h| div€|. : D(P,) — L?(2) is mazximal accretive. Furthermore, P, has a

compact resolvent and 1s sectorial.
e The adjoint of P, : D(P,) — L?>(Q2) is the operator

Pr=App—20-Vyiy—2hdive with domain D(Py).

It is also maximal quasi-accretive, with a compact resolvent, and sectorial.
o There ewists X ¢ C such that the spectra of By, and of P} satisfy

a(Ph):{A{jh}uz and a(Pg)z{Afh}ui
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where )\fh € Ry is simple (i.e. has algebraic multiplicity 1) for both P, and P} and, for
every A€, Re A> AL,

Moreover, Py (resp. P}) admits an eigenfunction ufh (resp. ufh) associated with )\fh
which is positive within ).

The proof of Proposition 3 uses standard arguments on elliptic operators with Dirichlet
boundary conditions on a smooth bounded domain. It is proved in the appendix for the sake
of completeness.

The eigenvalue )\f , 1s the so-called principal eigenvalue of P,. According to (1.14), the
principal eigenvalue /\i , of Ly acting on LZ(2) thus satisfies 2h /\i - )\f - Moreover, by
compacity of the resolvent of L, its spectrum is discrete and can only accumulate at infinity.
Hence, the sectoriality of L; and the last item of Proposition 3 imply the existence of a spectral
gap for every h > 0, that is:

Vh>0, 3¢, >0, J(Lh)m{ze(c, Reze ()\fh,)\fh+ch)} =@.
Furthermore, the analysis led in Section 3 (see Theorem 4) permits to specify the behaviour
of )\f’h and of this spectral gap with respect to h: when f admits mg local minima in €2, there
exist ¢1,¢o > 0 and hg > 0 such that, for every h € (0,ho], Ly admits mg eigenvalues (counted
with multiplicity) in {z€ C, |z| < e 7} and its remaining eigenvalues live in {z€ C, Rez> ¢,}.
In particular, when (One-Well) is also satisfied:

de,ho >0, Yhe(0,ho], A, <en and o(Ly)n{zeC, Reze (A, A\, +¢)} = 2.
We can now state the two main results of this work.

Theorem 1. Assume (Ortho) and (One-Well). Let K be a compact subset of A({xzo}) (see
(1.11)). Then, there exist ¢ >0 and ho >0 such that for all h € (0, ho] and uniformly in x € K :

_(1+0(e7h))
Mo

In addition, there exist ¢ >0 and hg >0 such that, for all h e (0, ho]:

(1.15) E, 7]

>l

(1.16) tZg}lﬂ}zK |IP$|:TQC > é] —et | <en.

Furthermore, there exist ¢ >0 and hg > 0 such that, for all h e (0, hg],
(1.17) o(Lp)n{zeC,Rez<cf={Al,} and lim /2 In A = —2(115}211]” — f(x0)).

Let us make some comments with regard to Theorem 1:

e Equation (1.15) provides the following leveling result on the mean exit time from :
E.[7q:] = E,[7ac](1+O0(e#)), uniformly in x,y in the compacts of A(Cpin) (see (1.12)).
As long as (Ortho) is satisfied, this leveling result extends the one obtained in [10,
Corollary 1] when (1.7) admits equilibrium points on 0f2. It also extends [18, Theorem
2] when the underlying process is non-reversible.

e Equation (1.16) implies that when h — 0, the law of A, 7. converges exponentially
fast to the exponential law of mean 1, uniformly in the compacts of A({x¢}). Notice
that (1.15) is not a consequence of (1.16).
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e Deriving Theorem 1 for all x € A(C,,,) and not only for x = xq is of real interest for
applications relying on the process (1.1). Indeed, ones wants in practice an estimate
on the time this process remains trapped in the metastable domain €2. Since it admits
a density with respect to the Lebesgue measure dxr on M, the probability that its
trajectories pass through x is zero.

Our second main result states that, under the additional assumptions (Div-free) and (Normal),
the eigenvalue Al satisfies an Eyring-Kramers type formula.

Theorem 2. Assume (Ortho), (One-Well), (Div-free), and (Normal). Then, when h — 0,
the eigenvalue /\fh satisfies the following Eyring-Kramers type formula:

(118) )\ih = (,Lq;f h*% + K,% + O(hi)) e*%(minaﬁ f*f(:ro)),
where
. \/det Hess f(z) Ong f(2)
K =
! ﬁ 2€0C ninNO \/det Hess f\BQ(Z)
(1.19) J Vf(2)#0
L \/det Hess f(zo) 2|u(z)|
’ 2m 2c0Cmmno0 \/|det Hess f(2)|
Vf(z)=0

and p(z) denotes the negative eigenvalue of Hess f(z) + 'L(2) at a saddle point z of f (see
Lemma 1).

Let us now comment the results of Theorem 2.

e Our analysis actually shows that the error term O(h1) in (1.18) is of order O(h?)
when I =0 or kI =0, see Theorem 5. It is moreover always of order O(h%) when the

process is reversible, i.e. when £ = 0 (see [35] or Proposition 19 below). In addition,
whether or not the process is reversible, when the error term in (1.18) is O(h?), it is in
general optimal (see for instance [35, Remark 25| for a discussion).

o Let Aﬁh be the principal eigenvalue of ~-2A+V f-V. When ! = 0 (that is when V f(z) = 0
for every z € 9C i, N OL2), we have:

\A Y |A(2)||det Hess f(2)| 2
1,h N zeé‘Cminmaﬂ
Alh Y |u(2)||det Hess f(z)[ 72
260CinN0O

where, for z € OCi, N OS2, A(2) is the negative eigenvalue of Hess f(z). According to
Lemma 1, we have |u(z)] > |A(2)|, with equality if and only if ‘L(2)&(z) = 0. Then,
in view of (1.15) and of [18, Theorem 1], we accelerate the exit from 2 by adding,
locally around 0C i, N 0L, a generic drift term £(X;) to the reversible process dX; =
~Vf(X,)dt+VhdB,. In the mathematical literature, this acceleration phenomenon has
been studied for elliptic non-reversible diffusions on R? through the analysis of different
quantities: the rate of convergence to equilibrium at fixed h > 0 or as h - 0, and the
asymptotic equivalents of the transition times as h — 0, see [37, 4, 32, 31, 30] and
references therein.
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e Let us finally mention that combining the analyses developed in this work and in [34,
, 3], it is clearly possible to extend the results of Theorem 2 to the cases when f has
several local minima in  and £ admits a classical expansion Y., h*€;, where £, are
smooth vector fields over M such that the Gibbs measure (1.2) remains invariant for
the process (1.1) for all h > 0.

1.5. Strategy of the proof and organization of the paper. The proof of Theorem 1 relies
crucially on the formula

-

1 JoEalTa ul;z E Uppe”
7 C E,, [To-] = , where v,(dx) =
1

. 1
oh Jout, K€ K Joui,e
is a quasi-stationary distribution for the process (1.1) in Q (actually it is the quasi-stationary
distribution, see Section 4.2 for more details on v,).

(1.20)

To extract E,[qc] from the integral in (1.20), in order to prove (1.15) for instance, we
use a leveling result on = — E,[7qc]. This is the purpose of Theorem 3, proved in Section 2
using large deviations techniques. Besides, we also need a priori estimates on the principal
eigenvalue A\{, = Al /2h of Ly, which is the purpose of Theorem 4 in Section 3, relying on the
sole assumption (Ortho) and proved by semiclassical methods.

We derive in Section 4.1 from these a priori estimates information on the concentration of the
principal eigenfunction uf , of Py, see Proposition 18. Afterwards, combining this information
with the leveling results on  — E,[7oc] and the a priori estimates on A\F ', we prove Theorem 1
in Section 4.2.

Finally, when assuming in addition (Div-free) and (Normal), we prove the sharp asymptotic
equivalents on Al I, given in Theorem 2 by constructing a very precise quasi-mode for P,. This
is done in Section 5 , see Theorem 5

2. LEVELING RESULTS ON THE MEAN EXIT TIME FROM ()

The goal of this section is to prove Theorem 3 below which aims at giving, when (Ortho)
and (One-Well) hold, sharp leveling results on  — E,[7qc] as well as the limit of hInE,[7qc]
when A — 0. To do so, we use techniques from the large deviations theory. This requires
some care, since these techniques cannot be used directly on €2 due to the possible existence of
equilibrium points of b on 02 (recall indeed that b(z) =0 if and only if Vf(2) =0, see (1.9)).

2.1. Large deviations and mean exit time. In this section we only assume (Ortho).

2.1.1. The quasi-potential on a subset of M. We now introduce the quasi-potential associated
with the vector field b on D, where D denotes a smooth bounded subdomain of M (which is
possibly M), and recall some of its basic properties. For z,y € D and t; <ty € R, let us denote
by C=¥([ty,t2], D) the set of continuous curves ¢ : [t1,t5] - D such that ¢(t,) = z and ¢(t2) = y.
For ¢ € C*¥([t1,15], D), define, if ¢ is absolutely continuous,

1 ta .,
Snar(@) = 5 [ 1da-b(0)Pds e R,

where ¢, = d%@, and, otherwise, S, +,(¢) = +oo0. The function

Vo (2,y) € Dx D winf {Syr(¢), ¢€C™¥([0,T],D) and T >0} e R*
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is the so-called (Freidlin-Wentzell) quasi-potential of the process (1.1) on D. Notice that
(2.1) Vp(z,2) =0 for all z € D.
For every z,y € D and S, S’ c D, we also define

Vp(z,S") = inf Vp(z,y), Vp(S,y) :=inf Vp(z,y), and Vp(S,5"):= inf Vp(z,y).
yeS’ zeS (z,y)eSxS’

In the next lemma, we recall some basic and useful properties of the functional V.

Lemma 4. One has the following:

e Vp:Dx D —R* is continuous.

o Assume that there exists a subset S of D such that, for any T > 0 and ¢ € C*¥([0,T], D),
there exists t € [0,T] such that ¢, € S. Then, it holds

Vo(w,y) = nf[Vo (s, 2) + Vo (2, 9)]

e For every x € D and every —oo <t_ <t, < +oo such that the solution py(x) of (1.7) satisfies
{pi(z),t e[t_,t,]} ¢ D, where @, () :=limy_ .0 i (z) when t, = oo (see (1.10)), it holds

Vo (e (), 1, (7)) = 0.

e Let T >0 and G be a closed nonempty subset of C([0,T], M) (endowed with the uniform
convergence topology). Then, the infimum

inf {So.r(¢), ¢eG}

is a minimum. In particular, this infimum is strictly positive as soon as G does not contain
any tragectory of the dynamical system (1.7) defined on [0,T1].

The first item is a consequence of [20, Lemma 1.1 in Section 1 of Chapter 6] and implies the
third one, while the second item can be proved by straightforward arguments. For the last one,
we refer to the comments following the proof of [20, Theorem 1.1 in Chapter 4].

Lemma 5. Assume (Ortho). Then, for all ¢ € C*¥([t1,t2], M), St 1,(¢) = 2(f(y) - f(x)).

Proof. Using (Ortho), we have, for all ¢ € C*¥([t,t2], M),

Sue:(0) =3 [ 16:= (0100 - €05 +2 [ 6,9 F(6.)ds > 27 (0(12)) - F(6(1),

which implies the result. U

Remark 6. The proof of Lemma 5 also leads to the following: for every x € D and every
—00 <t <ty < +oo such that the solution Yy(x) of X = Vf(X) - €(X) with initial condition
vo(x) = x satisfies {(x),t € [t_,t,]} ¢ D, where ¢, (x) = limy_ .0 ¥y(x) when t, = xoo, it
holds

V(i (x),¢r, (7)) = 2(Pr, () = ().
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2.1.2. On the structure of the dynamical system. To prove Theorem 3 we want to use [20),
Theorem 5.3 in Chapter 6] with a suitable domain D such that

(2.2) Vf+0ondD.

The construction of D is the purpose of the next section. Before, we have to check that the
conditions stated at the beginning of [20, Section 2 in Chapter 6] are satisfied. More precisely,
we have to check that the exists a finite number of compact subsets K1, ..., K; of D such that:

(a) For any x € D such that o,(x) € D for all ¢ > 0, it holds w(x) c K, for some q € {1,...,1}.
(b) For allie{1,...,I} and all z,y € K;, Vp(z,y) = 0.
(c) f ze K; and y ¢ K; (y € D), either Vp(z,y) >0 or Vp(y,x) > 0.

In the following, we write {y € D,V f(y) =0} = {y1,...,u} and we define
(2.3) K;={y}, Vie{l,... I}

Lemma 7. Assume (Ortho) and (2.2). When the compact sets K;, i =1,...,1, are defined by
(2.3), Conditions (a) and (b) above are satisfied.

Proof. By (1.9) and (2.2), if {py(2),t >0} c D, w(x) = {y} for some critical point 3 of f in D.
Thus, Condition (a) holds. In addition, according to (2.1), Condition (b) holds. O

Condition (c) is the purpose of the next proposition.

Proposition 8. Assume (Ortho) and (2.2). When the compact sets K;, i = 1,...,1, are
defined by (2.3), Condition (c) holds.

The following lemma will be useful to prove Proposition 8.

Lemma 9. Assume (Ortho). Let z € D be such that Vf(z) # 0 and, for some T >0, {p,(2),t €
[0,T]} ¢ D. Then, for all y € D~ {p(2),t € [0,T]} satisfying f(y) > f(er(2)), it holds
Vb(z,y) > 0.

Proof. Set pg = inf{|y — ¢¢(2)],0<t<T}>0. Let T" € (0,7]. From the last item of Lemma 4:
dps = inf {So1(), 6 € C([0, 7], M) s:t. ¢ = 2 and a6 = o1(2)] 2 pof2} > 0.

We then have, for 77 € (0,7] and ¢ € C=¥([0,7"], D), Soz/(¢) > dy» > dr > 0. Consequently,
(2.4) inf {So.7(¢), ¢€C*¥([0,7"],D) and T" € (0,T]} > 0.

Let us now consider the infimum above when 7" > T. Let 0 < T} < Ty < T be such that
f(y) > f(pr,(2)). Notice that (1.8) and V f(2) # 0 imply

f(2) > flen (2)) > f(or,(2)).
It follows that

P(om ¢ G, = {9 € C([0,12], D), ¢o =z and, for all t € [0, 1], f(¢r) > f(or, (2))}

and the last item of Lemma 4 then implies that

A:=inf{Sy5,(¢),¢€G5,} > 0.
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Consider 7" > T and ¢ € C>¥([0,7"],D). Assume that ¢ € GZ,. Then ¢|jo.1,] € G%,, and thus
Sor(¢) > Som,(¢) > A. Assume now that ¢ ¢ G%,, i.e. that f(¢:) < f(en(2)) for some
t€[0,T']. Let t; € (0,7") be such that f(¢s,) = f(pr,(2)). Using Lemma 5, it holds

S0, (9) 2 Sty r(9) 2 2(f (o) = f(01,)) = 2(f () - f(er: (2))) > 0.

In conclusion, for all 77> T and ¢ € C=¥([0,1"], D), So.r(¢) > min(f(y) - f(¢r, (2)),A) > 0.
Together with (2.4), this ends the proof of the lemma. O

We are now in position to prove Proposition 8.

Proof of Proposition 8. Let x € D be such that Vf(z) = 0, so that z € D according to (2.2).
Let us also consider y € D such that y # 2. According to Lemma 5, it suffices to consider the
case when f(z) = f(y). Since x € D and f admits a finite number of critical points in M, there
exists a sphere C'(z,r) = {w e M,|w-z| =r} c D of radius 0 < r < |x — y| such that |V f| >0 on
C(x,r). Then, using the two first items of Lemma 4, there exists z € C(x,7) such that

VD($,y) = &ér(lir)(VD(xag) + VD(gay)) = VD(x7Z) + VD(z7y)

If f(2) < f(z) = f(y), then Lemma 5 implies Vp(z,y) 2 Vp(z,y) 2 2(f(y)—-f(z)) > 0. Similarly,
if f(z)> f(x), then Vp(z,y) > Vp(x,2) 2 2(f(2) — f(x)) > 0. Let us lastly consider the case
when f(z) = f(z). Since z € D and V f(z) # 0, there exists 7" > 0 such that

{0i(2),t€[0,T]} ¢ D and, according to (1.8), f(2)> f(¢u(2)) for all ¢ € (0,T].

Using f(z) = f(y) and z # y, it follows that y ¢ {¢i(2),t € [0,T]} and f(y) > f(pr(2)).
Therefore, according to Lemma 9, Vp(z,y) > 0 and thus Vp(x,y) > 0, which completes the

proof of Proposition 8. U

Following the terminology of [20], we say that a subset N ¢ M is stable if, for any x € N and
ye M NN, Vy(z,y) >0 (see the lines preceding [20, Lemma 4.2 in Chapter 6]). We then have:

Lemma 10. Assume (Ortho). For any critical point x of f in M, the set {x} is stable (in
the sense defined above) if and only if x is a local minimum of f in M.

Proof. Assume that z is a local minimum of the Morse function f in M, and take y € M ~ {z}.
Since z is a strict minimum, there exists 0 < r < |x — y| such that f > f(x) on C(z,r) = {w €
M, |w - x| =r}. Thus, according to Lemma 4, there exists z* € C'(x,r) such that

Virag) = _inf (Vie(e,2) + Vi (59) = Varla, =) + Var (", 0)

Using in addition Lemma 5, Vi (z,2*) > f(2*) = f(x) > 0 and thus Vy,(z,y) > 0, which implies
that {x} is stable.

Let us now assume that z is not a local minimum of f in M. Then, according to Lemma 1,
the dimension of the unstable manifold of z for the dynamical system X = b(X) is at least one,

and thus there exists z* € M \ {z} such that ¢;(z*) - x when t - —co. It thus follows from the
third item of Lemma 4 that Vj/(x,2*) = 0, showing that z is not stable. O
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2.1.3. Freidlin- Wentzell graphs and mean exit time. Let us first introduce some notation. Let
L be a finite set and W c L. A graph consisting of arrows m — n (for me L~ W, n e L, and
m #n) is called a W-graph over L (see the beginning of [20, Section 3 in Chapter 6)) if:

e every point m € L \ W is the initial point of exactly one arrow,

e there are no closed cycles in the graph.

The last condition can be replaced by the following one: for every point m € L\ W there exists
a sequence of arrows leading from m to some n € W. The set of W-graphs over L is denoted
by G¥(W).

When Conditions (a), (b), and (c) hold, and when at least one of the compact subsets
K,,...,K; of D is stable, we label these sets so that Ki,..., K, are the stable compact sets
among K,..., K;, where 1 < p, <[. In this case, [20, Theorem 5.3 in Chapter 6] applies, and
implies that, for every x € D and uniformly in x in the compact subsets of D,

2.5 limh In E,[rpe] < Wp, where Wi = i Vo (m,n).
@9y Bl Wor where Wo= i B 8, VPO

Corollary 11. Assume (Ortho), (2.2), and that f admits n + 1 local minima xg,x1,...,T,
in D, withn >0. Then, for all x € D, and uniformly in x in the compact subsets of D,

limh In E,[7pe] < Vp(zy,dD).
k=0

h—0

Proof. Let us define the compact sets K;, i = 1,...,[, by (2.3). According to Lemma 7 and
Proposition 8, Conditions (a), (b), and (c) are satisfied. Moreover, according to Lemma 10,
the {xx}, 0 < k < n, are the stable compact sets among K7, ..., K, and thus p, = n + 1 and
{Ki,....,K,.} = {{z},0 < k <n}. We conclude by applying (2.5) with the graph ({zo} —
0),....,{x,} - 00Q). O

2.2. Upper bound on the mean exit time when (Ortho) and (One-Well) hold.

Proposition 12. Assume that (Ortho) and (One-Well) hold. Then, for every B >0, there
exists hg >0 such that, for all h € (0, hg],

sup B, [qe] < e (minon f~f(@o)) ek
zeQ)

Proof. Let us assume that (Ortho) and (One-Well) hold. We set
D, = {x e M, dist(z,Q) < a}, a>0.

For every a > 0, we have Q ¢ D, and 0D, = {x € M,dist(z,Q) = a}. In addition, there
exists ag > 0 such that, for every a € (0, ], D, is a C* subdomain of M and, since the critical
points of f are isolated in M, {x € D,,Vf(x) =0} c Q. In particular, |V f| >0 on 0D, and the
local minima of f in D, are its local minimum =z, in € and its local minima x1,...,z, on 0.
Because () is a compact subset of D,, it follows from Corollary 11 that for every a € (0, aq]
and € > 0, we have for all h small enough:

2 yn €
sup E,[moc] < sup E,[7pe ] < en Zh-o VDo (20:0Da) o5
zeQ) zeQ)
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In order to prove Proposition 12, it then enough to show that
(2.6) Vo (20,0D,) + Y. Vp, (2k,0D,) < Q(Halgi)nf - f(x0)) +0a(1).
k=1

Using the second item of Lemma 4, we have, for every y € 9D, and z € 02,

Vo (20,0Dq) < Vp, (20,y) < Vp, (w0, 2) + Vp, (2, y).

Moreover, according to Lemma 5 and to Remark 6, for every z € 0C,;, N OS2,
Vi, (20, 2) = 2(f(2) = f(20)) = 2(miin f ~ f(0))-

Consequently, for every z € 9C,,;, N 02 and « > 0 small enough,
: ) 1
Vi, (50,0D4) < 2(min f = f(20)) + Vi, (2. 0Da) <2(min f = f(w0)) + 5 (1 + [bl)0r,

where we used the fact that for every x + y € M, ¢ : ¢t € [0,y —x|]] » x + ﬁt satisfies

Soy-2/(¢) < 3(L+[b])?|z —y|. The same argument shows that Vp_ (x4, 0D,) < 3(1 + ]« )?cx
for every 1 < k < n (since z € 92). This implies (2.6) and thus completes the proof of
Proposition 12. O

2.3. Leveling results for = — E,[7q:] and commitor functions. The following result
provides a local leveling result for x — E,[7qc].

Lemma 13. Assume (Ortho) and (One-Well). Let §; >0 and rj, = e=%/". Then, there exist
ho >0 and ¢ >0 such that, for all h € (0, ho], SUD,cp(ug rp) BalTac] = Ego[Tac]| € €77 gy [Te].

Proof. Since (Ortho) holds, b(x¢) = 0 (see (1.9)). In addition, according to Lemma 1, the
eigenvalues of the matrix Jac b(xy) = —(Hess f(x¢) + L(x0)) all belong to {z € C, Rez < 0} (in
particular, ¢ is an asymptotically stable equilibrium point of the dynamical system (1.7)). The
proof then follows the same lines as the one of [18, Lemma 3]. g

Denote by 7p(y,r,) the first time the process (1.1) hits the closed ball B(zg,71,), where we
recall that r, = e/ §; > 0. The constant 4; > 0 will be fixed in (2.9) below. We assume that
h is small enough so that B(zg,7,) € Cupin. The function

T ]P)l‘ [TB(xo,rh) < TQC]

is called the commitor function (or the equilibrium potential) between Q0 and B(x¢,r1,). The
following result provides a (global) leveling result for z — E,[mqc] in A({zo}).

Proposition 14. Assume (Ortho) and (One-Well). Then, there exists ; >0 such that, for
all compact subset K of A({xo}) (see (1.11) and (1.12)), there exist ho >0 and ¢ > 0 such that
for all h € (0, hg],

sup |Px[TB(azo,rh) < Toe| - 1| <eh.
reK

Remark 15. Applying |9, Theorem 2] with Q = A({zo}) leads to a slightly weaker version of
Proposition 1/, where 6; >0 depends on K.
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Proof. For e (0,mingq f — f(x0)), set
(2.7) Cunin (1) = Cunin 0 {f <miin f =0} = {z € Q, f(2) <min f -n}.

The set Cin(n) is open, smooth (since Vf # 0 on dCin(n)), and is the connected component
of {f <mingq f —n} containing x, (see for instance [15, Proposition 18]). Recall also that zg
is an asymptotically stable equilibrium point of the dynamical system (1.7). Moreover, (1.8)
implies that o,(x) € Cpin(n) for all € Cpin(n) and ¢ € R*, and thus that lim,_,. @¢(2) = 2
since g is the unique critical point of f in Cpin(n) (see indeed (1.10)).

Fix now
(2.8) o € (0,min f = f (o)) and 7. € (no, min f = f (o).

It holds Cuin(7.) € Cumin(n0). In the following h > 0 is small enough so that B(zg,7;)
Cuuin(7+), where we recall that r, = e=®/". According to [), Theorem 2|, there exist §; > 0
(which is now kept fixed), ho > 0, and ¢ > 0 such that for all h € (0, ho]:

=lo

(2.9) _Sup Py [TCfnm(ﬂo) < TB(wo,rh)] sen.
yecmin(n*)

Since the trajectories of the process (1.1) are continuous, one has {Toc < 7p(z.m)} € {Tce . (no) <

min

TB(aory) ) fOr all y € Ciin(n.) When Xg =y, so that (using also {Toe = T5(40 )} = 2):

o

(2.10) sup  Py[7ac < (gl S€7F,
yecmin(n*)

which proves the proposition when K = Cp(7.). Let us now consider the case when K c
A({zo}). In view of (2.10), it is enough to treat the case when K c Q\ Cpin(n.). Pick
K c QN Cupin(n,) with K ¢ A({zo}). Recall that this implies that for all x € K, () € Q for
all £ >0 and limy ;00 () = 2. Then, there exists Tk > 0 such that @7, () € Cuin(n.) for all
x e K. The set {¢r,(z),x € K} is a compact subset of the open set Cyin(7.) and the compact
subset {;(z),(z,t) € K x[0,Tk]} of 2 does not contain xy ¢ K. We can thus consider § > 0
small enough such that:

Cl. {pr,(x) +z,x € K and |z| <0} ¢ Cpin(n+),
C2. o ¢ Ky 5= {pe(x) + 2, (2,t) e K x[0,Tx] and |z| < §}.

By item C2 above, for any h small enough, B(xo,7,) N Kr, s =@. Then, for all z € K, if Xy =z
and sup;e(o 7,11 X¢ = @i ()] < 6

(211) TK < TB(zo,rn)"

Moreover, according to [10, Lemma 1] and its note, since M is compact, there exists ¢’ > 0 such
that for all A small enough:

~

(2.12) supIP’z[ sup | Xy — ()] > (5] <e .
xeM te[0,Tk |
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On the other, by item C1 above, if X =z € K and sup,(o 1,1 |X: — ¢:(x)[ < 0, it holds X7, €
Cuin(n+). Then, for all z € K, using the Markov property and (2.11), we have

P, [TB(xo,rh) <TQe, te[soljlsz] |Xt - th(x)| < 5] =E, [EXTK []‘TB(IO7Th)<TQC]1Supt€[oyTK] |Xt—g0t(z)|$5]

>(1- e‘ﬁ)IP’x[t sup ]|Xt —@i(7)] < 5]
€V, 1K

> (1-ef)(1-e ),

where we used respectively (2.10) and (2.12) at the second and third equalities. In conclusion,
we have proved that for some ¢ > 0 and every & small enough, sup,x [Pe[T5(z0.m,,) < Toe]=1] < e,
which completes the proof of Proposition 14. O

Proposition 16. Assume (Ortho) and (One-Well). Then, for every n, € (0,mingq f—f(x0)),
there exist hg >0 and ¢ > 0 such that, for all h € (0, ho],

sup  Eo[Th(ug,m) A Tae] < o (mingo ISCOES
meémin(n*)

where Cuin(n.) is defined in (2.7).

Proof. The proof of Proposition 16 is inspired by the one of [10, Lemma 6]. Take 7y € (0,7*).
For ease of notation, we set
K = Crin(n.) and D’ := Cpin(m0).

Recall that K ¢ D’ ¢ A({x¢}) and assume that h > 0 is small enough so that B(wg,r;) c int K
(see (2.8) and the lines below). According to [20, Theorems 3.1 and 4.1 in Chapter 4] (note that
NCpm(m) = V.f/|Vf] and then, using (Ortho), b-nc,,. ;) > 0 on dCnin(n)), we have uniformly
in y in the compacts of D’:

(2.13) }lii%hhlEy[Tch] = 2(H81}2nf - f(x0) = o).

In particular, for every g > 0 and every h small enough,
(2.14) AP = sup B, [pre] < e (minon f=F(wo)=m) eh
yeK
Similarly, according to Proposition 12, it holds for every g >0 and every h small enough,
zeQ
Besides, using the strong Markov property, we have for all x € K:

[Tgc]].

In addition, by continuity of the trajectories of the process (1.1), we have 7pe < Toe when
Xo =y € B(xg, ). Thus, using the strong Markov property,

(2.17)

(2.16) Ei[70:] = Eo[78(a0m) A T00] + Ea Lrgesrp, B

X Bgurm)

XTB(acO,rh) [TQC] > EXTB(:cO,rh [TQC - TD/c] = ]EXTB(xO,rh) I:EXTD,C [TQC]].

For x € D', let u” be the hitting distribution on 9D’ for the process (1.1) when Xg =z, i.e.:
(2.18) p(B) =P,[X, . € B], for every Borel subset B of 0D’

Tplc

)
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The properties of D’ listed just after (2.7) allow us to use [9, Theorem 1] (see also Eq. (5.1)
there), leading to [ p2—p”| < e”# uniformly in z,y € K (where |-| is the total variation distance).
Using this and (2.17) with y = X, we deduce from (2.16) that for all z € K:

07h)’
E,[70:] 2 Bu[Th(agmm) A Tac] + 1[-4:,35[17907B commExege [Ex,, [TQC]]]

>E, [TB(xo,rh) A TQc] + Ex[lmcm—g(xo?rh) (Ew [EXTD,C [TQC]] - A,?e‘i)]

> E$[TB(xo,7"h) A TQc] + Px[TQc > TB(J:()J’h)] ]Ea:[]EXTDIc [TQc]] - Ahe h.

On the other hand, according to the strong Markov property, E,[7qc] = E.[7pre |+ E.[ E Xorpre [Tac] ]
for all x € K. It follows that for all x € K,

]Ex[TB($O7Th) AN TQc] < (1 - ]Px[TQc > TB(wo,rh)]) Ex[EXTD/c [TQc] ] + A%e‘ﬁ + ]EI[TDrc]
<(1=PolTae > Taem]) AL + Afle i + A
which implies Proposition 16, using (2.14), (2.15), and Proposition 14 (with K = Cpin(n.)). O

Theorem 3. Assume (Ortho) and (One-Well). Let K a compact subset of A({xo}) (see
(1.11) and (1.12)). Then, there exist hy > 0 and ¢ > 0 such that, for all h € (0,hy] and
uniformly in x e K:

E.[m:] = Eyy[10e](1 + O(e™7)) and }ligéhlnEx[TQc] = 2(%1}2nf— f(z0))-

Proof. First of all, according to Proposition 12, (2.13), and to the fact that E,[7p«] < E,[7q]
for all y € D', we have, uniformly in y in the compacts of D’:

(2.19) }g%hlnEy[mc] = 2(r%énf - f(x0)).
Let K be a compact subset of A({z}). Assume first that K = Cpin(7.) (see (2.7) and (2.8)).
Using (2.16), Lemma 13, and Propositions 16 and 14, we have uniformly in z € K:

By [70:] = By [rae](1+0(eH)) + O(en (minon S eol i),

Using in addition (2.19) with y = 2 € D', we deduce that for some ¢ > 0 and uniformly in
x € K = Cpin(n.), it holds for every h small enough:

(2.20) E.[7ac] = Eyy[1ae J(1 + O(e™7)).

This proves Theorem 3 when K = Cpin(7,). Let us now consider the general case K c A({z}).
Let Tk > 0 be such that p7, (2) € Cypin(n,) for all z € K, and take § > 0 small enough so that:

o {pi(x)+2z,(2,t) e Kx[0,Tk] and |2| <0} ¢,
o {pr, (x)+2z,xe K and |z| <0} € Cupin(ns)-

These two conditions imply that for all z € K, if X =2 and sup;(o 7,1 |X: = ()| < 6
(2.21) Tk < Tqe and X7, € Cpin(nx)-
From the Markov property, (2.21), (2.12), and (2.20), we have uniformly in z € K:
Eo[70e Loupyego 1y 1Xi-we (@))<8] = TkPo| sup |X;— ()] <]
1e[0,Tx ]

+ Eo[Exr, [70e] Loup,ogo 1 1Xi-u(@)lc)
=Tr(1+ O(e’%)) +Ey [moe (1 + O(e’%))
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and

Ez [TQC 15upte[O,TK] | Xt—pt(x)|>6 1TK<7‘Qc] = TKP:E[ [Sup : |Xt - @t($)| > 57 TK < TQC]
te[0, Tk

+E, [EXTK [TQC] ]‘SUPte[o,TK] [ Xt—pt(z)|>6 ]‘TK<TQC]
=TrO(e i) +Ey [1a:] O(e7h).
On the other hand, using (2.12), it holds for every z € K:
E.[7q lsupté[O,TK] [Xe—pi(2)]>6 1TﬂcéTK] < TKB_%'

Combining the three previous estimates leads to E,[7ac] = Eyy[Ta:](1+O(e7#)) for all h small
enough, uniformly in z € K. This ends the proof of Theorem 3. O

3. SPECTRAL ANALYSIS OF Re (FP,) AND OF P,

Recall that we assume (Ortho) throughout this work.

3.1. Analysis of the real part of P,. This section is devoted to a preliminary spectral
analysis of the operator (see Proposition 3)

Re (Ph) = %(Ph +P,j) = Af,h +2€Vf—hd1v£ = Af,h— hdiv €

with domain D(Re (P,)) = H3(Q) n HJ(Q) = D(P,) = D(P;). This operator is self-adjoint
with a compact resolvent and is the Friedrichs extension of the closed quadratic form

(3.1) we HA(Q) o [Q 1V aul? — B [Q (div £) [uf? .
It is consequently bounded from below by —h| div £|| (@), and hence
O'( Re (Ph)) C [—hH diVEHLoo(Q), +OO).

When div £ = 0, the operator Re (F},) is nothing but the Witten Laplacian Ay (see (1.13))
with domain D(A; ;) = H?(Q2) n H(Q) and is in particular positive. Let us now define
(3.2) Up = {z €Q, z is a local minimum of f } and mq:= Card(Ug) < +o0”.
Then, according to [35, Theorem 1], there exist ¢y > 0 and hg > 0 such that for all h e (0, ho]:
(3.3) dim Ran ﬂ[ojcoh](AM) = my,

where, for a Borel set I c R, 7;(A f,h) denotes the spectral projector associated with Ay, and I.
For ease of notation, we set

(34) 7'('}? = W[O,coh](Af,h)-

Moreover, the mg eigenvalues of A, in [0, coh] are exponentially small in the limit h — 0, i.e.
there exists ¢ > 0 such that for every h >0 small enough,

(3.5) o(App)n[0,coh] c[0,e77].

3We recall that f has a finite number of critical point in M by (Ortho).
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Additionally, we can apply [34, Lemma 3.1] since (Ortho) holds: for every critical point
u e M of f, there exists a smooth map J defined around u and with values in M4(R) such
that J(u) is antisymmetric and £(z) = J(2z)V f(z) around u. It follows that

div€(u) = Tr (J(u) Hess f(u)) = Tr (Hess f(u)J(u))
= Tr (*(Hess f(u)J(u))) = = Tr (J(u) Hess f(u)),
and hence:

(3.6) for every critical point ue M of f, divé(u) = 0.

The above analysis together with standard tools of spectral theory and semiclassical analysis
for Schrodinger operators (see e.g. [3, 16]) lead to the following proposition. The proof basically

relies on the fact that (3.6) implies that Re (P,) is a perturbation of A, of order O(h?).

Proposition 17. Let us assume that (Ortho) holds. Then, there exist C,c >0 and ho > 0 such
that, for all h € (0,ho], one has, counting the eigenvalues with multiplicity,

o(Re (P,)) n (=00, ch] c [-Chs,e 7] and Card(o(Re (P)) n (-o00,ch]) = my,
where mq is defined in (3.2).
Moreover, there exists ¢; >0 and hg > 0 such that, for all h € (0, ho]:
Vue Q) HNQ), (Re (B)(1-nf)u, (1- )b 2 eoh] (1- 7 Yul%,

where T2 is the spectral projector associated with Ay, and the interval [0, coh] (see (3.4)).
Note that the spectrum of the operator Re (F}) is a priori not included in [0, +00).

Proof. Let us define m := Card({z € Q, Vf(x)=0}) and, when mg > 0, let us order the elements
T1,...,Tm of {x €, Vf(z)=0} so that (see (3.2))

{xl, . ,xmo} = Uy.
We consider, for every z; € €2, a smooth open connected neighborhood O; of x; in €2 such that
@ c . When moreover j € {1,...,mg}, we also assume that z; is the only point where f
attains its minimal value in O;. Similarly, when z; € 9§, we consider a smooth open set O; c
such that O_] is a neighborhood of z; in Q. In addition, we assume that Umﬁy =@ when 7 # j,
so that each O, contains precisely one critical point of f, z;, which is in its interior.

Step 1. Let us first prove that there exists ¢ > 0 such that, for every h > 0 small enough,

(3.7) dim Ran7_ ¢ (Re (F)) > mo.
This is obvious when mg = 0. When mg > 0, let us introduce, for every j € {1,...,mg}, a cut-off
function x; € C°(0;) such that x; =1 in a neighborhood of z; and
_f
Xen
Ixie 2

Since z; is the only point where f attains its minimal value on supp x; c O;, standard Laplace
asymptotics give, in the limit A — 0,

d
_f wh)2 L f=))
e b2, = —T)E ol

(det Hess f(z;))2 ( +O( ))
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Using in addition the fact that x; = 1 near x; and thus that f — f(z;) > 2¢; on supp Vy; for
some c¢; >0, we have when h — 0:

h : i %
(3.9) |Afptjllre = ——F—(=hdiv+V f)(eTmVx;)|lz2 < e 7.
Ixse w2
Since moreover div£€(z;) =0 according to (3.6), Laplace asymptotics give, when h — 0,
(3.10) I(div €)¢] 2 = O(h2).
The two above relations imply the following one which will be useful in the sequel:
(3.11) [ Re (Pa)vyllz2 = [(Apn = hdive)yy] 2 = O(h?).

Besides, using (3.1), an integration by parts, (Ortho), and f - f(z;) > 2¢; on supp Vy;, it
holds when h — 0:

(Re (Pa)usy, )2 = eth e [, mle

Ix; e H2
- f| v;le 7, N L— ; ij VX, € Focet,
nge F2, Ixie hH
Since the v;, j € {1,...,mq}, are normalized in L%(Q2) with disjoint supports, it follows from
the Min-Max principle that Re (P,) admits, for ¢ := min(cy,...,cm,), at least my eigenvalues

less that e”# when h — 0, which proves (3.7).

Step 2. Let us now prove that there exists ¢; > 0 such that, for every A > 0 small enough:
(3.12) Vue H*(Q)n Hi(Q), (Re (Py)(1-mp)u, (1-mp)u)e > crh|(1 -5 )ul2s.

To this end, we first define a cut-off function x € C*(R<,[0,1]) such that x =1 in {|z| < 1},
x =0in {|z| > 2}, and \/1 - x? € C*(R?). Then, for every j € {1,...,m}, we define the following
smooth function on §2:
Xjn i ®€Q— x(h™(x - 1;)) e R,
where € € (0, %) is arbitrary but fixed. In particular, for every h > 0 small enough, supp x; c O;

when z; € Q and, when z; € 99, O_J is a neighborhood of supp x; in Q. Lastly, we define the
smooth function

[SIES

Xo,h1$€§'—>( Z )
so that ¥ x5, =1 on Q.

Step 2a. Analysis on supp xo. Since supp Xo, is at a distance greater than h¢ from the set
of the critical points of the Morse function f in Q, there exists ¢ > 0 such that, for every h >0
small enough, |V f(x)|*> > 3ch? on supp xo . Since 2¢ < 1, it follows that for every h > 0 small
enough and every u € H2(Q2) n H}(2):

((-R*A+|V f]? = hAf = hdiv £) X0 nt, Xoat) 12
((IVfPP = hAf = hdiv €)xo,nu, Xont) 12

2h% o 2

(Re (Ph)XO,hua Xo,hU)L2

v

(3.13)

v
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Step 2b. Analysis on supp x;, when z; ¢ Uy. In this case, it holds O; nUy = @. Applying
[35, Theorem 1] to the Witten Laplacian A% with domain D(A?’};) = H%*(0;) n H}(0O;) then
implies the existence of ¢ > 0 such that, for every h > 0 small enough,
: 0\ _
dim Ran ’ﬂ'[oygch](Af,h) =0.

It follows that for every h >0 small enough and every u e H2(Q2) n Hj(2):

(Re (Ph)Xjnt, Xjpu)r2 = ((A?Jh = hdiv €)X nu, X;jnt) L2
((3¢ch — hdiv €)X nu, Xjhu) 2
(3ch + O(h*))IxjnulZe > 2¢hlxjnul?:

v

(3.14)

where, to obtain the last inequality, we have used that div£(z;) =0 (see (3.6)) and supp x;s €
{|x = z;] < 2h#} imply that, for every h > 0 small enough, | div €|~ = O(h®) on supp x; -

Step 2c. Analysis on suppx;, when z; € Uy. In this case, it holds O; n Uy = {z,}
and, applying again [35, Theorem 1] to the Witten Laplacian A?,JA with domain D(A?j}) =
H?(0O;)n H}(O;) then implies the existence of ¢ > 0 such that, for every h > 0 small enough,

(3.15) dim Ran mo3)(A7) = 1.
Let us define ,
. e_ﬁ
Vip = —HC 02(0,,RY)
Ixjne™ " | 2

and note that v, both belongs to D(A?jl) and to D(Ayy). Moreover, using supp xjn C
{|lx — z;| < 2h¢}, tail estimates and Laplace aymptotics, there exists ¢’ > 0 such that, for every
h >0 small enough,

(Afntjn, Vin) L2 fl VgalPe 2 <en

Hence, using the spectral estimate

QT(U)

b )
with b = 3ch and T = A% 1 valid for any nonnegative self-adjoint operator (7, D(T")) on a
Hilbert space (H, |- |) W1th associated quadratic form (gr, Q(7)), we obtain (since 2 < 1)

(3.16) Vb>0, VueQ(T),

T[b,400) (T) H

(3.17) 7Th’ j%’,h =Yjn+ O(G_C/T) in LQ(Oj),

where for conciseness we have set 7ThA’Oj = 7T[0730h](A?2). In particular, according to (3.15),

Wﬁ’oj is the orthogonal projector on Span(W¥;), where, using also (3.17),

WA,ojw 12
(3.18) U, = hAO—Jh =1hin+O0(e %) in L2(0y).
I, jn

Note lastly that the same analysis with x;,¢;n, b = coh, and T' = Ay, shows that

(3.19) T2 OGain) = Xoatbin + O(e™ ) in LA(Q).
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We can now finish this step. Let us recall that div£(z;) =0 and supp ;. ¢ {|z — z;| < 2h¢}
imply that, for every h > 0 small enough, | div €|y~ = O(h®) on supp Xjh- Thus, for every h >0
small enough and every u e H2(2) n H} (), setting w := (1 - 72 )u € H>(Q) n Hl(Q) we have

O; +e

{(Re (Pu)xsnw, x;nw) 2 = (A5 x0w, Xgaw) 2 + O(h) [xgnw]3s.
Therefore, using in addition (3.15),
(320)  (Re (P)xgmw xgnwhee 2 3eh|(1=m P xgnw ] + O(h) g po
Besides, using (3.18) and then (3.19) together with w € (Ranﬂf)l,

A,0;
Xjnw = (L=, J)Xj nw + (Xjaw, V) r20,) Y5
= (1= O ) + (X0, s 12(0,) 5 + O T ]

) e

Injecting this estimate in (3.20), we obtain that for every h > 0 small enough and every u €
H2(Q) n HY(Q), setting w := (1 - 72)u,

=(1 —7rh’ J)me +0(e

, 2e
(3.21) (Re (Pu)xinw, xjnw)rz = 2eh]x;nel s + O w) Jwl 3.

Step 2d. Proof of (3.12). Let us recall the so-called IMS localization formula (see for
example [8]):

NIE

m 2
Vw e H*(Q)n Hy(Q), (Re (P )w,w) =Y (Re (Py)x;nw, x;nw) - Zh?H|vXj,h|wHL2(m
=0

.
Il
[e=]

INagE

(Re (Pr)xjnw, xjnw) + O(h* 25)||w||L2(Q)

.
Il

Using in addition the estimates (3.13), (3.14), and (3.21), we obtain the existence of ¢ > 0 such
that, for every h > 0 small enough and every u € H2(Q2) n H}(Q2), setting w := (1 - 75 )u €
H2(Q2) 0 Hy (42),

(Re (P)w,w) 2 2¢h Y. [xjnl3 + O 4 e ) w3 gy 2 chlw] ey
=0

This proves (3.12).

Step 3. End of the proof of Proposition 17. Let us first recall from (3.7) the existence
of ¢ > 0 such that, for every h > 0 small enough, the dimension of Ran T (oo e,%](Re (Ph)) is

at least mg. Moreover, since dim Ranm = mg (see (3.3)), it follows from (3.12) and from the
Min-Max principle that the (mg + 1)-th eigenvalue of Re (P,) is bounded from below by cih

when h — 0. The dimension of Ran 7 e,%](Re (Py)) is thus precisely mq for every h > 0

small enough. To conclude, it just remains to show that the mq eigenvalues of Re (FP,) in
(-0, e 7] are of the order O(h2) in the limit h — 0.

To this end, note that it is possible to construct, for every h > 0 sufficiently small, a simple
closed loop v c {z€ C, Re z< % -h} such that:

e 7 contains [-h|div£|.~, G h], and thus o(Re (P;)) n (-o0, GAh], in its interior,
e for some ¢, ¢’ > 0 independent of h, |y| < ch and dist(y,0(Re (FP))) > c'h.
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The rank-mg orthogonal spectral projector 7, associated with Re (F,) and o(Re (P,))n] -
00,7 | then satisfies, for every h > 0 small enough,

= #[(z— Re (Py))"ldz.
2m o

For j e {1,...,mg}, let ¥; be the function defined in (3.8) and recall the relation (3.11) which
has not yet been used in this proof:

| Re (Py);] 2 = O(h2).
Using [ (z - Re (P,))™"| < = for every z € 7, it follows that for every i > 0 small enough,

1
(L=m)bs =5 [ (27~ (2= Re (Pa))")usdz

™ Jy

-1 1
(3.22) - — /z’l(z— Re ()" Re (Py)y; dz = O(h?).

™ Jy
Since the family (z/zj )je{l o) is orthonormal, the family (mﬂpj = wj+0(h%))j€{l
independent, and hence a basis of Ranmj,, when h — 0. In addition, any normalized vector
U e Ranmy, writes U = Y7 ), where the complex numbers gy, .. ., py satisty Yo |pl? =
1+0(h?). Tt thus follows from (3.11) that, when h — 0:

o) 18 linearly

mo mo
| Re (P)®[ 20y = | Y. prn Re (Pa)vllz2gy < 3 liwl| Re (Pa)vl @) = O(h?),
k=1 k=1

which implies that the mo eigenvalues of Re (P,) in (=00, e # ] are of the order O(h2).
U

3.2. Small eigenvalues of P, and resolvent estimates. The aim of this section is to prove
Theorem 4 on the number of small eigenvalues of P, (or equivalently of Ly, see (1.14)).

Theorem 4. Let us assume that (Ortho) holds. Then, there exists co > 0 such that, for all
c3 € (0,¢9), there exist hg >0 and C' > 0 such that, for all z€ {z € C, Rez < ¢3h, |z| > c3h} and
he (O, ho],
Py, -z is invertible and  |(P, —2z)™'| < Ch™t.

In addition, there exists ho > 0 such that for all h € (0,hy], o(Py) n{z € C,Rez < c3h} is
composed of exactly mg eigenvalues Aijp, Aop, ..., Amon (counted with algebraic multiplicity),
where mq is defined in (3.2). Finally, there ezists ¢ >0 such that for all j €{1,...,mo} and h
small enough, |\ju| < e . All these results also hold for Py .

Proof. Note first that the last sentence in the statement of Theorem 4 concerning P is an
immediate consequence of the part concerning P, since o(F;) = 0(P,) (with multiplicity) and,
for allze C\ o (Py), |(Pn—2z)7Y| = [ (P; -2)71| (see indeed [30, Section 6.6 in Chapter 3]).

Let us also recall the relations (3.3), (3.4), and (3.5) stated in the beginning of Section 3.1.
Let us consider, for j € {1,...,mg}, a L?(Q2)-normalized eigenfunction uﬁh of Ay associated
with its j-th eigenvalue. Since Py, = Ayj + 2€- Vy;, has domain D(P,) = D(Ay;) and the
quadratic form associated with Ay is given by (3.1) with £ = 0:

(3.23) 3¢ > 0 such that, when h — 0, ”Phuﬁh”LQ(Q) <eh.
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Similarly, since P} = Ayj, —2€- VY, — 2hdiv€ has domain D(P;) = D(Ayy), there exists ¢ > 0
such that, for every h >0 small enough,

| Prusllraey < € + 2R (div £)usy, | 12(q)-

Considering now the orthonormal family (%;),e1,...,mo} defined in the previous section in (3.8)
and using the spectral estimate (3.16) with b = coh, T' = Ay, and (3.9), there exists ¢’ > 0 such
that, for every j € {1,...,mg} and h >0 small enough,

(3.24) 7 =+ O(e %) in LA(Q).
Using in addition (3.10), it thus follows that, for every h >0 small enough,

: 1
|(div &) 72 5] 120y = O(R7).
Hence, since (3.24) implies that each u? on writes u’ on = L ), for some complex numbers

s - - -, p satisfying Y00 |pel> = 1+ O(e” h) we obtain that for every h >0 small enough,
. 3
(3.25) ||PhUjA,h||L2(Q) =O(h2).

Let us now define the operator P, by
P, = (1-72)Py(1 - m2) with domain (1 -72)D(P,) on E:= (1 -72)L*(Q),

where we recall that D(P,) = D(Ayp) = H2(Q)nH} (). Note that the space E (equipped with
the restricted L?(€2)-Hermitian inner product) is a Hilbert space and that the operator Ph
D(P,) — E is well defined, since (1 -m2)D(P,) = EnD(P,) c D(P,), with dense domain in E.

The rest of the proof is reminiscent of the analysis led in [34, Section 2B.] and is divided into
two steps.

Step 1. Resolvent estimates for P, : D(P,) - E. First, the operator P, is closed. This
follows from the fact that P, : D(P,) - L*(Q) is closed and from the relation P, = P, +75 Pyma —

Ph - Ph7rh on D(Ph) since 7y, Pmrh - 7rh Ap, — Pmrh extends into a bounded operator T},

on L*(Q). Indeed, P, and then 75 P,m2 extend into bounded operators on L?(2) since 75

is continuous with finite rank, and it is also the case for 72 P, since for all u e D(P,) = D(Py),
A S, A A _ N A A
T Pt = D {wins Pr) 2oy = Do (P, )2 o) g
j=1 j=1
The above considerations also imply that the adjoint of P, is the operator

P =(1-7)Pr(1-72) with domain (1 -72)D(P,).

Let us now prove the following resolvent estimates for Py: there exist C'> 0 and ¢ > 0 such
that, for all A >0 small enough and z € C such that Re z < c»h,

(3.26) P, -z is invertible and | (P, —z)™'| < Ch~".
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To prove this claim, let us consider w e D(F,) = (1 - 72 )D(P,) and z € C. Then, according to
Proposition 17, it holds, for every h > 0 small enough,
Re (P - 2)w, w) 20y = Re (Pu(1 - 1) w, (1 - 75 w) 20 = (Re 2) [ (1= 7)) w|3aq
= (Re (B)(1 - mp)w, (1= )w) 20y = (Re 2) [(1 - 7 )w] 2
> [erh - Rez]|[(1 - w3 )w]72(q) = [eth = Re 2] |w] 72 )

The same inequality also holds for Ph* -z since Re (P,) = Re (P}). Let us now fix ¢y € (0,¢1).
When Re z < coh and h > 0 is small enough, the previous inequality implies

(3.27) |(By = 2)w] 120 2 (c1 = o) h]|w] 120

Consequently, when Rez < coh and h > 0 is small enough, f’h -z is injective and its range is
closed. Since the same inequality also holds for its adjoint P -z, the range of P, —z is dense
in E. Thus, P, —z: D(P,) - E is invertible and the relation (3.26) follows from (3.27).

Step 2. Grushin problem and end of the proof of Theorem 4. Define the operators:

mo
R.:C™ > I2(Q), (i) = >y, and Ryt L2(Q) » C™, wes ({u,ul) o)1
j=1

We equip C™ with the /2 norm. Note the relations

(3.28) Ri=R., R R,=nF, and R,R_ = Icmo,
and that, for all h > 0,
(3.29) |R.|<1 and |R_| <1.

Moreover, according to (3.23) and (3.25), there exists ¢ > 0 such that for every A > 0 small
enough, it holds:

(3.30) |R. Py =O(h%) and |P,R_| <e .
For z € C, let us denote by Py(z) the linear operator defined by
(u,u-) € D(P,) x C™ ((Ph - z}){u;r Ru) e L*(Q) x C™,
+

Using (3.26) and the same analysis as the one made to prove [31, Lemma 2.2], we deduce that,
when Re z < eoh and h > 0 is small enough, P, (z) is invertible (i.e. the Grushin problem P (z)
is well posed) and its inverse writes

2 mo g(z) 5+(Z) f € % (™Mo
(f,g) e L7(Q) xC (6'_(2) 5_+(Z))(g) D(Fy) xC™,

where the operators &, £, £_, and £_, are holomorphic on { Re z < coh} and satisfy:
(1) £(2) = (B —2)"1(1 - 72) and thus, according to (3.26):

(3.31) for every ze {Rez < cph}, |E(2)| <Ch™,
(2) £..(z) = -R.(Py-2)R_+ R, P,(P,-2)" (1 -72)P,R.,

(3) €:(2) = R-~ (Ph—2) (1 - 7)) PuR-,
(4) £(2) =Ri = R.Py(Py - z) (1 - 7).
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Moreover, P, —z is invertible if and only if £ ,(z) is invertible, and in this case,
(3.32) (Po-2)'=€(2) - & (2)E_.(2) T (2).
We refer to [51] for more details on so-called Grushin problems.

Using (3.26), (3.28), (3.29), and (3.30), one deduces that there exists ¢ > 0 such that, for
every h >0 small enough and uniformly with respect to ze { Re z < coh},

E.(z) =R, +O0(h?), £(z) = R_+O0(e 7)), and E_,(2) = zlgmo + O(e 7).

In particular, when in addition |z| > e72n, £ ,(z) is invertible and thus so is P, —z (see the line
above (3.32)). Therefore, for every h > 0 small enough:

(3.33) o(P)n{zeC,Rez<coh}c{lz|<ear}.

Let us now fix ¢3 € (0,c2). The operator £_,(z) is then invertible for every h > 0 small
enough and every z € { Re z < ¢oh, |z| > csh}, and satisfies £, (z)™! =z (Igmo + O(e~27)). Hence,
according to (3.32), since R_R, =7, |m2| <1, |R:| <1, and | R_| < 1, the previous estimates
on £,(z), £.(z), and & ,(z) imply that for all A small enough and uniformly with respect to
ze{Rez<coh,lz| > c3h}:

(3.34) (P-2) "t =E(z) -2z M (2 + O(h2)) = E(z) -z 'nb + O(h™2).
Using in addition (3.31), there exists K > 0 such that for all for 4 small enough and z€ { Rez <
coh, |z| > esh}:

I(Py-2) | <Ch™t + |zt + O(h°2) < Kh7'.

Lastly, take (3 € (c3,¢2). According to (3.33), the spectral Riesz projector
1
3.35 P | - p)d
(339 T S Sy TR
is well defined for every h > 0 small enough and its rank is the number of eigenvalues of P, in

{Rez< Cgh}, counted with algebraic multiplicity. Moreover, Equation (3.34) implies that for
every h > (0 small enough,

(3.36) 7P =72+ O(h?)
and thus, dim Ran(n}) = dim Ran(75) = mg (see (3.3)). Therefore, for every h small enough,

o(Py)n { Rez< Cgh/} is composed of mg eigenvalues, counted with algebraic multiplicity, which
are exponentially small. This concludes the proof of Theorem 4. O

4. PROOF OF THEOREM 1

4.1. Rough asymptotic estimates on u! , and on uf’ h We assume from now on, without
loss of generality, that the principal eigenmodes uf, of P, and uf h of P} defined in Proposition 3

are normalized in L?(€). We derive in the following proposition a priori estimates on these
eigenmodes which will be used in Section 4.2 to prove Theorem 1.

Proposition 18. Assume (Ortho) and (One-Well). For any n € (0,mingq f - f(x0)), let

Xy + = [0,1] be a smooth function such that x, =1 on Cun(n) (see (2.7)) and x,, = 0 on
QN Coin(n/2). Set

Up=""7~ -
||Xn€ h||L2(Q)
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Then, there exists ¢ >0 such that for all h small enough, uih and uf; satisfy

(4.1) up )y = Uy + O(e™#) and ufh =u, + O(h%) in L*(Q),
as well as
= uP ek . = o uPieh .
(4.2) fQ\CW"(n) Lh =0(e™%) and /Q\C”“”(”) Lh =0(e™n).
p 1 e 1
Jo uype h fo Uy pe h

Proof. Assume (Ortho). According to Theorem 4, P, admits precisely mg eigenvalues in
{Re z < coh}, where we recall that mg is the number of local minima of f in Q (see (3.2)), and
these mq eigenvalues are exponentially small. When in addition (One-Well) holds, Uy = {z}
and then mg = 1. Thus, A{’, is the unique eigenvalue of P, in {Rez < cyh} and m) (see (3.35))

has rank 1. Notice that the same holds for 71'}]; "

In what follows, we assume (Ortho) and (One-Well).

Step 1. Proof of (4.1). Laplace’s method provides (since x, = 1 in a neighborhood of
which is, according to (One-Well), the unique global minimum point of f in §2):
_f(zq)

(4.3) Ioe £ ey = (mh)? (det Hess f(x0)) " e 521+ 0(h)).

Since P, = Agp +2€-Vyy = (“hdiv+Vf-)Vy, +2€- Vg, with Vi, = he‘%Veg, the function
Pyu, is supported in supp Vx,, where f — f(x¢) is larger than mingq f - f(z0) -1 > 0. Hence,
following the reasoning used to prove (3.9), there exists ¢ > 0 such that, for every h > 0 small
enough:

(4.4) | Pouy | r2) < e

Since moreover Py =2Re (P,) - Py, (4.4) and (3.11) imply that, in the limit A - 0:
. 3

(4.5) | B un L2y = O(h2).

On the other hand, since u, € D(F;), following the argument leading to (3.22), the relation
(3.35) and the resolvent estimate of Theorem 4 imply the existence of C' > 0 such that, when
h — 0,

(4.6) [(1 =73 )uglz2go) < Ch™ [ Paug | r2o).
Consequently, using also (4.4), there exists ¢ > 0 such that, for every h > 0 small enough:
mFu, =u, + O(e ®) in L*(Q).
In particular, |7fu,|z2¢0) =1+ O(e™#) for all h small enough and, since w} has rank 1, u, > 0,
and ufh,uf’; >0 in €2, it holds:

P P
Ty, Uy Ty, Up

(4.7) up, =+ =u,+0(e7#) in L*(Q).

Im uglr2y 1+ 0(e™)
Similarly, using the resolvent estimate of Theorem 4 for P together with (4.5), we deduce that,
when h - 0, 777y, = u, + O(hz) and

Tp YUn T Uy
I7r unlize) 1+ O(hz)
This ends the proof of (4.1).

(4.8) uly =+ —u, +O(h2) in L*(Q).
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Step 2. Proof of (4.2). According to (4.1), we have:

2

-7t
x _f _f Ly L Xn€ * Ly L
[ufhe R =/“n€ n+O0(h?)|e h||L2(Q)=/Q”f—+O(h2)|6 " 2.
? ! Ixne™ " 220

Hence, using Laplace’s method as we did to get (4.3), we have when h — 0:

fﬂuf;e_% = (wh)4 (det Hess f(x0)) " e 252 (1+0O(h})).

Thus, since f - f(zo) > mingg f - f(x0) =1 >0 on O\ Cpin(n), there exists ¢ > 0 such that, for
every h small enough:

JoG., ( )“f;€_£ JoG., (n) Xn el e _%HL 2(Q\Crin(n)) c
min l* 77 — - min\7] — - + O(hé) m:n n — 0(673),
.[Q Uy € " Ixne™# | 2 fQ Uy p€ h [ﬂ uy h -
which proves (4.2) for uf’;. The proof for u?, is analogous. O

4.2. Proof of Theorem 1. Assume (Ortho) and (One-Well). We recall that a quasi-
stationary distribution for the process (1.1) in 2 is a probability measure p;, on €2 such that,
for any time ¢ > 0 and any Borel set Ac Q, P, (X; € A|t < Tgc) = up(A). Let us now introduce
the following probability distribution on €2 (see Proposition 3):

p* L
K

vp(dz) = dx.

Jouwi he_ﬁ
Using the smoothness of the killed semigroup P, f(z) = E,[ f(X})licr,. | (Summarized e.g. in [39,
Section 2.1]) and similar computations as those used in the proof of [33, Proposition 2.2], one
deduces that vy, is a quasi-stationary distribution® for the process (1.1) in € and that, when X,
is initially distributed according to the measure v, it holds:

P
/\1,h

(4.9) Tae ~ E(AF ), where we recall that A TR
and where E(\F ) stands for the exponential law of parameter /\

Step 1. Proof of (1.17). Note that the first statement of (1.17) has already been proved at
the very beginning of the proof of Proposition 18. Moreover, according to (4.9), it holds,

!

1 Jo Ep[roc]ul 7w
(4.10) T=]Eyh[mc]=fEm[TQc]Vh(dx)- — 1?
)‘1,h Q fQu1h67E

4Even if the uniqueness of v, is not required here, we mention that for elliptic processes with smooth
coefficients and when 2 is a smooth bounded domain, it is well-known that the quasi-stationary distribution in
) is unique, see e.g. [23, 7, 50, 24].
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Take now g € (0, mingq f- (o)) and recall that Cin(10) = Crinn{f < mingg f-n0} (see (2.7)).
One then has:

* _f(z) * _f(z)
1 fQ\Emm(nO)Ex[mc]uih(x)e nodx fémm(m)Ex[mc]uih(x)e o dx
(4.11) — = - 1
>\1,h fQ uf;e’ﬁ fQ ui;e*g
. _f
> JE intno) BelTocJuiy e

f 0 uﬁ;e‘ﬁ
Moreover, Theorem 3 with K = Cpn(10) (c A({xo})) implies that for some ¢ > 0 and every
h > 0 small enough:

* f * f
S Belracdaly e o by eh
Cmin R 17h Cmin 17h _c
(o) f = 2 Cuuin(m) % By [r0:](1+O(e %)),

fo u{f;e h Ja Uf,;zefh

Then, using in addition (4.2) and taking ¢ > 0 smaller if necessary, we have when h — 0:

« L
h

! > /émin(no)E”f[TQC]uih e
)‘1L:h ) Ja ui;e‘£
which leads, applying again Theorem 3, to
limsup hlnAf, < -lim hInE, [7o] = —2(1%3211]" - f(x0)).

h—0 h—0

(4.12) = Eq [0 ]J(1+O(e7)),

Finally, the fact that

hrfgmfhln)fh > —2(m1nf f(x0))

is a direct consequence Proposition 12 together with the inequality )\fh Sup,.q Ex[me] > 1.

This standard inequality can be derived as follows. Define the smooth function ¢ : z € Q ~
-\ By [Tqe ], where vy, is the principal eigenvalue of Ly, satisfying vy, > 0 in Q and supg vy, = 1.
It then holds Lng = \F h(vh - 1) < 0. Hence, according to the weak maximum principle [19,

Theorem 1 in Section 6.4.1], we have g <0 on Q and thus the announced inequality.

Step 2. Proof of (1.15). Injecting the equality in (4.12) into the relation (4.11) leads to the
existence of ¢ > 0 such that, for every h >0 small enough,

. (@)
1 . E.[mqcJul’ () e h dx .
(4.13) v _ oGt Lh +Eyy [70:](1+0(e%)).
Lh

Jouise F
Moreover, it follows from (1.17), Proposition 12, and (4.2) that for some ¢ > 0 and every h >0

small enough,

* _f(=)
fﬂ\amin(no) Eo[7o] Ufh(ﬂf) e nodr
£

Jouipe
Plugging this estimate into (4.13) leads to 1+ O(e™#) = AL p By [Toe ] (1 + O(e#)) when h — 0.
Together with Theorem 3, this proves (1.15).

>a

L
)‘1,h <e

Y
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Step 3. Proof of (1.16). Set my, = en(mnoa/~f(@0)=3)  Consider a compact subset K of

A({zo}) and 7. € (no, minga f - f(20)), so that Chin(7:) € Cin(n0) and Cpin(n.) ¢ A({x0})
(see (2.8)). We claim that, for all x € K, y € Cpin(n.), and all u > 0:

(4.14) P.[7e > u] <Py[10e > u—2my,] + Ry and P, [7qe > u] > Py[Te > u+my] + Ry,

where, for j € {1,2}, R; is independent of u > 0 and of z,y, and satisfies, for some ¢ > 0 and
every h small enough: |R;| <e .

To prove (4.14), we first consider the case when K = Cpiy (7, ). Using (2.13) and the Markov
inequality, there exists ¢ > 0 such that for every h small enough:

c

(4.15) sup PI[TCfnm(ﬂo) >mp|<er.
$€6min(n*)

Recall that for 2 € Cpin(n0), p denotes the hitting distribution on dCin(10) for the process
(1.1) when Xo = 2’ (see (2.18)) and |l — ul' | < e”% uniformly in ',y € Crin(n.). We then
have for all w' >0, v >0, and /%’ € Cpin(7, ), using the strong Markov property,

Px/ [TQC > u'] > Px/ [TQC > 'U/ + TCrCnin(no)] = f PZ [TQC > 'U/][LZ/(dZ)

> [ Plroe> il (d2) - Il - |

=Py [7ae > u' + Tce (o)) = b = il

min

(4.16) > Py[rae > + 0]~ By[rce, > 0]~ 1 — .

Let u,v > 0 and z,y € Cpin(n.). If u—my <0, P[rge > u] <1 = Py[1oc > u—my]. In

addition, using (4.15) and (4.16) with (z',y’,u’,v) = (x,y,u,mh)ﬁnd also with (x',y",u/,v) =
(y,z,u—mp,myp) (when u—my > 0), we deduce that for all z,y € Cyin(n.) and all u > 0:

(4.17) P, [1qe > u] <Py[1qe > u—myp] + 71 and Py[7qe > u] > Py[1ae > u+myp] + 12,

where, for j € {1,2}, r; is independent of u > 0 and x,y € Cpin(n.), and satisfies |r;| < e™# for
some ¢ > 0 independent of h. Notice that (4.17) implies (4.14) when K = Cyyn(7.). Let us
mention that the proof of (4.17) is inspired by the one of [22, Lemma 3].

Let us now prove (4.14) for an arbitrary K c A({zo}). Take such a K and consider T >0
as in the proof of Theorem 3. We have for every x € K and y € Cyin(7.), using the Markov
property, (2.12), (2.21), and the second inequality in (4.17),

P.[mqe > u] 2 Pu[mqe > u+ Tk

I:TQc>u+TK, sup | t_¢t($)|35:|
tE[OTK]

[ TQC >U 1supts[0 Tk] |Xt_@t($)|<5]
( [Tﬂc >u+my]+12)(1+0(e7h)).

This proves the second inequality in (4.14). Now let A > 0 be small enough so that m; > Tk.
Then, using the Markov property, (2.12), (2.21), and the first inequality in (4.17), it holds for
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all w' >0, z € K, and y € Cpn(n,):

]P)x[TQc >’ +mh] < IP)I[TQC > U,+TK]

= Px[mc >u'+ Tk, sup |X;—i(x)| < 5]
te[0,T% ]

+ ]P):BI:TQC >u' + Ty, sup |X;—p(x)|> 5]
tE[O,TK]

= IP’I[TQC >u'+ Tk, sup |X;—@i(x)| < 6] +0(en)
te[0, Tk |

=E, [PXTK [TQC > ul] 1suPte[0,TK] \Xt—%(x)\ﬁfs] + 0(67%)
< (Py[mc >u' —my] + 7’1)(1 +0(e7m)) + O(eh).
Pick w > 0. Then, the first inequality in (4.14) is a consequence of the previous inequality

when u —2my, > 0 (use it with «/ = u —my > 0) and of the fact that when u - 2m; < 0,
P,[mqe > u] <1 =P,[1qc > u—2my]. This concludes the proof of (4.14).

We are now in position to prove Equation (1.16). According to (4.9), it holds for all s € R,
(4.18) P, [1ae > 5] = e Mamax(s0),
and, according to (4.2), there exists ¢ > 0 such that for all » small enough and for all s € R:

JoPylrae > s]ul h(y) e hf(y)dy
7

fQ ul,he h

* _1
— fémin(ﬁ*]):EDy[TQC > S] Uih(y) e hf(y)dy
B i

Jouie

Moreover, from (1.17), there exists ¢ > 0 such that for every h small enough:

IED [TQC > 8]

(4.19) +0(e™h).

_c
M my, <eh.

Consider ¢ > 0 and = € K ¢ A({zo}). Taking s = t/A{, +my >0 in (4.18) and using (4.14) and
(4.19), there exists hg > 0 which does not depend on ¢ > 0 and on x € K such that, taking ¢ >0
smaller if necessary (but not depending on ¢ >0 and on z € K), it holds for every h € (0, hy]:

Po[7ae > t/A] ;] 2 e MY ™) _ o= and then Po[7qe > t/A[ ] — €7 2 =Af ymy - ek > —2eh.

Similarly, taking now s =t/ )xf , = 2my, and hg > 0 smaller if necessary (but not depending on
t>0 and on x € K), it holds for every h e (0, h]:

L £ L
]P)x[TQc > t/)‘%h] —et< 6_>‘1L,h max(t/)\f’h—2mh,0) + 6_% _et< 3/\17}17:1}1 +en ift> 2/\Lhmh
’ t+en if t <200, my,
<deh .
Hence, for every compact K c A({x¢}), there exists ¢ > 0 and hg > 0 such that for all h € (0, ho|:

sup [Py[7qe > t/A,] —e7'| < e,
zeK teR*

which completes the proof of (1.16).
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5. PROOF OF THEOREM 2

In this last section, we prove Theorem 2. More precisely, we prove the following equivalent
result on the principal eigenvalue )\f , of Py (see (1.14) and the lines below, and Proposition 3).

Theorem 5. Assume (Ortho), (One-Well), (Div-free), and (Normal). Then, the principal
ergenvalue /\ﬁh of Py satisfies, when h — 0:

)‘ih = (lif h% + Iig h+ O(h%)) e‘%(miﬂan f—f(ﬂm))7

where kP = 2k and kY = 2L (see (1.19)), and the error term O(h?) is actually of order O(h?)
when kT =0 or kY =0, i.e. when Vf(2) =0 for every z € OCp, NI or Vf(2) # 0 for every
Z € 8Cmm N oS1.

5.1. General strategy. In order to prove Theorem 5, we want to construct, for every h small
enough, a very accurate approximation f; , of the eigenmode uf’, of P,. The next proposition
gives conditions ensuring that such an approximation is sufficiently accurate.

Proposition 19. Assume (Ortho) and (One-Well). Assume moreover that, for all h small
enough, there exists a L*(€2)-normalized function f 5, € D(Py) such that the following properties
hold:

(E1) (Prufin, fin)r2) = (/ifh% + kD h+ O(h%)) ¢~ (minag f=f(0)

(E2) Hthlvh”%Q(Q) = O(h*) (Pufin: fin) 2 ()

E3 Py 200 = (KPRE O(h2) + kPR O(R)) e # (minoa /~f(20)
hTLRlT2(0) 1 2

Then, the asymptotic equivalent of Theorem 5 holds, i.e.
Ay = (K017 + K5 h+ O(h1)) erminae S=7G@o) yhen b - 0,
where the error term O(h3) is actually of order O(h2) when k¥ =0 or kE = 0.

Proof. According to the argument leading to (4.6) and to (E1), (E2), we have, for some C,¢ >0
and every h >0 small enough:
(51) H(l - W}I;)th”LQ(Q) < Ch71 ||th1,hHL2(ﬂ) and thus W]f)th = fl,h + 0(67%) in LZ(Q)

Since Pyl fiy = AL, wlfy 4, it follows from the second estimate of (5.1) that

<Ph7rlff17h,’/'(}1:f17h>[/2(ﬂ)

B

= (1+ O(e™ M) [ (Pufo s fun) 2oy + (Pu(ml, = D i) paay + (Parh fo, (ol = Dfia) 2oy |
Moreover (5.1), " = O(1) (see (3.36)), and the Cauchy-Schwarz inequality imply:
(Pt fun, (7, = Dfun) 2y = [ Pufun, (= Dfin) 2@yl = 1Pufinl72) O

P _
Alp =

and
(P, = Dfens fund 2] = (7 = Dfin, Pifin) izl = 1 Pafinl ) 1By funl 2 O(RT).
Using in addition (E1), (E2), and (E3), it follows that
)\fh = (1 + 0(67%))(th1,h7fl,h)LQ(Q)(l + O(he)) = (thl,ha fl,h)L2(Q)(1 + O(he)),
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where ¢ = 3 when £ = 0 (and thus I’ # 0), £ = 1 when x = 0 (and thus x} # 0), and ¢ = 3
when x'k% # 0. This leads to the statement of Proposition 19. U

5.2. Proof of Theorem 5. From now on, we assume (Ortho), (One-Well), (Div-free), and
(Normal). According to Proposition 19, it is sufficient to construct a quasi-mode f; 5, satisfying
(E1), (E2), and (E3) (see Proposition 22 below). The construction below is strongly inspired
by to the ones made in [35, 34].

5.2.1. System of coordinates near the points of OCy, N 0. Recall that OC i, N0 + @ (see
(One-Well)) and that 9C,,;, N OS2 has a finite cardinality (see (1.6)). Take z € C,;, N ON2.
There exists a neighborhood V, of z in {2 and a coordinate system

(5.2) peV.v=(,v9) = (v1,...,04.1,v4) e R xR_

such that

(5.3) v(2)=0, {peV,,v4(p)<0}=QnV,, {peV,,v4(p)=0}=00nV,,

and 0 0 0
Vi,jE{l,...,d}, gz<8_1}z(2)’8_’0](2)):(51 and a_vd(z):nﬂ(z)a

where g, is the metric tensor in the new coordinates. We denote by G = (G';)1<;,j<q its matrix, by
G™1 = (GY)14 j<q its inverse, and by (ey,...,eq) = (4(1,0,...,0),...,%(0,...,0,1)) the canonical
basis of R so that, defining J := Jacv~!, we have

(54) G = tJJ, G(O) = (5ZJ) ie. tJ(O) = J_l(O) s and nQ(z) = J(O)ed .

In addition, defining f := fov~! the function f in the new coordinates:

Case 1, when V f(z) # 0: According for example to [20, Section 3.4}, the v-coordinates
can be chosen such that

(5.5) F0,va) = F(2) + (2o + 50 Hess flia,mop (000,

where we recall that p(z) = 0,,f(2) > 0 and that, thanks to (Normal), 0 is a non
degenerate (global) minimum of fl,,o-

Case 2, when Vf(2) = 0: We have V(f +|u(2)[v2)(0) = 0 and, according to (5.4);
(5.6) Hess(f + |1(2)[v3)(0) = 'J(0)( Hess f(2) + 2|u(2)|na(2)na(2)*) J(0),

where we recall that, from (Normal), ng(z) is an eigenvector associated with the
negative eigenvalue p(z) of Hess f(z) + ‘L(z). Note also that the matrix in (5.6) is
positive definite according to Lemma 1.

In particular, up to choosing V, smaller, one can assume that when V f(z) # 0,

(5.7) argmin, ) (f(v) —2u(2)vq) = {0},
and when V f(2) =0,
(53) argmiin, -, (F(0) + [a(=)13) = 0},

For 4; > 0 and d5 > 0 small enough, one finally defines the following neighborhood of z in 02,
V2 (2) = {peV.,va(p) =0 and |v'(p)| < 62} (see (5.2)-(5.3)),
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and the following neighborhood of z in Q,
(5.9) VE2(2) = {pe V., |v'(p)| < 6> and vy(p) € [-2,,0]}.

The set defined in (5.9) is a cylinder centered at z in the v-coordinates. Up to choosing d§; > 0
and d > 0 smaller, we can assume the cylinders V%’(;?(z), 2 € OC i, N 0N, pairwise disjoint.
Since f(z) =mingg f > f(xg), we can also assume that

(5.10) min f> f(xzo) (so in particular xg ¢ V%"s?(z)),

Ve ()
and, in view of (1.5),
(5.11) argmin, s, . f={z}.
Vo (2)

The parameter d2 > 0 is now kept fixed. Finally, according to (5.11) and up to choosing d§; > 0
smaller, there exists r > 0 such that:

(5.12) {p eV, [v'(p)| = 62 and vy(p) € [—251,0]} c{f>f(z)+r}.

We end this section by defining locally near each z € 0C.;, n 0€2 a function ¢, in the
above v-coordinates, and used in the next section to define the quasi-mode f;; near z. Let
x € C~(R~,[0,1]) be a cut-off function such that

(5.13) supp x ¢ [-91,0] and y =1 on [—%,0].

For every z € 0C;, N 092, the function ¢, is defined as follows (see (5.2), (5.3), and (5.9)):
Case 1, when Vf(z) #0:

S x(t)err@tdt

5.14 Vo = (v, 0g) € v(VE2(2)), 0, (v,vy) = ,

where we recall that p(z) = 0,,f(z) >0, see (5.5).
Case 2, when Vf(z) =0:
Juax(B)e TN dy

5.15 Vo= (v, 09) € v(VE2(2)), 0, (v, vq) = - ,
( ) ( a) ( Q ()) = ( a) f_026lx(t)efg\u(z)lt2dt

where we recall that p(z) is the negative eigenvalue of Hess f(z) +fL(z), see (5.6).

In both cases:
{ 0, € C™® (U(V%’(SQ(Z)), [0, 1]) only depends on vy, ¢.(v’,0) =0, and

(5.16)
V(v vq) € U(V%’(SQ(Z)), ©.(v',vg) =1 when vy € [-261,—01].

5.2.2. Definition of the quasi-mode f;,. We now define f; j,, using the v-coordinates and the
above @, z € C ., N OSN). Before, we recall that we defined in (5.9) pairwise disjoint cylinders
around the z € 0C i, N0 which satisfy (5.10), (5.11), and (5.12). On the other hand, for every
p € OCpin N 0 p € Q and thus V f(p) # 0, which implies that {f < f(p)} n B(p,r) is connected
for every r > 0 small enough and thus included in C,,.

These considerations imply the existence of the following subsets Ciqy and C,y, of 2.
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Proposition 20. Assume (Ortho), (One-Well), (Div-free), and (Normal). Then, there
exist two C* connected open sets Cioy and Cyy, of ) satisfying the following properties:

(1) It holds Cpyin c Cup U and argming f = {zo}.
(2) The set Cy, is a neighborhood in 0 of each V%";Q(z), 2 € OCpin N ON2.
(8) It holds Cyoy C C.p and the strip Gup N Clow satisfies

(5.17)  3e>0, f>f(xo) +c on Cyp~Crow  and Cyp N Coy = eacu an%’(SQ(z) U O,

where the subset O of Q is such that:

> mi .
3c>0, f_n(%%lnf+c on O

002
(e} .
""" aijin c {f = mingo f}
Clow
.......... B ‘ "-~-..,... 5 ,6
N R Chin =02n {f < mingg f} {\\Vﬁl 2 (22)
na(z) 1l .170 Ciow . Z9

Voo (z)

Cuwp

FIGURE 5.1. Schematic representation of Cioy, Cyp, and O (see Proposition 20).
On the figure, 0C i N 0N = {21, 29} with Vf(z1) =0 and |V f(z2)| #0.

We refer to Figure 5.1 for a schematic representation of Cioy, Cyp, and O. Notice that
Proposition 20 implies

(5.18) argming [ =argming_  f={zo}.
Using the above sets C,, and Cioy, we define a function ¢, : Q) - [0,1] as follows.
(i) For every z € 0C,yin N OS2, ¢1, is defined on the cylinder V%’(Sz(z) (see (5.9)) by
(5.19) Vpe V%’(SQ(Z), H1.0(p) = p.(v(p)), see (5.14) and (5.15).

(ii) From (5.16), (5.17), and the fact that Ci,, c C,p (see Proposition 20), the above
function ¢, 5, satisfying (5.19) can be extended to {2 so that

(5.20) Gpr1n=00n QN Cyp, @14 =10n Ciy, and ¢y € C=(Q,[0,1]).
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Moreover, in view of (5.14), (5.15), and (5.17), ¢1 4