Introduction 00000000	Spectral Analysis 00000	Around Hörmander condition

Hypoelliptic random walk

L. Michel (joint work with G. Lebeau)

Laboratoire J.-A. Dieudonné Université de Nice

Avignon, December 03, 2013

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction 00000000	Spectral Analysis 00000	Convergence to stationnary measure	Around Hörmander condition
Plan			

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction

- General framework
- Our results

2 Spectral Analysis

- Easy part
- Compactness lemma

3 Convergence to stationnary measure

- Spectral decomposition
- Nash inequality

4 Around Hörmander condition

- A few Algebra
- Rough bounds on eigenfunctions
- Proof of the fondamental Lemma

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
00000000	00000	00000	0000000000000

Introduction

- General framework
- Our results

2 Spectral Analysis

- Easy part
- Compactness lemma

3 Convergence to stationnary measure

- Spectral decomposition
- Nash inequality

4 Around Hörmander condition

- A few Algebra
- Rough bounds on eigenfunctions
- Proof of the fondamental Lemma

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
0000000			
General framework			

Semiclassical random walk

Let (M, g) be a smooth connected compact manifold and $\mathcal{X} = \{X_1, \ldots, X_p\}$ be a family of smooth vector fields on M. In all the following h > 0 will denote a small parameter. A natural random walk associated to \mathcal{X} is the following. Assume the walk stands at $m_n \in M$ at time n. Then we construct m_{n+1} as follows:

• choose a vector field at random in \mathcal{X} (i.e. choose a number k at random between 1 and p.)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• pick up the point m_{n+1} at random on the curve $e^{tX_k}(m_n)$, $t \in [-h, h]$.

The Markov operator T_h associated to this walk can be written as $T_h = \frac{1}{p} \sum_{j=1}^{p} T_{j,h}$ where

$$T_{j,h}f(x) = \frac{1}{2h} \int_{-h}^{h} f(e^{tX_j}(x))dt$$

for any continous function f.

- This operator acts continuously on C⁰(M) and hence, its transpose T^t_h acts on Borel measure by duality.
- In the following, we will denote by $t_h(x, dy)$ the distribution kernel of T_h .

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Introduction 0000000	Spectral Analysis 00000	Convergence to stationnary measure	Around Hörmander condition
General framework			
Assumpti	ions on ${\mathcal X}$		

Assume that M is endowed with a probability measure μ . For any $x \in M$, let \mathcal{G}_x be the Lie algebra generated by \mathcal{X} at point x.

Hypotheses on $\ensuremath{\mathcal{X}}$

• the vector fields X_i are divergence free with respect to μ :

$$\int_M X_j(f) d\mu = 0, \ \forall f \in C^1(M).$$

 $\bullet\,$ The family ${\cal X}$ enjoys the Hörmander condition

$$\mathcal{G}_x = T_x M, \ \forall x \in M.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Introduction 00000000	Spectral Analysis 00000	Convergence to stationnary measure	Around Hörmander condition
General framework			
General p	properties		

Under the above assumptions it is easy to prove the following properties.

- T_h is markovian: $T_h(1) = 1$.
- T_h is reversible for μ , i.e.

$$\int_{\mathcal{M}} \mathcal{T}_h(f) \, g d\mu = \int_{\mathcal{M}} f \, \mathcal{T}_h(g) d\mu, \ \forall f,g \in C^0(\mathcal{M}).$$

In particular μ is stationnary for T_h : $T_h^t(\mu) = \mu$.

• For any $p \in [1,\infty]$, \mathcal{T}_h acts continuously on $L^p(M)$ and

 $\|T_h\|_{L^p\to L^p}=1$

 T_h is self-adjoint on L²(M, dµ) and it spectrum is contained in [−1, 1].

Introduction 00000000	Spectral Analysis 00000	Convergence to stationnary measure	Around Hörmander condition
General framework			
Goals			

Let us denote $t_h^n(x, dy)$ the kernel of the iterated operator T_h^n , $n \in \mathbb{N}$. Our aim is

- Describe the spectral theory of T_h .
- Study the convergence of $t_h^n(x, dy)$ towards the stationnary distribution $d\mu$, when $\rightarrow \infty$.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
00000000			
General framework			

The reference operator

Let $\mathcal{H}^1(\mathcal{X})$ be the Hilbert space

$$\mathcal{H}^1(\mathcal{X}) = \{ u \in L^2(M), \ \forall j = 1, \dots, p, \ X_j u \in L^2(M) \}$$

and

$$\mathcal{E}(u) = \frac{1}{6} \int_M \sum_{k=1}^p |X_k u|^2 d\mu$$

be the associated Dirichlet form. Let $L = -\frac{1}{6p} \sum_{k} X_{k}^{2}$ be the positive Laplacian associated to the Dirichlet form $\mathcal{E}(u)$.

Theorem [Hörmander-Chow]

The following holds true

- there exists s > 0 such that $\mathcal{H}^1(\mathcal{X}) \subset H^s(M)$.
- the operator L has compact resolvant
- Denoting (ν_k) the increasing sequence of eigenvalues and m_k the associated multiplicities, we have $\nu_0 = 0$ and $m_0 = 1$.

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
00000000			
Our results			

Our first result is the following

Theorem [Lebeau-Michel]

There exists $h_0 > 0$, $\delta_1, \delta_2 > 0$, A > 0, and constants $C_i > 0$ such that for any $h \in]0, h_0]$, the following holds true.

 Spec(T_h) ⊂ [−1 + δ₁, 1], 1 is a simple eigenvalue of T_h, and Spec(T_h) ∩ [1 − δ₂, 1] is discrete. For any 0 ≤ λ ≤ δ₂h⁻²,

$$\sharp \sigma(T_h) \cap [1 - h^2 \lambda, 1] \leq C_1 (1 + \lambda)^A.$$

 for any R > 0 and ε > 0 small enough, there exists h₁ > 0 such that for all h ∈]0, h₁]

$${\it Spec}(rac{1-T_h}{h^2})\cap]0,R]\subset \cup_{j\geq 1}[
u_j-arepsilon,
u_j+arepsilon]$$

and the number of eigenvalues of $\frac{1-T_h}{h^2}$ with multiplicities, in the interval $[\nu_j - \varepsilon, \nu_j + \varepsilon]$, is equal to m_j .

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
0000000			
Our results			

Given μ, ν two probabilities measure on M, the total variation distance between ν and μ is defined by

$$\|\nu - \mu\|_{TV} = \sup_{A} |\nu(A) - \mu(A)|$$

where the sup is over all Borel sets A.

Theorem [Lebeau-Michel]

The following estimate holds true for all integer n

$$\sup_{x\in M} \|t_h^n(x,dy) - d\mu(y)\|_{TV} \leq C_4 e^{-ng(h)}$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

where $g(h) = dist(1, Spect(T_h) \setminus \{1\})$.

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition

Introduction

- General framework
- Our results

2 Spectral Analysis

- Easy part
- Compactness lemma

3 Convergence to stationnary measure

- Spectral decomposition
- Nash inequality

4 Around Hörmander condition

- A few Algebra
- Rough bounds on eigenfunctions
- Proof of the fondamental Lemma

Spectral Analysis
 Convergence to stationnary measure
 Around Hörmander condition

 sy part
 Lemma 1

 Let
$$f \in C^4(M)$$
, then
 $(1 - T_h)f(x) = h^2 L f(x) + \mathcal{O}(h^4 ||f||_{C^4(M)})$

 with $L = -\frac{1}{6} \sum_j X_j^2$.

Proof. Let $f \in C^{4}(M)$, then we get by Taylor expansion

$$T_{j,h}f(x) = \frac{1}{2h} \int_{-h}^{h} f(e^{tX_j}x)dt$$

= $\frac{1}{2h} \int_{-h}^{h} \left(f(x) + tX_jf(x) + \frac{t^2}{2}X_j^2f(x) + \frac{t^3}{6}X_j^3f(x) + t^4r(x,t)\right)dt$

with $\|r(x,t)\|_{L^\infty} \leq C \|f\|_{C^4(M)}$. By parity argument, we get

$$T_{j,h}f(x) = f(x) + \frac{h^2}{6}X_j^2f(x) + \mathcal{O}(h^4||f||_{C^4(M)}).$$

We conclude by summing over $j=1,\ldots,p_{\text{COD}}$ and the second se

Let $\lambda \in Spec(L)$ and let f be such that $Lf = \lambda f$. By Hörmander Theorem, f is C^{∞} and it follows from the preceding lemma that

 $T_h f = (1 - h^2 \lambda) f + \mathcal{O}(h^4).$

Using mini-max principle this shows that for any $k \in \mathbb{N}$, there exists $C, h_0 > 0$ s.t., for all $h \in]0, h_0]$

$$\sharp Spec(\frac{1-T_h}{h^2}) \cap [\nu_j - Ch^2, \nu_j + Ch^2] \geq m_j.$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Introduction 00000000	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
Easy part			
Reverse	inequality		

Let R > 0 be fixed and consider a family $(\lambda_h, u_h) \in [0, R] \times L^2(\Omega)$ such that $||u_h||_{L^2} = 1$ and

$$T_h u_h = (1 - h^2 \lambda_h) u_h$$

We want to show that λ_h converges to an eigenvalue of L when $h \rightarrow 0$. For this purpose, we need some compactness on $(u_h)_{h \in]0, h_0]}$.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction 00000000	Spectral Analysis ○○○●○	Convergence to stationnary measure	Around Hörmander condition		
Compactness lemr	na				
The fondamental Lemma					

Let us introduce the Dirichlet form associated to T_h

 $\mathcal{E}_h(u) = h^{-2} \langle (1 - T_h)u, u \rangle_{L^2(M, d\mu)}$

The most difficult part of our analysis is contained in the following lemma (proof postponed to the end of the talk).

Lemma 2

There exists $C, h_0 > 0$ such that the following holds true for all $h \in]0, h_0]$: for all $u \in L^2(M, d\mu)$ such that

 $\|u\|_{L^2}^2 + \mathcal{E}_h(u) \leq 1$

there exists $v_h \in \mathcal{H}^1(\mathcal{X})$ and $w_h \in L^2$ such that

 $u = v_h + w_h, \quad \forall j, \ \|X_j v_h\|_{L^2} \le C, \quad \|w_h\|_{L^2} \le Ch$

イロト イポト イヨト イヨト

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
	0000		
Compactness lemma			

Proof of reverse inequality

Let R > 0 be fixed and consider a family $(\lambda_h, u_h) \in [0, R] \times L^2(M)$ such that $||u_h||_{L^2} = 1$ and

$$|\Delta|_h u_h = \lambda_h u_h$$
 with $|\Delta|_h := \frac{1 - T_h}{h^2}$

- Fondamental Lemma $\implies u_h = v_h + w_h$ with $||w_h||_{L^2} = O(h)$ and v_h bounded in $\mathcal{H}^1(\mathcal{X})$.
- We can assume $v_h \rightarrow v$ in $\mathcal{H}^1(\mathcal{X})$ and $\lambda_h \rightarrow \lambda$. Hence $u_h \rightarrow v$ in L^2 .
- Lemma 1 implies that for any $f \in C^{\infty}(M)$,

$$\lambda \langle f, v \rangle = \lim_{h \to 0} \langle f, \lambda_h u_h \rangle = \lim_{h \to 0} \langle |\Delta_h| (f), u_h \rangle$$
$$= \lim_{h \to 0} \langle Lf + \mathcal{O}(h^2), u_h \rangle = \langle Lf, v \rangle = \langle f, Lv \rangle$$

Hence, $(L - \lambda)v = 0$ and since $v \in \mathcal{H}^1(\mathcal{X})$, then $\lambda \in Spec(L)$.

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
0000000	00000	00000	0000000000000

イロト 不得 トイヨト イヨト

3

Introduction

- General framework
- Our results

2 Spectral Analysis

- Easy part
- Compactness lemma

3 Convergence to stationnary measure

- Spectral decomposition
- Nash inequality

4 Around Hörmander condition

- A few Algebra
- Rough bounds on eigenfunctions
- Proof of the fondamental Lemma

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
		00000	
Spectral decompositio	n		

Proof of total variation estimates

Let Π_0 be the orthogonal projector in $L^2(\Omega)$ on the space of constant functions

$$\Pi_0(u)(x) = \int_M u(y) d\mu(y). \tag{1}$$

Then, by definition

$$2 \sup_{x_0 \in M} \|t_h^n(x_0, dy) - d\mu(y)\|_{TV} = \|T_h^n - \Pi_0\|_{L^{\infty} \to L^{\infty}}.$$
 (2)

Thus, we have to prove that for h > 0 small and any n, one has

$$\|T_h^n - \Pi_0\|_{L^{\infty} \to L^{\infty}} \le C_0 e^{-ng(h)}.$$
(3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since $g(h) = O(h^2)$, we can suppose that $nh^2 >> 1$.

Introduction 00000000	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
Spectral decomposition	on		

Denote $\lambda_{j,h}$ the eigenvalues of T_h and Π_j the associated spectral projector. Fix $\alpha > 0$ small and use the spectral decomposition $T_h - \Pi_0 = T_{h,1} + T_{h,2}$ with

$$T_{h,1} = \sum_{1-\alpha < \lambda_{j,h} < 1} \lambda_{j,h} \Box j$$

and $T_{h,2}$ spectrally localized in $[-1 + \delta_0, 1 - \alpha]$. It is easy to see that

$$||T_h^n - \Pi_0||_{L^2 \to L^2} \le e^{-ng(h)}.$$

Since, we deal with $L^{\infty} \rightarrow L^{\infty}$ norm, we need:

- to control $\|\Pi_j\|_{L^2 \to L^\infty}$
- a bound on the number of eigenvalues in any interval [α_h, 1] with 1 − δ₀ < α_h < 1 − Ch².

A D N A

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
		00000	
Spectral decompositio	n		

Control of small eigenvalues

For this purpose, we show that there exists $C, \delta_0, A, D > 0$ s.t.

• Claim 1: for any $0 \le \lambda \le \delta_0/h^2$,

$$\sharp(Spec(T_h)\cap [1-h^2\lambda,1])\leq C(1+\lambda)^{A/2}.$$

• Claim 2: any eigenfunction $T_h(u) = \lambda u$ with $\lambda \in [1 - \delta_0, 1]$ satisfies the bound

$$||u||_{L^{\infty}} \leq Ch^{-D/2}||u||_{L^{2}}$$

Using these estimates we get easily that there exists D' > 0 s.t.

$$\|T_{2,h}^{n}\|_{L^{\infty} \to L^{\infty}} \leq Ch^{-D'}e^{-n(1-\alpha)} << e^{-ng(h)}$$

since $g(h) \sim h^2$.

Introduction 00000000	Spectral Analysis 00000	Convergence to stationnary measure ○○○●○	Around Hörmander condition		
Nash inequality					
Nash inequality					

Let
$$E_{\alpha} = span(e_{j,h}, 1 - \alpha < \lambda_{j,h} < 1).$$

Lemma 2 (Nash inequality)

There exists $C, B, \alpha > 0$, s.t. any function $u \in E_{\alpha}$ satisfies:

$$\|u\|_{L^{2}}^{2+1/B} \leq Ch^{-2}(\|u\|_{L^{2}}^{2} - \|T_{h}u\|_{L^{2}}^{2} + h^{2}\|u\|_{L^{2}}^{2})\|u\|_{L^{1}}^{1/B}$$

Proof.

 Use the fondamental lemma to show that there exists p > 2, α > 0 such that any function u ∈ E_α satisfies

$$||u||_{L^p}^2 \leq Ch^{-2}(\mathcal{E}_h(u) + h^2||u||_{L^2}^2)$$

Use the bound *E_h(u)* ≤ ⟨(1 − *T_h)u, u*⟩ on *E_α* and interpolate between *L^p* and *L¹* to get the *L²* estimate.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

We want to control the norm $||T_{h,1}^n||_{L^2 \to L^\infty} = ||T_{h,1}^n||_{L^1 \to L^2}$.

• Take $g \in L^2$ s.t. $||g||_{L^1} = 1$ and denote $c_n = ||T_{h,1}^n g||_{L^2}^2$. Thanks to the preceding Lemma:

$$c_n^{1+2B} \leq Ch^{-2}(c_n - c_{n+1} + h^2 c_n)$$

Hence, for $0 \le n \le h^{-2}$, $c_n \le (h^{-2}/(1+n))^{2B}$.

• This permit to show that for some large $n \simeq h^{-2}$,

$$\|T_{h,1}^n\|_{L^2 \to L^\infty} = \|T_{h,1}^n\|_{L^1 \to L^2} = O(1)$$

Combined with $||T_h^p||_{L^2 \to L^2} \leq Ce^{-pg(h)}$, this completes the proof.

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
0000000	00000	00000	0000000000000

Introduction

- General framework
- Our results

2 Spectral Analysis

- Easy part
- Compactness lemma

3 Convergence to stationnary measure

- Spectral decomposition
- Nash inequality

4 Around Hörmander condition

- A few Algebra
- Rough bounds on eigenfunctions
- Proof of the fondamental Lemma

Introduction 00000000	Spectral Analysis 00000	Convergence to stationnary measure	Around Hörmander condition

Let us discuss the proof of two technical results used above where the Hörmander condition enters, namely:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- a priori bound on eigenfunctions
- the fondamental lemma

The proof needs some algebraic material.

Introduction 00000000	Spectral Analysis 00000	Convergence to stationnary measure	Around Hörmander condition
A few Algebra			

The reference Lie algebra

For any family of vector fields Z_1, \ldots, Z_p and any multi-index $\alpha = (\alpha_1, \ldots, \alpha_k) \in \mathbb{N}_p^k$ denote $Z^{\alpha} = [Z_{\alpha_1}, [Z_{\alpha_2}, \ldots, [Z_{\alpha_{k-1}}, Z_{\alpha_k}] \ldots]$

- Let \mathcal{F} denote the free Lie algebra with p generators.
- Let r ∈ N be the smallest integer such that for any x ∈ M, G_x is generated by commutators of length at most r.
- Let N the free up to step t nilpotent Lie algebra generated by
 p elements Y₁,..., Y_p, and let N be the corresponding simply
 connected Lie group. We have the decomposition

$$\mathcal{N} = \mathcal{N}_1 \oplus \ldots \oplus \mathcal{N}_{\mathfrak{r}}$$

where \mathcal{N}_1 is generated by Y_1, \ldots, Y_p and \mathcal{N}_j is spanned by the commutators Y^{α} with $|\alpha| = j$ for $2 \le j \le \mathfrak{r}$.

- denote $Q = \sum_{j=1}^{r} j \dim \mathcal{N}_j$ the homogenous dimension of \mathcal{N} .
- \mathbb{R}_+ acts on \mathcal{N} by $t \cdot (x_1, \ldots, x_t) = (tx_1, t_{\Box}^2 x_2, \ldots, t_{\Xi}^t x_t)$.

- Define the product law *a.b* on \mathcal{N} by exp(a.b) = exp(a)exp(b).
- For $Y \in T_e \mathcal{N} \simeq \mathcal{N}$, we denote by \tilde{Y} the left invariant vector field on \mathcal{N} such that $\tilde{Y}(o_{\mathcal{N}}) = Y$, i.e

$$\tilde{Y}(f)(x) = \frac{d}{ds}(f(x.sY)|_{s=0})$$

$$\tilde{Z}(f)(x) = \frac{d}{ds}(f(sY.x)|_{s=0})$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Here, sY is the usual product of the vector $Y \in \mathcal{N}$ by the scalar $s \in \mathbb{R}$.

Introduction 00000000	Spectral Analysis 00000	Convergence to stationnary measure	Around Hörmander condition
A few Algebra			

The Rothschild-Stein Theorem

Let $x_0 \in M$ be fixed, let $\Omega_0 \subset N$ nbhd of o_N and $V_0 \subset M$ nbhd of x_0 and let

 $\Lambda:\Omega_0\to V_0$

be a submersion. Then the map $W_{\Lambda} : \mathcal{C}^{\infty}(V_0) \to \mathcal{C}^{\infty}(\Omega_0)$ defined by $W_{\Lambda}f = f \circ \Lambda$ is injective.

Theorem [Rothschild-Stein]

There exists a local submersion Λ as above and some vector fields Z_1, \ldots, Z_p on Ω_0 such that for any $\alpha \in \mathcal{A}$ we have

•
$$Z^{\alpha}W_{\Lambda} = W_{\Lambda}X^{\alpha}$$

• $Z^{\alpha} = \tilde{Y}^{\alpha} + R_{\alpha}$ with R_{α} of order less than $|\alpha| - 1$.

Here we say that a vector field Z is of order less that k if for any function f vanishing at order m in 0_N , Zf vanishes at order at least m - k (for homogenous norms).

Using Rothschild-Stein Theorem we are reduced to study the operator \tilde{T}_h defined on $L^2(\mathcal{N})$ by $\tilde{T}_h = \frac{1}{p} \sum_{k=1}^p \tilde{T}_{k,h}$ with

$$\tilde{T}_{k,h}g(u)=\frac{1}{2h}\int_{-h}^{h}g(e^{tZ_{k}}u)dt.$$

In order to simplify we will assume $R_{lpha}=0$ so that

$$\tilde{T}_{k,h}g(u)=\frac{1}{2h}\int_{-h}^{h}g(e^{t\tilde{Y}_{k}}u)dt.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶ ◆○ ◆

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition
			000000000000000000000000000000000000000
Rough bounds on ei	genfunctions		

Let us denote $\tilde{t}_h(x, dy)$ the kernel of T_h . For any $x \in M$ we define a positive measure $S_h^{\epsilon}(x, dy)$ on \mathcal{N} by the formula

$$\forall f \in C^0(\mathcal{N}), \quad \int f(y) S_h^{\epsilon}(x, dy) = h^{-Q} \int_{u \in I_{\epsilon,h}} f(u) \ du$$

where $du = \Pi_{\alpha} du_{\alpha}$ is the left and right invariant Haar measure on ${\cal N}$ and

$$I_{\epsilon,h} = \{ u = \sum_{\alpha \in \mathcal{A}} u_{\alpha} Y^{\alpha}, \quad u_{\alpha} \in] - \epsilon h^{|\alpha|}, \epsilon h^{|\alpha|} [\}.$$

Proposition

There exists $P \in \mathbb{N}$, $\epsilon > 0$, c > 0 and $h_0 > 0$ such that for all $h \in]0, h_0]$, $x \in M$

$$\tilde{t}_h^P(x, dy) = \rho_h(x, dy) + cS_h^\epsilon(x, dy)$$

where $\rho_h(x, dy)$ is a non-negative Borel measure on \mathcal{N} for all $x \in M$.

Proof of the Proposition:

In order to simplify, we assume that $dim(\mathcal{N}) = 3$, p = 2 and $(Y_1, Y_2, Y_3 = [Y_1, Y_2])$ basis of \mathcal{N} .

 We have to find c, e > 0 independent of h small, such that for any non negative continous function f on M, one has

$$T_h^P f(x) \ge c S_h^{\epsilon} f(x)$$

• Recall the Campbell-Hausdorff formula

$$e^{X}e^{Y} = e^{X+Y+\frac{1}{2}[X,Y]+\dots}$$

Using the above formula we get

 $\tilde{T}_h^6 f(x) \ge (\tilde{T}_{1,h}\tilde{T}_{2,h})(\tilde{T}_{1,h}\tilde{T}_{2,h}\tilde{T}_{1,h}\tilde{T}_{2,h})f(x) \ge cS_h^\epsilon f(x)$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition	
			0000000000000	
Rough bounds on eigenfunctions				

Consequence on eigenfunctions

Corollary

There exists $a \in]0,1[$ and $C = C_a > 0$ such that for any $\lambda \in [a,1]$ and any $f \in L^2(M, d\mu)$ we have

$$\tilde{T}_h f = \lambda f \Longrightarrow \|f\|_{L^\infty} \le Ch^{-\frac{Q}{2}} \|f\|_{L^2}$$

Proof.

• Use the Markov property to prove that

$$\|\rho_h(x, dy)\|_{L^\infty \to L^\infty} \leq \gamma < 1$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• Suppose $\tilde{T}_h f = \lambda f$, then $S_h^{\epsilon} f = \lambda^P f - \rho_h(f)$ and then $\|S_h^{\epsilon} f\|_{L^{\infty}} \ge \lambda^P \|f\|_{L^{\infty}} - \gamma \|f\|_{L^{\infty}} \ge c_a \|f\|_{L^{\infty}}$

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition	
			000000000000	
Rough bounds on eigenfunctions				

Use Cauchy-Schwartz to get (since Λ is a submersion)

$$egin{aligned} |S_h^\epsilon f(x)| &\leq h^{-Q} \operatorname{meas}(I_{\epsilon,h})^{1/2} (\int_{u \in I_{\epsilon,h}} |f(\Lambda(u))|^2 \ du)^{1/2} \ &\leq C h^{-Q/2} \|f\|_{L^2(\mathcal{M})} \end{aligned}$$

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition	
			0000000000000	
Proof of the fondamental Lemma				

Thanks to the above remark, we assume $M = \mathcal{N}$ and $X_k = \tilde{Y}_k$. Recall the statement of the Fondamental Lemma

Lemma

There exists $C, h_0 > 0$ such that the following holds true for all $h \in]0, h_0]$: for all $u \in L^2(M, d\mu)$ such that

 $\|u\|_{L^2}^2 + \mathcal{E}_h(u) \leq 1$

there exists $v_h \in \mathcal{H}^1(\mathcal{X})$ and $w_h \in L^2$ such that

 $u = v_h + w_h, \quad \forall j, \ \|\tilde{Y}_j v_h\|_{L^2} \leq C, \quad \|w_h\|_{L^2} \leq Ch$

A D N A

Introduction 00000000	Spectral Analysis 00000	Convergence to stationnary measure	Around Hörmander condition		
Proof of the fondamental Lemma					
An easy	decompositio	on			

We first prove the following:

Lemma 4

For any j = 1, ..., p, there exists $C, h_0 > 0$ such that the following holds true for all $h \in]0, h_0]$: for all $u \in L^2(\mathcal{N})$ such that

 $\|u\|_{L^2}^2 + \mathcal{E}_h(u) \leq 1$

there exists $v_{j,h} \in \mathcal{H}^1(\mathcal{X})$ and $w_{j,h} \in L^2$ such that

$$u = v_{j,h} + w_{j,h}, \quad \|\tilde{Y}_j v_{j,h}\|_{L^2} \le C, \quad \|w_{j,h}\|_{L^2} \le Ch$$

Remark

Observe that the difference between these two lemmas is that the decomposition in the fondamental lemma is independant on $j = 1, \ldots, p$.

 Introduction
 Spectral Analysis
 Convergence to stationnary measure
 Around Hörmander condition

 0000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000

Proof of the easy decomposition

Let us suppose j = 1. Since \tilde{Y}_1 doesn't vanish we can assume that $\tilde{Y}_1 = \partial_{x_1}$. Denote \mathcal{F}_1 the Fourier transform in y_1 , then the operator $\tilde{T}_{1,h}$ can be written as $\tilde{T}_{1,h} = G(hD_1)$ where

$$G:\mathbb{R}\to\mathbb{R},\quad G(s)=rac{\sin(s)}{s}.$$

Hence, the equation

$$\mathcal{E}_h(u) \leq C \|u\|_{L^2}^2$$

reads

$$\int (1 - rac{\sin h\xi_1}{h\xi_1}) |\mathcal{F}_1 u(\xi_1, y')|^2 \ d\xi_1 dy' \leq C_0' h^2 \|u\|^2$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

 Introduction
 Spectral Analysis
 Convergence to stationnary measure
 Around Hörmander condition

 0000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <t

Proof of the easy decomposition (continued)

• There exists c > 0 such that

$$(1-\frac{\sin h\xi_1}{h\xi_1}) \geq ch^2\xi_1^2$$

for $|h\xi_1| \leq a$ and $(1 - rac{\sin h \xi_1}{h \xi_1}) \geq c$

for $h|\xi_1| > a$.

• Then, for any $\chi \in C_0^\infty(\mathbb{R})$ equal to 1 near 0, the decomposition

$$v_{1,h} = \chi(hD_1)g, \ w_{1,h} = (1-\chi)(hD_1)g$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

works.

In order to prove the Fondamental Lemma, we will construct operators Φ , C_j , $B_{k,j}$, R_l , depending on h, acting on L^2 functions with support in a small neighborhood of o_N in N, with values in $L^2(N)$, such that Φ , C_j , $B_{k,j}$, $C_jh\tilde{Y}_j$, $B_{k,j}h\tilde{Y}_k$ are uniformly in hbounded on L^2 and

$$1 - \Phi = \sum_{j=1}^{p} C_j h \tilde{Y}_j$$
$$\tilde{Y}_j \Phi = \sum_{k=1}^{p} B_{k,j} \tilde{Y}_k$$

and then we set

$$v_h = \Phi(u), \quad w_h = (1 - \Phi)(u)$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Proof of the fondamental Lemma				
00000000	00000	00000	0000000000000000	
Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition	

• Let f * u be the convolution on \mathcal{N}

$$f * u(x) = \int_{\mathcal{N}} f(x.y^{-1})u(y)dy = \int_{\mathcal{N}} f(z)u(z^{-1}.x)dz$$

where dy is the left (and right) invariant Haar measure on \mathcal{N} . • Let \tilde{Z}_k be the right invariant vector field on \mathcal{N} such that $\tilde{Z}_k(o_{\mathcal{N}}) = Y_k$. Then

$$\tilde{Y}_k f = f * \tilde{Y}_k \delta_e$$
 and $\tilde{Z}_k f = \tilde{Y}_k \delta_e * f$.

- Introduce the scaling operator $T_h f(x) = h^{-Q} f(h^{-1} \cdot x)$.
- Let $\varphi \in \mathcal{S}(\mathbb{N})$ be such that $\int_{\mathcal{N}} \varphi = 1$. Let $\varphi_h = \mathcal{T}_h(\varphi)$ and Φ_h defined on $L^2(\mathcal{N})$ by

$$\Phi_h(f) = f * \varphi_h$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Introduction	Spectral Analysis	Convergence to stationnary measure	Around Hörmander condition		
			000000000000		
Proof of the fondamental Lemma					

• We look for $B_{k,i}$ under the form

• Then the equation
$$ilde{Y}_{j}\Phi = \sum_{k=1}^{p} B_{k,j} ilde{Y}_{k}$$
 reads
 $ilde{Y}_{j}\varphi = \sum ilde{Z}_{k} b_{k,j}$

• Finding $b_{k,j}$ solving this equation is possible since $\int_{\mathcal{N}} \tilde{Y}_j \varphi = 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

k