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General framework

Semiclassical random walk

Let (M, g) be a smooth connected compact manifold and
X ={X1,...,X,} be a family of smooth vector fields on M.
In all the following h > 0 will denote a small parameter.
A natural random walk associated to X is the following. Assume
the walk stands at m, € M at time n. Then we construct m,11 as
follows:

@ choose a vector field at random in X’ (i.e. choose a number k

at random between 1 and p.)

@ pick up the point m,.; at random on the curve eX«(m,),
t € [—h,h].
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General framework

The Markov operator

The Markov operator T, associated to this walk can be written as

Ty = %ZJ’.’ZI Tj 1 where

1 h
Tiaf() = 55 | A0t
’ 2h J_4
for any continous function f.

@ This operator acts continuously on C°(M) and hence, its
transpose T} acts on Borel measure by duality.

@ In the following, we will denote by t,(x, dy) the distribution
kernel of Tp.
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General framework

Assumptions on X’

Assume that M is endowed with a probability measure p. For any
x € M, let G, be the Lie algebra generated by X at point x.

Hypotheses on X
o the vector fields X are divergence free with respect to f:

/ Xi(f)du =0, Vf € C*(M).
M

@ The family X enjoys the Hormander condition

Gy = TM, Vx € M.
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General framework

General properties

Under the above assumptions it is easy to prove the following
properties.

@ Tp is markovian: Tx(1) = 1.

® Tp is reversible for p, i.e.

/ To(F) gdps = / f Th(g)du, VF.g € CO(M).
JM JM

In particular p is stationnary for Tp: T/(1) = pu.
@ For any p € [1,00], Ty acts continuously on LP(M) and

[ Thllp—1r =1

@ Ty is self-adjoint on L2(M, du) and it spectrum is contained
in [-1,1].
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General framework

Goals

Let us denote t{(x, dy) the kernel of the iterated operator T,
n € N. Our aim is

@ Describe the spectral theory of Tj.

@ Study the convergence of t{(x, dy) towards the stationnary
distribution dy, when — oo.
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General framework

The reference operator

Let H1(X) be the Hilbert space
HHNX) ={ue P(M), ¥j=1,...,p, Xju e (M)}

and

be the associated Dirichlet form. Let L = —% >, X7 be the
positive Laplacian associated to the Dirichlet form &(u).

Theorem [Hormander-Chow]

The following holds true
o there exists s > 0 such that H1(X) C HS(M).
@ the operator L has compact resolvant

@ Denoting () the increasing sequence of eigenvalues and my
the associated multiplicities, we have vyp = 0 and mg = 1.
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Our results

Our first result is the following

Theorem [Lebeau-Michel]

There exists hg > 0, d1,d2 > 0, A > 0, and constants C; > 0 such
that for any h €]0, hg], the following holds true.

@ Spec(Ty) C [-1+61,1], 1 is a simple eigenvalue of T}, and
Spec(Tp) N[1 — d2,1] is discrete. For any 0 < A < Srh2,
fo(Th) N[L— KA 1] < G(1+ A

@ for any R > 0 and € > 0 small enough, there exists h; > 0
such that for all h €]0, hq]

— T
)ﬁ]O R] C Uj»1lvj — &, v + €]

Spec(——— ! e

and the number of eigenvalues of 1 h2 h-with multiplicities, in
the interval [v; — €, vj + €], is equal to m;.
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Our results

Given u, v two probabilities measure on M, the total variation
distance between v and p is defined by

v —ull7v = SLAJ\P [v(A) — u(A)]

where the sup is over all Borel sets A.

Theorem [Lebeau-Michel]

The following estimate holds true for all integer n

supxem||ty (x,dy) — du(y)|lTv < Cae8(h)

where g(h) = dist(1, Spect(Tp) \ {1}).
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Easy part

Let f € C*(M), then

(1= Th)f(x) = BLE(x) + O(h*|If ]| co(uy)

: 1
with L = —5 Zijz.

Proof. Let f € C*(M), then we get by Taylor expansion

1 [h .
7—j,hf(X) = ﬂ /;h f(etXJX)dt

1 [h t2 t3

= f X f = =

= _h((x>+t1(x>+2 -

with [[r(x, t)|Le < C|[f| camy- By parity argument, we get

XPF(x) + =XF(x) + t*r(x, t)) dt

h2
Tjnf(x) =f(x) + ngf(X) + O(h*(|f ]| caumy)-

We conclude by summing over j =1,...,p.
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Easy part

Quasimodes for T,

Let A\ € Spec(L) and let f be such that Lf = Af. By Hormander
Theorem, f is C* and it follows from the preceding lemma that

Thf = (1 — RPA)f + O(h%).

Using mini-max principle this shows that for any k € N, there
exists C, hg > 0 s.t., ,for all h €]0, ho]

jjSpec(l%zTh) N[vj — Ch? v + Ch?] > m.
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Easy part

Reverse inequality

Let R > 0 be fixed and consider a family (A, up) € [0, R] x L2(R)
such that ||up||;2 = 1 and

Thup = (1 — h2X\p)up,

We want to show that A\, converges to an eigenvalue of L when
h — 0. For this purpose, we need some compactness on

(Uh)he]o,ho]-
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Compactness lemma

The fondamental Lemma

Let us introduce the Dirichlet form associated to Tj
En(u) = h2((1 = Th)u, u) 12(M,dp)

The most difficult part of our analysis is contained in the following
lemma (proof postponed to the end of the talk).

Lemma 2
There exists C, hg > 0 such that the following holds true for all
h €]0, ho]: for all u € L2(M, dp) such that

ul|; + En(u) < 1

there exists v, € H(X) and wj, € L? such that

u=vh+w Vi, [[Xjvpllz < C, lwpllz < Ch
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Compactness lemma

Proof of reverse inequality

Let R > 0 be fixed and consider a family (Ap, up) € [0, R] x L2(M)
such that ||up||;2 = 1 and
1- Ty,

\A]huh = A\pup with ’A‘h = 1

@ Fondamental Lemma = up = vj + wy, with ||wyl[2 = O(h)
and v, bounded in H(X).

@ We can assume v, — v in H}(X) and A, — \. Hence
up — v in L2

@ Lemma 1 implies that for any f € C*°(M),

= f[i_r[‘o<|Ah|(f)a Up)
(Lf +O(h?), up) = (Lf,v) = (f,Lv)

)\<f, V> (f,/\huh>

= lim
h—0
= lim
h—0

Hence, (L — A)v = 0 and since v € H}(X), then \ € Spec(L).
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e Convergence to stationnary measure
@ Spectral decomposition
@ Nash inequality
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Spectral decomposition

Proof of total variation estimates

Let Mo be the orthogonal projector in L2(Q2) on the space of
constant functions

Mo(u)(x) = /M u(y)duly). (1)

Then, by definition

2 sup. [th(x0, dy) — du(y)llrv = [Ty — Mol[ree—p. (2)
X0 €

Thus, we have to prove that for h > 0 small and any n, one has
I T4 — Mol < Coe &), (3)

Since g(h) = O(h?), we can suppose that nh? >> 1.
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Spectral decomposition

Denote \; j the eigenvalues of T}, and [1; the associated spectral
projector. Fix a > 0 small and use the spectral decomposition
Tp,—TMgy = Th,l + Th72 with

Th1= Z Aj,plly

1—a<); <1

and Tj o spectrally localized in [-1 4 dp,1 — «]. It is easy to see
that
ITH = Molljoi2 < e &),
Since, we deal with L°° — [*° norm, we need:
@ to control ||IM;]|2_

@ a bound on the number of eigenvalues in any interval [ap, 1]
with 1 — 6y < oy < 1 — Ch?.
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Spectral decomposition

Control of small eigenvalues

For this purpose, we show that there exists C,dp, A, D > 0 s.t.
@ Claim 1: for any 0 < \ < dg/h?,

8(Spec(Tp) N1 — MA1]) < C(1+ N2,

@ Claim 2: any eigenfuntion Tx(u) = Au with X € [1 — do, 1]
satisfies the bound

lullise < ChP72|lu| 2.

Using these estimates we get easily that there exists D’ > 0 s.t.
| T2 pll oo 100 < Ch= D e 1-a) - g=ng(h)

since g(h) ~ h%.
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Nash inequality

Nash inequality

Let E, = span(ejp, 1 —a < \jp<1).

Lemma 2 (Nash inequality)

There exists C, B, > 0, s.t. any funtion u € E, satisfies:

1/B

2+1/B —
a8 < ch=2(lull? — I ThullZ + B2 [lull)llull, L.

L

Proof.

@ Use the fondamental lemma to show that there exists p > 2,
a > 0 such that any function u € E, satisfies

lullfe < Ch2(En(u) + H2|lullZ2)

@ Use the bound &x(u) < {(1 — Th)u, u) on E, and interpolate
between LP and L! to get the L? estimate. . O
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Nash inequality

Control of Tp1

We want to control the norm || T}'; || 2 joc = || T4y |12

o Take g € L? s.t. ||g||;x = 1 and denote ¢, = ||T,;’71g||i2.
Thanks to the preceding Lemma:

2B < Ch2(c, — cpy1 + h%cn)

Hence, for 0 < n < h™2, ¢, < (h=2/(1 + n))?B.

@ This permit to show that for some large n~ h™2,
1Tl roe = ([ TRl 212 = O(1)

Combined with || T ;2_.;> < Ce P8(") this completes the proof.
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Around Hérmander condition

Let us discuss the proof of two technical results used above where
the Hormander condition enters, namely:

@ a priori bound on eigenfunctions

@ the fondamental lemma

The proof needs some algebraic material.
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A few Algebra

The reference Lie algebra

For any family of vector fields 71, ..., Z, and any multi-index
a=(ag,...,ax) € N,’; denote Z% = [Z,,,[Ze. - - [ Zay 1+ Zay) - -]

o Let F denote the free Lie algebra with p generators.

@ Let v € N be the smallest integer such that for any x € M, G,
is generated by commutators of length at most t.

@ Let \V the free up to step t nilpotent Lie algebra generated by

p elements Y7,...,Y),, and let N be the corresponding simply
connected Lie group. We have the decomposition
N - N]_ D...D Nt

where N7 is generated by Y1,... Y, and A is spanned by the
commutators Y with |a] =j for 2 <j <.
@ denote @ = > 7, jdim \; the homogenous dimension of .

@ Ry actson N by t-(xi,...,x) = (txi, t?x2, ..., tx).
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A few Algebra

Vector fields on N/

@ Define the product law a.b on N by exp(a.b) = exp(a)exp(b).

o For Y e TN ~N, we denote by Y the left invariant vector
field on N such that Y(ox) =Y, i.e

Y(f)(x) = %(f(x.sY)]szo

@ The right invariant vector field on \ such that Z(oy) = Y is

defined by .
Z(f)(x) = E(f(sv.x)\szo

Here, sY is the usual product of the vector Y € N by the
scalar s € R.
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A few Algebra

The Rothschild-Stein Theorem

Let xg € M be fixed, let Qo C N nbhd of opr and Vy C M nbhd of
Xxp and let
N:Qo— W

be a submersion. Then the map W, : C*°(Vy) — C>°(8p) defined
by Waf = f o A is injective.

Theorem [Rothschild-Stein]

There exists a local submersion A as above and some vector fields
Zi,...,Zp on g such that for any o € A we have

) ZO‘W/\ = W/\Xa
® 7% = Y* + R, with R, of order less than |a| — 1.

Here we say that a vector field Z is of order less that k if for any
function f vanishing at order m in 05, Zf vanishes at order at
least m — k (for homogenous norms).
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A few Algebra

The lifted operator

Using RotNhschiId—Stein Theorem we are reduced to study the
operator T, defined on L2(N) by T), = % —1 Tkp with

- 1 [h
Tng(v) = o5 | e(ePu)d
' 2h —h
In order to simplify we will assume R, = 0 so that

. 1 h -
Tkng(u) = h /hg(etyku)dt.
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Rough bounds on eigenfunctions
Let us denote t,(x, dy) the kernel of T,,. For any x € M we define
a positive measure S (x, dy) on A by the formula

VF € CON), / F(y)SE(x, dy) = hQ/ F(u) du

. UEIE"h

where du = Ny du, is the left and right invariant Haar measure on

N and

lepn ={u= Z U Y®, g €] — ehl®l enlol] 1.
acA

Proposition

There exists P € N, ¢ > 0, ¢ > 0 and hg > 0 such that for all
h 6]0, ho], xeM

B (x, dy) = pa(x, dy) + cS5(x, dy)

where pp(x, dy) is a non-negative Borel measure on N for all
x e M.




Around Hérmander condition
@00

Rough bounds on eigenfunctions

Proof of the Proposition:

In order to simplify, we assume that dim(\') =3, p =2 and
(Yl, Yg, Y3 = [Yl, Yg]) basis of ./\/

@ We have to find ¢, e > 0 independent of h small, such that for
any non negative continous function f on M, one has

Ty f(x) > cSif(x)
@ Recall the Campbell-Hausdorff formula
XV — XHYH3[X, Y]+

@ Using the above formula we get

TRF(x) > (Ton Ton)(Ton Ton Tun Ton) F(x) > cSif(x)
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Rough bounds on eigenfunctions

Consequence on eigenfunctions

There exists a €]0,1[ and C = C, > 0 such that for any X € [a, 1]
and any f € L?(M,du) we have

Thf = M = ||f||1e < Ch=2 ||f]|,2

Proof.
@ Use the Markov property to prove that

lpn(x, dy)|| 1o 0o <y <1

@ Suppose Thf = Af, then Sif = APf — pn(f) and then
IS5 lleee > AP|[Flliee — A Fllioe > ol F|1e
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Rough bounds on eigenfunctions

Use Cauchy-Schwartz to get (since A is a submersion)

[Sif(x)| < h=@ meaS(/e,h)l/z(/ [F(NW))[? du)*/?

. Ueleth
< Ch_o/2HfHL2(M)
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Proof of the fondamental Lemma

Thanks to the above remark, we assume M = A and X, = Y4.
Recall the statement of the Fondamental Lemma

Lemma

There exists C, hg > 0 such that the following holds true for all
h €]0, ho]: for all u € L2(M, dp) such that

lullz + En(u) < 1

there exists v, € HY(X) and wj, € L? such that

u=vyh+wn Vi [|[Vivelle < C, [lwall2 < Ch
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Proof of the fondamental Lemma

An easy decomposition

We first prove the following:

Lemma 4

For any j=1,..., p, there exists C, hg > 0 such that the following
holds true for all h €]0, ho]: for all u € L?(N) such that

lullZz + En(u) < 1

there exists vj , € H'(X) and w; , € L? such that

u=vip+win [|Yvinlle <C,  [lwislle < Ch

Remark
Observe that the difference between these two lemmas is that the
decomposition in the fondamental lemma is independant on

j=1...,p.

\
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Proof of the fondamental Lemma

Proof of the easy decomposition

Let us suppose j = 1. Since Y1 doesn’t vanish we can assume that
= Oy,. Denote Fi the Fourier transform in y;, then the
operator T1 h can be written as Tl n = G(hDy) where

sin(s)'

G:R—R, G(s)= <

Hence, the equation
En(u) < Cllullf

reads

/ (1- s'“fl)mu(a V)2 dérdy’ < Co?llul]?
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Proof of the fondamental Lemma

Proof of the easy decomposition (continued)

@ There exists ¢ > 0 such that

for h|&1| < a and

for h|&1] > a.

@ Then, for any x € C§°(R) equal to 1 near 0, the
decomposition

vi,n = x(hD1)g, wip = (1—x)(hD1)g

works.
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Proof of the fondamental Lemma

From “easy” to “fondamental " Lemma

In order to prove the Fondamental Lemma, we will construct
operators @, C;, By ;, R, depending on h, acting on L2 functions
with support in a small neighborhood of oxr in A/, with values in
L2(N), such that &, C;, By, CihY;, Bk jh Y are uniformly in h
bounded on L? and

p
1-o=>Y GhY,
j=1

p
Vio =" BV
k=1

and then we set

vh = ®(u), wp = (1—®)(u)
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Proof of the fondamental Lemma

o Let f % u be the convolution on \/

fxu(x)= /r f(x.y Hu(y)dy = / f(z)u(z71.x)dz

-

where dy is the left (and right) invariant Haar measure on V.

o Let Z be the right invariant vector field on A/ such that
Zi(on) = Yk. Then

\N/kf =1fx \N/kée and ZJ == \N/kée xf.

o Introduce the scaling operator 7;,f(x) = h=Qf(h~! - x).
o Let p € S(N) be such that [,, ¢ = 1. Let o, = T4(p) and &y,
defined on L2(N) by

q)h(f) = f % Ph-
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Proof of the fondamental Lemma

@ We look for By ; under the form
Bij(f) = f * Th(bx)

o Then the equation Y;® = >0 By Yy reads

Yo = Z Zicby,j
k

@ Finding by ; solving this equation is possible since f/\/ SN/J«p =0.
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