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General framework

Semiclassical random walk

Let (M, g) be a smooth connected compact manifold and
X = {X1, . . . ,Xp} be a family of smooth vector fields on M.
In all the following h > 0 will denote a small parameter.
A natural random walk associated to X is the following. Assume
the walk stands at mn ∈ M at time n. Then we construct mn+1 as
follows:

choose a vector field at random in X (i.e. choose a number k
at random between 1 and p.)

pick up the point mn+1 at random on the curve etXk (mn),
t ∈ [−h, h].
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General framework

The Markov operator

The Markov operator Th associated to this walk can be written as
Th = 1

p

∑p
j=1 Tj ,h where

Tj ,hf (x) =
1

2h

∫ h

−h

f (etXj (x))dt

for any continous function f .

This operator acts continuously on C 0(M) and hence, its
transpose T t

h acts on Borel measure by duality.

In the following, we will denote by th(x , dy) the distribution
kernel of Th.
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General framework

Assumptions on X

Assume that M is endowed with a probability measure µ. For any
x ∈ M, let Gx be the Lie algebra generated by X at point x .

Hypotheses on X

the vector fields Xj are divergence free with respect to µ:

∫

M

Xj(f )dµ = 0, ∀f ∈ C 1(M).

The family X enjoys the Hörmander condition

Gx = TxM, ∀x ∈ M.
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General framework

General properties

Under the above assumptions it is easy to prove the following
properties.

Th is markovian: Th(1) = 1.

Th is reversible for µ, i.e.

∫

M

Th(f ) gdµ =

∫

M

f Th(g)dµ, ∀f , g ∈ C 0(M).

In particular µ is stationnary for Th: T t
h(µ) = µ.

For any p ∈ [1,∞], Th acts continuously on Lp(M) and

‖Th‖Lp→Lp = 1

Th is self-adjoint on L2(M, dµ) and it spectrum is contained
in [−1, 1].
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General framework

Goals

Let us denote tn
h (x , dy) the kernel of the iterated operator T n

h ,
n ∈ N. Our aim is

Describe the spectral theory of Th.

Study the convergence of tn
h (x , dy) towards the stationnary

distribution dµ, when → ∞.
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General framework

The reference operator

Let H1(X ) be the Hilbert space

H1(X ) = {u ∈ L2(M), ∀j = 1, . . . , p, Xju ∈ L2(M)}

and

E(u) =
1

6

∫

M

p
∑

k=1

|Xku|2dµ

be the associated Dirichlet form. Let L = − 1
6p

∑

k X 2
k be the

positive Laplacian associated to the Dirichlet form E(u).

Theorem [Hörmander-Chow]

The following holds true

there exists s > 0 such that H1(X ) ⊂ Hs(M).

the operator L has compact resolvant

Denoting (νk) the increasing sequence of eigenvalues and mk

the associated multiplicities, we have ν0 = 0 and m0 = 1.
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Our results

Our first result is the following

Theorem [Lebeau-Michel]

There exists h0 > 0, δ1, δ2 > 0, A > 0, and constants Ci > 0 such
that for any h ∈]0, h0], the following holds true.

Spec(Th) ⊂ [−1 + δ1, 1], 1 is a simple eigenvalue of Th, and
Spec(Th) ∩ [1 − δ2, 1] is discrete. For any 0 ≤ λ ≤ δ2h

−2,

♯σ(Th) ∩ [1 − h2λ, 1] ≤ C1(1 + λ)A.

for any R > 0 and ε > 0 small enough, there exists h1 > 0
such that for all h ∈]0, h1]

Spec(
1 − Th

h2
)∩]0,R ] ⊂ ∪j≥1[νj − ε, νj + ε]

and the number of eigenvalues of 1−Th

h2 with multiplicities, in
the interval [νj − ε, νj + ε], is equal to mj .
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Our results

Given µ, ν two probabilities measure on M, the total variation
distance between ν and µ is defined by

‖ν − µ‖TV = sup
A

|ν(A) − µ(A)|

where the sup is over all Borel sets A.

Theorem [Lebeau-Michel]

The following estimate holds true for all integer n

supx∈M‖tn
h (x , dy) − dµ(y)‖TV ≤ C4e

−ng(h)

where g(h) = dist(1,Spect(Th) \ {1}).
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Easy part

Lemma 1

Let f ∈ C 4(M), then

(1 − Th)f (x) = h2Lf (x) + O(h4‖f ‖C4(M))

with L = −1
6

∑

j X 2
j .

Proof. Let f ∈ C 4(M), then we get by Taylor expansion

Tj ,hf (x) =
1

2h

∫ h

−h

f (etXj x)dt

=
1

2h

∫ h

−h

(

f (x) + tXj f (x) +
t2

2
X 2

j f (x) +
t3

6
X 3

j f (x) + t4r(x , t)
)

dt

with ‖r(x , t)‖L∞ ≤ C‖f ‖C4(M). By parity argument, we get

Tj ,hf (x) = f (x) +
h2

6
X 2

j f (x) + O(h4‖f ‖C4(M)).

We conclude by summing over j = 1, . . . , p.
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Easy part

Quasimodes for Th

Let λ ∈ Spec(L) and let f be such that Lf = λf . By Hörmander
Theorem, f is C∞ and it follows from the preceding lemma that

Thf = (1 − h2λ)f + O(h4).

Using mini-max principle this shows that for any k ∈ N, there
exists C , h0 > 0 s.t., ,for all h ∈]0, h0]

♯Spec(
1 − Th

h2
) ∩ [νj − Ch2, νj + Ch2] ≥ mj .
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Easy part

Reverse inequality

Let R > 0 be fixed and consider a family (λh, uh) ∈ [0,R ] × L2(Ω)
such that ‖uh‖L2 = 1 and

Thuh = (1 − h2λh)uh

We want to show that λh converges to an eigenvalue of L when
h → 0. For this purpose, we need some compactness on
(uh)h∈]0,h0].
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Compactness lemma

The fondamental Lemma

Let us introduce the Dirichlet form associated to Th

Eh(u) = h−2〈(1 − Th)u, u〉L2(M,dµ)

The most difficult part of our analysis is contained in the following
lemma (proof postponed to the end of the talk).

Lemma 2

There exists C , h0 > 0 such that the following holds true for all
h ∈]0, h0]: for all u ∈ L2(M, dµ) such that

‖u‖2
L2 + Eh(u) ≤ 1

there exists vh ∈ H1(X ) and wh ∈ L2 such that

u = vh + wh, ∀j , ‖Xjvh‖L2 ≤ C , ‖wh‖L2 ≤ Ch



Introduction Spectral Analysis Convergence to stationnary measure Around Hörmander condition

Compactness lemma

Proof of reverse inequality

Let R > 0 be fixed and consider a family (λh, uh) ∈ [0,R ] × L2(M)
such that ‖uh‖L2 = 1 and

|∆|huh = λhuh with |∆|h :=
1 − Th

h2

Fondamental Lemma =⇒ uh = vh + wh with ‖wh‖L2 = O(h)
and vh bounded in H1(X ).

We can assume vh ⇀ v in H1(X ) and λh → λ. Hence
uh → v in L2.

Lemma 1 implies that for any f ∈ C∞(M),

λ〈f , v〉 = lim
h→0

〈f , λhuh〉 = lim
h→0

〈|△h|(f ), uh〉

= lim
h→0

〈Lf + O(h2), uh〉 = 〈Lf , v〉 = 〈f ,Lv〉

Hence, (L− λ)v = 0 and since v ∈ H1(X ), then λ ∈ Spec(L).
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Spectral decomposition

Proof of total variation estimates

Let Π0 be the orthogonal projector in L2(Ω) on the space of
constant functions

Π0(u)(x) =

∫

M

u(y)dµ(y). (1)

Then, by definition

2 sup
x0∈M

‖tn
h (x0, dy) − dµ(y)‖TV = ‖T n

h − Π0‖L∞→L∞ . (2)

Thus, we have to prove that for h > 0 small and any n, one has

‖T n
h − Π0‖L∞→L∞ ≤ C0e

−ng(h). (3)

Since g(h) = O(h2), we can suppose that nh2 >> 1.
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Spectral decomposition

Denote λj ,h the eigenvalues of Th and Πj the associated spectral
projector. Fix α > 0 small and use the spectral decomposition
Th − Π0 = Th,1 + Th,2 with

Th,1 =
∑

1−α<λj,h<1

λj ,hΠj

and Th,2 spectrally localized in [−1 + δ0, 1 − α]. It is easy to see
that

‖T n
h − Π0‖L2→L2 ≤ e−ng(h).

Since, we deal with L∞ → L∞ norm, we need:

to control ‖Πj‖L2→L∞

a bound on the number of eigenvalues in any interval [αh, 1]
with 1 − δ0 < αh < 1 − Ch2.
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Spectral decomposition

Control of small eigenvalues

For this purpose, we show that there exists C , δ0,A,D > 0 s.t.

Claim 1: for any 0 ≤ λ ≤ δ0/h
2,

♯(Spec(Th) ∩ [1 − h2λ, 1]) ≤ C (1 + λ)A/2.

Claim 2: any eigenfuntion Th(u) = λu with λ ∈ [1 − δ0, 1]
satisfies the bound

‖u‖L∞ ≤ Ch−D/2‖u‖L2 .

Using these estimates we get easily that there exists D ′ > 0 s.t.

‖T n
2,h‖L∞→L∞ ≤ Ch−D′

e−n(1−α) << e−ng(h)

since g(h) ∼ h2.
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Nash inequality

Nash inequality

Let Eα = span(ej ,h, 1 − α < λj ,h < 1).

Lemma 2 (Nash inequality)

There exists C ,B , α > 0, s.t. any funtion u ∈ Eα satisfies:

‖u‖
2+1/B

L2 ≤ Ch−2(‖u‖2
L2 − ‖Thu‖

2
L2 + h2‖u‖2

L2)‖u‖
1/B

L1 .

Proof.

Use the fondamental lemma to show that there exists p > 2,
α > 0 such that any function u ∈ Eα satisfies

‖u‖2
Lp ≤ Ch−2(Eh(u) + h2‖u‖2

L2)

Use the bound Eh(u) ≤ 〈(1 − Th)u, u〉 on Eα and interpolate
between Lp and L1 to get the L2 estimate. . �
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Nash inequality

Control of Th,1

We want to control the norm ‖T n
h,1‖L2→L∞ = ‖T n

h,1‖L1→L2.

Take g ∈ L2 s.t. ‖g‖L1 = 1 and denote cn = ‖T n
h,1g‖

2
L2 .

Thanks to the preceding Lemma:

c1+2B
n ≤ Ch−2(cn − cn+1 + h2cn)

Hence, for 0 ≤ n ≤ h−2, cn ≤ (h−2/(1 + n))2B .

This permit to show that for some large n ≃ h−2,

‖T n
h,1‖L2→L∞ = ‖T n

h,1‖L1→L2 = O(1)

Combined with ‖T p
h ‖L2→L2 ≤ Ce−pg(h), this completes the proof.
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Let us discuss the proof of two technical results used above where
the Hörmander condition enters, namely:

a priori bound on eigenfunctions

the fondamental lemma

The proof needs some algebraic material.
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A few Algebra

The reference Lie algebra

For any family of vector fields Z1, . . . ,Zp and any multi-index
α = (α1, . . . , αk) ∈ N

k
p denote Zα = [Zα1 , [Zα2 , . . . [Zαk−1

,Zαk
] . . .]

Let F denote the free Lie algebra with p generators.

Let r ∈ N be the smallest integer such that for any x ∈ M, Gx

is generated by commutators of length at most r.

Let N the free up to step r nilpotent Lie algebra generated by
p elements Y1, . . . ,Yp, and let N be the corresponding simply
connected Lie group. We have the decomposition

N = N1 ⊕ . . . ⊕Nr

where N1 is generated by Y1, . . . Yp and Nj is spanned by the
commutators Y α with |α| = j for 2 ≤ j ≤ r.

denote Q =
∑

r

j=1 j dimNj the homogenous dimension of N .

R+ acts on N by t · (x1, . . . , xr) = (tx1, t
2x2, . . . , t

rxr).
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A few Algebra

Vector fields on N

Define the product law a.b on N by exp(a.b) = exp(a)exp(b).

For Y ∈ TeN ≃ N , we denote by Ỹ the left invariant vector
field on N such that Ỹ (oN ) = Y , i.e

Ỹ (f )(x) =
d

ds
(f (x .sY )|s=0

The right invariant vector field on N such that Z̃ (oN ) = Y is
defined by

Z̃(f )(x) =
d

ds
(f (sY .x)|s=0

Here, sY is the usual product of the vector Y ∈ N by the
scalar s ∈ R.
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A few Algebra

The Rothschild-Stein Theorem

Let x0 ∈ M be fixed, let Ω0 ⊂ N nbhd of oN and V0 ⊂ M nbhd of
x0 and let

Λ : Ω0 → V0

be a submersion. Then the map WΛ : C∞(V0) → C∞(Ω0) defined
by WΛf = f ◦ Λ is injective.

Theorem [Rothschild-Stein]

There exists a local submersion Λ as above and some vector fields
Z1, . . . ,Zp on Ω0 such that for any α ∈ A we have

ZαWΛ = WΛXα

Zα = Ỹ α + Rα with Rα of order less than |α| − 1.

Here we say that a vector field Z is of order less that k if for any
function f vanishing at order m in 0N , Zf vanishes at order at
least m − k (for homogenous norms).
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A few Algebra

The lifted operator

Using Rothschild-Stein Theorem we are reduced to study the
operator T̃h defined on L2(N ) by T̃h = 1

p

∑p
k=1 T̃k,h with

T̃k,hg(u) =
1

2h

∫ h

−h

g(etZk u)dt.

In order to simplify we will assume Rα = 0 so that

T̃k,hg(u) =
1

2h

∫ h

−h

g(etỸk u)dt.
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Rough bounds on eigenfunctions

Let us denote t̃h(x , dy) the kernel of T̃h. For any x ∈ M we define
a positive measure Sǫ

h(x , dy) on N by the formula

∀f ∈ C 0(N ),

∫

f (y)Sǫ
h(x , dy) = h−Q

∫

u∈Iǫ,h

f (u) du

where du = Παduα is the left and right invariant Haar measure on
N and

Iǫ,h = {u =
∑

α∈A

uαY α, uα ∈] − ǫh|α|, ǫh|α|[ }.

Proposition

There exists P ∈ N, ǫ > 0, c > 0 and h0 > 0 such that for all
h ∈]0, h0], x ∈ M

t̃P
h (x , dy) = ρh(x , dy) + cSǫ

h(x , dy)

where ρh(x , dy) is a non-negative Borel measure on N for all
x ∈ M.
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Rough bounds on eigenfunctions

Proof of the Proposition:

In order to simplify, we assume that dim(N ) = 3, p = 2 and
(Y1,Y2,Y3 = [Y1,Y2]) basis of N .

We have to find c , ǫ > 0 independent of h small, such that for
any non negative continous function f on M, one has

TP
h f (x) ≥ cSǫ

hf (x)

Recall the Campbell-Hausdorff formula

eX eY = eX+Y+ 1
2
[X ,Y ]+....

Using the above formula we get

T̃ 6
h f (x) ≥ (T̃1,hT̃2,h)(T̃1,hT̃2,hT̃1,hT̃2,h)f (x) ≥ cSǫ

hf (x)
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Rough bounds on eigenfunctions

Consequence on eigenfunctions

Corollary

There exists a ∈]0, 1[ and C = Ca > 0 such that for any λ ∈ [a, 1]
and any f ∈ L2(M, dµ) we have

T̃hf = λf =⇒ ‖f ‖L∞ ≤ Ch−
Q
2 ‖f ‖L2

Proof.

Use the Markov property to prove that

‖ρh(x , dy)‖L∞→L∞ ≤ γ < 1

Suppose T̃hf = λf , then Sǫ
hf = λP f − ρh(f ) and then

‖Sǫ
hf ‖L∞ ≥ λP‖f ‖L∞ − γ‖f ‖L∞ ≥ ca‖f ‖L∞
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Rough bounds on eigenfunctions

Use Cauchy-Schwartz to get (since Λ is a submersion)

|Sǫ
hf (x)| ≤ h−Q meas(Iǫ,h)

1/2(

∫

u∈Iǫ,h

|f (Λ(u))|2 du)1/2

≤ Ch−Q/2‖f ‖L2(M)

�
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Proof of the fondamental Lemma

Thanks to the above remark, we assume M = N and Xk = Ỹk .
Recall the statement of the Fondamental Lemma

Lemma

There exists C , h0 > 0 such that the following holds true for all
h ∈]0, h0]: for all u ∈ L2(M, dµ) such that

‖u‖2
L2 + Eh(u) ≤ 1

there exists vh ∈ H1(X ) and wh ∈ L2 such that

u = vh + wh, ∀j , ‖Ỹjvh‖L2 ≤ C , ‖wh‖L2 ≤ Ch
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Proof of the fondamental Lemma

An easy decomposition

We first prove the following:

Lemma 4

For any j = 1, . . . , p, there exists C , h0 > 0 such that the following
holds true for all h ∈]0, h0]: for all u ∈ L2(N ) such that

‖u‖2
L2 + Eh(u) ≤ 1

there exists vj ,h ∈ H1(X ) and wj ,h ∈ L2 such that

u = vj ,h + wj ,h, ‖Ỹjvj ,h‖L2 ≤ C , ‖wj ,h‖L2 ≤ Ch

Remark

Observe that the difference between these two lemmas is that the
decomposition in the fondamental lemma is independant on
j = 1, . . . , p.
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Proof of the fondamental Lemma

Proof of the easy decomposition

Let us suppose j = 1. Since Ỹ1 doesn’t vanish we can assume that
Ỹ1 = ∂x1 . Denote F1 the Fourier transform in y1, then the
operator T̃1,h can be written as T̃1,h = G (hD1) where

G : R → R, G (s) =
sin(s)

s
.

Hence, the equation
Eh(u) ≤ C‖u‖2

L2

reads
∫

(1 −
sin hξ1

hξ1
)|F1u(ξ1, y

′)|2 dξ1dy ′ ≤ C ′
0h

2‖u‖2
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Proof of the fondamental Lemma

Proof of the easy decomposition (continued)

There exists c > 0 such that

(1 −
sin hξ1

hξ1
) ≥ ch2ξ2

1

for h|ξ1| ≤ a and

(1 −
sin hξ1

hξ1
) ≥ c

for h|ξ1| > a.

Then, for any χ ∈ C∞
0 (R) equal to 1 near 0, the

decomposition

v1,h = χ(hD1)g , w1,h = (1 − χ)(hD1)g

works.
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Proof of the fondamental Lemma

From “easy” to “fondamental ” Lemma

In order to prove the Fondamental Lemma, we will construct
operators Φ,Cj ,Bk,j ,Rl , depending on h, acting on L2 functions
with support in a small neighborhood of oN in N , with values in
L2(N ), such that Φ,Cj ,Bk,j ,CjhỸj ,Bk,jhỸk are uniformly in h
bounded on L2 and

1 − Φ =

p
∑

j=1

CjhỸj

ỸjΦ =

p
∑

k=1

Bk,j Ỹk

and then we set

vh = Φ(u), wh = (1 − Φ)(u)



Introduction Spectral Analysis Convergence to stationnary measure Around Hörmander condition

Proof of the fondamental Lemma

Let f ∗ u be the convolution on N

f ∗ u(x) =

∫

N
f (x .y−1)u(y)dy =

∫

N
f (z)u(z−1.x)dz

where dy is the left (and right) invariant Haar measure on N .

Let Z̃k be the right invariant vector field on N such that
Z̃k(oN ) = Yk . Then

Ỹk f = f ∗ Ỹkδe and Z̃k f = Ỹkδe ∗ f .

Introduce the scaling operator Thf (x) = h−Q f (h−1 · x).

Let ϕ ∈ S(N) be such that
∫

N ϕ = 1. Let ϕh = Th(ϕ) and Φh

defined on L2(N ) by

Φh(f ) = f ∗ ϕh.
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Proof of the fondamental Lemma

We look for Bk,j under the form

Bk,j(f ) = f ∗ Th(bk,j )

Then the equation ỸjΦ =
∑p

k=1 Bk,j Ỹk reads

Ỹjϕ =
∑

k

Z̃kbk,j

Finding bk,j solving this equation is possible since
∫

N Ỹjϕ = 0.
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