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Let µ = ρ(x)dx be a probability measure on [a, b] and let f be a
regular function on [a, b]. We want to compute numerically the

quantity I = 1
b−a

∫ b
a f (x)dµ(x).

Standard ”deterministic” method consist to divide [a, b] into
N interval and to approximate I by

∑N
k=1 Ak where Ak is the

area corresponding to the kth interval.

Probabilist approach: let (xn)n∈N be a sequence of numbers in
[a, b] such that xn is choosen at random with respect to µ.
Then, the quantity 1

N

∑N
n=1 f (xn) provides a good

approximation of I .

A priori, ”choose a point at random with respect to µ” is not
a simpler problem than ”compute I”.
The Metropolis Algorithm provides an efficient procedure to
sample from µ.
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The problem of hard spheres

Consider a fixed box in Rd , B =]− 1, 1[d . We consider the
problem of placement of N balls of radius ε > 0 with centers in B
under the condition that the balls do not overlap. We denote
ON,ε ⊂ BN the set of all possible configurations. We endowe ON,ε

with the Lebesgue measure dL.

Problem:

Build a sample of points X 1, . . . ,X r ∈ ON,ε distributed uniformly
with respect to dL.

This problem occurs in statistical physics in phase transition
studies.

It can be formulated in a more abstract setting.
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Metropolis and al (50’s) proposed the following algorithm to solve
this problem. Let h > 0 being fixed and X 0 ∈ ON,ε.

Starting from X 0 = (x0
1 , . . . , x0

N), move one of the ball say x0
k

uniformly at random in the ball B(x0
k , h), it results in a new

position x1
k . Denote X 1 = (x0

1 , . . . , x1
k , . . . , x0

N) the new
configuration. If X 1 ∈ ON,ε, keep X 1.

If X 1 /∈ ON,ε, throw away X 1 and restart the procedure from
X 0.

Once, X 1 is constructed, define X 2 by the same procedure
starting from X 1, etc.

As r goes to infinity, the distribution of X 0, . . . ,X r in ON,ε is close
to the uniform distribution.
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Abstract probabilistic setting

Let (X , d) be a metric space and B the Borel σ-algebra on X . Let
K (x , dy) be a Markov kernel on X , i.e.

for all x ∈ X , K (x , dy) is a probability measure on (X ,B).

for all B ∈ B, x 7→ K (x ,B) is continuous (to simplify).

For n ∈ N∗ we define the iterated kernel Kn(x , dy) by

Km+n(x ,B) =

∫
Km(y ,B)Kn(x , dy), ∀B ∈ B

The kernel K induces an operator on continuous functions by

Kf (x) =

∫
X

f (y)K (x , dy)

and its transpose acts on Borel measure on X .
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Definition

A stationary distribution is a probability measure π(dx) on X such
that tK (π) = π. In other words:

∀B ∈ B, π(B) =

∫
K (x ,B)π(dx)

example

Suppose that X is a finite space and let n = ]X . Then a Markov
kernel is a matrix (K (x , y)))1≤x ,y≤n with non-negative coefficients
and such that for any x ∈ X ,Σy∈XK (x , y) = 1. Hence , a
stationary distribution is an eigenvector of tK associated to the
eigenvalue 1 and with non-negative coordinates.
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Theorem

Suppose that K (x , dy) is a strictly positive, regular Markov kernel
and that π(dx) is stationary for K . Then,

∀x ∈ X ,∀B ∈ B, lim
n→∞

Kn(x ,B) = π(B)

A Markov kernel is strictly positive if K (x ,A) > 0 for any open
subset A. We do not define the notion of regular Markov kernel.
Think it as a density k(x , y)dy on an open subset of Rd , with k
continuous w.r.t. (x , y) (enough to apply Ascoli’s theorem).

Question

What can we say about the speed of convergence?
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Given a probability distribution π on X we may be interested in
sampling π. From the preceding theorem, it is clear that if
K (x , dy) is a Markov kernel for which π is stationary, we can build
a sample by the following process:

Start from x0 ∈ X and buid x1 ∈ X at random with the
probability K (x0, dy).

Knowing x0, . . . , xn ∈ X build xn+1 at random with the
probability K (xn, dy).

Since Kn(x , dy) converges to π, the distribution of the point
x0, . . . , xn “looks like” it was choosen according to π.

Question

Given a probability π, how can we construct a Markov kernel
K (x , dy) such that π is stationary for K?
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The Metropolis Algorithm on Lipschitz domain

Our framework is the following:

Ω denotes a bounded connected open subset of Rd s.t. ∂Ω
has Lipschitz regularity.

ρ is a measurable function on Ω such that

* there exists m,M > 0, s.t. m ≤ ρ(x) ≤ M, ∀x ∈ Ω.
*

∫
Ω

ρ(x)dx = 1

B1 denotes the unit ball in Rd and |B1| its volume.

We are willing to define a Markov kernel which permit to sample
from ρ(x)dx .
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Introduce the following kernel on Ω:

Kh,ρ(x , y) =
1

hd |B1|
1|x−y |<h min(

ρ(y)

ρ(x)
, 1)

The Metropolis kernel is given by

Th,ρ(x , dy) = mh,ρ(x)δx + Kh,ρ(x , y)dy .

with

mh,ρ(x) = 1−
∫

Ω
Kh,ρ(x , y)dy

The Metropolis operator associated to this kernel is

Th,ρu(x) = mh,ρ(x)u(x) +

∫
Ω

u(y)Kh,ρ(x , y)dy
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Basic properties

The Metropolis kernel Th,ρ(x , dy) is a Markov kernel
(Th,ρ(1) = 1).
The operator Th,ρ is self-adjoint on L2(Ω, ρ(x)dx) and
‖ Th,ρ ‖L2→L2= 1.
The probability measure ρ(x)dx is stationary for Th,ρ.
Spec(Th) is discrete near 1 (use this).

Definition

We define the spectral gap of the Metropolis operator Th,ρ as
g(h, ρ) = dist(1, spect(Th) \ {1}). This is the largest constant
such that

‖u‖2
L2(ρ) − 〈u, 1〉2L2(ρ) ≤

1

g(h, ρ)
〈u − Th,ρu, u〉L2(ρ)

L. Michel (joint work with P. Diaconis and G. Lebeau ) Geometric Analysis of Metropolis Algorithm on Bounded Domain



Introduction
Framework and basic properties

Case of general densities
More precise results for smooth densities

Application to Random Placement of Non-Overlapping Balls

Our results
Rough study of the spectrum
Proof of total variation estimates

Theorem 1

Let Ω be an open, connected, bounded, Lipschitz subset of Rd .
There exists h0 > 0, δ0 ∈]0, 1/2[ and constants Ci > 0 such that
for h ∈]0, h0], the following holds true:

• Spec(Th,ρ) ⊂ [−1 + δ0, 1]

• 1 is a simple eigenvalue of Th,ρ

• The spectral gap g(h, ρ) satisfies

C2h
2 ≤ g(h, ρ) ≤ C3h

2

• ∀λ ∈ [0, δ0],

](Spect(Th,ρ) ∩ [1− λ, 1]) ≤ C (1 + λh−2)d/2

L. Michel (joint work with P. Diaconis and G. Lebeau ) Geometric Analysis of Metropolis Algorithm on Bounded Domain



Introduction
Framework and basic properties

Case of general densities
More precise results for smooth densities

Application to Random Placement of Non-Overlapping Balls

Our results
Rough study of the spectrum
Proof of total variation estimates

Total variation estimate

The total variation distance between two probability measures µ, ν
is defined by

‖µ− ν‖TV = sup
A measurable

|µ(A)− ν(A)| = 1

2
sup

f ∈L∞,|f |≤1
|
∫

fdµ−
∫

fdν|

Theorem 2

Under the same assumption as above, the following estimate holds
true for all n ∈ N:

C4e
−ng(h,ρ) ≤ supx∈Ω‖T n

h,ρ(x , dy)− ρ(y)dy‖TV ≤ C5e
−ng(h,ρ).

L. Michel (joint work with P. Diaconis and G. Lebeau ) Geometric Analysis of Metropolis Algorithm on Bounded Domain



Introduction
Framework and basic properties

Case of general densities
More precise results for smooth densities

Application to Random Placement of Non-Overlapping Balls

Our results
Rough study of the spectrum
Proof of total variation estimates

Some references

Diaconis-Lebeau (08): consider the case of the Metropolis
kernel on X = [0, 1] and use semiclassical analysis.

Lebeau-Michel (09) consider the case of a random walk
operator on a Riemannian manifold.

Lebeau : Cours à l’école d’été du GDR MOAD, aout 2009.

For an introduction to this topics, see: Diaconis, The Markov
chain Monte Carlo Revolution, Bull. Amer. Math. Soc.
(N.S.) 46 (2009).
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Variational approach

Since, m ≤ ρ(x) ≤ M on Ω, we can easily suppose that ρ = 1 (and
we denote Th instead of Th,ρ). The spectral gap is the largest
constant such that

‖u‖2
L2 − 〈u, 1〉2L2 ≤

1

g(h, ρ)
〈u − Thu, u〉L2

A standard computation shows that

‖u‖2
L2 − 〈u, 1〉2L2 =

1

2

∫
Ω×Ω

|u(x)− u(y)|2dxdy := Var(u)

〈u − Thu, u〉L2 =
h−d

2

∫
Ω×Ω

1|x−y |<h|u(x)− u(y)|2dxdy := Eh(u).

Hence, the spectral gap is the largest constant s.t.

Var(u) ≤ 1

g(h, ρ)
Eh(u)
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The following properties are easy to prove:

1 is a simple eigenvalue (use this)

g(h, ρ) ≤ Ch2 (take u ∈ C∞
0 (Ω) such that

∫
Ω u(x)dx = 0,

‖ u ‖L2= 1, make a Taylor expansion and use again this )
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Lower bound for the spectral gap

Let us show the lower bound on the spectral gap when Ω is
convex. For any u ∈ L2(Ω), we have∫

Ω×Ω
|u(x)− u(y)|2dxdy ≤

Ch−1

K(h)−1∑
k=0

∫
Ω×Ω

|u (x + k~(y − x))− u (x + (k + 1)~(y − x)) |2dxdy ,

where K (h) is the greatest integer ≤ h−1 and K (h)~ = 1.
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With the new variables x ′ = x + k~(y − x),
y ′ = x + (k + 1)~(y − x), one has dx ′dy ′ = ~ddxdy and we get∫

Ω×Ω
|u(x)− u(y)|2dxdy ≤

Ch−d−1K (h)

∫
Ω×Ω

1|x ′−y ′|<~diam(Ω)|u(x ′)− u(y ′)|2dx ′dy ′,

This yields to
Var(u) ≤ C ′h−2Eh(u)

and proves the lower bound.
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Proof of total variation estimates

Let Π0 be the orthogonal projector in L2(Ω) on the space of
constant functions

Π0(u)(x) = 1Ω(x)

∫
Ω

u(y)dy . (1)

Then, by definition

2 sup
x0∈Ω

‖T n
h (x0, dy)− dy‖TV = ‖T n

h − Π0‖L∞→L∞ . (2)

Thus, we have to prove that for h > 0 small and any n, one has

‖T n
h − Π0‖L∞→L∞ ≤ C0e

−ng(h,ρ). (3)

Since g(h, ρ) = O(h2), we can suppose that nh2 >> 1.
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Denote λj ,h the eigenvalues of Th and Πj the associated spectral
projector. We fix α > 0 small and use the spectral decomposition
Th − Π0 = Th,1 + Th,2 with

Th,1 =
∑

1−h2−α<λj,h<1

λj ,hΠj

and Th,2 spectrally localized in [−1 + δ0, 1− h2−α]. It is easy to
see that

‖T n
h − Π0‖L2→L2 ≤ Ce−ng(h,ρ).

Since, we deal with L∞ → L∞ norm, we need:

to control ‖Πj‖L2→L∞

a bound on the number of eigenvalues in any interval [αh, 1]
with 1− δ0 < αh < 1− Ch2.

For this purpose, we compare our operator with a more simple one.
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Comparaison with the random walk on the torus

Since Ω is bounded, it is contained in a large box ]− A,A[d . We
denote Π = (R/2AZ)d . Since Ω is Lipschitz, using local
coordinates, we can define an extension map

P : L2(Ω) → L2(Π)

which is also bounded from H1(Ω) into H1(Π).
Any function v ∈ L2(Π) can be extended in Fourier series
v(x) =

∑
k∈Zd ck(v)e2ikπx/A. The L2 and H1 norm on Π can be

expressed as follows

‖v‖2
L2(Π) = (2A)d

∑
k |ck |2.

‖v‖2
H1(Π) = (2A)d

∑
k(1 + 4π2k2

A2 )|ck |2.
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Recall that for u ∈ L2(Ω),

Eh(u) = 〈u−Thu, u〉L2(Ω) =
h−d

2

∫
Ω×Ω

1|x−y |<h|u(x)−u(y)|2dxdy .

For v ∈ L2(Π), we define

Ẽh(v) = 〈u−T̃hu, u〉L2(Π) =
h−d

2

∫
Π×Π

1|x−y |<h|v(x)−v(y)|2dxdy .

where T̃h is the metropolis operator on the torus.

Remark

A simple calculus using the Fourier expansion, shows that
T̃h = Γ(−h2∆) where Γ is a smooth function decreasing to 0 at
infinity.
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Lemma 1

There exist C0,C1, h0 > 0 such that the following holds true for
any h ∈]0, h0] and any u ∈ L2(Ω).

Eh(u)/C0 ≤ Ẽh (P(u)) ≤ C0

(
Eh(u) + h2‖u‖2

L2

)
. (4)

As a by-product, any u ∈ L2(Ω) such that

‖u‖2
L2(ρ) + h−2〈(1− Th)u, u〉L2(ρ) ≤ 1

admits a decomposition u = uL + uH with uL ∈ H1(Ω),
‖uL‖H1 ≤ C1, and ‖uH‖L2 ≤ C1h.
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Proof.

The first inequality is trivial. The second one is obtained by
working in local coordinates for which the boundary is an
half-space.

We observe that (thanks to Parseval identity)

Ẽh(v) =
(2A)d

2

∑
k

|ck |2θ(hk/A),

θ(ξ) =

∫
|z|≤1

|e2iπξz − 1|2dz .

The by-product is obtained by projecting the extension
v = P(u) on low frequencies h|k| ≤ δ and high frequencies
h|k| > δ for some fixed δ > 0. Hence, it suffices to use the
fact that the function θ is quadratic near 0 and has a positive
lower bound for |ξ| ≥ δ. �
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Control of small eigenvalues

Using the preceding Lemma, we show that there exists δ0 > 0 s.t.

for any 0 ≤ λ ≤ δ0/h2,

](Spec(Th) ∩ [1− h2λ, 1]) ≤ C (1 + λ)d/2

any eigenfuntion Th(u) = λu with λ ∈ [1− δ0, 1] satisfies the
bound

‖u‖L∞ ≤ C2h
−d/2‖u‖L2 .

Using these estimates we get easily:

‖T n
2,h‖L∞→L∞ ≤ Ch−3d/2e−nh2−α

<< e−ng(h,ρ)

since g(h, ρ) ∼ h2.
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Nash inequality

Let Eα = span(ej ,h, 1− h2−α < λj ,h < 1). We have the following
Nash inequality:

Lemma 2

There exists C ,D, α > 0, s.t. any funtion u ∈ Eα satisfies:

‖u‖2+1/D
L2 ≤ Ch−2(‖u‖2

L2 − ‖Thu‖2
L2 + h2‖u‖2

L2)‖u‖1/D
L1 .

Proof.

Use Lemma 1 to show that there exists p > 2 such that any
function u ∈ Eα satisfies

‖u‖2
Lp ≤ Ch−2(‖u‖2

L2 − ‖Thu‖2
L2 + h2‖u‖2

L2)

Interpolate between Lp and L1 to get the L2 estimate. �
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Control of Th,1

We want to control the norm ‖T n
h,1‖L2→L∞ = ‖T n

h,1‖L1→L2 .

Take g ∈ L2 s.t. ‖g‖L1 = 1 and denote cn = ‖T n
h,1g‖2

L2 .
Thanks to the preceding Lemma:

c1+2D
n ≤ Ch−2(cn − cn+1 + h2cn)

Hence, for 0 ≤ n ≤ h−2, cn ≤ (h−2/(1 + n))2D .

This permit to show that for some large n ' h−2,

‖T n
h,1‖L2→L∞ = ‖T n

h,1‖L1→L2 = O(1)

Combined with ‖T p
h ‖L2→L2 ≤ Ce−pg(h,ρ), this completes the proof.
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Case of a smooth density

If the density ρ is smooth on Ω we can give a more precise
description of the spectrum of Th,ρ. For simplicity, we assume in
this section that ∂Ω is smooth. Let us introduce the unbounded
operator acting on L2(Ω, ρ(x)dx), defined by

Lρ(u) =
−αd

2
(4u +

∇ρ

ρ
.∇u)

D(Lρ) =
{
u ∈ H2(Ω), ∂nu|∂Ω = 0

}
where

αd =
1

vol(B1)

∫
B1

z2
1dz =

1

d + 2

L. Michel (joint work with P. Diaconis and G. Lebeau ) Geometric Analysis of Metropolis Algorithm on Bounded Domain



Introduction
Framework and basic properties

Case of general densities
More precise results for smooth densities

Application to Random Placement of Non-Overlapping Balls

Our results
A simple quasimode calculus

Lρ is the self-adjoint realization of the Dirichlet form

αd

2

∫
Ω
|∇u(x)|2ρ(x)dx . (5)

Lρ has compact resolvant (thanks to Sobolev embeddings).

We denote

Spec(Lρ) = {ν0 = 0 < ν1 < ν2 < . . . }

and by mj = multiplicity(νj). Observe that m0 = 1 since
Ker(Lρ) is spanned by the constant function equal to 1.
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Theorem 3

Let Ω be an open, connected, bounded and smooth subset of Rd .
Assume that the density ρ is smooth on Ω, then for any R > 0 and
ε > 0 such that νj+1 − νj > 2ε for νj+2 < R, there exists h1 > 0
such that one has for all h ∈]0, h1],

Spec

(
1− Th,ρ

h2

)
∩]0,R] ⊂ ∪j≥1[νj − ε, νj + ε], (6)

and the number of eigenvalues of
1−Th,ρ

h2 in the interval
[νj − ε, νj + ε] is equal to mj .
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A simple quasimode calculus

Assume ρ = 1 and ∂Ω is smooth. Let λ > 0 and u ∈ C∞(Ω)
satisfy

(−αd

2
∆− λ)u = 0 in Ω and ∂nu|∂Ω = 0.

For x ∈ Ω s.t. dist(x , ∂Ω) > h, Taylor expansion shows that

Thu(x)− u(x) =

∫
|z|<1,x+hz∈Ω

(u(x + hz)− u(x))dz

= h
d∑

j=1

∂xj u(x)

∫
|z|<1

zjdz + αdh2∆u(x) + OL∞(h4)

=
αd

2
h2∆u(x) + OL∞(h4)

where the term of order h and h3 vanish for parity reason.
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For x ∈ Ω s.t. dist(x , ∂Ω) < h, we use local coordinates such
that Ω = {(x1, x

′) ∈ Rd , x1 > 0}. Taylor expansion shows that

Thu(x)− u(x) =

∫
|z|<1,x1+hz1>0

(u(x + hz)− u(x))dz

= h
d∑

j=1

∂xj u(x)

∫
|z|<1,x1+hz1>0

zjdz + OL∞(h2)

Parity argument =⇒ term of index j ≥ 2 vanish.
∂nu|∂Ω = 0 and dist(x , ∂Ω) < h =⇒ term of index j = 1 is
OL∞(h2).

Since meas({dist(x , ∂Ω) < h}) = O(h), it follows that

1dist(x ,∂Ω)<h(Thu − u) = OL2(h
5
2 ).

Combining the two estimates, we get

Thu − (1− h2λ)u = O(h
5
2 ).
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Application to Random Placement of Non-Overlapping
Balls

We consider the initial problem that motivated the works of
Metropolis et al. Given an open set Ω ⊂ Rd and N ∈ N we
consider the set of all possible positions in Ω for N non-overlapping
balls of radius ε > 0. This can be identified to the possible
locations for their centers

ON,ε =
{

x = (x1, . . . , xN) ∈ ΩN ,∀ 1 ≤ i < j ≤ N, |xi − xj | > ε
}

.

The problem we adress is to sample from the uniform distribution,
according with the following Metropolis algorithm:
Starting from a configuration (X1, . . . ,XN) we choose a ball at
random and move it uniformly at random in a small ball of radius
h > 0. If it results in an admissible configuration, “we keep” the
move. Otherwise we don’t move and try again.
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This is associated to the following Markov kernel (where
ϕ = 1BRd (0,1))

Kh(x , dy) =
1

N

N∑
j=1

δx1⊗· · ·⊗δxj−1⊗h−dϕ

(
xj − yj

h

)
dyj⊗δxj+1⊗· · ·⊗δxN

,

and the associated Metropolis operator on L2(ON,ε)

Th(u)(x) = mh(x)u(x) +

∫
ON,ε

u(y)Kh(x , dy),

with

mh(x) = 1−
∫
ON,ε

Kh(x , dy).
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Proposition

There exists α > 0 such that for Nε ≤ α, the set ON,ε is
connected, Lipschitz and quasi-regular.

Proof. The proof is rather technical. The quasiregularity is notion
used to replace “smooth” by “Lipschitz”.
To prove the “Lipschitz boundary“ use the following caraterisation:
A domain O ⊂ Rp has Lipschitz boundary iff it satisfies the
following cone property:
∀a ∈ ∂O,∃δ > 0,∃νa ∈ Sp−1,∀b ∈ B(a, δ) ∩ ∂O we have

b + Γ+(νa, δ) ⊂ O and b + Γ−(νa, δ) ⊂ Rp \ O.

where for ν ∈ Sp,

Γ+(νa, δ) = {ξ ∈ Rp, ±〈ξ, ν〉 > (1− δ)|ξ|, |〈ξ, ν〉| < δ}
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Thanks to the preceding proposition, we can consider the
Neumann Laplacian |∆|N on ON,ε defined by

|∆|N = −αd

2N
∆,

D(|∆|N) =
{
u ∈ H1(ON,ε), −∆u ∈ L2(ON,ε), ∂nu|∂ON,ε

= 0
}

.

We still denote 0 = ν0 < ν1 < ν2 < . . . the spectrum of |∆|N and
mj the multiplicity of νj .
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Theorem (part 1)

Let N ≥ 2 and ε > 0 small be fixed. Let R > 0 be given and β > 0
small. Then, there exists h0 > 0, δ0 ∈]0, 1/2[ and constants Ci > 0
such that for any h ∈]0, h0], the following hold true:

i) The spectrum of Th is a subset of [−1 + δ0, 1], 1 is a simple
eigenvalue of Th, and Spec(Th) ∩ [1− δ0, 1] is discrete.
Moreover,

Spec

(
1− Th

h2

)
∩]0,R] ⊂ ∪j≥1[νj − β, νj + β];

]Spec

(
1− Th

h2

)
∩ [νj − β, νj + β] = mj ∀νj ≤ R;

and for any 0 ≤ λ ≤ δ0h
−2, the number of eigenvalues of Th

in [1− h2λ, 1] (with multiplicity) is bounded by C1(1 + λ)dN/2.
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Theorem (part 2)

ii) The spectral gap g(h) satisfies

lim
h→0+

h−2g(h) = ν1

and the following estimate holds true for all n ∈ N:

sup
x∈ON,ε

‖T n
h (x , dy)− dy

vol(ON,ε)
‖TV ≤ C4e

−ng(h).
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