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Semi-Classical Behavior of the Scattering
Amplitude for Trapping Perturbations at
Fixed Energy

Laurent Michel

Abstract. We study the semi-classical behavior as h → 0 of the scattering amplitude f (θ, ω, λ, h) as-

sociated to a Schrödinger operator P(h) = − 1

2
h2∆ + V (x) with short-range trapping perturbations.

First we realize a spatial localization in the general case and we deduce a bound of the scattering am-

plitude on the real line. Under an additional assumption on the resonances, we show that if we modify

the potential V (x) in a domain lying behind the barrier {x : V (x) > λ}, the scattering amplitude

f (θ, ω, λ, h) changes by a term of order O(h∞). Under an escape assumption on the classical trajec-

tories incoming with fixed direction ω, we obtain an asymptotic development of f (θ, ω, λ, h) similar

to the one established in the non-trapping case.

1 Introduction

The purpose of this paper is to study the asymptotic behavior when h → 0, of the

scattering amplitude f (θ, ω, λ, h) associated to the semi-classical Schrödinger op-
erator P(h) = − 1

2
h2

∆ + V (x) with a short range potential satisfying |∂αx V (x)| ≤
Cα〈x〉−ρ−|α|, ρ > 1. We are interested in two problems. First, we examine how
the asymptotic behavior of f (θ, ω, λ, h) changes when we modify the potential V

in a suitable region. Secondly, we wish to obtain an asymptotic development of
f (θ, ω, λ, h) when h tends to 0.

The second problem has been treated by Vainberg [25, 26] for V ∈ C∞
0 (R

n),
λ > supx∈Rn V (x) and λ non-trapping. Robert and Tamura, in [20], generalized this
result to the case where the potential does not have compact support, and the energy

level λ > 0 is non-trapping (but not necessarily λ > sup(V )) and θ, ω are fixed so
that θ 6= ω. Moreover, the coefficients of this expansion depend only on the values of
V (x) in {x : V (x) ≤ λ}. It follows that if we modify the potential V in a region lying

in {x : V (x) > λ}, the scattering amplitude remains unchanged modulo O(h∞).

The trapping case is more complicated and there are only a few works treating
this case. Let us mention two results dealing with the first problem. Nakamura [16]
studied the case of two short range potentials V and Ṽ , with ρ > n+1

2
, such that

V = Ṽ on the unbounded connected component of {x : V (x) < λ + ǫ}. Assum-

ing additionally that λ is weakly trapping for both potentials, i.e., ‖(P(h) − (λ +
i0))−1‖L2

α,L
2
−α

= O(h−M) for some M ∈ R and α > 1
2
, he proved that f (θ, ω, λ, h)−

f̃ (θ, ω, λ, h) = O(e−
d
h ). Here L2

α denotes the weighted L2 space L2(R
n, (1+|x|2)α/2dx)
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and (P(h) − (λ + i0))−1
= limǫ→0,ǫ>0(P(h) − (λ + iǫ))−1, where the limit exists in

the space of bounded operators L(L2
α, L

2
−α).

On the other hand, Lahmar-Benbernou and Martinez examined in [10], the case
of “a well in an island”, where the existence of resonances converging exponentially
to real axis forbids a polynomial estimate of the resolvent. In this case, which will be
detailed below, their modified potential is non-trapping for λ and it is equal to V on

the unbounded connected component of {x : V (x) < λ+ǫ}. Under these conditions,

they proved that f̃ (θ, ω, λ j , h) − f (θ, ω, λ j , h) = αh
n+1

2 + O(h
n+3

2 ) for some α 6= 0
and λ j converging to λ.

Concerning the second problem, we have two results according to Yajima [27]

and to the author [13]. In these papers, asymptotics in average forms have been
established, under an escape assumption in a fixed direction without any hypothesis
on the growth of the resolvent. The average avoids the problem due to resonances
converging exponentially to the real axis. For instance, in the general case, an integral

estimate of the resolvent has been proved in [13] and we have

(1.1)

∫ λ0+ǫ

λ0−ǫ
‖R(λ± i0‖α,−αdλ = O(h−M), α >

1

2
.

In the above estimate, R(z) = (P(h) − z)−1, z ∈ C \ R is the resolvent of P(h)

and R(λ ± i0) = limǫ→0,ǫ>0 R(λ ± iǫ). Here we take the limit in the spaces of
bounded operators L(L2

α, L
2
−α), α > 1

2
and for α, β ∈ R, ‖ · ‖α,β is the natural norm

on L(L2
α, L

2
β). The estimate (1.1) is one of the crucial points in the proof of [13], and

the fact that ‖R(λ ± i0)‖α,−α = O(eCh−n

) when the energy λ is fixed at a trapping

level is one of the main difficulties.
One of the differences between the short-range case and the case where V has

compact support is the form of f (θ, ω, λ, h). If V is in C∞
0 , we have a representation

formula which involves only the truncated resolvent. More precisely,

(1.2) f (θ, ω, λ, h) =

cnh−nλ
n−2

2

〈

[h2
∆, χ1]R(λ + i0)[h2

∆, χ2]χ3eih−1〈 · ,ω〉, χ3eih−1〈 · ,θ〉〉
L2 , f

where χ j , j = 1, 2, 3 belong to C∞
0 (R

n) (see [17]). In the short-range case, this
formula is not available and we are going to use the representation of Isozaki-Kitada

(see section 2 for more details) where the resolvent is applied to functions belonging
to L2

α. In the non-trapping case, the approach of Robert and Tamura is based on a
localization with principal term involving only the truncated resolvent [20];

(1.3) f (θ, ω, λ, h) = cnh−nλ
n−2

2

〈

R(λ + i0)g−beih−1
Φ−(.,ω), g+aeih−1

Φ+(.,θ)
〉

+ O(h∞)

This spatial localization was done by exploiting the resolvent estimate

(1.4) ‖R(λ± i0)‖α,−α = O(h−1), α >
1

2
.
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In the general case (without the non-trapping assumption), this estimate fails to be
true. In a recent work, N. Burq [2] gave a polynomial estimate of the truncated

resolvent,

(1.5) ‖χ1(x)R(λ + i0)χ2(x)‖L2 = O(h−1),

where supp χi ⊂ {x : R1 < |x| < R2}, i = 1, 2 and 0 < R1 < R2 are sufficiently
large. Applying this estimate, we prove, in the general short-range case, that the
scattering amplitude can be written in the form (1.3). Moreover, we deduce from
this localization and from Burq’s estimate (1.5), that in the general case the scattering

amplitude is bounded by O(h− n−1
2 ). This spatial localization is the main step in our

analysis of both problems that we deal with. In the case where we assume ρ > 1, such
localization permits to obtain a result similar to that of Nakamura. On the other
hand, using some ideas developed in [13], we extend the result of [20] to the case of
weakly trapping potentials.

Let us now state the problem more precisely. Consider the Schrödinger operator
P(h) = − 1

2
h2

∆ + V , in R
n, n ≥ 2, 0 < h ≤ 1. The potential V (x) is assumed to

satisfy the following condition with ρ > 1:

Assumption (Vρ) V is a real C∞-smooth function such that

∀α ∈ N
n, ∀x ∈ R

n, |∂αx V (x)| ≤ Cα〈x〉−ρ−|α|, where 〈x〉 = (1 + |x|2)
1
2 .

The operator P(h) with domain D(P(h)) = H2(R
n) is self-adjoint in L2(R

n).
Moreover, we can define the scattering matrix S(λ, h) related to P0(h) = − 1

2
h2

∆

and P(h), as a unitary operator:

S(λ, h) : L2(Sn−1) −→ L2(Sn−1).

Next, introduce the operator T(λ, h) by S(λ, h) = Id − 2iπT(λ, h). It is well-known

(see [8]) that T(λ, h) has a kernel T(θ, ω, λ, h), smooth in (θ, ω) ∈ Sn−1×Sn−1\{θ =

ω} and the scattering amplitude is given by

f (θ, ω, λ, h) = c(λ, h)T(θ, ω, λ, h),

with
c(λ, h) = −2π(2λ)−

n−1

4 (2πh)
n−1

2 e−i (n−3)π
4 .

Robert and Tamura [20] have studied the asymptotic behavior of f (θ, ω, λ, h) as
h → 0 for fixed θ, ω ∈ Sn−1, θ 6= ω, in the case where the energy λ is fixed in a

non-trapping interval. More precisely, denote by
(

q(t, x, ξ), p(t, x, ξ)
)

the solution
to the system

(1.6)

{

q̇ = p,

ṗ = −∇xV (q),

with initial data (x, ξ) at t = 0, and recall the following non-trapping condition.
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Assumption (NT) We say that the energy λ is non-trapping for the symbol 1
2
|ξ|2 +

V (x) if for any R > 0 large enough, there exists T = T(R) such that |q(t, x, ξ)| > R

for |t| > T when |x| < R and λ =
1
2
|ξ|2 + V (x).

For ω and θ fixed in Sn−1 and for λ satisfying the non-trapping condition, Robert
and Tamura obtained for f an asymptotics

(1.7) f (θ, ω, λ, h) =

l
∑

j=1

σ̂(z j )−
1
2 eih−1S j−iµ j

π
2 + O(h),

where σ̂, z j , S j and µ j will be defined below.
In order to understand better what happens in the trapping case, let us introduce

the resonances by complex scaling as it is done in [2], [21] and [22]. For this, we

need an hypothesis of analyticity of V at infinity.

Assumption (Hol∞) We assume that there exist θ0 ∈ [0, π[ and R > 0 such that the
potential V extends holomorphically to the domain

DR,θ0
= {z ∈ C

n : |z| > R, |Im z| ≤ tan θ0|Re z|}

and

∃β > 0, ∃M > 0, ∀x ∈ DR,θo
, |V (x)| ≤ C|x|−β .

Following [21], we define the resonances in the upper half-plane by complex scal-
ing. Recall that the resonances coincide with the poles of the meromorphic contin-
uation of the resolvent (P(h) − z)−1 : L2

comp → L2
loc from the lower half-plane to a

conic neighborhood of the positive half axis in the upper half-plane. We denote by
Res(P(h)) the set of resonances of P(h).

One of the consequences of the non-trapping hypothesis is the estimate (1.4)
which is related to the fact that for non-trapping perturbations, there are no reso-

nances in

{z ∈ C : 0 < a < Re(z) < b, 0 ≤ Im(z) ≤ N h log(
1

h
)}, ∀N, 0 < h < hN .

We refer to [11] for more details. In the trapping case, the resolvent is not necessarily
analytic in the above domain. Moreover, in many cases, there are resonances (that is

poles of the scattering amplitude) in any strip of width e−d/h. In the case where z0(h)
is a simple isolated pole of the resolvent, one can decompose the scattering amplitude
into a singular and holomorphic part around z0(h):

(1.8) f (θ, ω, z, h) =
f res(θ, ω, h)

z − z0(h)
+ f hol(θ, ω, z, h),

for z near Re z0(h). In particular if z = λ is fixed and z0(h) tends to λ exponentially

fast, the scattering amplitude could blow up exponentially (that is | f (θ, ω, λ, h| ∼
eC/h when h → 0). After a spatial localization in the general case, we prove that the
scattering amplitude can note behave as eC/h. More precisely, we have the following
Theorem.
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Theorem 1.1 Fix an energy λ > 0 and assume that the potential V satisfies (Vρ) with

ρ > 1 and (Hol∞). Then we have

(1.9) ∀(ω, θ) ∈ Sn−1 × Sn−1 \ {θ = ω}, f (θ, ω, λ, h) = O(h− n−1
2 ).

Remarks 1.1 In a recent paper, Stefanov [23] studied the behavior of f res and f hol

for a compactly supported potential V . Assuming that z0(h) is a simple isolated res-
onance, he proved that

| f res(θ, ω, h)| ≤ C h− n−1
2 |Im z0(h)| and | f hol(θ, ω, z, h)| ≤ C h− n−1

2

in a neighbourhood of Re z0(h) containing z0(h). In [15], we use Theorem 1.1 to

generalize the result of Stefanov to the case of long range potentials.

For some special trapping potentials, it is possible to exhibit some new phemo-

mena. For example, Lahmar-Benbernou and Martinez [10], have studied the case
where there exist resonances converging exponentially fast with respect to h to real
axis. In a very particular situation, they showed that the presence of such resonances
leads to a different behavior of the scattering amplitude. More precisely they consider

the case where the potential V (x) is a “well in an island”, i.e., there exist λ0 > 0, a
connected bounded open set Ö ⊂ R

n and x0 ∈ Ö such that

(i) V (x0) = λ0 and V ′′(x0) > 0,

(ii) V > λ0 on Ö \ {x0} and V < λ0 on R
n \ Ö,

(iii) λ0 is non-trapping for V outside Ö.

λ λ

V (x) V (x)

Figure 1: A “well in an island” transformed into a non-trapping potential.

Starting with V , they construct a non-trapping potential Ṽ equal to V in R
n \ Ö

(see Figure 1) and they prove that for suitable θ, ω ∈ Sn−1 there exists α ∈ C \ {0}
such that:

f (θ, ω,Re(ρ j), h) − f̃ (θ, ω,Re(ρ j), h) = αh
n+1

2 + O(h
n+2

2 ),

where ρ j = ρ j(h) is a resonance converging exponentially fast to λ0 and f̃ is the

scattering amplitude associated to Ṽ .
The second goal of this article is to show that if we modify the potential V in a

suitable region, then the scattering amplitude remains unchanged modulo O(h∞),



The Scattering Amplitude for Trapping Perturbations at Fixed Energy 799

even for trapping potentials V , provided there is a resonance-free zone of width hM

near the real axis.

More precisely, introduce Wλ = {x ∈ R
n; V (x) < λ}. As lim|x|→+∞ V (x) = 0,

the domain Wλ has a unique unbounded connected component denoted by Wext . Let
us set Wint = Wλ \Wext and let F be a compact set such that Wint ⊂ F ⊂ R

n \Wext .

We assume that Ṽ ∈ C∞(R
n) is a potential such that V = Ṽ on R

n \F. Let us denote
P̃(h) = − 1

2
h2

∆ + Ṽ (x) and let f̃ (θ, ω, λ, h) be the scattering amplitude associated

to P̃(h). The following theorem compares f̃ (θ, ω, λ, h) with f (θ, ω, λ, h) in the case

where we assume only ρ > 1.

Theorem 1.2 Assume the following conditions:

(i) (Vρ) with ρ > 1.

(ii) (Hol∞).

(iii) There exist ǫ > 0, C > 0 and M > 0 such that

(

Res(P̃(h)) ∪ Res(P(h))
)

∩
(

[λ− ǫ, λ + ǫ] + i[0,ChM]
)

= ∅.

Then for any (θ, ω) ∈ Sn−1 × Sn−1 \ {θ = ω} we have the following estimate

f̃ (θ, ω, λ, h) = f (θ, ω, λ, h) + O(h∞).

Remarks 1.2 (1) The assumption (ii) of the Theorem 1.2 allows us to use Burq’s
result [2], and to establish a spatial localization.

(2) Following the work of Lahmar-Benbernou and Martinez [10], it is obvious

that the assumption (iii) is necessary. If we make an hypothesis only on the reso-
nances of P(h) (and not on both Res(P(h)) and Res(P̃(h))), the result of Theorem 1.2
is not true.

The previous theorem does not give any asymptotic development of f . In the last
part of this paper we will prove an asymptotics similar to (1.7) for trapping potentials.

As in [13] and [20], we begin by some results of classical mechanics, and for more
details we refer to the books [3], [18]. Let (p(t), q(t)) be a solution to (1.6) and
assume that |q(t)| → +∞ as |t| → +∞. Then there exists (r±, v±) ∈ R

n × R
n \ 0

such that

lim
t→±∞

|q(t) − v±t − r±| + |p(t) − v±| = 0.

From now up to the end of this paper, we will consider a fixed ω ∈ Sn−1 and we
denote by Λω the plane orthogonal to ω and passing through 0. As ω is fixed, we

can assume that ω = (0, . . . , 0, 1) and we can write the coordinates in Λω as z =

(z1, . . . , zn−1). We will also use the notation ẑ = (z, 0) for z ∈ Λω . Then there exists
a unique solution (q∞(t, z, ω), p∞(t, z, ω)) of (1.6) such that

(1.10)

{

limt→−∞ |p∞(t, z, ω) −
√

2λω| = 0,

limt→−∞ |q∞(t, z, ω) −
√

2λωt − ẑ| = 0,
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which depends smoothly on the parameter z. Given λ > 0, we will replace the con-
dition (NT) by the following weaker one.

Assumption (Hω) For all z in Λω, limt→+∞ |q∞(t, z, ω)| = +∞.

Let (q∞, p∞) be as above and take λ > 0 satisfying (Hω). Then, there exist
ξ∞(z) ∈ Sn−1 and r∞(z) ∈ R

n such that

(1.11)

{

limt→+∞ |p∞(t, z, ω) −
√

2λξ∞(z)| = 0,

limt→+∞ |q∞(t, z, ω) −
√

2λξ∞(z)t − r∞(z)| = 0.

Moreover, one can show that Λω ′ ∋ z → ξ∞(z) ∈ Sn−1 is C∞ (see [18]), and we
may define

σ̂(z) = | det(ξ∞, ∂z1
ξ∞, . . . , ∂zn−1

ξ∞)|.

Definition 1.1 We will say that θ ∈ Sn−1 is regular for ω, if θ 6= ω and ∀z ∈
Λω, ξ∞(z) = θ =⇒ σ̂(z) 6= 0.

If θ is regular for ω, we deduce from the implicit functions theorem that there exists
a finite set {z1, . . . , zl} included in Λω such that ξ∞(z) = θ ⇐⇒ z ∈ {z1, . . . , zl}.
Now we can state our second result.

Theorem 1.3 Suppose that the potential V satisfies (Vρ) with ρ > 1 and (Hol∞). Let

ω ∈ Sn−1, and λ > 0. Assume the following conditions:

(1) (Hω).

(2) θ is regular for ω.

(3) There exist ǫ > 0, C > 0 and M > 0 such that

Res(P(h)) ∩
(

[λ− ǫ, λ + ǫ] + i[0,ChM]
)

= ∅.

Then we have the following asymptotics

f (θ, ω, λ, h) =

l
∑

j=1

σ̂(z j )−
1
2 eih−1S j−iµ j

π
2 + O(h),

where

(1.12) S j =

∫ +∞

−∞

( 1

2
|p∞(t, z j , ω)|2 −V (q∞(t, z j , ω)) − λ

)

dt − 〈r∞(z j),
√

2λθ〉

and µ j ∈ Z is the Maslov index of the trajectory
(

q∞(t, z j , ω), p∞(t, z j , ω)
)

on the

Lagrangian manifold

{(x, ξ) ∈ R
n × R

n : x = q∞(t, z, ω), ξ = p∞(t, z, ω), z ∈ Λω, t ∈ R}.
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Example There exist potentials satisfying our assumptions. For example for n = 2,
set V0(x, y) = 1 + x2 − y2 and take ρ ∈ C∞

0 (R
+) decreasing such that ρ(t) = 1

for t ∈ [0, 1] and ρ(t) = 0 for t ≥ 2. Consider V (x, y) = V0(x, y)ρ(x2 + y2) (see
Figure 2). For λ > 1 close to 1, there exist trapped trajectories for the potential
V . Indeed, for 0 < y < 1, the trajectory q(t, λ, y) with q(0, λ, y) = (0, y) and
q̇(0, λ, y) = (

√
2(λ− 1),−

√
2y) has the properties:

∀t > 0, q(t, λ, y) = (
√

(λ− 1) sin
√

2t, ye−
√

2t ), lim
t→−∞

|q(t, λ, y)| = +∞.

Applying the work of Gérard and Sjöstrand [5], one can also show that there are

no resonances in a box containing λ and having size hM , that is hypothesis (iii) of
Theorem 1.2 is satisfied.

Figure 2: A trapping potential satisfying Gérard-Sjöstrand’s assumptions .

The paper is organized as follows. In Section 2 we recall the representation for-
mula of Isozaki-Kitada [8] for the scattering amplitude. In Section 3 we establish
a spatial localization for the scattering amplitude, without any assumption on the
resonances and we prove Theorem 1.1. In Section 4 we use the hypothesis on the

resonances to get some resolvent estimate which is necessary for the analysis in the
next sections. Section 5 is devoted to the proof of Theorem 1.2 and in Section 6 we
complete the proof of Theorem 1.3. Finally, in the appendix we collect some results
concerning the semi-classical wave front set and the microlocal resolvent estimates.
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2 Review of the Representation of the Scattering Matrix

In this section, we recall some results concerning the representation of the scattering

matrix. In particular, we will try to emphasize the difference between the case where
the potential is short range with ρ > n+1

2
and the case where it is only short range

with ρ > 1.

Denote by ψ0(x, λ, ω, h) the generalized eigenfunction to P0(h) = −h2
∆:

ψ0(x, λ, ω, h) = exp(ih−1
√

2λ < x, ω >).

If the potential V (x) satisfies (Vρ) with ρ > n+1
2

, then the function V (x)ψ0(x, λ, ω, h)
belongs to L2

α(R
n), where α = ρ− n

2
> 1

2
. Therefore, the outgoing eigenfunction of

ψ+(x, λ, ω, h) of P(h) is given by

(2.1) ψ+ = ψ0 − R(λ + i0)Vψ0

and the kernel T(θ, ω, λ, h) is simply written as

(2.2) T(θ, ω, λ, h) = c0(λ, h)2〈Vψ+( · , λ, ω, h), ψ0( · , λ, θ, h)〉L2(Rn),

with

c0(λ, h) = (2πh)−
n
2 (2λ)

n−2
4 .

In the general case ρ > 1, we cannot define T(θ, ω, λ, h) as above. For example,
notice that R(λ + i0)Vψ0 is well defined if and only if V belongs to L2

α for some
α > 1

2
, i.e., V (x) ≤ C〈x〉−ρ with ρ > n+1

2
. Thus, the first step towards the proof of

Theorem 1.1 and 1.2 is to establish a representation formula for T(θ, ω, λ, h) in the
case 1 < ρ ≤ n+1

2
. Such a formula has been obtained in [8], and it was used in [20] to

prove an asymptotic expansion of the scattering amplitude in the non-trapping case
with ρ > 1. We present below this representation formula as done in [20]. We begin

with some notations.

Definition 2.1 Let Ω be an open subset of R
n × R

n . For m, u ∈ R and k ∈ Z, we

denote by A
m,u
k (Ω) the class of symbols a(x, ξ, h) such that (x, ξ) 7→ a(x, ξ, h) belongs

to C∞(Ω) and

∀(α, β) ∈ N
n × N

n, ∃C > 0, ∀(x, ξ) ∈ Ω, |∂αx ∂βξ a(x, ξ)| ≤ C hk〈x〉m−|α|〈ξ〉u−|β|

and set A
m,∞
k (Ω) =

⋂

u∈R
A

m,u
k (Ω), i.e., a(x, ξ) ∈ A

m,∞
k (Ω) if and only if

∀L > 1, ∀(α, β) ∈ N
n × N

n, ∃C > 0, ∀(x, ξ) ∈ Ω,

|∂αx ∂βξ a(x, ξ)| ≤ Chk〈x〉m−|α|〈ξ〉−L.

In the case where Ω = R
n × R

n, we will write Am,u
k instead of Am,u

k (Ω).
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We use also the incoming and outgoing subsets of the phase space having the form:

Γ±(R, d, σ) = {(x, ξ) ∈ R
n × R

n : |x| > R, d−1 < |ξ| < d,± cos(x, ξ) > ±σ}

for R > 1, d > 1 and σ ∈ ]−1, 1[, where cos(x, ξ) =
〈x,ξ〉
|x||ξ| . For α > 1

2
, introduce

F0(λ, h) : L2
α(R

n) −→ L2(Sn−1), by

(

F0(λ, h) f
)

(ω) = c0(λ, h)

∫

Rn

e−ih−1
√

2λ〈x,ω〉 f (x) dx, λ > 0.

The idea of Isozaki and Kitada was to approximate the Wave Operators by Fourier
Integral Operators Ih(a±,Φ±) with phase Φ± and symbol a±. Formally, with

Ih(a±,Φ±)( f )(x) = (2πh)−n

∫∫

exp(ih−1(Φ±(x, ξ) − 〈y, ξ〉))a±(x, ξ) f (y) dydξ,

the phase Φ± have to solve the eikonal equation

1

2
|∇xΦ±(x, ξ)|2 + V (x) =

1

2
|ξ|2

and the symbols a± are solution to

(2.3)
(

−1

2
h2

∆ + V (x) − 1

2
|ξ|2

)

(a±eih−1
Φ±) ∼ 0.

Let R0 ≫ 1, 1 < d4 < d3 < d2 < d1 < d0, and 0 < σ4 < σ3 < σ2 < σ1 <
σ0 < 1. According to Proposition 2.4 of [7], we can find a real C∞-smooth function

Φ± satisfying the following properties:

(ϕ1) Φ±(x, ξ) is a solution of the eikonal equation 1
2
|∇xΦ±(x, ξ)|2 + V (x) =

1
2
|ξ|2,

in Γ±(R0, d0,±σ0).
(ϕ2) Φ±(x, ξ) − 〈x, ξ〉 belongs to A

ǫ,0
0 , for all ǫ > 0.

(ϕ3) For all (x, ξ) ∈ R
n × R

n, | ∂
2
Φ±

∂x j
∂ξk

(x, ξ) − δ jk| < ǫ(R0), where δ jk are the Kro-

necker symbols, and ǫ(R0) can be made as small as we wish by taking R0 large

enough.

Next, we determine a± in the form

a±(x, ξ, h) =

∑

j≥0

a± j(x, ξ)h j .

Replacing a± by this expansion in (2.3) and identifying the power of h, we obtain the
following transport equations

(2.4)

{

〈∇xΦ±,∇xa±0〉 + 1
2
∆xΦ±a±0 = 0

〈∇xΦ±,∇xa± j〉 + 1
2
∆xΦ±a± j =

i
2
∆xa± j−1, j ≥ 1

with the conditions at infinity

(2.5) a±0 → 1 and a± j → 0, j ≥ 1 as |x| → 0.

These equations are solved by the standard characteristic curve method (see [20])
and finally, we find some symbols a± j such that:
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(s0) a± j belongs to A
− j,∞
0 .

(s1) supp(a± j) ⊂ Γ±(3R0, d1,∓σ1).

(s2) a± j solves equation (2.4) with (2.5) in Γ±(4R0, d2,∓σ2).
(s3) a± j solves equation (2.4) in Γ±(4R0, d1,∓σ2).

Now, fix an integer N large enough (to be chosen in the following) and set

a±(x, ξ, h) =

N
∑

j=0

a± j(x, ξ)h j ∈ A
0,∞
0 .

Then the operator J±a(h) = Ih(a±,Φ±) is well-defined and the operator K±a given
by K±a = P(h) J±a − J±aP0(h) is also a F.I.O. In fact, K±a = Ih(k±a,Φ±) with

k±a = e−ih−1
Φ±

(

−1

2
h2

∆ + V (x) − 1

2
|ξ|2

)

(eih−1
Φ±a±).

It follows that the symbol k±a has the following properties:

(k0) k±a belongs to A
−1,∞
1 .

(k1) supp(k±a)) ⊂ Γ±(3R0, d1,∓σ1).

(k2) k±a belongs to A
−(N+2),∞
N+2 (Γ±(4R0, d1,∓σ2)).

Similarly, we define J±b = Ih(b±,Φ±) for the region

Γ±(5R0, d3,±σ4) ⊂ Γ±(3R0, d1,∓σ1),

where the symbol b±(x, ξ, h) =
∑N

j=0 b± j(x, ξ)h j satisfies (s0) and (s1) for
Γ±(5R0, d3,±σ4) and (s2) for Γ±(6R0, d4,±σ3). Following the same argument as
above, we define K±b(h) = P(h) J±b(h) − J±b(h)P0(h) = Ih(k±b,Φ±), with

k±b = e−ih−1
Φ±

(

−1

2
h2

∆ + V (x) − 1

2
|ξ|2

)

(eih−1
Φ±b±).

Then k±b satisfies (k0), (k1) for Γ±(5R0, d3,±σ4) and (k2) for Γ±(6R0, d3,±σ3).
Now, the Isozaki-Kitada formula is stated in the following proposition.

Proposition 2.1 (Isozaki-Kitada [8]. ) For λ ∈
] d−2

4

2
,

d2
4

2

[

, we have

T(λ, h) = T+1(λ, h) + T−1(λ, h) − T2(λ, h),

with

T±1(λ, h) = F0(λ, h) J∗+a(h)K±b(h)F∗
0 (λ, h)

and

T2(λ, h) = F0(λ, h)K∗
+a(h)R(λ + i0, h)

(

K+b(h) + K−b(h)
)

F∗
0 (λ, h).

Remarks 2.1 The above formula is available provided the symbols a±, b± are con-
structed by the process that we have described above. In particular, the integer N

used to define a± and b± can be chosen as large as we want.
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Denote by T±1(θ, ω, λ, h) the kernel of T±1(λ, h) and by T2(θ, ω, λ, h) the kernel of
T2(λ, h). It is easy to see that

T±1(θ, ω, λ, h) = c0(λ, h)2

∫

eih−1ψ±(x,θ,ω)k±b(x,
√

2λω)a+(x,
√

2λθ) dx,

where ψ±(x, θ, ω) = Φ±(x,
√

2λω)−Φ+(x,
√

2λθ). For θ 6= ω, one can integrate by
parts, to get T±1(θ, ω, λ, h) = O(h∞). In a such way, assuming θ 6= ω, we need only
to study T2(θ, ω, λ, h) = (T2+ + T2−)(θ, ω, λ, h) where T2± is given by

T2,±(θ, ω, λ, h) = c0(λ, h)2

×
〈

R(λ + i0)k±b( · ,
√

2λω)eih−1
Φ±( · ,√2λω) , k+a( · ,

√
2λθ)eih−1

Φ−( · ,√2λθ)
〉

.

3 Spatial Localization

The results in this section are established without any assumption on the distribution
of the resonances of the operator P(h). We use the following result of Burq.

Theorem 3.1 (Burq [2]) Assume that the potential V satisfies (Vρ) with ρ > 1 and

(Hol∞). Let K ⊂ R
∗
+ be a compact set. Then, there exists R1 > 0 such that for any

R2 > R1, there exist C > 0 and h0 > 0 such that for any 0 < h ≤ h0 and any λ ∈ K,

we have

(3.1) ‖1R1≤|x|≤R2
R(λ± i0)1R1≤|x|≤R2

‖ ≤ Ch−1.

Take χ( · ,R,R ′) ∈ C∞
0 (R

n) such that 0 ≤ χ ≤ 1, χ = 1 for |x| ≤ R and χ = 0 for
|x| ≥ R ′ and denote χ(x,R) = χ(x,R,R + 1). Then, Bruneau and Petkov [1] have
proved the following.

Lemma 3.1 Under hypothesis (Vρ), ρ > 1, there exists ρ0 > 0 such that for R ≥ ρ0,

λ is a non-trapping energy level for the operator P̂(h) = − 1
2
h2

∆ + (1 − χ(x,R))V (x).

Set χa(x) = χ(x, 20R0) and χb(x) = χ(x, 10R0). Using Lemma 3.1 and the estimate
(3.1), we can prove the following.

Proposition 3.1 Assume the hypotheses (Vρ) with ρ > 1 and (Hol∞) fulfilled. Then

for α > n
2

we have the following assertions:

(i) ‖K∗
+a(h)R(λ + i0)K+b(h)‖−α,α = O(h

N
2 ),

(ii) ‖K∗
+a(h)R(λ + i0)(1 − χb)K−b(h)‖−α,α = O(h

N
2 ),

(iii) ‖((1 − χa)K+a)∗(h)R(λ + i0)χbK−b(h)‖−α,α = O(h
N
2 ).

Here N is given by the construction of the symbols a±, b± and can be chosen arbitrarily

large.



806 Laurent Michel

Remarks 3.1 The above estimates have been proved in [20] under the assumption
that λ is a non-trapping energy level. Here we prove that these estimates hold for all

energy levels.

Proof Take R0 ≫ ρ0, where ρ0 is given by Lemma 3.1. Let χ1(x) = χ(x,R0, 2R0),

χ2(x) = χ(x, 2R0,
5
2
R0) and χ3(x) = χ(x, 5

2
R0,

11
4

R0). Using the fact that

P̂(h)(1 − χ1) = P(h)(1 − χ1),

we obtain the following identity,

R(z)(1 − χ2) = (1 − χ1)R̂(z)(1 − χ2) + R(z)[P0(h), χ1]R̂(z)(1 − χ2),

where R̂(z) = (P̂(h)− z)−1, ∀z ∈ C\R. Therefore, the limiting absorption principle
yields

(3.2) R(λ + i0)(1 − χ2)

= (1 − χ1)R̂(λ + i0)(1 − χ2) + R(λ + i0)[P0(h), χ1]R̂(λ + i0)(1 − χ2)

Similarly, we have

R(λ−i0)(1−χ3) = (1−χ2)R̂(λ−i0)(1−χ3)+R(λ−i0)[P0(h), χ2]R̂(λ−i0)(1−χ3)

and by taking the adjoint, we get

(3.3) (1 − χ3)R(λ + i0) =

(1 − χ3)R̂(λ + i0)(1 − χ2) + (1 − χ3)R̂(λ + i0)[P0(h), χ2]∗R(λ + i0).

Then, multiplying (3.2) by (1 − χ3) and using (3.3) in the right-hand side of the
equation obtained, we have

(1 − χ3)R(λ + i0)(1 − χ2) =

(1 − χ3)R̂(λ + i0)(1 − χ2)[P0(h), χ1]R̂(λ + i0)(1 − χ2)

+ (1 − χ3)R̂(λ + i0)[P0(h), χ2]∗R(λ + i0)[P0(h), χ1]R̂(λ + i0)(1 − χ2)

+ (1 − χ3)(1 − χ1)R̂(λ + i0)(1 − χ2).

Recall that χ2 = 1 on supp(χ1) and χ3 = 1 on supp(χ1), so the above equation
yields

(3.4) (1 − χ3)R(λ + i0)(1 − χ2) = (1 − χ3)R̂(λ + i0)(1 − χ2)

+ (1 − χ3)R̂(λ + i0)[P0(h), χ2]∗R(λ + i0)[P0(h), χ1]R̂(λ + i0)(1 − χ2)
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which we will use frequently in the following.
This formula is interesting for the following reasons. A priori, the resolvent

(1 − χ3)R(λ + i0)(1 − χ2) could behave as eC/h. The right member of equation
(3.4) involves only the modified resolvent R̂(λ + i0) and the truncated resolvent
[P0(h), χ2]∗R(λ + i0)[P0(h), χ1]. The energy λ being non-trapping for P̂, we will
be able to apply the result of [20] to treat the term containing R̂(λ + i0). Moreover,

the coefficients of the operators [P0(h), χi], i = 1, 2 are supported in rings as far as
we need from the origin. Therefore, we will be able to apply Theorem 3.1 to get a
bound of ‖[P0(h), χ2]∗R(λ + i0)[P0(h), χ1]‖ by O(h−1).

Proof of (i) Recall that supp(k+a) ⊂ Γ+(3R0, d1,−σ1) and supp(χ3) ⊂ {|x| ≥
11
4

R0}, hence (1 − χ3)K+a = K+a, similarly (1 − χ2)K±b = K±b and we can multiply

(3.4) by K∗
+a and K+b to obtain

K∗
+aR(λ + i0)K+b = K∗

+aR̂(λ + i0)K+b+

K∗
+aR̂(λ + i0)[P0(h), χ2]∗R(λ + i0)[P0(h), χ1]R̂(λ + i0)K+b.

By Lemma 3.1, λ is non-trapping for V̂ and we can apply (i) of Lemma 7.3 to obtain

‖K∗
+aR̂(λ + i0)K+b‖−α,α = O(h

N
2 ).

Hence it suffices to estimate the second term of the right-hand side of the previous
equation. Take ψ1 and ψ2 in C∞

0 such that ψ1 = 1 in {x : R0 < |x| < 2R0}, ψ1 = 0

in R
n \ {x : R0

2
< |x| < 3R0}, ψ2 = 1 in {x : 2R0 < |x| < 5

2
R0} and ψ2 = 0 in

R
n \ {x : R0 < |x| < 3R0}. It is clear that [P0(h), χ j] = ψ j[P0(h), χ j], ∀ j = 1, 2

and we must estimate

K∗
+aR̂(λ + i0)[P0(h), χ2]∗ψ2R(λ + i0)ψ1[P0(h), χ1]R̂(λ + i0)K+b.

According to Proposition 3.1, we deduce ‖ψ2R(λ + i0)ψ1‖ = O(h−1), and by the
construction of χ1 and χ2 we can apply the results concerning the non-trapping case
described in Lemma 7.2 to obtain

‖[P0(h), χ1]R̂(λ + i0)K+b‖−α,α = O(h∞) and(3.5)

‖[P0(h), χ2]R̂(λ− i0)K+a‖α,α = O(h−1).

Using these estimates, we get

‖K∗
+aR(λ + i0)K+b‖−α,α ≤ ‖K∗

+aR̂(λ + i0)[P0(h), χ2]∗‖α,α‖ψ2R(λ + i0)ψ1‖α,α

× ‖[P0(h), χ1]R̂(λ + i0)K+b‖−α,α + O(h
N
2 )

≤ C‖[P0(h), χ2]R̂(λ− i0)K+a‖α,α‖ψ2R(λ + i0)ψ1‖α,α

× ‖[P0(h), χ1]R̂(λ + i0)K+b‖−α,α + O(h
N
2 )

≤ Ch−1 ×Ch−1 ×Ch∞ + Ch
N
2 ≤ Ch

N
2 .
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Proof of (ii) Our aim is to estimate the operator K∗
+a(h)R(λ+i0)(1−χb)K−b(h) and,

as in the previous case, we use equation (3.4) and the fact that (1 − χ3)K+a = K+a

and (1 − χ2)K−b = K−b to write

K∗
+aR(λ + i0)(1 − χb)K−b = K∗

+aR̂(λ + i0)[P0(h), χ2]∗R(λ + i0)[P0(h), χ1]

×R̂(λ + i0)(1 − χb)K−b + K∗
+aR̂(λ + i0)(1 − χb)K−b.

As above, λ being non-trapping for V̂ , we deduce from (ii) of Lemma 7.3 that

‖K∗
+aR̂(λ + i0)(1 − χb)K−b‖−α,α = O(h

N
2 )

and it remains to estimate

K∗
+aR̂(λ + i0)[P0(h), χ2]∗R(λ + i0)[P0(h), χ1]R̂(λ + i0)(1 − χb)K−b.

Now we use the functions ψ1 and ψ2 defined previously, and the proof is reduced to
the analysis of

I(h) = ‖K∗
+aR̂(λ + i0)[P0(h), χ2]∗ψ2R(λ + i0)ψ1[P0(h), χ1]

× R̂(λ + i0)(1 − χb)K−b‖−α,α
≤ ‖K∗

+aR̂(λ + i0)[P0(h), χ2]∗‖α,α‖ψ2R(λ + i0)ψ1‖α,α
× ‖[P0(h), χ1]R̂(λ + i0)(1 − χb)K−b‖−α,α.

We have already seen that ‖ψ2R(λ + i0)ψ1‖ = O(h−1) and

‖K∗
+aR̂(λ + i0)[P0(h), χ2]∗‖−α,α = O(h−1),

consequently

I(h) ≤ Ch−2‖[P0(h), χ1]R̂(λ + i0)(1 − χb)K−b‖−α,α,

and it suffices to estimate ‖[P0(h), χ1]R̂(λ + i0)(1 − χb)K−b‖−α,α. Let us introduce

a function ω ∈ A
0,∞
0 (R

2n) such that w(x, ξ) = 1 if (x, ξ) ∈ Γ−(10R0, d3, σ2) and
supp(ω) ⊂ Γ−(10R0, d3, σ3) and write

[P0(h), χ1]R̂(λ + i0)(1 − χb)K−b = [P0(h), χ1]R̂(λ + i0)ω(x, hDx)K̃−b

+ [P0(h), χ1]R̂(λ + i0)(1 − ω(x, hDx))K̃−b,

where K̃−b = (1 − χb)K−b is the Fourier Integral Operator with phase Φ− and

symbol k̃−b(x, ξ) = (1 − χb(x))k−b(x, ξ). Using the definition of k−b, it is clear that
supp(k̃−b) ⊂ Γ−(10R0, d3, σ4) and

(3.6) k̃−b ∈ A−(N+2),∞
N+2 (Γ−(10R0, d3, σ3)).
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Using the fact that ω(x, hDx) localizes exactly in Γ−(10R0, d3, σ3), we get

‖[P0(h), χ1]R̂(λ + i0)ω(x, hDx)K̃−b‖α,−α = O(hN ).

On the other hand, (1 − ω)(x, hDx) localizes in outgoing domain of the phase space.

Then Lemma 7.2 gives

‖[P0(h), χ1]R̂(λ + i0)(1 − ω(x, hDx))K̃−b‖α,−α = O(h∞)

and the proof of (ii) is complete.

Proof of (iii) It is very similar to the proof of (ii) and we just sketch it. We want to

estimate
(

(1 − χa)K+a(h)
) ∗

R(λ + i0)χbK−b(h), and taking into account (3.4), one

can write

((1 − χa)K+a)∗R(λ + i0)χbK−b = ((1 − χa)K+a)∗R̂(λ + i0)χbK−b

+ ((1 − χa)K+a)∗R̂(λ + i0)[P0(h), χ2]∗

× R(λ + i0)[P0(h), χ1]R̂(λ + i0)χbK−b.

From (iii) of Lemma 7.3 we deduce

‖((1 − χa)K+a)∗R̂(λ + i0)χbK−b‖−α,α = O(h
N
2 )

and it remains to estimate

I(h) = ‖((1−χa)K+a)∗R̂(λ+i0)[P0(h), χ2]∗R(λ+i0)[P0(h), χ1]R̂(λ+i0)χbK−b‖−α,α.

Once more using the functions ψ1 and ψ2, we get

I(h) ≤‖((1 − χa)K+a)∗R̂(λ + i0)[P0(h), χ2]∗‖−α,α‖ψ1R̂(λ + i0)ψ2‖−α,−α
× ‖[P0(h), χ1]R̂(λ + i0)χbK−b‖−α,−α.

(3.7)

We know that ‖ψ1R̂(λ + i0)ψ2‖−α,−α = O(h−1) and, from Lemma 7.2, as in the
proof of (ii), one easily obtains that ‖[P0(h), χ1]R̂(λ + i0)χbK−b‖−α,−α = O(h−1).
Therefore, we have the estimate

(3.8) I(h) ≤ Ch−2‖((1 − χa)K+a)∗R̂(λ + i0)[P0(h), χ2]∗‖−α,α.

On the other hand,

‖((1−χa)K+a)∗R̂(λ+i0)[P0(h), χ2]∗‖−α,α = ‖[P0(h), χ2]R̂(λ−i0)(1−χa)K+a‖−α,α.

Let ω(x, ξ) ∈ A
0,∞
0 be such that ω = 1 on Γ+(4R0, d1,−σ1) and supp(ω) ⊂

Γ+(4R0, d1 − σ2) then

‖((1 − χa)K+a)∗R̂(λ + i0)[P0(h), χ2]∗‖−α,α ≤

‖[P0(h), χ2]R̂(λ− i0)(1 − χa)ω(x, hDx)K+a‖−α,α
+ ‖[P0(h), χ2]R̂(λ− i0)(1 − χa)(1 − ω(x, hDx))K+a‖−α,α.
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As supp((1 − χa)(1 − ω)) ∩ supp(k+a) ⊂ Γ−(10R0, d1,−σ0), Lemma 7.2 yields

‖[P0(h), χ2]R̂(λ− i0)(1 − χa)(1 − ω(x, hDx))K+a‖−α,α = O(h∞).

Moreover, by construction, k+a ∈ A−(N+2),∞
N+2 on supp(1 − χa)ω, then

‖[P0(h), χ2]R̂(λ− i0)(1 − χa)ω(x, hDx)K+a‖−α,α = O(hN )

and we have proved that

‖((1 − χa)K+a)∗R̂(λ + i0)[P0(h), χ2]∗‖−α,α = O(h
N
2 ).

This estimate combined with (3.8) yields I(h) = O(h∞) and the proof is complete.

Let us denote Φ+(x) = Φ+(x,
√

2λθ) and Φ−(x) = Φ−(x,
√

2λω). The Proposi-
tion 3.1 and a simple calculation yield the following theorem

Theorem 3.2 Assumme (Vρ) with ρ > 1 and (Hol∞). Then for every N ∈ N, R0 can

be chosen large enough so that

(3.9) f (θ, ω, λ, h) = c1(λ, h)G0(θ, ω, λ, h) + O(h
N
3 ),

with

G0(θ, ω, λ, h) =
〈

R(λ + i0)g−beih−1
Φ− , g+aeih−1

Φ+
〉

,(3.10)

c1(λ, h) = 2π(2λ)(n−3)/4(2πh)−(n+1)/2e−i (n−3)π
4(3.11)

and

g−b = eih−1
Φ−[χb, P0(h)]

(

b−( · ,
√

2λω)eid−1
Φ−

)

,(3.12)

g+a = eih−1
Φ+ [χa, P0(h)]

(

a+( · ,
√

2λθ)eih−1
Φ+

)

.(3.13)

Notice that g−b and g+a have compact support included in rings which are situated as
far as we want from origin. Therefore, modulo some error terms of order O(h∞), we

established a representation formula for the scattering amplitude, involving only the
truncated resolvent. Now we are in position to prove our first result.

Proof of Theorem 1.1 Because of equations (3.10) and (3.11), the proof is reduced

to show that |G0(θ, ω, λ, h)| = O(h). Let us choose R1 ≫ 1 so that estimate (3.1)
holds for any R2 > R1 and assume R0 > R1. Then g−b = 1{R0<|x|<30R0}g−b,
g+a = 1{R0<|x|<30R0}g+a, and one can write

|G0(θ, ω, λ, h)| ≤ ‖g+a‖L2 ‖1{R0<|x|<30R0}R(λ + i0)1{R0<|x|<30R0}‖0,0 ‖g−b‖L2

≤ Ch−1‖g−b‖L2‖g+a‖L2 ,
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where the last inequality comes from estimate (3.1). Moreover, a simple calculation
yields

g−b = h2
(

∆χbb− + 2〈∇χb,∇b−〉
)

+ 2ih〈∇χb,∇Φ−〉b−,

g+a = h2
(

∆χaa+ + 2〈∇χa,∇a+〉
)

+ 2ih〈∇χa,∇Φ+〉a+.

Using the fact that ∆χb and ∇χb are compactly supported, it is clear that ‖g−b‖L2 =

O(h) and ‖g+a‖L2 = O(h). Therefore, we obtain |G0(θ, ω, λ, h)| = O(h) and the
proof is complete.

4 Resolvent Estimate in the Trapping Case

For the proofs of Theorems 1.1 and 1.2, as in [13] and [20], we need an estimate of
the resolvent on the real axis. In this section we prove the following.

Proposition 4.1 Assume (Hol∞) and hypothesis (5) of Theorem 1.3. Then there ex-

ists ñ ∈ N
∗ such that

‖R(λ± i0)‖α,−α = O(h−ñ), α >
1

2
.

According to the work of Bruneau and Petkov [1], it suffices to show that a such

estimate holds for the truncated resolvent χR(λ ± i0)χ, for suitable χ ∈ C∞
0 (R

n).
More precisely we have the following proposition.

Proposition 4.2 Let d > 0. There exists ρ > 0 large enough such that for all χ ∈
C∞

0 (Rn), χ = 1 on B(0, ρ) and for h small enough we have

∀α > 1

2
, ‖R(z)‖α,−α ≤ Ch−2

(

1 + ‖χR(z)χ‖
)

,

uniformly for z ∈ B± = {z ∈ C : (Re z,±Im z) ∈]d−1, d[×]0, 1]}.

Remarks 4.1 Notice that the functions χ satisfying the hypotheses of the above

proposition do not vanish near 0, so that we can not apply Theorem 1.5.

We need two Lemmas due to Tang and Zworski [24] which are essential to obtain an

estimate for the truncated resolvent. For completeness we state these Lemmas below.

Lemma 4.1 ([24]) Let F( · , h) be a family of functions such that F( · , h) is holomor-

phic in Ω(h) = [λ − 5hq+δ, λ + 5hq+δ] + i[−hq+ 3n
2

+3δ, hq+ n
2

+2δ] for some q, δ > 0 and

assume that F satisfies the estimates

|F(z, h)| ≤ Aexp(Ah− n
2 log

1

h
) in Ω(h),(4.1)

|F(z, h)| ≤ C

|Im(z)| in Ω(h) ∩ {Im(z) < 0}.(4.2)
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Then there exists C > 0 such that

(4.3) ∀h ≪ 1, ∀z ∈ Ω̃(h), |F(z, h| ≤ Ch−q− 3n
2
−3δ,

where Ω̃(h) = [λ− hq+δ, λ + hq+δ] + i[−hq+ 3n
2

+3δ, hq+ 3n
2

+3δ].

Lemma 4.2 ([24]) Let U be a compact neighborhood of λ in Re(z) > 0, and let

g(h) ≪ 1. Then there exists C > 0 such that for h ≪ 1 we have

(4.4) ‖Rχ(z, h)‖ ≤ CeCh−n log 1
g(h) , for z ∈ U \

⋃

ξ∈Res(P(h))

B(ξ, g(h)),

where for χ ∈ C∞
0 (R

n) we set Rχ(z, h) = χR(z, h)χ.

Proof of Proposition 4.1 We have already seen that it is sufficient to show that
‖Rχ(λ ± i0)‖ = O(h−ñ) and we may apply Lemma 4.1 to F(z, h) = Rχ(z, h). Take
δ > 0 and let q > 0 be given by hypothesis (5) of Theorem 1.3. The estimate (4.1)
is trivially satisfied. To establish (4.2), we apply Lemma 4.2 with g(h) =

1
2
hq and

it suffices to show that Ω(h) ∩
⋃

λ j∈Res(P(h)) B(λ j , g(h)) = ∅. For ξ ∈ Ω(h) and

λ j ∈ Res(P(h)), by assumption (5) of Theorem 1.3 we have

|ξ − λ j | ≥ |λ− λ j | − |ξ − λ| ≥ hq − hq+δ >
1

2
hq

= g(h)

and the proof is complete.

5 Proof of Theorem 1.2

We start with a representation formula for T̃(λ, h), where obviously T̃ is defined by
S̃(λ, h) = Id − 2iπT̃(λ, h). We know from Proposition 2.1 that there exist some
phases Φ̃±(x, ξ) and some symbols ã±, b̃± such that

T̃(λ, h) = T̃+1(λ, h) + T̃−1(λ, h) − T̃2(λ, h)

with
T̃±1(λ, h) = F0(λ, h) J∗+ã(h)K±b̃(h)F∗

0 (λ, h)

and

T̃2(λ, h) = F0(λ, h)K∗
+ã(h)R̃(λ + i0, h)(K+b̃(h) + K−b̃(h))F∗

0 (λ, h).

On the other hand, the proof of Isozaki-Kitada [7], shows clearly that the phases
Φ̃±(x, ξ) and the symbols ã±, b̃± depend only of the potential Ṽ outside a fixed
compact set as large as we want. As V = Ṽ in R

n \ F, one can take Φ̃± = Φ±,
ã± = a± and b̃± = b±. The same argument as for T±1 shows that the kernel

of T̃±1(λ, h) satisfies T̃±1(θ, ω, λ, h) = O(h∞) for any θ 6= ω. Moreover, we can
compute exactly the same spatial localization for T̃2 as that we have done for T2 in
section 3. Hence we obtain

(5.1) f̃ (θ, ω, λ, h) = c1(λ, h)G̃0(θ, ω, λ, h) + O(h
N
3 )
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with

(5.2) G̃0(θ, ω, λ, h) = 〈R̃(λ + i0)g−beih−1
Φ− , g+aeih−1

Φ+〉,

where g−b and g+a are given by formulae (3.12) and (3.13). Let us take χ1, χ2 ∈
C∞

0 (R
n) such that 1F ≺ χ1 ≺ χ2 ≺ 1

Rn\Wext
, i.e., χ1(x) = 1 for x ∈ F, χ2(x) = 1 for

x ∈ supp(χ1), χ2(x) = 0 for x ∈ Wext . With this construction we have

P̃(h)(1 − χ1) = (−h2
∆ + Ṽ )(1 − χ1) = (−h2

∆ + V )(1 − χ1) = P(h)(1 − χ1),

and working as in the previous section, we easily obtain

R̃(λ + i0)(1 − χ2) = (1 − χ1)R(λ + i0)(1 − χ2)

+ R̃(λ + i0)[P0(h), χ1]R(λ + i0)(1 − χ2).

(5.3)

This identity combined with equations (3.9) and (5.1) gives

f̃ (θ, ω, λ, h) − f (θ, ω, λ, h) =

c1(λ, h)
〈

R(λ + i0)[P̃(h), χ1]R̃(λ + i0)g−beih−1
Φ− , g+aeih−1

Φ+
〉

.

(5.4)

Recall that supp(g−b) ⊂ {10R0 < |x| < 10R0 + 1} where R0 can be chosen as
large as we need. In particular we may assume R

n \ Wext ⊂ {|x| < R0} and take

ψ1 ∈ C∞
0 ({|x| < 5R0}) such that ψ1 = 1 on {|x| < 4R0}. Then, we easily get

f̃ (θ, ω, λ, h) − f (θ, ω, λ, h) =

c1(λ, h)〈R(λ + i0)ψ1[P0(h), χ1]R̃(λ + i0)g−beih−1
Φ− , g+aeih−1

Φ+〉.

Let us denote Ṽ0 = R̃(λ+ i0)g−beih−1
Φ− and notice that according to hypothesis (iii),

Ṽ0 is in D ′
sc(R

n) (see the appendix for the definition). Indeed, we can apply the result
of the previous section to Ṽ and we obtain ‖R̃(λ + i0)‖α,−α = O(h−M). The notion
of semi-classical wave front set WFsc will permit us to control Ṽ0 (see section 7 for a
precise definition of WFsc). By definition,

(P̃(h) − λ)Ṽ0 = g−beih−1
Φ− .

Applying (iii) of Proposition 7.1, we deduce that

WFsc(Ṽ0) ⊂ WFsc(g−b) ∪ Charsc(P̃(h) − λ)

and using (ii) of Proposition 7.1 we get

WFsc(Ṽ0) ⊂ T∗(supp(g−b)) ∪ Charsc(P̃(h) − λ).

By construction, we know that supp(g−b) ⊂ {4R0 < |x| < 5R0} and Charsc(P̃(h)) ⊂
T∗(Wext ∪ F). Therefore,

WFsc(Ṽ0) ⊂ T∗(Wext ∪ F).
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Moreover, by construction,

supp([P0(h), χ1]) ∩ (Wext ∪ F) = ∅

and we deduce from (ii) of Proposition 7.1 that

WFsc([P0(h), χ1]Ṽ0) = ∅.

Using (i) of Proposition 7.1, we obtain

(5.5) ‖[P0(h), χ1]R̃(λ + i0)g−beih−1
Φ−‖ = O(h∞).

On the other hand, combining hypothesis (iii) and Proposition 4.1, we get

(5.6) ‖g+aR(λ + i0)ψ1‖ = O(h−M).

Taking together equations (5.4), (5.5) and (5.6) we have

f (θ, ω, λ, h) − f̃ (θ, ω, λ, h) = O(h∞)

and the proof is complete.

6 Proof of Theorem 1.3

6.1 Short Time Localization

Starting with (3.10), we wish to replace R(λ + i0) by the following representation.

(6.1) R(λ + i0) = ih−1

∫ T

0

eih−1tλe−ih−1tP(h)dt + eih−1TλR(λ + i0)e−ih−1TP(h).

Our goal is to show that for T > 0 large enough, we have

(6.2)
〈

R(λ + i0)e−ih−1TP(h)g−beih−1
Φ− , g+aeih−1

Φ+
〉

= O(hN ).

As in [13] and [20], the proof is based on an judicious application of Egorov’s lemma.

For this purpose we need to study the Hamiltonian flow Φt (x, ξ) = (q(t, x, ξ),
p(t, x, ξ)) associated to σP(x, ξ) =

1
2
|ξ|2 + V (x). This analysis is essentially the same

as that given in [13]. For reader’s convenience we recall the main steps. Let us denote

Σλ = {(x, ξ) ∈ R
n × R

n :
1

2
|ξ|2 + V (x) = λ},

and for subsets W of Sn−1 let

Σλ(W ) = {(x, ξ) ∈ Σλ :
ξ

|ξ| ∈ W}.

As a preliminary step, we check that the assumption (Hω) is an open condition. More
precisely, we have the following.
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Proposition 6.1 Assume that (Hω) is satisfied. Then there exists a neighborhood W

of ω such that

∀ω ′ ∈ W, ∀z ∈ Λω ′ , lim
t→+∞

|q∞(t, z, ω ′)| = +∞.

Proof The proof is split into two steps.

First step Assume that (Hω) is satisfied. We begin to prove that for all R > 0, we can
find a neighborhood W of ω such that

∀ω ′ ∈ W, ∀z ∈ BΛω
(0,R), lim

t→+∞
|q∞(t, z, ω ′)| = +∞.

First, it is not difficult to verify that we can find R0 > 0, d > 0 and σ > 0 such that

∀(x, ξ) ∈ Γ+(R0, d, σ) ∩ Σλ, lim
t→+∞

|q(t, x, ξ)| = +∞.

It follows that it suffices to find T > 0 and a neighborhood W of ω such that

(6.3) ∀ω ′ ∈ W, ∀z ∈ BΛω
(0,R),

(

q∞(T, z, ω ′), p∞(T, z, ω ′)
)

∈ Γ+(R0, d, σ).

From assumption (Hω), we deduce that for all z ∈ BΛω
(0,R), there exists T(z) > 0

such that (q∞, p∞)(T(z), z, ω) ∈ Γ+(R0, d, σ). For all z ∈ BΛω
(0,R), we can use the

continuity of the Hamiltonian flow with respect to initial data on every compact time
interval to find r(z) > 0 and a neighborhood W (z) of ω such that

∀z ′ ∈ BΛω
(z, r(z)), ∀ω ′ ∈ W (z), (q∞, p∞)(T(z), z ′, ω ′) ∈ Γ+(R0, d, σ).

Moreover the open sets
(

BΛω
(z, r(z))

)

z∈BΛω (0,R)
recover BΛω

(0,R). Using the com-

pactness of BΛω
(0,R), we easily find T > 0 and W satisfying (6.3).

Second step We will prove that we can find R > 0 and an neighborhood W of ω such
that

(6.4) ∀ω ′ ∈ W, ∀z ∈ Λω ∩ {|z| ≥ 4R}, lim
t→+∞

|q∞(t, z, ω ′)| = +∞.

First, we easily verify that if the potential V (x) belongs to C∞
0 (R

n), one can find R > 0
and a neighborhood W of ω such that

(6.5) ∀ω ′ ∈ W, ∀z ∈ Λω ∩ {|z| ≥ 2R}, ∀t ∈ R, q∞(t, z, ω ′) =

√
2λω ′t + z.

Particularly, if V ∈ C∞
0 (R

n), then (6.4) is satisfied. In the case where we assume only

that V satisfies (Vρ) with ρ > 1, we proceed by approximation. Given 1 < ρ ′ < ρ
and R > 0, we can find Ṽ ∈ C∞

0 (R
n) and W̃ ∈ C∞(R

n) such that

(6.6)

{

V = Ṽ + W̃ , supp Ṽ ⊂ B(0,R),

∀α ∈ N
n, ∀x ∈ R

n, |∂αW̃ (x)| ≤ C Rρ
′−ρ〈x〉−ρ ′−|α|.
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Let ω ∈ Sn−1, z ∈ Λω and denote by (p̃∞, q̃∞)( · , z, λ, ω) the solution to
{

˙̃q∞ = p̃∞,
˙̃p∞ = −∇xṼ (q̃∞)

such that
{

limt→−∞ |p̃∞(t, z, λ, ω) −
√

2λω| = 0,

limt→−∞ |q̃∞(t, z, λ, ω) −
√

2λωt − z| = 0.

We chose W and R > 0 such that (6.6) holds. Using (6.5) we can prove that

∀|z| ≥ 4R, ∀ω ′ ∈ W, ∀t ∈ R, |q∞(t, z, ω ′) − q̃∞(t, z, ω ′)| < 1 +
1

2
q̃∞(t, z, ω ′).

Using (6.5) again, it follows that (6.4) holds in the general short range case and the

proof is complete.

Using Proposition 6.1, we can copy the proof of Lemma 4.3 in [13], to obtain the
following Lemma.

Lemma 6.1 Assume (Hω) with λ ∈ ]d−1, d[. Then there exist R0 > 0 large enough

and a neighborhood W of ω such that for all R > 0 there exists T0(R) > 0 satisfying

∀(x, ξ) ∈ Σλ(W ), 5R0 < |x| < 6R0 =⇒ ∀t > T0(R), Φt (x, ξ) ∈ Γ+(R, d, 0).

We recall also a weighted Egorov Lemma, whose proof can be found in [13], [14].

Lemma 6.2 Let w ∈ C∞
0 (R

n×R
n), and p ∈ A

m,u
k (R

n×R
n), (m, u, k) ∈ R×R×Z.

Assume that for t ≥ 0, p(x, ξ) vanishes on Φt (supp(ω)). Then we have

∀α ∈ N
n, ‖p(x, hDx)e−ith−1P(h)ω(x, hDx)‖−α,α = O(h∞).

Applying Lemmas 6.1 and 6.2, we are able to prove the following.

Proposition 6.2 There exists T0 > 0 such that ∀T > T0, we have

〈

R(λ + i0)g−beih−1
Φ− , g+aeih−1

Φ+
〉

=

∫ T

0

eih−1tλF(t, θ, ω, h) dt + O(hN )

with F(t, θ, ω, h) =
〈

e−ith−1P(h)g−beih−1
Φ− , g+aeih−1

Φ+
〉

.

Proof Introduce ω ∈ C∞
0 (R

n×R
n) so that ω = 1 in U = Σλ(W )∩(C(R0)×R

n) and

ω = 0 in the complementary of an open neighborhood V of U . Setting ωb = χbω,
we have

〈

R(λ + i0)g−beih−1
Φ− , g+aeih−1

Φ+
〉

=

〈

R(λ + i0)ωb(x, hDx)g−beih−1
Φ− , g+aeih−1

Φ+
〉

+
〈

R(λ + i0)(1 − ωb)(x, hDx)g−beih−1
Φ− , g+aeih−1

Φ+
〉

= I(h) + J(h).
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Clearly,

(1 − ωb)(x, hDx)g−beih−1
Φ− =

∑

|α|≤M

h|α|(1 − ωb)(α)(x,∇xΦ−)gα(x) + hMRM(x)

with supp(gα) ⊂ supp(g−b), and |RM(x)| ≤ C〈x〉−M uniformly with respect to
h. On the one hand, without a loss of generality, we can assume that ∀|x| ≥
R0,

∇xΦ−

|∇xΦ−| ∈ W and we get ∀x ∈ C(R0), (x,∇xΦ−) ∈ U . On the other hand,

we have supp(g−b) ⊂ C(R0), and consequently gα(x)(1 − ω)(α)(x,∇xΦ−) = 0, ∀α.
Moreover, for any M large enough, we have ‖RM‖α = O(1). This estimate combined

with Proposition 4.1 yields

| J(h)| =
∣

∣

〈

R(λ + i0)(1 − ωb)(x, hDx)g−beih−1
Φ− , g+aeih−1

Φ+
〉
∣

∣

= hM
∣

∣

〈

R(λ + i0)RM , g+aeih−1
Φ+

〉
∣

∣

≤ hM‖RM‖α‖g+a‖α‖R(λ + i0)‖α,−α ≤ ChM−ñ.

As we may take M as large as we wish, we obtain J(λ, h) = O(h∞) and it remains to
treat I(h). For this purpose write

I(h) =

∫ T

0

eih−1tλ
〈

e−ih−1tP(h)ωb(x, hDx)g−beih−1
Φ− , g+aeih−1

Φ+
〉

dt

+ 〈e−ih−1TλR(λ + i0)e−ih−1TP(h)ωb(x, hDx)g−beih−1
Φ− , g+aeih−1

Φ+〉
= I1(T, h) + I2(T, h).

From the estimate |(1 − ωb)(x, hDx)(g−beih−1
Φ−)| ≤ CMhM〈x〉−M for every M, we

deduce

I1(T, h) =

∫ T

0

eih−1tλ
〈

e−ih−1tP(h)g−beih−1
Φ− , g+aeih−1

Φ+
〉

dt + O(h∞),

and it suffices to show that I2(T, h) = O(hN ).
Let β ∈ C∞ be such that

β(x, ξ) =

{

1 in Γ+(R, d, 0),

0 in Γ+(R, d,−σ)c

and write

I2(T, h) =

〈

e−ih−1TλR(λ + i0)β(x, hDx)e−ih−1TP(h)ωb(x, hDx)g−beih−1
Φ− , g+aeih−1

Φ+
〉

+
〈

e−ih−1TλR(λ + i0)(1 − β)(x, hDx)e−ih−1TP(h)ωb(x, hDx)g−beih−1
Φ− , g+aeih−1

Φ+
〉

= I+2(T, h) + I−2(T, h).
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We begin to estimate I+2(T, h). Choosing R ≥ 20R0 + 1 > max(ρ0,R1), where ρ0 is
given in Lemma 3.1 and R1 in Theorem 3.1, and working as in Propoosition 3.1, we

verify that

‖χaR(λ + i0)β(x, hDx)‖−α,α = O(h∞).

Moreover, using the continuity of e−ih−1TP(h) on the weighted Sobolev spaces (see
[13], Lemma B.1 and [14], Proposition 1.3), we know that

‖e−ih−1TP(h)ωb(x, hDx)(g−beih−1
Φ−)‖L2

α
= O(1).

Hence

I+2(λ,T, h) =

〈

e−ih−1tλR(λ + i0)β(x, hDx)e−ih−1tP(h)ωb(x, hDx)g−beih−1
Φ− , g+aeih−1

Φ+
〉

≤ ‖χaR(λ + i0)β(x, hDx)‖−α,α‖e−ih−1TP(h)ωb(x, hDx)(g−beih−1
Φ−)‖L2

α

× ‖g+aeih−1
Φ+‖L2

α
≤ CNhN , ∀N.

It remains to estimate I−2(λ,T, h). Recall that we have the estimate

‖R(λ + i0)‖α,−α = O(h−ñ).

Moreover,

|I−2(λ)| ≤ ‖R(λ + i0)‖α,−α‖g+a‖L2
α

× ‖(1 − β)(x, hDx)e−ih−1TP(h)ωb(x, hDx)‖−α,α‖g−b‖L2
−α

≤ C‖(1 − β)(x, hDx)e−ih−1TP(h)ωb(x, hDx)‖−α,α‖R(λ + i0)‖α,−α

≤ Ch−ñ‖(1 − β)(x, hDx)e−ih−1TP(h)ωb(x, hDx)‖−α,α

and it suffices to show that

(6.7) ‖(1 − β)(x, hDx)e−ih−1TP(h)ωb(x, hDx)‖−α,α = O(h∞).

By the construction of ω and from Lemma 6.1 we deduce the existence of T0 > 0
such that

∀T > T0, ∀(x, ξ) ∈ supp(ωb), ΦT(x, ξ) ∈ Γ+(R, d, 0).

Then

∀T > T0, ∀(x, ξ) ∈ supp(ωb), β(ΦT(x, ξ)) = 1,

and for T > T0, Lemma 6.2 implies (6.7).
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6.2 Second Localization

In this subsection, we follow exactly the same construction as that of [20]. Introduce

Z j = {z ∈ Λω : |z − z j | < ǫ}, 1 ≤ j ≤ l,

for ǫ > 0 small enough, and set

Y j = {y ∈ supp(g−b) : y = q∞(s, z j), s < 0}.

For R0 large enough, one can find S1 > S0 ≫ 1 such that

Y j ⊂ Π− j = {y : y = q∞(s, z), −S1 < s < −S0, z ∈ Z j}.

Let π− j be in C∞
0 (Π− j), such that 0 ≤ π− j ≤ 1, and π− j = 1 in Y j . In [20] and

[13], using Hamilton-Jacobi theory and Lemma 6.2, it is shown that

G0(θ, ω, λ, h) = ih−1

l
∑

j=1

∫ T0

0

eih−1tλF− j(t, θ, ω, h) dt + O(h∞)

with
F− j(t, θ, ω, h) =

〈

eih−1tP(h)π− jg−beih−1
Φ− , g+aeih−1

Φ+
〉

.

Similarly, we define

X j = {x ∈ supp(g+a) : x = q(t, y,∇xΦ−(y)), y ∈ Y j , t > 0}

and there exists T0 > T1 ≫ 1 such that

X j ⊂ Π+ j = {x : x = q(t, y,∇xΦ+(y)), y ∈ Π− j , T1 < t < T0}.

Thus we may construct π+ j ∈ C∞
0 (Π+ j), such that 0 ≤ π+ j ≤ 1 and π+ j = 1 in X j .

Repeating the above argument, we obtain

(6.8) G0(θ, ω, λ, h) = ih−1

l
∑

j=1

∫ T0

T1

eih−1tλF j(t, θ, ω, h) dt + O(h∞)

with
F j(t, θ, ω, h) = bigl〈eih−1tP(h)π− jg−beih−1

Φ− , π+ jg+aeih−1
Φ+

〉

.

6.3 Approximation of the Unitary Group and Stationary Phase Method

In this section, we repeat without changes the proof given in [20] and we recall only
the main steps. First we construct an approximation for

ψ j(t, x, h) = eih−1tP(h)π− jg−beih−1
Φ− , x ∈ Π+ j , T1 < t < T0.
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Lemma 6.3 The point x = q(t, y,∇xΦ−(y)) ∈ Π+ j with y ∈ Π− j , is non-focal, i.e.,

D(t, y) = det(
∂

∂y
q(t, y,∇xΦ−(y))) 6= 0, T1 < t < T0.

From Lemma 6.3, we deduce the following representation of ψ j(t, x, h), T1 < t <
T0, x ∈ Π+ j (cf. [12], sect. 12):

(6.9) ψ j(t, x, λ, h) = eih−1S j (t,y)−iµ j
π
2 |D(t, y)|− 1

2 ihπ− j(y)g0b(y) + O(h),

for x = q(t, y,∇xΦ−(y)), y ∈ Π− j . Here S j is the action along the trajectory joining
the points x and y, i.e.,

(6.10) S j(t, y) = Φ−(y) +

∫ t

0

( 1

2
|p(τ , y,∇xΦ−)|2 −V (q(τ , y,∇xΦ−))

)

dτ ,

µ j ∈ Z is the Maslov index of this trajectory and g0a, g0b ∈ C∞
0 depend on g+aand

g−b. We insert (6.9) into the expression of F j , and after a change of variables x =

q(t, y,∇xΦ−) → y, we get

(6.11)

G0(θ, ω, λ, h) = ih

l
∑

j=1

∫ T0

T1

eih−1tλ

∫

Rn

eih−1φ j (t,y)−iµ j
π
2 M j(t, y)|D(t, y)| 1

2 dydt + O(h2)

where

φ j(t, y) = S j(t, y) − Φ+

(

q(t, y,∇xΦ−),
√

2λθ
)

and

M j(t, y) = π− j(y)g0b(y)π+ j

(

q(t, y,∇xΦ−)g0a(q(t, y,∇xΦ−)
)

.

Thus, the proof of the theorem is reduced to the study on the asymptotic behavior of
the integral

N j(θ, ω, h) =

∫ T0

T1

eih−1tλ

∫

Rn

eih−1φ j (t,y)−iµ j
π
2 M j(t, y)|D(t, y)| 1

2 dydt, 1 ≤ j ≤ l.

The direction θ is regular for ω, hence we can make a change of variables

(z, s) ∈ Z j × ]−S1,−S0[ −→ y = q∞(s, z) ∈ Π− j .

We obtain

N j(θ, ω, h) = h2

∫ T0

T1

eih−1tλ−iµ j
π
2

∫ −S0

−S1

I j(t, s, θ, ω, h) dsdt,
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with

I j(t, s, θ, ω, h) =

∫

Z j

eih−1
Φ j (t,s,z) f j(t, s, z)|D∞(t + s, z)| 1

2 |D∞(s, z)| 1
2 dz,

Φ j(t, s, z) = S j(t, q∞(s, z)) − Φ+(q∞(t + s, z),
√

2λθ),

f j(t, s, z) = π− j(q∞(s, z))g0b(q∞(s, z))π+ j(q∞(t + s, z))g0a(q∞(t + s, z)).

Now let us apply the stationary phase method to the integral I j . As in [20], for (t, s)
fixed, the only stationary point of the phase Φ j(t, s, z) is z j . We refer to Theorem

7.7.6 in [6] for the stationary phase method for integral depending on parameters.
We apply this theorem at each z j and we use Lemma 4.5 of [20] to get

N j(θ, ω, h) = c2(λ, h)eih−1S j−iµ j
π
2 σ̂ j(z j )−

1
2 + O(h),

with

c2(λ, h) = −(2λ)−
n−3

4 (2πh)
n−1

2 h2ei(n−1) π
4 .

This equality combined with (3.9) and (6.2) completes the proof of Theorem 1.3.

7 Appendix

7.1 Semi-Classical Estimates in the Non-Trapping Case

In this section, we recall some results proved by Robert and Tamura and we refer to
[19] and [20] for the proofs. Let P̂(h) = −h2

∆ + V̂ (x) be a short-range perturbation
of the Laplacian (i.e., V̂ satisfies (Vρ) with ρ > 1) and let λ > 0 be a non-trapping

energy level for the potential V̂ . We have the following lemmas.

Lemma 7.1 Let A(x, hDx) be a p-order h-admissible differential operator, p ≤ 2 and

let α > 1
2
. Then we have the following semiclassical estimate

‖A(x, hDx)R̂(λ± i0)‖α,−α = O(h−1).

See [1] for the proof.

Lemma 7.2 Let ω± ∈ A
0,∞
0 be such that supp(ω±) ⊂ Γ±(R, d, σ±). Then for α > 1

we have the following assertions:

(i) ‖R̂(λ± i0)ω±(x, hDx)‖−α+δ,−α = O(h−1), ∀δ > 1.
(ii) If σ+ > σ−, then

‖ω∓(x, hDx)R̂(λ± i0)ω±(x, hDx)‖−α,α = O(h∞).

(iii) If ω ∈ A
0,m
0 , m ∈ R and supp(ω) ⊂ {|x| < R̃}, R̃ > 0, then

‖ω(x, hDx)R̂(λ± i0)ω±(x, hDx)‖−α,α = O(h∞).
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Remarks 7.1 This Lemma is the same as that used by Robert and Tamura in [20],
with exception of (iii) where we establish the same estimate for symbols ω ∈ A0,m

0 ,

∀m, instead of ω ∈ A
0,∞
0 , but the proof works with the same argument.

As a direct consequence, we have the following.

Lemma 7.3 Under the same assumption as those of the precedent Lemma and for

α > n
2

, we have the following assertions:

(i) ‖K∗
+a(h)R̂(λ + i0)K+b(h)‖−α,α = O(h

N
2 ),

(ii) ‖K∗
+a(h)R̂(λ + i0)(1 − χb)K−b(h)‖−α,α = O(h

N
2 ),

(iii) ‖((1 − χa)K+a)∗(h)R̂(λ + i0)χbK−b(h)‖−α,α = O(h
N
2 ).

7.2 Semi-classical Wave Front Set

The aim of this section is to recall briefly a notion of semi-classical wave front set ap-
propriate to our problem and to give the basic properties that we need in the proof of
Theorem 1.2. We refer to [14] for demonstrations and to [4], [9] for other definitions
of semiclassical wave front set.

Definition 7.1

(1) We denote by D ′
sc(R

n) the set of distributions u(x, h) belonging to D ′(R
n) such

that for any χ ∈ C∞
0 (R

n), there exists N ∈ N such that

|Fh(χu)(ξ, h)| ≤ CN h−N〈ξ〉N ,

where

Fh(u)(ξ, h) = (2πh)−
n
2

∫

Rn

e−ih−1〈x,ξ〉u(x, h) dx.

(2) Given m, u ∈ R, we set Am,u
sc =

⋃

k∈Z
A

m,u
k and we denote Lm,k

sc = Oph(Am,k
sc ).

Definition 7.2 Let p ∈ Am,u
k and (x0, ξ0) ∈ R

n × R
n. We say that the operator

P = p(x, hDx, h) is elliptic in (x0, ξ0) if there exist a neighborhood V0 of x0 and a
conic neighborhood Γ0 of ξ0 such that

∀(x, ξ) ∈ V0 × Γ0, |p(x, ξ, h)| ≥ Chk〈ξ〉u.

We denote by Charsc(P) the set of all points (x, ξ) where P is not elliptic.

Definition 7.3 Let u ∈ D ′
sc(R

n) and let (x0, ξ0) ∈ T∗(R
n). We say that (x0, ξ0) does

not belong to WFsc(u) if there exist a neighborhood V0 of x0 and a conic neighbor-
hood Γ0 of ξ0 such that for all χ ∈ C∞

0 (V0) satisfying χ(x0) = 1 and for all N ∈ N,

there exists CN > 0 such that

∀χ ∈ Γ0, |Fh(χu)(ξ)| ≤ CNhN〈ξ〉−N .
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As for the classical wave front set, one has the following proposition.

Proposition 7.1

(i) Let u(x, h) ∈ D ′
sc(R

n) and assume that WFsc(u) = ∅. Then for any k,m ∈ N,

u ∈ hkHm
loc(R

n), that is

∀χ ∈ C∞
0 (R

n), ∃C > 0, ∀0 < h < 1, ‖χu( · , h)‖Hm(Rn) ≤ Chk.

(ii) Let u(x, h) ∈ D ′
sc(R

n) and χ ∈ C∞
0 (R

n), then

WFsc(χu) ⊂ T∗(supp(χ)) ∩WFsc(u).

(iii) Let u(x, h) ∈ D ′
sc(R

n) and P ∈ Lm,k
sc , then

WFsc(Pu) ⊂ WFsc(u) ⊂ WFsc(Pu) ∪ Charsc(P).
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Institut Galillee

Université Paris 13
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