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In this paper we consider the Schrödinger equation with constant magnetic field of
strengthb.0 in all dimension. We study the behavior of the scattering amplitude
and the scattering phase when the parameterb goes to infinity and the energy is far
from the Landau levels. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1865814g

I. INTRODUCTION

In this paper, we are interested in the Schrödinger equation with magnetic field

i]tc = Hsbdc,

whereHsbd=H0sbd+Vsxd with VPL`sRnd and

H0sbd = ui¹x − bAsxdu2. s1d

Here,A:Rn→Rn is the magnetic potential andb is a strictly positive real parameter. Our aim is to
study the scattering matrix associate to the pairsHsbd ,H0sbdd. In order to lighten the notations we
drop the parameterb and writeH instead ofHsbd. There is a wide literature dealing with the
Schrödinger equation with magnetic fieldssee for instance Refs. 2, 7, and 14 for general properties
dealing with our problemd. In this paper, we consider the case where the magnetic field is constant.
More precisely, denotingAsxd=sA1sxd , . . . ,Ansxdd with Aj :Rn→R, j =1, . . . ,n, the magnetic field
B can be identified with the antisymmetric matrixBsxd=s]xi

Ajsxd−]xj
Aisxddi,j. Here, we consider

the case where the magnetic fieldBsxd does not depend onx. RegardingB as an antisymmetric
linear map onRn, we set 2d=dim RanB and k=n−2d=dim Ker B. As we are interested in the
case whereBÞ0, we suppose thatdÞ0. On the other hand, as we study scattering problems we
do not consider the casen=2d where the spectrum ofH0 is pure point. Hence, we suppose that
k=n−2dÞ0. Under this assumption there exists Cartesian coordinates in which the reference
Hamiltonian takes the form

H0 = o
j=1

d

fsi]x2j−1
− bm jx2jd2 + si]x2j + bm jx2j−1d2g − Dxi,

wherex=sx1,x2, . . . ,x2d−1,x2d,xid=sx', xidPR2d3Rn−2d and m1, . . . ,md are strictly positive real
numbersssee Ref. 14 for detailsd. Under suitable assumptions onV, it is well known ssee Ref. 2d
that the scattering operatorS=Ssbd associated to the pairsH0,Hd is well defined. Our aim is to
describe this operator when the parameterb goes to infinity.

Before going further, let us recall some works concerning such problems. First, we would like
to mention some results concerning the scattering matrix in the case whereAsxd is a long range
potential fi.e., Asxd decreases faster thanuxu−r for somer.0 when uxu goes to infinityg. In that
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case, there is a scattering theory for the pairsH ,−Dd scf. Refs. 10, 13, 16, and 18d and it is possible
to describe the behavior of the scattering amplitude in the high energy limitscf. the work of
Nicoleau12d.

On the other hand, there are some recent works of Bruneau–Pushnitski–Raikov5 and
Bruneau–Dimassi,4 concerning the Schrödinger equation with constant magnetic field. In Ref. 5,
the authors study the spectral shift function associate to this equation in dimension 3 and they
describe its behavior in several asymptotic regimes. In particular, they investigate deeply the case
whereb goes to infinity and the distance from the energy to the set of Landau levels behaves asb.
There are also some works of Kostrykin–Kvitsinsky–Mekuyriev,8 where the authors study partial
scattering matrix in dimension 3 near the Landau levelssb being fixedd. Moreover, in Ref. 8 the
authors make some symmetry assumption on the potentialV. Here, we would like to treat the case
of general potential in dimensionn in the asymptotic regime considered in Ref. 5.

First, we need to give an exact definition of the scattering amplitude in the present situation.
Let us consider the Schrödinger operator with constant magnetic field in dimension 2d,

Ĥ0 = o
j=1

d

fsi]x2j−1
− bm jx2jd2 + si]x2j

+ bm jx2j−1d2g s2d

acting onL2sR2dd. As m1¯mdÞ0, it is well known that the spectrum ofĤ0 is pure point.2 For

q=sq1, . . . ,qddPNd we denoteLq=s2q1+1dm1+¯ +s2qd+1dmd, so that the spectrum ofĤ0 is
given by the sequence of Landau levels

L = ssĤ0d = sppsĤ0d = hbLq,q P Ndj.

In particular, the bottom of the spectrum is given bybL0=bsm1+¯ +mdd. Let us denote by
Yq,L2sR2dd the eigenspace associated to the eigenvaluebLq and Pq:L2sR2dd→Yq the corre-
sponding projector. Denoting La

2sRn−2dd=hf PL2sRn−2dd ; kxilaf PL2sRn−2ddj; we define

F̃0sld :La
2sRn−2dd→L2sSn−2d−1d by

F̃0sldwsjd =
lsn−2d−2d/4

Î2s2pdsn−2dd/2E
Rn−2d

e−iÎlkx,jlwsaddx,

and we set

F0sld:L2sR2d,La
2sRn−2ddd → L2sR2d 3 Sn−2d−1d,

w ° o
bLqøl

Pq ^ F̃0sl − bLqdw.

Let us introduce the space

La
`sRnd = hu:Rn → R,kxilau P L`sRndj

and foruPLa
`sRnd let us setiui`,a=ikxilauiL`. The assumption that we make on the potentialV is

the following.
Assumption 1:We assume thatVsxi ,x'd=V`sxid+Wsxi ,x'd withV` andW in Lr

`sRnd for some
r.1, V`ù0 and suphuWsnd u ,131ùRj→0 whenR→ +`.

It follows from the general results of Ref. 2 that under this assumption the wave operators
associated to the pairsH0,Hd exist and are complete. Therefore, the scattering operatorSsbd is
well defined and by the mean ofF0, we can define the scattering matrix. More precisely, recall that
the absolute continuous spectrum ofH0 is sacsH0d=gbL0, +`f. Then for alll.bL0 there exists

Ssl,bd:L2sR2d 3 Sn−2d−1d → L2sR2d 3 Sn−2d−1d

such that
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Ssl,bdF0sld = F0sldSsbd.

Let us denoteHa=L2sRn,kxila dxd and i ·iHa
the corresponding norm. Our first result gives a

representation formula for the scattering matrix very similar to that obtained for the Schrödinger
equation.1

Theorem 1: Suppose that Assumption 1 is satisfied and denote bysppsHd the point spectrum
of H. Then, for alllP gbL0, +`f \ sLøsppsHdd, one has

Ssl,bd − Id = − 2ipF0sldVsxdF0sld* + 2ipF0sldVsxdRsl + i0dVsxdF0sld* , s3d

where

Rsl + i0d = lim
m→0+

sH − l − imd−1

exists in the spaceLsHa ,H−ad for a.1/2.
Remark 1.1: In the case where the potential V is compactly supported with respect to the

variable xi, the scattering matrix takes a form that could be interesting for other applications.
More precisely, suppose that VPL`sRnd and there exists a compact K,Rn−2d such that∀xi ¹K,
Vs. ,xid=0. Let x1, x2PC0

`sRn−2dd such thatx1=1 in a neighborhood of K andx2=1 on suppx1.
Then, using some ingrations by parts, it is not hard to prove that

Ssl,bd − Id = − 2ipF0sldfDxi
,x1gRsl + i0dfDxi

,x2gF0sld* .

Using Theorem 1, we can describe the behavior ofSsl ,bd. Let us setTsl ,bd=Ssl ,bd− Id, then
Tsl ,bd has a kernel

sv,v8d P Sn−2d−1 3 Sn−2d−1 ° Tsv,v8,l,bd P LsL2sR2ddd.

Denote byV̂i the partial Fourier transform ofV with respect to the variablexi. We need to
introduce two additional assumptions.

Assumption 2:We suppose thatVPLr
`sRnd for somer.n−2d, and thatV̂i PLr

`sRnd for some
r .0.

Assumption 3:We suppose thatV̂i PC1sRnd and that supRnu]x'
V̂iu,`.

Now we are in position to state our main result on the scattering amplitude. In the following
we denote

L̃ = hLq,q P Ndj = b−1L.

and

Q̃sEd = hq P Nd;Lq ø Ej,

which is a finite set, thanks to the fact thatm1, . . . ,md.0. In this paper we denote byi ·i the L2

norm and the norm on the space of linear bounded operators onL2. We have the following
theorem.

Theorem 2: Suppose that Assumptions 1 and 2 are satisfied and letl.bL.

sid Denotedªdistsl ,Ld and suppose thatd. iVi`,r, then
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sup
sv,v8deSn−2d−13Sn−2d−1

ITsv,v8,l,bd +
i

2s2pdn−2d+1 o
bLqøl

sl − bLqdsn−2d−2d/2PqV̂
isx',Îl − bLq

3sv − v8ddPqI ø Clb−1dfn−2d−2−min s1,rdg/2, s4d

where C depends only oniV̂ii`,r and iVi`,r.

sii d We suppose additionally that Assumption 3 is satisfied. LetEP gL0, +`f \ L̃ andD,R be a
bounded interval. When b tends to infinity, one has

sup
sv,v8deSn−2d−13Sn−2d−1

sup
lPDITsv,v8,Eb + l,bd +

ibsn−2d−2d/2

2s2pdn−2d+1 o
qPQ̃sEd

bq
n−2d−2V̂isx',b1/2bqsv

− v8ddPqI
ø Cbfn−2d−2−min s1,rdg/2, s5d

where

bq = sE − Lqd1/2 = sE − m1q1 − ¯ − mdqdd1/2. s6d

From this theorem we can also deduce the following inverse scattering result.

Corollary 1.2: Suppose that V1, V2 satisfy Assumptions1, 2,and3. Assume that the associate
scattering operators S1 and S2 are equal. Then V1=V2.

We can also use the representation formula of Theorem 1 to study the scattering phasessl ,bd
associate to the pairsH ,H0d. Let us recall briefly how to define this function. Assume that the
operatorTsl ,bd is trace class. Then the determinant detsI +Tsl ,bdd is well defined. Moreover,
Ssl ,bd being unitary, this determinant is of modulus 1 so that the functionss. ,bd can be defined
modulo 2p by

det Ssl,bd = e−2ipssl,bd. s7d

Assume additionally that forb large enough,iTsl ,bdi,1 uniformly with respect tol. Then
ssl ,bd=s−1/2ipdln det Ssl ,bd can be determined uniquely by the following process. Consider
the function

f:s P f0,1g ° detsI + sTd P C

which is holomorphic with respect tos. From the assumptioniTi,1 we deduce that the spectrum
of T is contained ing−1,1f and the functionf is nonvanishing. Therefore, the function lnsfd such
that lnsfds0d=0 is uniquely defined and it follows thats=lnsfds1d=s1/2ipdln det sI +Td is well
defined. Moreover, by construction, we have

2ipssl,bd =E
0

1 d

ds
lnsdet sId + sTsl,bdddds =E

0

1

tr sTsl,bdsId + sTsl,bdd−1dds. s8d

Before we state our results, let us recall the link between the scattering phasessl ,bd and the
spectral shift functionjsl ,bd sin short SSFd. Assume that the differencesH+l0d−g−sH0+l0d−g is
trace class for somel0,g.0 large enoughffor instance, if kxld/2VPL2sRnd with d.n, this
assumption is satisfied in view of Theorem XI.21 of Ref. 15 and the diamagnetic inequalityg.
Therefore, the spectral shift function can be definedssee Refs. 17 and 9d in the sense of distri-
bution by:
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kj8s.,bd . fl = trsfsHd − fsH0dd, ∀ f P C0
`sRd

and jsl ,bd=0 for l below the infimum spectrum ofH. Moreover, we know from the Birman–
Krein theoryssee Refs. 3 and 17d that

det Ssl,bd = e−2ipjsl,bd. s9d

Comparing Eqs.s9d and s7d, it follows that jsl ,bd=ssl ,bd+csl ,bd with csl ,bdPZ. In Ref. 5,
Bruneau, Pushnitski, and Raikov studied the asymptotics ofjsl ,bd far from the Landau levels. In
the two next theorems we lead such a study for the scattering phase.

Theorem 3: Suppose that Assumption 1 is satisfied and that VPL1sRnd. Let EP gL0,

+`f \ L̃ and D,R be a bounded interval. When b→ +`, one hassuplPDiTsEb+ldiøCb−1/2 and
the scattering phase defined by (8) satisfies

sup
lPD
UssEb + l,bd + bsn−2d/2messSn−2d−1d

2s2pdn−2d+1 o
qPQ̃sEd

bq
n−2d−1E

Rn
VsxddxU = Osbsn−3d/2d, s10d

wherebq is given by (6) and messSn−2d−1d denotes the Lebesgue measure of Sn−2d−1.
Let us remark that in the asymptotic regime that we consider the scattering phase and the

spectral shift function differ from a constant independent onl andb. Indeed, it is clear that these

functions are continuous far from the Landau levels. Hence, forEP gL0, +`f \ L̃, the function
csEb+l ,bd is continuous with respect tosl ,bdPD3 gb0, +`f for b0 large enough. As it takes its
values inZ it follows that c is constant. Therefore, it follows froms10d that under the preceding
assumptions we have

sup
lPD
UjsEb + l,bd + bsn−2d/2messSn−2d−1d

2s2pdn−2d+1 o
qPQ̃sEd

bq
n−2d−1E

Rn
VsxddxU = Osbsn−3d/2d.

Remark that this result generalizes Theorem 2.1 of Ref. 5 in several directions. First it holds in all
dimension whereas Bruneau, Pushnitski, and Raikov work in dimension 3. Moreover, it needs less
regularity on the potential. Let us also remark that the method we use to prove it is completely
different from that of Ref. 5 as it stands on the study of the scattering phase. However, we can
notice that forn=3, we obtain the same asymptotics than in Ref. 5.

Using this representation, we can also give a complete asymptotics expansion of scattering
phase. For a sake of simplicity, we formulate the theorem only in the casen=3 sand hence we can
suppose thatm1=1d, but the proof is the same in the case wheren=2d+1. We also prove the
Theorem forV in the Schwartz class whereas it certainly holds for more generalC` potentials
going to zero at infinity as well as their derivatives.

Theorem 4: Suppose that VPSsR3d. Let EPR+
* \ h2q+1,qPNj and D,R be a bounded

interval. There exists a sequence of coefficientssajsl ,E ,Vdd jPN such that one has the following
expansion when b→ +`:

sup
lPD
UssEb + l,bd − b

1
2o

j=0

`

ajsl,E,Vdb−jU = Osb−`d. s11d

Moreover, the coefficients aj can be computed explicitly. Settingg jsEd=oq=1
fs«−1dg/2sE−2q−1d−1

2
−j,

one has

a0sl,E,Vd = −
g0sEd
4p2 E

R3
Vsxddx,
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a1sl,E,Vd =
g1sEd
16p2S2lE

R3
Vsxddx−E

R3
Vsxd2 dxD .

The plan of the paper is the following. In the next section we use the spectral resolution ofH0

to obtain a representation formula for the scattering matrix. In Sec. III, we study the scattering
amplitude whereas the results concerning the scattering phase are proved in Sec. IV.

II. REPRESENTATION OF THE SCATTERING MATRIX

In this section, we recall some basic facts on the spectral resolution ofH0 and the limiting

absorption principle and we prove Theorem 1. Let us denote]Ẽ0/]l :L2sRn−2dd→L2sRn−2dd the
spectral resolution of −Dxi

on Rn−2d. Then, it is well known that the spectral resolution ofH0 is
given by

]E0

]l
= o

bLqøl

Pq ^
]Ẽ0

]l
sl − Lqd. s12d

Moreover, one knows that]Ẽ0/]l=F̃0sld*F̃0sld so thats12d yields

]E0

]l
= F0sld*F0sld. s13d

For zPC with Im zÞ0, we setR0szd=sH0−zd−1 andRszd=sH−zd−1 which are holomorphic with
respect tozPC \R. We denote bysppsHd, the point spectrum ofH. The following proposition
gives the limiting absorption principle for the operatorsH0 andH.

Proposition 2.1:sid Assume thatlP gbL0, +`f \L, then the following limit exists in the space
of bounded operatorsLsHa ,H−ad for any a.1/2:

R0sl ± i0d = lim
m→0+

R0sl ± imd.

sii d Suppose that Assumption1 is satisfied and thatlPR+
* \ ssppsHdøLd, then there exists

Rsl ± i0d = lim
m→0+

Rsl ± imd

in LsHa ,H−ad for any a.1/2.
Proof: Using s12d, it is clear that for allzPC \R, one has

R0szd = o
qPNd

Pq ^ s− Dxi
− sz− bLqdd−1, s14d

where the series converges inLsHa ,H−ad for any a.1/2. Assume thatlP gbL0, +`f \L, then

R0sl ± imd = o
bLqøl

Pq ^ s− Dxi
− sl ± im − bLqdd−1 + Wsl ± imd,

with

iWsl ± imd − Wsl ± im8di2 ø Cum − m8u2 o
bLqùl

iPq ^ Idi2 ø Cum − m8u2. s15d

Moreover, using the limiting absorption principle for the free Laplacian onRn−2d it is clear that for
any lP gbL0, +`f \L, there exists
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lim
m→0+

o
bLqøl

Pq ^ s− Dxi
− sl ± im − bLqdd−1

and the proof ofsid is complete.
The proof of sii d is very close to the proof of Agmon1 for Schrödinger operator. For Imz

.0, let us denoteR`szd=sH0+V`−zd−1. The potentialV` being independent onx', it commutes
with the projectorsPq so that

∀Im z. 0, R`szd = o
q[Nd

Pq^s− Dxi
+ V`sxid−sz− bLqdd−1.

As V` is non negative the spectrum of −Dxi
+V` is contained inR+ and we deduce from the

limiting absorption principle for the Schrödinger operator that for anyl[ gbL0, +`f\L,

R`sl ± i0d= lim
m→0+

R`sl ± imd= o
bLqøl

Pq ^ s−Dxi
+ V` − sl ± i0 − bLqdd−1

exists inLsHa ,H−ad. Now for Im z.0 we can write

Rszd=R`szdsId + WR̀ szdd−1

As in Ref. 1, the only thing we have to check is that for allz[C with Im szdù0, Kszd
=WsxdR`szd is compact fromHa into Ha for somea. 1/2. On the other hand,

Kszd=WsxdR0szdsId − V`R`szdd

and it follows from the limiting absorption principle forR`szd thatsId−V`R`szdd can be continued
to Im zù0 into a bound operator onHa for 1/2 ,a, r/2. Hence the proof is reduced to show
thatW R0szd is compact fromHa into Ha. Using the diamagnetic inequalitys see Ref. 14, Lemma
2.1d, the compactness ofKszd is a straightforward consequence of the same property for the
Schrödinger operator.

In the next proposition we recall some estimates of the resolvent proved in Ref. 5.
Proposition 2.2:sid Assume thatlP gbL0, +`f \L, then

ikxil−aR0sl ± i0dkxil−ai ø
C

distsl,Ld1/2, ∀ a . 1/2.

sii d Suppose that Assumption 1 is verified and thatlP gbL0, +`f satisfiesdistsl ,Ld. iVi`,r. Then
l¹sppsHd and

ikxil−aRsl ± i0dkxil−ai ø
C

distsl,Ld1/2, ∀ 1/2, a , r/2.

Proof: The pointsid is a direct consequence of the well-known high-energy estimates of the
resolvent of the Schrödinger equation. The claimsii d follows easily from Birman–Schwinger
principle and from the following formula:

Rsl ± i0d = R0sl ± i0dsId + V R0sl ± i0dd−1.

j

Now, we are in position to give the proof of Theorem 1 which is an adaptation of the
demonstration given in the case of the Schrödinger operatorscf. Ref. 6 d. We start with a simple
lemma.

Lemma 2.3: Suppose thatlP gbL0, +`f \L, then

R0sl + i0d − R0sl − i0d = 2ipF0sld*F0sld.

Proof: The proof is based on the fact that this result holds for the Schrödinger operator,
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∀l . 0,s− Dxi
− l − i0d−1 − s− Dxi

− l + i0d−1 = 2ipF̃0sld*F̃0sld. s16d

On the other hand, forlP gbL0, +`f \L, it follows from s15d that

R0sl + i0d − R0sl − i0d = o
bLqøl

s− Dxi
− l + bLq − i0d−1

^ Pq − s− Dxi
− l + bLq + i0d−1

^ Pq.

Using s16d, we obtain

R0sl + i0d − R0sl − i0d = 2ip o
bLqøl

F̃0sld*F̃0sld ^ Pq = 2ipF0sld*F0sld,

and the proof is complete. j

Using this lemma, we can prove Theorem 1. Let us denoteW± the wave operators for the pair
sH ,H0d and takef, g in the absolute continuous subspace ofH0. Then

ksS− Iddf,gl = ksW− − W+df,W+gl

= − iE
−`

+`

keitHVsxde−itH0f,W+gldt=− iE
−`

+`

kVsxde−itH0f,W+e−itH0gldt.

Moreover, one knows that

W+ − Id = iE
0

+`

eisHVsxde−isH0ds.

Therefore,

ksS− Iddf,gl = iE
0

+`

iE
−`

+`

kVsxde−itH0f,eisHVsxde−iss+tdH0gldt ds− iE
−`

+`

kVsxde−itH0f,e−itH0gldt

= lim
m,m8→0+

iE
0

+`

e−msiE
−`

+`

e−m8utukeiss+tdH0Vsxde−isHVsxde−itH0f,gldt

3ds− iE
−`

+`

e−m8utukVsxde−itH0f,e−itH0gldt

= lim
m,m8→0

iE
0

+`

e−msiE
−`

+`

e−m8utuE
bL0

+`

kF0sldVsxde−issH−ldVsxde−itsH0−ldf,F0sldgl dl

3dt ds− iE
−`

+`

e−m8utuE
bL0

+`

kF0sldVsxde−itsH0−ldf,F0sldgldl dt

= lim
m8→0+

iE
−`

+`

e−m8utuE
bL0

+`

kF0sldVsxdRsl + i0dVsxde−itsH0−ldf,F0sldgldl dt

− iE
−`

+`

e−m8utuE
bL0

+`

kF0sldVsxde−itsH0−ldf,F0sldgldl dt

=E
bL0

+`

kF0sldVsxdRsl + i0dVsxdsR0sl + i0d − R0sl − i0ddf,F0sldgldl dt

−E
bL0

+`

kF0sldVsxdsR0sl + i0d − R0sl − i0ddf,F0sldgldl dt.

Using Lemma 2.3, we obtain
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ksS− Iddf,gl = 2ipE
bL0

+`

kF0sldVsxdRsl + i0dVsxdF0sld*F0sldf,F0sldgldl dt

− 2ipE
bL0

+`

kF0sldVsxdF0sld*F0sldf,F0sldgldl dt

and the proof of Theorem 1 is complete. j

III. SCATTERING AMPLITUDE IN STRONG MAGNETIC FIELD

In this section, we prove Theorem 2. The first step is to write the scattering amplitude under
a convenient form. Let us denote byk. , .lL2sRn−2dd the scalar product onL2sRn−2dd. From Theorem
1 and Assumption 2, it is clear that forlP gbL0, +`f \ sLøsppsHdd, Tsv ,v8 ,l ,bd can be decom-
posed intoT=T1+T2 with

T1sv,v8,l,bd = −
ip

s2pdn−2d o
bLpøl

o
bLpøl

sl − bLqdsn−2d−2d/4sl − bLpdsn−2d−2d/4

3 PpkVsx',.deiÎl−bLqk.,v8l,eiÎl−bLpk.,vllL2sRn−2ddPq

and

T2sv,v8,l,bd =
ip

s2pdn−2d o
bLpøl

o
bLqøl

sl − bLqdsn−2d−2d/4sl − bLpdsn−2d−2d/4

3 E
Rn−2d

PpVsx',xide−iÎl−bLpkxi,vlRsl + i0dVsx',xideiÎl−bLqkxi,v8lPqdxi,

where the last integral converges in the space of bounded operator onL2sR2dd. From Proposition
2.2, it follows that ford. iVi`,r,

iT2sv,v8,l,bdi ø Cd−1/2 o
bLqøl

sl − bLqdsn−2d−2d/2iVi`,r
2 ø CliVi`,r

2 b−1dsn−2d−3d/2,

where the constantC does not depend onv andv8. It remains to treat the termT1. Suppose that

pÞq. As V̂i PLr
`sRnd, then

sup
sv,v8dPSn−2d−13Sn−2d−1

ukVsx', .deiÎl−bLqk.,v8l,eiÎl−bLpk.,vllL2sRn−2ddu

= sup
sv,v8dPSn−2d−13Sn−2d−1

uV̂isx',Îl − bLpv − Îl − bLqv8du

ø CiV̂ii`,r sup
sv,v8dPSn−2d−13Sn−2d−1

uÎl − bLpv − Îl − bLqv8u−r ø CiV̂ii`,rd
−r/2. s17d

Therefore,

sup
sv,v8dPSn−2d−13Sn−2d−1

IT1sv,v8,l,bd +
ip

s2pdn−2d o
bLqøl

sl − bLqdsn−2d−2d/2PqV̂
isx',Îl − bLqsv

− v8ddPqI ø CiV̂ii`,rlb−1dfn−2d−2−mins1,rdg/2 s18d

and the proof ofsid is complete.
Let us provesii d. Starting froms4d at the energyEb+l, we get
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Tsv,v8,Eb + l,bd =
− ip

s2pdn−2dbsn−2d−2d/2 o
qPQ̃sEd

bq
n−2d−2PqV̂

isx',b
1
2bqsv − v8ddPq

+ Osbfn−2d−2−mins1,rdgd/2.

On the other hand, we know from Lemma 9.1 in Ref. 5 that

is1 − PqdV̂is.,b
1
2bqsv − v8ddPqi ø Cqb−1/2sup

xPRn
u]x'

V̂iu.

Combining these estimates, we obtain the result claimed insii d.
Finally, let us give the proof of Corollary 1.2. Suppose thatS1=S2, thenT1=T2 and for all

E¹ L̃, b.0 andsv ,v8dPSn−2d−13Sn−2d−1, we have

T1sv,v8,Eb,bd = T2sv,v8,Eb,bd.

It follows from Theorem 2 that

o
qPQ̃sEd

bq
n−2d−2Ŵisx',b1/2bqsv − v8ddPq = Osb−fmins1,rdg/2d,

where W=V1−V2. Now, let jPRn−2d, then for all b.0 there existsv ,v8PSn−2d−1 such that
b1/2sv−v8d=j. Therefore,

o
qPQ̃sEd

bq
n−2d−2Ŵ2sx',bqjdPq = Osb−fmins1,rdg/2d,

and taking the limit whenb tends to infinity, we obtain

o
qPQ̃sEd

bq
n−2d−2Ŵ2sx',bqjdPq = 0.

Moreover, this equality holds for allE¹ L̃, so that for allqPNd, the mapx'°Ŵisx' ,−bqjd
belongs tosIm Pqd'. As L2sR2dd= %qPNd Im Pq, it follows that Ŵi vanishes identically and the
proof is complete. j

IV. ASYMPTOTICS OF THE SCATTERING PHASE

In this section, we prove Theorems 3 and 4. Starting from formulas8d, we must show that the

operatorT=TsEb+l ,bd, E¹ L̃ is trace class and to obtain convenient estimates oniTi. For this
purpose, we recall that

TsEb + l,bd = − 2ipF0sEb + ldVsxdF0sEb + ld* + 2ipF0sEb + ldVsxd

3RsEb + l + i0dVsxdF0sEb + ld* .

Moreover, asE¹ L̃, Proposition 2.2 shows thatikxil−aR0sEb+l+ i0dkxil−ai is bounded byb−1/2.
Using Assumption 1, the resolvent

RsEb + l + i0d = R0sEb + l + i0dsId + V R0sEb + l + i0dd−1

can expand in powers ofV R0. Combining this argument with the formula givingF0, it follows
that for LPN,
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TsEb + l,bd = o
l=0

L

o
qPQ̃sEd

Tq,lsEb + l,bd + OsiTq,L+1sEb + l,bdi1d, s19d

where forl PN we have defined

Tq,lsEb + l,bd = s− 1dl+12ipFq,0sEb + ldsVsxdR0sEb + l + i0ddlVsxdFq,0sEb + ld* s20d

and

∀E . bLq, Fq,0sEd = Pq ^ F̃0sE − bLqd. s21d

Let us denote byS1 the space of trace class operators onL2sR2d3Sn−2d−1d and by i .i1 the
corresponding norm. ForAPS1, we denote by trA the trace ofA. With these notations, we have
the following lemma.

Lemma 4.1: Suppose that V satisfies Assumption1. Let EP gL0+`f \ L̃ and D,R be a
bounded interval. When b tends to infinity, one has

sid ∀e.0,

sup
lPD

iTq,lsEb + l,bdiL2sR2d3Sn−2d−1d,L2sR2d3Sn−2d−1d ø Cb−3
4

−1
2

+e,

sup
lPD

iTsEb + l,bdiL2sR2d3Sn−2d−1d,L2sR2d3Sn−2d−1d ø Cb−3
4

+e.

sii d Suppose additionally that VPL1sRnd. For b large enough, Tq,lsEb+l ,bd and TsEb+l ,bd
are trace class and

sup
lPD

iTq,lsEb + l,bdi1 ø Cbsn−2−ld/2, sup
lPD

iTsEb + l,bdi1 ø Cbsn−2d/2.

Proof: Let us start with the pointsid. We start by estimating the operatorFq,0
* sEb+ld which is

bounded fromL2sSn−2d−13R2dd into L−b
2 sRn–2d,L2sR2ddd for all b.

1
2. Moreover, for allb.

1
2 and

wPL2sSn−2d−1d, we have

iF̃0sld*wiL−b
2

2 = lsn−2d−2d/2E
Rn−2d

kxl−bUE
Sn−2d−1

eiÎlxvdvU2

dx

= l−1E
Rn−2d

kl−1/2xl−bUE
Sn−2d−1

eixvdvU2

dx ø Clsb/2d−1iF0s1d*wiL−b
2

2

ø Clsb/2d−1iwiL2sSn−2d−1d
2 .

From this estimate, one deduces easily that for allb.1/2,

iFq,0sEb + ldib ª iFq,0sEb + ldiL
b
2sRn−2d,L2sR2ddd,L2sSn−2d−13R2dd

= iFq,0sEb + ld*iL2sSn−2d−13R2dd,L−b
2 sRn−2d,L2sR2ddd

ø CsEb + l − bLqdsb−2d/4. s22d

It follows from this estimate, Assumption 1, formulas20d and Proposition 2.2 that fore.0,
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iTq,lsbdiL2sR2d3Sn−2d−1d,L2sR2d3Sn−2d−1d

ø CiFq,0sEb + ldi1/2+e
2 3 iVsR0sEb + ldVdliL−1/2−e

2 sRn−2d,L2sR2ddd,L1/2+e
2 sRn−2d,L2sR2ddd

ø b−3
4

−1
2

+e. s23d

This achieves to prove the first estimate ofsid. The second one then follows by Eq.s19d.
Let us provesii d. Thanks to the resolvent estimates of Proposition 2.2, it suffices to show that

the operatoruVu
1
2Fq,0sld* :L2sSn−2d−13R2dd→L2sR2nd belongs to the Hilbert–Schmidt class and

that

iuVu
1
2Fq,0sEb + ldi2 ø Cbsn−2d/4, s24d

where i .i2 denotes the Hilbert–Schmidt norm. Forq=sq1, . . . ,qddPNd, let us denote by
Kqsy' ,x'd the kernel ofPq and byss. , .d the symplectic form onR2d. We have

Kqsy',x'd =
bd

2p
expS−

b

4
fuy' − x'u2 + 2issy',x'dgDLqsy',x',bd, s25d

with

Lqsy',x',bd = p
j=1

d

L̃qj−1Sb

2
uy',j − x',ju2D ,

where forsPN, L̃s is the Laguerre polynomial of orders ssee Ref. 14 for more detailsd. With these

notations, the kernelNsx' ,xi ,x'8 ,vd of uVu
1
2Fq,0sld* satisfies

Nsx',xi,x'8 ,vd = sEb + l − bLqdsn−2d−2d/4uVu
1
2Kqsx',x'8 de−iÎEb+l−bLqkxi,vl

= Osbsn−2d−2d/4duVu
1
2Kqsx',x'8 de−iÎEb+l−bLqkxi,vl

and

iNiL2sRn3R2d3Sn−2d−1d
2 = Osbsn+2d−2d/2dE

R2d3Rn−2d3R2d3Sn−2d−1
uVsx',xidue−sb/2dux' − x'8 u2

3 ULqSb

2
ux' − x'8 u2DU2

dx'dxidx'8 dv

ø Cbsn+2d−2d/2E
R2d3Rn−2d3R2d

uVsx',xidue−sb/2dux' − x'8 u2

3ULqSb

2
ux' − x'8 u2DU2

dx'8 dxidx'.

By change of variable, it comes

iNiL2sRn3R2d3Sn−2d−1d
2

ø Cbsn+2d−2d/2E
R2d3Rn−2d3R2d

uVsx',xidue−bux' − x'8 u2dx'8 dxidx'

ø Cbsn+2d−2d/2E
Rn

uVsxdudxE
R2d

e−ux'8 u2dx'8 ø Cbsn−2d/2

which provess24d. Using s24d and Proposition 2.2, it comes
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iTq,lsEb + ldi1 ø Cbsn−2−ld/2

and the proof ofsii d is complete. j

From this lemma, we know thatiTsEb+l ,bdi,1 and by Taylor expansion, we deduce from
s8d that for NPN

2ipssEb + l,bd = o
k=0

N
s− 1dk

k + 1
trsTsEb + l,bdk+1d + OsiTsEb + l,bdN+2i1d. s26d

Hence, we must show that forkPN, trsTsEb+l ,bdkd admits an expansion in powers ofb1/2. Using
the fact that forpÞq, PpPq=0, we deduce from Eq.s19d that

trsTsEb + l,bdkd = o
qPQ̃sEd

trSo
l=0

L

Tq,lsEb + l,bdDk

+ OsiTq,L+1
k sEb + l,bdi1d. s27d

At this point of the calculus, we can either continue the expansion to get a complete asymptotics
or we can stop the expansion at the first order to prove Theorem 3. Indeed, it follows from Lemma
4.1 that the remainder terms in Eqs.s26d and s27d satisfy

iTq,L+1
N sEb + l,bdi1 = Osbfn−1−NsL+2dg/2d andiTsEb + l,bdN+2i1 = Osbsn−N−3d/2d.

Therefore, Eqs.s26d and s19d yield

ssEb + l,bd =
1

2ip o
qPQ̃sEd

trsTq,0sEb + l,bdd + Osbsn−3d/2d. s28d

On the other hand, a standard calculation shows that the kernelNq,0 of Tq,0sEb+l ,bd is given by

Nq,0sv8,x'8 ,v,x'd = −
ip

s2pdn−2dsEb + l − bLqdsn−2d−2d/2Kqsx',x'8 dV̂isx',ÎEb + l − bLqsv − v8dd.

Using s25d, it follows that

trsTq,0sEb + l,bdd =E
Sn−2d−13R2d

Nq,0sv,x',v,x'ddx'dv

= −
ip

s2pdn−2d+1bdsEb + l − bLqdsn−2d−2d/2E
Sn−2d−13R2d

V̂isx',0ddx'dv

= −
ip messSn−2d−1d

s2pdn−2d+1 E
Rn

Vsxddxsbsn−2d/2sE − Lqdsn−2d−2d/2 + Osbsn−4d/2dd.

Combining this equation withs28d, we obtain the result claimed in Theorem 3.
The end of the paper is devoted to the proof of Theorem 4. We must show that for allN

PN* and all sl1, . . . ,lNdPNN,sk1, . . . ,kNdPNN,

trsTq,l1

k1
¯ Tq,lN

kN d

admits an asymptotic expansion in powers ofb1/2. For this purpose, we work directly on the kernel

of these operators that we expand with respect tob. For VPSsRd, let us denoteV̂ its Fourier
transform. The two next lemmas permit us to obtain an expansion of the kernel ofTq,l1

k1
¯Tq,lN

kN by
mean of the expansion of each term of the product.

Lemma 4.2. Let V1, V2PSsRd and for v, v8P h±1j, l.0 let
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Wsl,v,v8d = o
uPh±1j

V̂1sÎlsv − uddV̂2sÎlsu − v8dd.

Then, there exists VPSsRd such that

Wsl,v,v8d = V̂sÎlsv − v8dd + Osl−`d,

whenl→ +`.
Proof: From the properties of the Fourier transform, it is clear that

Wsl,v,v8d =Hse V1sxddxdse V2sxddxd + Osl−`d if v = v8,

Osl−`d if v Þ v8.

Let us set

Vsxd = SE V2syddyDV1sxd,

then it is clear that

Wsl,v,v8d = V̂sÎlsv − v8dd + Osl−`d.

j

Lemma 4.3: Let VPSsRd and for lPN* , v ,v8P h±1j, l.0 let

Wsl,v,v8d =E eiÎlsux1−x2u+. . .+uxl−xl+1u+xl+1v−x1v8dVsx1d ¯ Vsxl+1ddx1 ¯ dxl+1.

Then, there exists a sequencesVjd jPN of potentials inSsRd such that

Wsl,v,v8d = o
j=0

+`

siÎld−jV̂jsÎlsv − v8dd.

Proof: The integral being absolutely convergent, we have

Wsl,v,v8d =E
R

eiÎlsv−v8dyVsydṼsyddy,

with

Ṽsyd =E
R

eiÎlsuxu−xv8dVsx + yddx.

Moreover,

Ṽsyd =E
0

+`

Vsv8x + yddx +E
−`

0

e−2iÎlxVsv8x + yddx

= V0syd −
1

2iÎl
fe−2iÎlxVsv8x + ydgx=−`

x=0 +
v8

2iÎl
E

−`

0

e−2iÎlxV8sv8x + yddy

= Ṽ0syd + l−1/2Ṽ1syd +
v8

2iÎl
E

−`

0

e−2iÎlxV8sv8x + yddy,

with Ṽ0syd=e0
+`Vsv8x+yddx and Ṽ1syd=si /2dVsyd. In particular, Ṽ0 and Ṽ1 are C` functions

whose derivatives are bounded at all orders. Integrating by partsN times, we obtain
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Ṽsyd = Ṽ0syd + o
j=1

N

l−j /2v8 j−1

s2id j Vs j−1dsyd + Osl−N−1d.

Let us setṼjsyd=fv8 j−1/ s2id jgVs j−1dsyd, then

Wsl,v,v8d = o
j=0

N

l−j /2E
R

eiÎlsv−v8dyVsydṼjsyddy + Osl−N−1d = o
j=0

N

l−j /2V̂jsÎlsv − v8dd + Osl−N−1d,

with Vjsyd=VsydṼjsyd. As VPSsRd and for j ù0, Ṽj and their derivatives are bounded, it is clear
that Vj PSsRd and the proof is complete. j

Now, we give the proof of Theorem 4. Thanks to Eqs.s26d ands27d, it suffices to prove that
for all NPN* and all l =sl1, . . . ,lNdPNN, k=sk1, . . . ,kNdPNN,

trsTq,l1

k1
¯ Tq,lN

kN d

admits an asymptotic expansion in powers ofb1/2. For this purpose, we will simply show that the
kernel ofTq,l1

k1
¯Tq,lN

kN admits such an expansion. Let us start withTq,l j
kj , j P h1, . . . ,Nj. Recall that

Tq,l j
sEb + l,bd = s− 1dl j+12ipFq,0sEb + ldsVsxdR0sEb + l + i0ddl jVsxdFq,0sEb + ld* .

Moreover, it is well knownssee Ref. 11d that for E.0, the resolventf−sd2/dx2d−E− i0g−1 has a
kernelN0sx,yd given by

N0sx,yd =
1

2iÎE
eiÎEux−yu.

Therefore, the kernel ofTq,l j
takes the form

Nq,l j
sv,v8,x',x'8 d =

s− 1dl j+1

s2iÎEb + l − bLqdl j+1
Kqsx',x'8 dE eiÎEb+l−bLqsux1−x2u+¯+uxl j

−xl j+1u+xl j+1v−x1v8d

3Vsx',x1d ¯ Vsx',xl j+1ddx1 ¯ dxl j+1. s29d

By Lemma 4.3 applied in the variablexi, we obtain the following expansion:

Nq,l j
sv,v8,x',x'8 d = Kqsx',x'8 dsiÎbd−l j−1o

m=0

+`

siÎbd−mV̂m,q,l j

i sx',ÎEb + l − bLqsv − v8dd,

with Vm,q,l j PSsR3d. Using Lemma 4.2, it comes that the kernelNq,l j,kj
of Tq,l j

kj has the expansion

Nq,l j,kj
sv,v8,x',x'8 d = Kqsx',x'8 dsiÎbd−l j−1o

m=0

+`

siÎbd−mV̂m,q,l,k
i sx',ÎEb + l − bLqsv − v8dd,

with Vm,q,l j,kj
PSsR3d. Next, using again Lemma 4.2, it follows by induction thatTq,l1

k1
¯Tq,lN

kN has
a kernelNq,l,ksv ,v8 ,x' ,x'8 d which admits an expansion in powers ofib−1/2,

Nq,l,ksv,v8,x',x'8 d = siÎbd−ul u−No
m=0

+`

siÎbd−mV̂m,q,l,k
i sx',ÎEb + l − bLqsv − v8ddKqsx',x'8 d,

whereul uª l1+¯ + lN. Hence, we get
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trsTq,l1

k1 . . .Tq,lN

kN d = o
v=±1

E
R2

Nq,l,ksv,v,x',x'ddx' = 2siÎbd−ul u−No
m=0

+`

siÎbd−mE
R2

V̂m,q,l,k
i sx',0ddx'

= 2siÎbd−ul u−No
m=0

+`

siÎbd−mE
R3

Vm,q,l,ksxddx

and the proof of Theorem 4 is almost complete. Indeed, we have shown that there exists a
sequencesa jd jPN of real numbers such that

ssEb + l,bd =
1

2ip
bsn−2d/2o

j=0

+`

a jsE,ldsiÎbd−j .

Hence, we must prove that forj PN, a2j =0. For this purpose, let us remark thatSsl ,bd being
unitary, ssEb+l ,bd is real valued. Therefore, the coefficientsa2j, j PN vanish and the proof of
expansions11d is complete.

It remains to compute the coefficientsa0 anda1. From Eqs.s26d ands27d and Lemma 4.1 we
deduce that

ssEb + l,bd =
1

2ip o
q=0

fsE−1d/2g

o
k=0

2
s− 1dk

k + 1
trSo

l=0

2

Tq,lsEb + l,bdDk+1

+ Osb−1d.

Using again Lemma 4.1, we obtain

ssEb + l,bd =
1

2ip o
q=0

fsE−1d/2gStr Tq,0 + tr Tq,1 + tr Tq,2 −
1

2
tr Tq,0

2 − tr Tq,0Tq,1 +
1

3
tr Tq,0

3 D + Osb−1d,

s30d

and we must compute all the terms of the sum. From the proof of Theorem 3 withn=3, d=1, we
deduce that

trsTq,0sEb + l,bdd = −
2ip

4p2E
R3

VsxddxSb
1
2sE − 2q − 1d

−1
2 −

l

2
b

−1
2sE − 2q − 1d

−3
2D + OSb−3

2D .

By similar computations, we prove that

trsTq,0
2 sEb + l,bdd = −

1

4psE − 2q − 1d
SE VsxddxD2

+ Osb−1d

and

trsTq,0
3 sEb + l,bdd =

isE − 2q − 1d−3/2

8p
b−1/2SE VsxddxD3

+ Osb−1d.

Let us compute trsTq,1d. It follows from Eq. s29d that

trsTq,1sEb + l,bdd =
− b

8psEb + l − bLqd o
v=±1

E eiÎEb+l−bLqsux1−x2u+vsx1−x2ddVsx',x1dVsx',x2ddx1dx2dx'

=
− 1

8psE − 2q − 1dE s1 + e2iÎEb+l−bLqsux1−x2uddVsx',x1dVsx',x2ddx1dx2dx'

+ Osb−1d =
− 1

8psE − 2q − 1d
SE VsxddxD2
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−
2

8psE − 2q − 1dEx1øx2

e2iÎEb+l−1Lqsx2−x1dVsx',x1dVsx',x2ddx1dx2dx'

+ Osb−1d.

Integrating by parts with respect tox1, we obtain

trsTq,1sEb + l,bdd =
− 1

8psE − 2q − 1dSSE VsxddxD2

+
i

ÎEb + l − bLq
E Vsxd2dxD + Osb−1d

=
− 1

8psE − 2q − 1dSSE VsxddxD2

−
ib−1/2

8psE − 2q − 1d3/2E Vsxd2dxD + Osb−1d.

The computations of trsTq,2d and trsTq,0Tq,1d are similar to the preceding ones. We find

trsTq,0sEb + l,bdTq,1sEb + l,bdd =
isE − 2q − 1d−3/2

16p
b−1/2SE VsxddxD3

+ Osb−1d

and

trsTq,2sEb + l,bdd =
isE − 2q − 1d−3/2

48p
b−1/2SE VsxddxD3

+ Osb−1d.

Combining these equations withs30d, we obtain

ssEb + l,bd = −
g0sEd
4p2 b1/2SE VsxddxD +

lg1sEd
8p2 b−1/2SE VsxddxD

−
g1sEd
16p2 b−1/2SE Vsxd2dxD + Osb−1d

with

g jsEd = o
q=0

fsE−1d/2g

sE − 2q − 1d−1/2−j .

This completes the proof of Theorem 4. j

To conclude, let us notice that Theorem 4 could be generalized to the casen−2d.1 by using
stationary phase method in the variablexi. Nevertheless, there are some difficulties due to degen-
erate phases.
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