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In this paper we consider the Schrodinger equation with constant magnetic field of
strengthb> 0 in all dimension. We study the behavior of the scattering amplitude
and the scattering phase when the parantegges to infinity and the energy is far
from the Landau levels. @005 American Institute of Physics.
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I. INTRODUCTION

In this paper, we are interested in the Schrodinger equation with magnetic field

idep=H(b),
whereH(b)=Hy(b) +V(x) with V € L*(R") and

Ho(b) =[iV,~ bAX)|%. 1

Here,A:R"— R" is the magnetic potential arglis a strictly positive real parameter. Our aim is to
study the scattering matrix associate to the fiditb),Hqy(b)). In order to lighten the notations we
drop the parameteo and write H instead ofH(b). There is a wide literature dealing with the
Schrédinger equation with magnetic figkke for instance Refs. 2, 7, and 14 for general properties
dealing with our problem In this paper, we consider the case where the magnetic field is constant.
More precisely, denotind\(x) =(A.(x), ... ,Ay(x)) with A;:R"—R, j=1, ... n, the magnetic field

B can be identified with the antisymmetric matfb(x):(axiAj(x)—axin(x))i'j. Here, we consider

the case where the magnetic fi8dx) does not depend ox RegardingB as an antisymmetric
linear map onR", we set 2I=dim RanB andk=n-2d=dim Ker B. As we are interested in the
case wherd3# 0, we suppose that# 0. On the other hand, as we study scattering problems we
do not consider the case=2d where the spectrum dfl, is pure point. Hence, we suppose that
k=n-2d# 0. Under this assumption there exists Cartesian coordinates in which the reference
Hamiltonian takes the form

d

Ho= El[(iﬁxzj_l - ijXZj)z + (i) + ijXZJ—l)Z] Ay,
i=

wherex=(Xy,Xy, ... Xad-1,Xzd: %) = (X, X) € R24XR"™ and p,, ... ,uq are strictly positive real
numbers(see Ref. 14 for detailsUnder suitable assumptions dhit is well known (see Ref. 2

that the scattering operat&=S(b) associated to the pafHy,H) is well defined. Our aim is to
describe this operator when the paramdtgoes to infinity.

Before going further, let us recall some works concerning such problems. First, we would like

to mention some results concerning the scattering matrix in the case wbhere a long range
potential[i.e., A(x) decreases faster thdx{™ for somep>0 when|x| goes to infinity. In that
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case, there is a scattering theory for the piir—A) (cf. Refs. 10, 13, 16, and 1&nd it is possible
to describe the behavior of the scattering amplitude in the high energy (oithe work of
Nicoleauu).

On the other hand, there are some recent works of Bruneau—Pushnitski-Raikdv
Bruneau—Dimassﬁ,concerning the Schrodinger equation with constant magnetic field. In Ref. 5,
the authors study the spectral shift function associate to this equation in dimension 3 and they
describe its behavior in several asymptotic regimes. In particular, they investigate deeply the case
whereb goes to infinity and the distance from the energy to the set of Landau levels behdves as
There are also some works of Kostrykin—Kvitsinsky—Mekuyﬁwhere the authors study patrtial
scattering matrix in dimension 3 near the Landau levielbeing fixed. Moreover, in Ref. 8 the
authors make some symmetry assumption on the potantldere, we would like to treat the case
of general potential in dimensiamin the asymptotic regime considered in Ref. 5.

First, we need to give an exact definition of the scattering amplitude in the present situation.
Let us consider the Schrédinger operator with constant magnetic field in dimergsion 2

d
Ho=2> [(iﬁxzj_l - b,U«jXZJ)Z + (ié’xzj + ijxzj—l)z] )
=1

acting onL%(R?). As u;---ug#0, it is well known that the spectrum d;lo is pure point’: For

g=(0y,...,09) € N4 we denoteA;=(2g+ Dy + -+ +(204+ 1) pg, SO that the spectrum dfly is
given by the sequence of Landau levels

L= 0(Ho) = 0(Ho) = {bAg,q € N},

In particular, the bottom of the spectrum is given bxy=b(u,+---+pug). Let us denote by
Y,CL%R?) the eigenspace associated to the eigenvalig and I1,:L%(R?%) — Y, the corre-
sponding  projector. Denoting LA(R"2)={f e LAR™2);(x)*f € LAR™2)}; we define
Fo(N) 1 LA(R™2) — L 2(S721) py

(n-2d-2)/4

= _ N e XDy '
FoMe(d) 2(2m)m22 JRn—Zd -

and we set

fo()\)ZLZ(RZd,Li(Rn_Zd)) _ LZ(RZd < Sﬁ—Zd—l),

o> > Tg® Foh—bAge.
bAqs)\

Let us introduce the space
L2(R™ ={u:R" — R,{(x)u € L*(R"}

and foru e L,(R") let us sefu]l.. ,=|(x,)*ul|.=. The assumption that we make on the potenfia
the following.

Assumption 1We assume thaf(x,x, ) =V*(x)+W(x|,x ) withV* andW in L‘;(R”) for some
p>1,V*=0 and supgW(n)|,1x 1=R}—0 whenR— +x.

It follows from the general results of Ref. 2 that under this assumption the wave operators
associated to the paiHy,H) exist and are complete. Therefore, the scattering ope&itmris
well defined and by the mean &%, we can define the scattering matrix. More precisely, recall that
the absolute continuous spectrumHf is o,(Hg) =]bAg, +oo[. Then for allx>bA, there exists

S()\,b)ZLZ(de X Sn—2d—1) N LZ(RZd X Sﬁ—Zd—l)

such that
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SN, b) Fo() = Fo(A)S(b).

Let us denoteH,=L*(R",(x)* dx) and |-, the corresponding norm. Our first result gives a
representation formula for the scattering matrix very similar to that obtained for the Schroédinger
equation:

Theorem 1: Suppose that Assumption 1 is satisfied and denote,}i¥1) the point spectrum
of H. Then, for all\ € JbAg, +[\(L U ap,(H)), one has

SN, b) = Id = = 2 mFg(NVX) Fo(N) " + 2imFo(NVIR +i0)V(X) Fo(N), (3)

where

R\ +i0)= lim (H-Xx—iu)?
p—0"
exists in the spac&(H,,H-,) for a>1/2.

Remark 1.1: In the case where the potential V is compactly supported with respect to the
variable x, the scattering matrix takes a form that could be interesting for other applications.
More precisely, suppose thataL*(R") and there exists a compactd®R"2! such thatOx, ¢ K,
V(.,%)=0.Let x1, x» € C5(R"2) such thaty;=1 in a neighborhood of K ang,=1 on suppy;.

Then, using some ingrations by parts, it is not hard to prove that

SILb) = 1d = = ZimFoM)[ Ay RO +IO)[ Ay X1 Fo(N)'

Using Theorem 1, we can describe the behavioB@f,b). Let us sefT(\,b)=S(\,b)-1d, then
T(\,b) has a kernel

(0,0') € ST x 721, 5 T(,w',\,b) e L(LAR)).

Denote by\A/'I the partial Fourier transform o¥ with respect to the variablg. We need to
introduce two additional assumptions.

Assumption 2We suppose that e L7(R") for somep>n-2d, and that/' L;(R™ for some
r>0.

Assumption 3We suppose tha¢' € C{(R") and that sup|axi\A/”| <oo,
Now we are in position to state our main result on the scattering amplitude. In the following
we denote

L={Aqqe N%=b"L.

and

Q&) ={ge N%sA =< ¢,

which is a finite set, thanks to the fact thaf, ... ,uq>0. In this paper we denote bly| the L?
norm and the norm on the space of linear bounded operatoris?olve have the following
theorem.

Theorem 2: Suppose that Assumptions 1 and 2 are satisfied and>dbA.

(i)  Denotes:=dist(\,L) and suppose that>||V]..,, then

Downloaded 05 May 2005 to 147.210.16.39. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



043514-4 Laurent Michel J. Math. Phys. 46, 043514 (2005)

i R JE—
sup T(w, @', \,b) + —— > (A=bA,) ™22 \i(x N\ -bA
(00" ) €S20 15 N-20-1 2(2m)" 2d+1bAqs)\ 4 qv L q
X (w _ wl))l‘[q < C)\b—lgn—Zd—Z-min (1,r)]/2' (4)

where C depends only V..., and [|Vl...,-

(i)  We suppose additionally that Assumption 3 is satisfied€leefA, +o[\LandACR be a
bounded interval. When b tends to infinity, one has

i (n-20-2)/2 i
(w,wf)sgw—szldj—exgq—zd—lng T(w,0",Eb+ \,b) + qu@)ﬂg—m—z\/(Xbbuzﬁq(w
- "),
< cpn-2d-2-min (1N}2. o
where
Byq=(E- Aq)1/2: (€= Gy — = = pge) 2. ®)

From this theorem we can also deduce the following inverse scattering result.

Corollary 1.2: Suppose thatyV, satisfy Assumptions, 2,and 3. Assume that the associate
scattering operators Sand S are equal. Then Y& V,.

We can also use the representation formula of Theorem 1 to study the scattering(phbse
associate to the paiH,Hg). Let us recall briefly how to define this function. Assume that the
operatorT(\,b) is trace class. Then the determinant(bef(\,b)) is well defined. Moreover,
S(\,b) being unitary, this determinant is of modulus 1 so that the functio/b) can be defined
modulo 27 by

det S(\,b) = g 2D, )

Assume additionally that fob large enough|T(\,b)|[<1 uniformly with respect ta\. Then
s(\,b)=(=1/2i7)In detS(\,b) can be determined uniquely by the following process. Consider
the function

fio € [0,1]—defl +oT) e C

which is holomorphic with respect @. From the assumptidfT|| < 1 we deduce that the spectrum
of T is contained in]-1, 1 and the functiorf is nonvanishing. Therefore, the functior(finsuch
that In(f)(0)=0 is uniquely defined and it follows thatIn(f)(1)=(1/2i7)In det(1+T) is well
defined. Moreover, by construction, we have

1 1
2irs(\,b) :f %In(det(ld + a'T()\,b)))da'=f tr (T(\,b)(1d + 6T(\,b)) Y)do. (8)
0 0
Before we state our results, let us recall the link between the scattering glhabg and the
spectral shift functiorg(\,b) (in short SSF. Assume that the differend@&l +\g) 7= (Hp+\g) 77 is
trace class for soma,,y>0 large enougt{for instance, if(x)?2V e L3(R") with §>n, this
assumption is satisfied in view of Theorem XI.21 of Ref. 15 and the diamagnetic ineguality
Therefore, the spectral shift function can be defifgee Refs. 17 and Pin the sense of distri-
bution by:
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(€(.,b).fy=tr(f(H) - f(Hy), Ofe Cy(R)

and ¢\ ,b)=0 for X\ below the infimum spectrum dfi. Moreover, we know from the Birman-
Krein theory(see Refs. 3 and 17hat

detS(\,b) = e 27D, 9

Comparing Eqs(9) and (7), it follows that &\ ,b)=s(\,b)+c(\,b) with c(\,b) e Z. In Ref. 5,
Bruneau, Pushnitski, and Raikov studied the asymptotié)afb) far from the Landau levels. In
the two next theorems we lead such a study for the scattering phase.

Theorem 3: Suppose that Assumption 1 is satisfied and thatL¥(R"). Let £ e ]Aq,
+[\[. and ACR be a bounded interval. When-b+, one hassup, _/|T(b+\)||<Cb 2 and
the scattering phase defined by (8) satisfies

g1—2d—1
sup| S(€b+\,b) + b<”‘2)’2—”2"éi)n_2d+f =0, (10

> By f V(x)dx
qeQ®) R?

where g, is given by (6) and méS"2*1) denotes the Lebesgue measure 5P
Let us remark that in the asymptotic regime that we consider the scattering phase and the
spectral shift function differ from a constant independenhandb. Indeed, it is clear that these

functions are continuous far from the Landau levels. Hence Efer]Ag, +[\L, the function
c(Eb+\,b) is continuous with respect ta\,b) e A X Jby, +oo[ for by large enough. As it takes its
values inZ it follows that ¢ is constant. Therefore, it follows froifi0) that under the preceding
assumptions we have

me:{S“‘Zd‘l)

- b(n—3)/2 )
2(2’7T)n_2d+1 O( )

sup| &(Eb+\,b) + b2 > Bt J V(x)dx
AeA ~ R"

qeQ(é)

Remark that this result generalizes Theorem 2.1 of Ref. 5 in several directions. First it holds in all
dimension whereas Bruneau, Pushnitski, and Raikov work in dimension 3. Moreover, it needs less
regularity on the potential. Let us also remark that the method we use to prove it is completely
different from that of Ref. 5 as it stands on the study of the scattering phase. However, we can
notice that fom=3, we obtain the same asymptotics than in Ref. 5.

Using this representation, we can also give a complete asymptotics expansion of scattering
phase. For a sake of simplicity, we formulate the theorem only in therca8d¢and hence we can
suppose thaj;=1), but the proof is the same in the case where2d+1. We also prove the
Theorem forV in the Schwartz class whereas it certainly holds for more ger@&rghotentials
going to zero at infinity as well as their derivatives.

Theorem 4: Suppose that ¥ S(R). Let £eR;\{29+1,qe N} and ACR be a bounded
interval. There exists a sequence of coefficigaf\,£,V));.n such that one has the following
expansion when b +:

1

sup| S(Eb+ \,b) = b2, ay(\, &, V)bl
NeA j=0

=0((b™). (11)

_ 1.
Morer?ver, the coefficients; @an be computed explicitly. Settimg(g):Eg(jl1)]/2(5—2q—1)'5_1,
one has

Yo(E)
P LS V(x)dx,

aO(}\rgaV) ==
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a(\,E\V) = I]é(qf; (2)\J V(x)dx—f V(x)? dx).
RS RS

The plan of the paper is the following. In the next section we use the spectral resolukign of
to obtain a representation formula for the scattering matrix. In Sec. lll, we study the scattering
amplitude whereas the results concerning the scattering phase are proved in Sec. IV.

II. REPRESENTATION OF THE SCATTERING MATRIX

In this section, we recall some basic facts on the spectral resolutibty ahd the limiting
absorption principle and we prove Theorem 1. Let us deaBigo: L2(R"2%) — L%(R™?) the
spectral resolution of Afo on R™2, Then, it is well known that the spectral resolutiont is
given by

JE,
II —(N-Ay). 12
T 2 Tae 00 Ag (12)

q

98 _

Moreover, one knows thaiEola)\zi-‘o()\)*i'o()\) so that(12) yields

JE, N
(Q—AO = Fo(\) Fo(N). (13)

For ze C with Im z#0, we setRy(2)=(Ho—2)"* andR(z)=(H-2)"* which are holomorphic with
respect toze C\R. We denote byo,,(H), the point spectrum oH. The following proposition
gives the limiting absorption principle for the operatétg andH.

Proposition 2.1:(i) Assume thak e JbAg, +o[\L, then the following limit exists in the space
of bounded operator£ (H,,H_,) for any a>1/2:

Ry(A £i0) = lim Ry(A +iw).
u—0"

(ii) Suppose that Assumptidnis satisfied and thak R:\((rpp(H) UL), then there exists

RAN£i0)= lim R\ xiw)

u—0*

in L(H,,H_,) forany a>1/2.
Proof: Using (12), it is clear that for allze C\R, one has

R2= 2 Tlq® (=4, —(z=bAg) ™, (14)

qe Nd
where the series converges i+ ,,H_,) for any a>1/2. Assume thak e JbAy, +[\L, then
Ro\tip)= 2 Tg® (=A, ~(Ntiu=bAg) ™+ W\ £ipu),
bAqu
with
WO i) =W 2ip)P<Clu-w'|? 2 g 1d|?< Clu-u'[ (15)
bAg=)\

Moreover, using the limiting absorption principle for the free LaplaciamBi¢ it is clear that for
any \ e JbAg, +oo[\L, there exists
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lim > Tq® (-A, = (\xip=bAg)™
,4.L~>O+bAqS)\
and the proof of(i) is complete.
The proof of(ii) is very close to the proof of Agmdrfor Schrodinger operator. For lm
>0, let us denotdR..(2)=(Hy+V”*-2)"1. The potentiaV” being independent ox, , it commutes
with the projectordl; so that

OIMz>0,R.(2)= 3 Tlq@(= Ay +V7(x)=(2=bAg) ™
qENd

As V” is non negative the spectrum ofA;‘+V"o is contained inR* and we deduce from the
limiting absorption principle for the Schr'oéinger operator that for ay/]bAg, +oo[\L,

R.\£i0)= lim R\ tig)= > M ® (A4 + V7 = (A £i0 -bAy)™?
p—0+ bAg=\

exists inL(H,,H-,). Now for Im z>0 we can write

R2)=R.(2)(Id + WR.(2)™*

As in Ref. 1, the only thing we have to check is that for atEC with Im (2=0, K(2)
=W(X)R.(2) is compact fronf, into H, for somea>1/2. On the other hand,

K(2) =W(x)Ro(2)(Id = V*R.(2))

and it follows from the limiting absorption principle fét°(z) that(ld—V*R.(z)) can be continued
to Im z=0 into a bound operator oH,, for 1/2 <a< p/2. Hence the proof is reduced to show
thatW Ry(2) is compact front+,, into H,. Using the diamagnetic inequalitysee Ref. 14, Lemma
2.1), the compactness df(z) is a straightforward consequence of the same property for the
Schrddinger operator.
In the next proposition we recall some estimates of the resolvent proved in Ref. 5.
Proposition 2.2:(i) Assume thak € JbAg, +oo[\L, then

[[(xp~*Ro(N £10)(x)™| < Oa>1/2.

_c
dist(\, L)Y’
(i) Suppose that Assumption 1 is verified and that]bA,, +oo[ satisfiesdist(\ L) >||V]L.. ,. Then
\ ¢ opg(H) and

([~ RN £10)(x) ™| < 012<a<pl2.

<
dist(\,1)¥?’

Proof: The point(i) is a direct consequence of the well-known high-energy estimates of the
resolvent of the Schrédinger equation. The cldiim follows easily from Birman—Schwinger
principle and from the following formula:

R\ +i0) =Ry(A i0)(Id +V Ry(A £ i0))™2.

|
Now, we are in position to give the proof of Theorem 1 which is an adaptation of the
demonstration given in the case of the Schrédinger opefetoRef. 6). We start with a simple
lemma.
Lemma 2.3: Suppose thate |bAg, +oo[\L, then

Ro(A +i0) = Ry(A —i0) = 2imFo(N)" Fo(N).

Proof: The proof is based on the fact that this result holds for the Schrédinger operator,
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ON>0,(= Ay =X =i0) = (= A, = A +i0) = 27 F(N) FoN). (16)
On the other hand, fox € JbAy, +o°[\L, it follows from (15) that
Ro(\ +i0) = Ry(A —i0) = bAZ x(— Ay =N +bAG=i0) @ Ty = (= A, =N +bAg+i0) " @ I,
=
Using (16), we obtain
Ry(A +i0) = Ry(A —i0) = 2i waE )\.7-'0()\)*,7-"0()\) ® [ = 2imFo(\) Fo(N),
=

and the proof is complete. |
Using this lemma, we can prove Theorem 1. Let us deldtéhe wave operators for the pair
(H,Hp) and takef, g in the absolute continuous subspaceHgf Then

<(S_ |d)f1g> = <(W— - W+)frW+g>

=—j f (e"MV(x)e Mof, W, hdt=—i f (V(x)e ™Hof W, e ™Hog)dt.

Moreover, one knows that

W, - Id =i f eHy(x)e7Hodg.
0

Therefore,

+oo
i

(S-1d)f,g) =i f J (V(x)e ™Mof eoHy/(x)e e+ Hog)dr do— i f | (V(x)e ™Hof e Mog)dt
0 —» -

= lim if e‘“”if e #I7(e (e DHoy(x) e oHy/(x) e Hof, g)d 7

wu' =0t J0

Xdo—i f e+ I7(V(x)etHof, gHog)dt

+oo +o0 +0o
= lim i f e J ewI f (FoMV(x)e 7 HMY(x)e  HoVE, 75(\)g) dh
' —0J0 -0 bAq

+o0 +o0
xdr do—i f eI J (FoMV(x)e tHoMf o\ )ghdn dt
—o bAg

= lim i f ooe-ﬂ’“1 J w(]fo()\)V(x)R()\+iO)V(x)e‘iT(HO‘”f,]-"O()\)g>d)\ dr

wu' —0* bAg

+0o0 +o0
i f eI f (FoMV(x)e MM Fo(\)ghdN dt
—oo bAg

= f ’ (FoMWV(X)RA +i0)V(X)(Ry(N +i0) — Ry(A —i0))f, Fo(\)g)d\ dr
bAg

- f (Fo(MV(X)(Ry(N +10) — Ry(A —10))f, Fo(N)gydn dit.

bAg

Using Lemma 2.3, we obtain
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+oo

((S-Id)f,g)=2i wf (FoWV(X)RN +i0)V(X) Fo(N)" Fo(M) f, Fo(A)g)d\ dr
bAg

-2 Wf (FoMV(X) Fo(N) FoM)F, Fo(A)g)dn dt
bAg

and the proof of Theorem 1 is complete. |

IIl. SCATTERING AMPLITUDE IN STRONG MAGNETIC FIELD

In this section, we prove Theorem 2. The first step is to write the scattering amplitude under
a convenient form. Let us denote Ky .) 2zn-2¢) the scalar product oh?(R"2). From Theorem
1 and Assumption 2, it is clear that fare JbAg, +o[\(L U g,(H)), T(w,’,\,b) can be decom-
posed intoT=T,+T, with
i

Ty(w,0"\,b) == S S (N -bAQM V() — A )(2-2)4

—2d
2m)" bAp=AbAp=\
X V(X )& 0) AR ooy
and
i

Ty(w, 0", \,b) = S S (N - bAQM V() — A )(n-2d-2)4

(ZW)H_ZdbAps)\bAqs)\
8 Ln—zd TV(x X)) e AP IR(N +i0)V(x 3 e M Phaie T,

where the last integral converges in the space of bounded operatd(Iof). From Proposition
2.2, it follows that for6>||V|., ,,

[To(w,0" Ab)| < C5H2 X (A =bA) ™ 22V|Z < CNV|2 pte"2-97,
bAg=A

where the constar@ does not depend of andw’. It remains to treat the term,. Suppose that
p#d. As V! e L7'(R"), then

sup V(X , )& N PAG0") @ NDAG0DY 5 g
(w,w')esn_Zd_lXSn_Zd_l
= sup IVI(x VN = bApw = VA = bAqw/)|
(w,wf)egﬂd*lxgﬂd*l
< C|VL., sup WA =bA,w— N —bAgwr[" < V., 672 (17)
(w,w’)eS'1_2d_l><§_2d_l
Therefore,
su Ty(w, @' \,b) + ——— A — bAy) ™22 \/l(x  \\ - bA
(w,w')es"‘delxs"-Zd-l 1o, ) (Zw)n—zdbAqux( q) q (X1, q(w

_ w’))Hq < C||</H”oo’r)\b—lé[n—2d—2—min(l,r)]/2 (18)

and the proof ofi) is complete.
Let us prove(ii). Starting from(4) at the energy¥b+\, we get
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-
(27T)n—2d

o ot 1 /

p(n-2d-2)12 2 g ZHqVH(XL!bZBCI(w_ ® ))Hq
qeQ(6)

+ O(pln-2d-2-min1nly /o

T(w, 0’ ,Eb+\,b) =

On the other hand, we know from Lemma 9.1 in Ref. 5 that

(1 —Hq)\?"(. ,b%ﬁq(w - w’))HqH < Cqb‘l’zsup|<9xl\A/”|.

xeR"

Combining these estimates, we obtain the result claimdd)in
Finally, let us give the proof of Corollary 1.2. Suppose tBatS,, thenT,;=T, and for all

Eel, b>0 and(w,w’) e S721x 9721 we have

Ti(w,0',Eb,b) = Ty(w,w’,Eb,b).

It follows from Theorem 2 that

2 BS_Zd_Z\N‘(Xle]-/ZIBq(w _ w/))Hq - O(b'[mi”(l’r)]/z),
4=QE)

where W=V;-V,. Now, let ¢ R"™?, then for allb>0 there existsw,»’ € S™2 such that
bY%(w-w')=¢. Therefore,

E ﬁn—Zd—Z\}‘Vz(Xl”qu)Hq — O(b—[min(l,r)]IZ)’

— q
qeQ(&)

and taking the limit wherb tends to infinity, we obtain

2 ByTAWA(x,, BT = .
qeQ(é)

Moreover, this equality holds for af ¢ L, so that for allge N9, the maprHW'(xL,—,qu)

belongs to(Im I1y)*. As LAR*) =&, Im 11, it follows that W' vanishes identically and the
proof is complete. |

IV. ASYMPTOTICS OF THE SCATTERING PHASE

In this section, we prove Theorems 3 and 4. Starting from forrt®)lave must show that the

operatorT=T(£b+\,b), £& L is trace class and to obtain convenient estimate§TonFor this
purpose, we recall that

T(Eb+ \,b) = = 27 Fo(Eb + N)V(X) Fo(Eb+ N)" + 2imFo(Eb+ N)V(X)
XR(EDb+ N +i0)V(X) Fo(Eb+N)".

Moreover, as ¢ L, Proposition 2.2 shows thd{x,)*Ro(Eb+N+i0)(x))~¢| is bounded byb™12.
Using Assumption 1, the resolvent

R(Eb+ X\ +i0) =Ry(Eb+ N +i0)(Id +V Ry(Eb+ \ +i0))?

can expand in powers of R,. Combining this argument with the formula givii#, it follows
that forL e I\,
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L
T(Eb+ND) =2 X Tei(Eb+Nb)+O([Tya(Eb+ N, D)), (19
1=04cQue)

where forl e N we have defined

Toi(Eb+X\,b) = (= DM 2imF, o(Eb + N (V(ORy(EDb + X +10))'V(X) Fy o(Eb+ N)” (20)

and

OE>bAg  FqolE)=11;® Fo(E-bAy). (21)

Let us denote byS' the space of trace class operators IGiiR?? x S™2¢-1) and by]|.|, the
corresponding norm. Fok e S, we denote by tA the trace ofA. With these notations, we have
the following lemma.

Lemma 4.1: Suppose that V satisfies Assumplioh.et 5e]A0+oo[\E and ACR be a
bounded interval. When b tends to infinity, one has

() Oe>0,

L.

supTq (€0 + N, )| 2g2dx gr-20-1)  2(p2ax gn-20-1) < ClTa 72",
NeA

3
sugT(Eb + N, b)||2(r20x gr-20-1) | 2(p2dx sr-20-1) < Cb 2 ™.
NeA

(i)  Suppose additionally that ¥ LY(R"). For b large enoughTg,(Eb+X,b) and TEb+\ ,b)
are trace class and

SUd|Tg(Eb+\,b)l|; < CH™2M72 sugT(Eb+ A, b)||; < CH™ 272,
AeA NeA

Proof: Let us start with the pointi). We start by estimating the operatﬁE’O(SbH\) which is
bounded fromL2(S21x R%) into L2 ,(R™, L2(RY)) for all 5> 3. Moreover, for allg>; and
¢ e LA(S21) we have

2

7o) @ dx

|i2 — )\(n—zd—Z)/Zf <X>—ﬁ f ei\s“Xde o
-B Hn—Zd Sn—2d—1

2
J e*“dw| dx=< C\F2YF(1) o2
21 -
< C)\(E/Z)—1||(P||i2(§-2d—1).

- )\—l )\_l/ZX -B
JRn—Zd< >

From this estimate, one deduces easily that fopal1/2,

[ Fq0(Eb+N)||g = [[Fqo(Eb+ 7\)||L§(u~?.n-2d,L2(HZd)),LZ(sﬂ-Zd-lx\HZd)
= ||]: q,o(‘gb + )\)*||L2(Sﬁ‘2d‘1><\lﬁ2d),LE B(\I%”‘Zd,LZ(HZd))
< C(Eb+N—DbAy)F2", (22

It follows from this estimate, Assumption 1, formul20) and Proposition 2.2 that far>0,
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”Tq,l(b)”Lz(\Hde 9201y | 2(R2d gn-2d-1)

< C||Fqo(Eb+ MIF /246 X IV(Ro(Eb + K)V)|||L§1, (Rn-2d  2(R2dy) | 2

2-¢ 124 (R 2L2(R2))
3.1,
<b a3 (23

This achieves to prove the first estimate(gf The second one then follows by EJ.9).
Let us prove(ii). Thanks to the resolvent estimates of Proposition 2.2, it suffices to show that

the operatodv|%]—'q,0()\)*:LZ(S‘“Zd‘lxRZd)eLZ(RZ”) belongs to the Hilbert-Schmidt class and
that

1
V2740 + M)l = CH™2", (24)

where |.||, denotes the Hilbert—-Schmidt norm. Fag=(qy,...,qq) € NY, let us denote by
Koy ,x,) the kernel offl; and bya(.,.) the symplectic form oR%. We have

bd b _
Koy X)) = Zexi_ ZHYL -x, [P+2i (T(YLvXL)])Lq(YLvXpb): (25)

with

d

~ b

Lo(yi.X,b) = 1_[1qu—l<E|yL,j - XL,j|2) )
]:

where forse N, ES is the Laguerre polynomial of order(see Ref. 14 for more detajld\ith these

notations, the kernal(x, ,x;, X ,w) of [V|2F,0(\)" satisfies

1 S
N(X, X, X', @) = (Eb+ N = bAy) "2 2HV|2K (x|, x| )T VEPRDAGR )
= O(b"2-2/4)|y] i Kq(x, X, )& EABRGx.0)

and

2 _ +2d-2)/2 -(b/2)lx, - X [?
NI 2 2y r2a-1, = O(B™ ) V(x..x)le o
L2(R"xXR%x & ) R20 5 gN-2d ¢ 20 n-2d-1

2

X dx, dx,dx’ dw

b )
Lq<§|xi - XL|2)

< cpm2d-2/2 f

|V(XL,XH)|6_(b/2)‘Xi - XUZ
RZdXRn_ZdXB d

b 2
X Lq(§|xL - xl|2> dx’, dxdx, .
By change of variable, it comes
2 (n+2d-2)/2 ~blx, =X P!
||N|||_2(\|::”x\Rdes“‘Zd‘l) =Cb fRZdXRn—ZdXRm V(x| €7 =P, dxgaix,

< Cb(n+2d—2)/2f |V(X)|de e_‘xj-‘del < Cpn-212
RN Rr2d

which proves(24). Using (24) and Proposition 2.2, it comes
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[Tqi(Eb+ V), < Ch2 "2

and the proof oflii) is complete. |
From this lemma, we know thdf (£b+\,b)||<1 and by Taylor expansion, we deduce from
(8) that forN e [N

N ok
2ims(Eb+\,b) =, (k +1)1 tr(T(Eb+\,0)<Y) + O(|T(Eb + \,b)N2|y). (26)
k=0

Hence, we must show that fare I\, tr(T(Eb+X\,b)%) admits an expansion in powerslwf2. Using
the fact that forp+# g, I1,11,=0, we deduce from Eq19) that

L k
tr(T(Eb+ N\, D)9 = > tr(E Toi(Eb+ A,b)) +O(|T§ Lea(Eb+ N, D)) (27)
qeQ) =0

At this point of the calculus, we can either continue the expansion to get a complete asymptotics
or we can stop the expansion at the first order to prove Theorem 3. Indeed, it follows from Lemma
4.1 that the remainder terms in Eq26) and (27) satisfy

||T2‘|,L+1(5b +\,b)||; = O NE202) and [T(Eb + N, b)N?, = O(bN212).
Therefore, Eqs(26) and(19) yield

1
S(Eb+\.b)=5— 2 tr(Tgo(€b+ b)) + O(B™97), (29
qeQ(®)
On the other hand, a standard calculation shows that the kelgpedf T, o(Eb+)\,b) is given by
Ngolw' X, 0.X,) =~ (27'7)%(& + X = DAY MK (x| X V(X VED+ X - bA(w - w')).

Using (25), it follows that

tr(Tqo(Eb+ \,b)) = a0 Ng.ol@, X, ,,X, )dx, dw
T EXR
= - I—ﬂ- d —_ (n—2d—2)/2f /l
(277)”_2d+1b (Eb+X\ bAq) a1, 2 Vi(x,,0)dx, dw
__immegST*Y)

(Zw)n—2d+1 . V(X)dx(b(n—Z)IZ(g_ Aq)(n—Zd—Z)/2+ O(b(n_4)/2)).
Combining this equation witi28), we obtain the result claimed in Theorem 3.

The end of the paper is devoted to the proof of Theorem 4. We must show that fdr all
EN* and a”(ll, lIN) ENN,(kl, ’kN) S NN,

k:
tr(Teg, -

o)
admits an asymptotic expansion in powerdbf. For this purpose, we work directly on the kernel
of these operators that we expand with respedb.téor Ve S(R), let us denoteV its Fourier
transform. The two next lemmas permit us to obtain an expansion of the ker?ﬁ@lof-Tg,“,'N by
mean of the expansion of each term of the product.

Lemma 4.2. Let ¥ V, e S(R) and for w, o’ e {1}, A>0 let
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WOh,0,0) = >, Vi(V\ (0= 0)Vo(N (6= 0)).
fe{tl}

Then, there exists ¥ S(R) such that

WO\, 0,0") = V(N (0= o)) + ON),

when\ — +o,
Proof: From the properties of the Fourier transform, it is clear that

UV Vo000 + O i w=
W(x"‘”“’)‘{ooc*) it oo,

Let us set

V(x) = ( f Vz(y)dy)Vl(X),
then it is clear that

W\, w,0") = V(N (0= @) + ON™).
Lemma 4.3: Let \e S(R) and for le N, w, 0’ € {+1}, A>0 let

WO\, w,0') = f g N (lxg=xgl+.. -+\X|‘X|+1\+X|+1w‘><1w/)\/(Xl) V(X ) OXg - OXag

Then, there exists a sequen@g); . of potentials inS(RR) such that

400

W\, @,0') =, (i \/X)_j\A/j(V/X(w -w')).
i=0

Proof: The integral being absolutely convergent, we have

WO\, 0,0')= | &N W (y)V(y)dy,
R

with

T/(y) :f ei\s“i(\xl—xw/)v(x_'_y)dx.
R

Moreover,

+o0 0 _
V(y) :f V(w’x+y)dx+f e 2™/ ('x + y)dx
0

—00
!

1 N - o (° <
=V _ e—2|v)\XV '+ X:9m+ f e—ZI\J)\er "X+ Vv)d
o(y) o \K[ (o Y) e oivn (w y)dy

N

i
- _ wr 0 .
=Vo(y) + NV (y) + Y f e 2™V (w'x +y)dy,
(Y —0

with Vo(y): Jo " V(w'x+y)dx and \~/1(y):(i/2)V(y). In particular,vo and \~/1 are C” functions
whose derivatives are bounded at all orders. Integrating by phtitses, we obtain

Downloaded 05 May 2005 to 147.210.16.39. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



043514-15  Scattering amplitude in strong magnetic field J. Math. Phys. 46, 043514 (2005)

~ ~ N ) rj-1 )
V(y) = Voly) + 2 N2 v07(y) + 0N,
=1 (2I)
Let us seﬂ/j(y):[a,’J—l/(Zi)J]Vq—l)(y), then
N —_ N
W)= 2 WZJ & Ny (y)Vi(y)dy + O™ = X AT (VN (w - 0) + O,
j=0 R =0

with Vj(y):V(y)vj(y). AsV e S(R) and forj=0, Y/J- and their derivatives are bounded, it is clear
thatV; e S(R) and the proof is complete. [ |

Now, we give the proof of Theorem 4. Thanks to E@6) and(27), it suffices to prove that
forall NeN" and alll=(Iq, ... ,Iy) € NN, k=(ky, ... ky) € NN,

Ty, Ta)
admits an asymptotic expansion in powersyf. For this purpose, we will simply show that the
kernel ong}ll---Tg{\l'N admits such an expansion. Let us start \Miﬂ]j, je{l,... N\ Recall that
Tq(Eb+Ab) = (= D'i"2imFq o(Eb + N (V(X)Ry(Eb + X +i0))'IV(X) Fo o(Eb+ V)"

Moreover, it is well known(see Ref. 1lthat for E> 0, the resolvenf-(d?/dx?)-E-i0]™! has a
kernelNy(x,y) given by

1 ei VE|x-y| )

No(X,y) =
o(X,y) 2iE

Therefore, the kernel qu1|j takes the form

(_ 1)|]+l f o — _ _ - ’
Ny (w,0" % X)) = Ko (X ,X,) | &vErAbAqlxa=xalt -+ =X 4a+x) s p0-xg00")
C],IJ( 1 L) (Zi\'/5b+)\—bAq)li+l q( 1 L) i j
XVX L, Xg) * e V(XX )X o A g (29

By Lemma 4.3 applied in the variable, we obtain the following expansion:

+00

Ngy, (@,0",X,,X1) = Kelx | X [VD) T (VD) ™1 (%1, VD + X = bAg(w = ),

m=0

with Vi g5 € S(R®). Using Lemma 4.2, it comes that the kerm%j,kj of Tg{,j has the expansion

+oe

Ny 1o (@, X1, X1) = Kg0x XD VD) TS (VD) ™V 11X, VD + A = bAg(0 = ),

m=0

With Vg i € S(R?). Next, using again Lemma 4.2, it follows by induction tig§ -+ Te} has
a kernelNg ((w,®’,x, ,x ) which admits an expansion in powersibf/?,

400

N (@0’ X, X)) = (V) TN (ivb) ™V 41X VED+ X = bA (@ = 0')Kq(X, X)),
m=0

wherell|:=1,+---+ly. Hence, we get
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tr(Te), - TEY = 2 | Now(@,o.x % )dx, = 2(vb) 1™ NE (ivb)" f Vi aiiX1.0)dx,
w=%1 R2
= 2(i\b) - NE (VD)™ [ Vi)

m=0

and the proof of Theorem 4 is almost complete. Indeed, we have shown that there exists a
sequencéa;); .y of real numbers such that

S(Eb+\,b) = _ibm-ZWE o5 (EN)(iVb) T,
2|7T j=0
Hence, we must prove that fgre N, a,;=0. For this purpose, let us remark tHé®,b) being
unitary, s(€b+\ ,b) is real valued. Therefore, the coefficients;, j € N vanish and the proof of
expansion(11) is complete.
It remains to compute the coefficiersag anda;. From Eqs(26) and(27) and Lemma 4.1 we
deduce that

[(5 /2] 2
S(Eb+A,b) =

1)k 2 k+1
tr(Z Tq,|(£b+7\,b)) +0O(b™).
1=0

2 |77 q=0 k=0 k 1
Using again Lemma 4.1, we obtain

[(e-1)/2]

1 1
S(Eb+Nb) = — 20 (tr Tqo* U Tqp +1r Tgp= ot Too—tr TgoTg+ 3 Tg’()) +0(b™),
p=

(30)

and we must compute all the terms of the sum. From the proof of Theorem iwghd=1, we
deduce that

2im SN I SIC S
tr(Tq,0(5b+)\,b))=—m 3V(x)dx b“(£-29-1) _Eb (E-29-1) < |+0O\b 7).
R

By similar computations, we prove that

2
tr(Tg o(Eb+\,b)) = - 477(5_—12(4_1)< f V(X)dx) o
and

e o aN-3p2 3
%b—m(f V(x)dX> +O(b™.

Let us compute i, ,). It follows from Eq.(29) that

tr(T3 o(Eb+ N, b)) =

tr(Tg1(Eb+\,b)) = m > | @vernbAqlamaltolxixay/(x | x V(X ,Xp)dXgdXo0X |
o) o=t1

W f (1 +e2NEPHA- Eb+A=bA4([x-,)) WX, X)) V(X | ,X5) X, 0Xo0% |

gzl oo
+0O(b™) = 8me—2q-1) V(x)dx
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2
8m(&-2q-1) X1=<Xp

+0(b™.

P VEPATAGLOXIN/ (x| X, V(X , Xo) Xy AXo0X |

Integrating by parts with respect g, we obtain

-t ’ ] 2 -1
tr(Tg(Eb+\,b)) = 8m(E—2q- 1)(([ V(x)dx) + \mf V(X) dx) +0(b™

_‘—1(UV d)Z_LJV 2d)+0b_1
C8m(E-2q-1) ()x 8m(€ - 2q- 1)3? (x)“dx (b™).

The computations of () and t(T, (T, ) are similar to the preceding ones. We find

i(E-2q-1)7%?
( q-1) b

3
™ ‘1’2(fV(x)dx> +0O(b™h

tr(Tqo(Eb+ N\, b)Tg1(Eb+\,b)) =
and

i(€-2q-1)7%2

(TgalEb+ N D) = ——

3
b‘1’2< f V(x)dx) +0O(b™).

Combining these equations witB0), we obtain

s(Eb+\,b) = - %bm(f V(x)dx) + )\g;ﬂ(f)b‘l’z(f V(x)dx)

&
- %b-m( J V(x)zdx> +O(b™Y
with
[(e-D)r2]
%= X (E-29-7.
=0
This completes the proof of Theorem 4. |

To conclude, let us notice that Theorem 4 could be generalized to thee&sle> 1 by using
stationary phase method in the variak|eNevertheless, there are some difficulties due to degen-
erate phases.
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