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Abstract
In this paper, we study the residue of the scattering amplitude for the
Schrödinger operator with long-range perturbation of the Laplacian, in
the case where there are resonances exponentially close to the real axis.
If the resonances are simple and under a separation condition, one proves
that the residue of the scattering amplitude associated with a resonance ξ is
bounded by C(h)|Im ξ |. Here C(h) denotes an explicit constant depending
polynomially on h−1 and the number of resonances in a fixed box. This
generalizes a recent result of Stefanov concerning compactly supported
perturbations and isolated resonances.

PACS numbers: 03.65.Sq, 03.65.Nk

1. Introduction

The aim of this paper is to study the residues of the scattering amplitude for the semi-classical
Schrödinger operator, in the case where there are resonances exponentially close to the real
axis. This problem was treated by Lahmar-Benbernou and Martinez [9, 10] in the particular
case of a ‘well in a island’ with non-degenerate local minimum. Under the assumptions
specified in [10], they proved that the residue f res

ξ (θ, ω, h) of the scattering amplitude
f (θ, ω, λ, h) which is associated with a pole ξ satisfies

f res
ξ (θ, ω, h) = O(hN)|Im ξ |

for some fixed N. More recently, Stefanov [18] examined the general situation of black-box
compactly supported perturbations of the Laplacian. In this paper, Stefanov deals with the
case where z0(h) is a simple isolated resonance of P(h). Then, for (ω, θ) ∈ Sn−1 × Sn−1, one
can write the scattering amplitude f (θ, ω, λ, h) near z0(h) as

f (θ, ω, λ, h) = f res(θ, ω, h)

z− z0(h)
+ f hol(θ, ω, z, h) (1.1)
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wheref hol(θ, ω, z, h) is holomorphicnear z0(h). Under some additional hypotheses, Stefanov
proved that

|f res(θ, ω, h)| � Ch− n−1
2 |Im z0(h)| and |f hol(θ, ω, z, h)| � Ch− n−1

2 for z close to z0(h).

In this paper, we will show that these estimates still hold in a more general setting. In
particular, we extend the result of Stefanov to the case of long-range perturbations and domains
containing many resonances.

Let us now state the problem more precisely. Consider the Schrödinger operator P(h) =
− 1

2h
2�+V , in Rn, n � 2, 0 < h � 1. The potential V (x) is assumed to satisfy the following

condition for some ρ > 0.

Assumption (V)ρ . V is a real C∞-smooth function such that

∀α ∈ N
n ∀x ∈ R

n
∣∣∂αx V (x)∣∣ � Cα〈x〉−ρ−|α| where 〈x〉 = (1 + |x|2) 1

2 .

The operator P(h) with domain D(P(h)) = H2(Rn) is self-adjoint in L2(Rn). We can define the
scattering matrix S(λ, h) related to P0(h) = − 1

2h
2� and P(h), as a unitary operator:

S(λ, h) : L2(Sn−1) −→ L2(Sn−1).

Next, introduce the operator T(λ, h) by S(λ, h) = Id − 2iπT(λ h). It is well known (see [7])
that T(λ, h) has a kernel T (θ, ω, λ, h), smooth in (θ, ω) ∈ Sn−1 × Sn−1\{θ = ω} and the
scattering amplitude is given by

f (θ, ω, λ, h) = c(λ, h)T (θ, ω, λ, h)

with

c(λ, h) = −2π(2λ)−
n−1

4 (2πh)
n−1

2 e−i (n−3)π
4 . (1.2)

Moreover, in [7], Isozaki and Kitada gave a representation formula that we will recall in the
next section. In [4], Gérard and Martinez used this representation formula to prove that the
scattering amplitude has a meromorphic continuation, from the lower half-plane to a conic
neighbourhood of the real axis. This continuation, which we will explain in the next section,
was established for θ �= ω and under the following hypothesis.

Assumption (Hol∞). We assume that there exist θ0 ∈ [0, π[ andR > 0 such that the potential
V extends holomorphically to the domain

DR,θ0 = {z ∈ C
n; |z| > R, |Im z| � tan θ0|Re z|}

and

∃β > 0 ∃C > 0 ∀x ∈ DR,θo |V (x)| � C|x|−β.

Let us note that this hypothesis allows also the resonances to be defined by complex scaling
(see [14, 15]). Near the real axis, the resonances coinciding with the poles of the scattering
amplitude and the multiplicity are the same. We will denote by Res(P(h)) the set of resonances
of P(h) lying in {Im z < 0}.

Now, we will formulate our statement on the resonances. Let E1(h),E2(h) be such that,
∀h ∈ ]0, 1], 0 < L−1 < E1(h) � E2(h) � L < +∞ where L 	 1 is constant independent
of h. Assume that ω(h), S(h) > 0 satisfy

lim
h→0

ω(h) = 0 and S(h) � h
3n+5

2 ω(h). (1.3)

Let us set

�0(h) = {z ∈ C;E1(h)− ω(h) � Re z � E2(h) + ω(h), 0 � −Im z � S(h)}. (1.4)
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Figure 1. Isolated resonances.

We will say that a resonance is simple, if it is a simple pole of the scattering amplitude. Until
the end of this paper, we will assume that each ξ ∈ �0(h) ∩ Res(P (h)) is a simple resonance
and we denote

�(h) = �0(h) ∩ Res(P (h)) andK(h) = �(h).

We will also assume that the set of resonances�(h) is isolated in the sense that

Res(P (h)) ∩ (�(h)\�0(h)) = ∅ (1.5)

where

�(h) = {z ∈ C;E1(h)− 7ω(h) � Re z � E2(h) + 7ω(h), 0 � −Im z � 4h−n−2S(h)}.
(1.6)

Let us note that if ω(h) satisfies 0 < ω(h) < hn+α with α > 0, then E1(h) and E2(h) can be
chosen so that

Res(P (h)) ∩ ([E1 − 7ω,E2 + 7ω] + i[0,−S(h)]) = Res(P (h)) ∩�0(h). (1.7)

This is a direct consequence of the fact that

(Res(P (h)) ∩ ([L−1, L] + i[−h−n−2S(h), 0])) = O(h−n)

which comes from the trace formula proved in [14, 15]. Then, to ensure that (1.5) holds, it
suffices to prove that

Res(P (h)) ∩ ([E1 − 7ω,E2 + 7ω] + i[−S(h),−4S(h)h−n−2]) = ∅.
We will explain further how this can be done in some special situations.

Under the above assumptions, the scattering amplitude takes the form

f (θ, ω, z, h) =
∑
ξ∈�(h)

f res
ξ (θ, ω, h)

z− ξ
+ f hol(θ, ω, z, h) (1.8)

where f hol(θ, ω, z, h) is holomorphic in �(h) (see figure 1). Our aim is to estimate the
residues f res

ξ (θ, ω, h) and the holomorphic part f hol(θ, ω, z, h). For this purpose, we need a
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separation assumption on the resonances of P(h). We will suppose that there exists ε > 0
such that the following condition is satisfied.

Assumption (Sepε). For all ξ, ξ ′ ∈ �0(h) ∩ Res(P (h)) with ξ �= ξ ′, we have

|ξ − ξ ′| � εS(h).

Now, we are in a position to announce the main result of this paper.

Theorem 1. Assume that the potential V satisfies hypotheses (V)ρ with ρ > 0, (Hol∞)
and (Sepε) with ε > 0. Assume that all the resonances in �0(h) are simple and that
Res(P (h)) ∩ (�(h)\�0(h)) = ∅. Let (θ, ω) ∈ Sn−1 × Sn−1 with θ �= ω. Then, there exist
Cε > 0 and h0 > 0 such that for all 0 < h < h0, we have∣∣f res

ξ (θ, ω, h)
∣∣ � Cεh

− n−1
2 K(h)

24
ε2 |Im ξ | ∀ξ ∈ �(h)

|f hol(θ, ω, z, h)| � Cεh
− n−1

2 K(h)
24
ε2 log(1 +K(h)) ∀z ∈ �̃(h)

where

�̃(h) = {z ∈ C;E1(h)− ω(h) � Re z � E2(h) + ω(h), 0 � −Im z � 2S(h)}.

Let us make a comparison between our result and theorem 1 in [18]. First, our theorem
holds for long-range potentials whereas Stefanov’s result is proved for compactly supported
perturbations of the Laplacian. This creates some difficulties due to the fact that, in the
long-range case, we do not have some simple representation formula for f .

The second important difference concerns the density of resonances that we deal with. In
[18], it is assumed that z0(h) is the only resonance in �(h). Here we consider the case where
the numberK(h) of resonances is larger than one. AsK(h)may behave like h−n when h goes
to 0, our aim is to prove that the bound on the residues depends polynomially on K(h), while
it is easier to obtain a bound depending exponentially onK(h).

Let us note that our result cannot be obtained as a direct consequence of Stefanov’s.
Indeed, one could try to cover �(h) with some boxes containing only one resonance and
to apply Stefanov’s theorem on each box. If one follows this approach, one has to make a
separation assumption necessary to apply Stefanov’s estimate. Roughly speaking, one has
to suppose (Sepε) with ε = h− 3n+4

2 so that the hypotheses become more restrictive than in
theorem 1.

Now, let us make some comments on the term K(h). It is easy to deduce from the trace
formula proved in [14, 15] that there exists ñ ∈ N such that K(h) = O(h−ñ). Therefore,
theorem 1 yields∣∣f res

ξ (θ, ω, h)
∣∣ � Cεh

−nε |Im ξ | ∀ξ ∈ �(h)
|f hol(θ, ω, z, h)| � Cεh

−1−nε ∀z ∈ �̃(h)
with nε ∈ N. In particular |f hol| and

∣∣f res
ξ

∣∣/|Im ξ | are polynomially bounded with respect
to h−1. If we assume additionally that the numberK(h) is bounded with respect to h, theorem 1
shows that |f hol| and

∣∣f res
ξ

∣∣/|Im ξ | are bounded by Ch− n−1
2 . Therefore, the bound found by

Stefanov in the case K(h) = 1 is available in the case whereK(h) is bounded.
In conclusion, let us discuss briefly the existence of the Breit–Wigner formula for the

scattering amplitude. Starting from formula (1.8) and differentiating with respect to z, one
obtains

∂zf (θ, ω, z, h) = −
∑
ξ∈�(h)

f res
ξ (θ, ω, h)

(z− ξ)2
+ ∂zf hol(θ, ω, z, h).
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Introducing the term Im ξ in this formula we get

∂zf (θ, ω, z, h) =
∑
ξ∈�(h)

c(ξ, h)
−Im ξ

|z− ξ |2 + ∂zf
hol(θ, ω, z, h)

where |c(ξ, h)| = |f res
ξ (θ,ω,h)|

|Im ξ | � Ch− n−1
2 . Moreover, the term ∂zf

hol can be estimated by using

theorem 1 and Cauchy’s formula. In particular, if S(h) � ChM for someC,M > 0, we obtain

∂zf (θ, ω, z, h) =
∑
ξ∈�(h)

c(ξ, h)
−Im ξ

|z− ξ |2 + O(h−N )

where N is a positive constant. In the case where�(h) = {ξ0(h)} one obtains

∂zf (θ, ω, z, h) = c(ξ0, h)
−Im ξ0

|z− ξ0|2 + O(h−N )

with c(ξ0, h) = O(h− n−1
2
)
. Therefore, we will obtain a Breit–Wigner formula, if we can bound

the coefficient c(ξ0, h) from below. In the general case, it is not sufficient to prove a lower
bound for the coefficients c(ξ, h). Indeed, we do not control the argument of these complex
numbers and there could be some cancellation between different terms of the sum. This is a
difficult open problem.

We finish this introduction by giving some examples of potentials satisfying the
assumptions of theorem 1.

Example 1. We consider the case of a ‘well in a island’. For some fixed energyλ, the potential
V (x) is assumed to satisfy

{x ∈ R
n;V (x) > λ} = U\{x0}

where U is bounded and connected and x0 is a point of U. It is also required that V ′′(x0) is
positive definite. More precisely, we assume that after a symplectic change of coordinate, the
symbol σP (x, ξ) of P(h) can be written as

σP (x, ξ) =
n∑
j=1

λj

2

(
ξ2
j + x2

j

)
+ O((x, ξ)3)

where the λj are strictly positive and linearly independent of Z. In that case, for all α > 0 and
δ > 0, the form of the resonance of P(h) in Oα,δ(h) = [λ, λ + αh] − i[0, δ] is well known
(see [5, 8, 13]). In that situation, we are in a position to verify all the hypotheses required in
theorem 1. First, we know from [8] that the resonance ξ(h) ∈ Res(P (h)) ∩ Oα,δ(h) have the
following expansion:

ξ(h) = λ + h
n∑
j=1

(
kj +

1

2

)
λj + O(h2) (1.9)

with k = (k1, . . . , kn) ∈ Z
n and |k| � C. Moreover, we know from theorem 10.11 in [5] that

there exists S0 > 0 such that

∀ξ ∈ Res(P (h)) ∩ Oα,δ(h) |Im ξ | = O(e−S0/h). (1.10)

Denoting m = inf
{∣∣∑n

j=1 λjkj
∣∣; k ∈ Z

n, |k| � C
}
> 0, we deduce from (1.9) that if ξ �= ξ ′

are two resonances in Oα,δ(h) we have

|ξ − ξ ′| � h

∣∣∣∣∣∣
n∑
j=1

(kj − k′
j )λj

∣∣∣∣∣∣− O(h2) � mh− O(h2) � Ch. (1.11)
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Now, let us set ω(h) = hn+1 and S(h) = h
3n+5

2 ω(h). As was noted before assumption (Sepε),
we can choose λ + 7ω(h) < E1(h) < E2(h) < λ + αh− 7ω(h) such that

Res(P (h)) ∩ ([E1 − 7ω,E1] − i[0, δ]) = ∅
and

Res(P (h)) ∩ ([E2, E2 + 7ω] − i[0, δ]) = ∅.
Combining these properties and (1.10), it follows that �(h) and �0(h) defined by (1.6) and
(1.4) satisfy

�(h) ⊂ Oα,δ(h) and Res(P (h)) ∩�(h) ⊂ �0(h).

Moreover, it follows from (1.11) that for all ε > 0 (Sepε) is verified with S(h) as above, so
that we have verified all the hypotheses required in theorem 1. Finally, we note that in the
present case, the number K(h) is bounded with respect to h. This is not true in general and in
the following example, we describe such a situation.

Example 2. For a > 0, let φa ∈ C∞
0 (R

n) be such that �a(x) = 1 for |x| � 2a. Let b > 0,
y0 ∈ Rn and set

V (x) = �− a(x − y0)(|x − y0|2 + b).

In that situation, it is shown in [1] (cf the example following theorem 6) that

∀λ ∈ ]b, b + a2[ ∃Cλ, δλ > 0
(1.12)

Res(P (h)) ∩ ([λ− δλh, λ + δλh] − i[0, δλh]) � Cλh
1−n.

Now, we fix two energy levels b < E0 < E3 < b + a2. Denoting σP (x, ξ) = 1
2 |ξ |2 +V (x) the

symbol of the operatorP(h), we assume thatE0 andE3 are no-critical values of σP . Denoting
Wext as the unbounded connected component of σ−1

P ([E0, E3]), we assume that all points in
Wext are non-trapping in the sense of [12]. Under the above assumptions, Stefanov proved
in [16] that for all M > 0, there exists a function 0 < α(h) = O(h∞) such that for h small
enough

Res(P (h)) ∩ ([E0, E3] + i[−Mh,−α(h)]) = ∅. (1.13)

Moreover, we have seen that if we set ω(h) = hn+α, α > 0 and 0 < S(h) < h
3n+5

2 ω(h),
we can choose E0 < E1(h) < E2(h) < E3 such that |E1(h) − E2(h)| � E3−E0

2
and (1.7) holds. Combining (1.13) and (1.7), assumption (1.5) is immediately satisfied
(see figure 2).

On the other hand, if we assume that (Sepε) is satisfied and that the resonances are simple
then we can apply theorem 1 to get∣∣f res

ξ (θ, ω, h)
∣∣ � Cεh

− n−1
2 K(h)

24
ε2 |Im ξ | ∀ξ ∈ �(h).

To conclude, let us note that combining (1.13) and (1.12), it comes easily thatK(h) � Ch1−n.
Therefore, the estimate K(h) � Ch−n is almost sharp and it follows that∣∣f res

ξ (θ, ω, h)
∣∣ � Cεh

1
2 −n( 1

2 + 24
ε2
)|Im ξ | ∀ξ ∈ �(h).

In our analysis we deal with a representation formula for the scattering amplitude. In the
next section, we recall the representation given by Isozaki and Kitada [7], for λ real and its
extension to a conic neighbourhood of the real axis due to Gérard and Martinez [4].
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Figure 2. Resonances associated with a non-trapping potential outside a bounded region.

2. Review on the representation formula and the meromorphic continuation
of T(θ, ω, λ, h)

2.1. The formula of Isozaki–Kitada

The first step towards the proof of theorem 1 is to establish a representation formula for
T(θ , ω, λ, h) in the long-range case. Such a formula has been obtained in [7] and it was used
in [12] to prove an asymptotic expansion of the scattering amplitude in the non-trapping case
with ρ > 1. We begin with some notation.

Definition 1. Let � be an open subset of Rn × Rn. For m,u ∈ R and k ∈ Z, we denote by
A
m,u
k (�) the class of symbols a(x, ξ, h) such that (x, ξ) �→ a(x, ξ, h) belongs to C∞(�) and

∀(α, β) ∈ N
n × N

n ∃C > 0 ∀(x, ξ) ∈ � ∣∣∂αx ∂βξ a(x, ξ)∣∣ � Chk〈x〉m−|α|〈ξ〉u−|β|

and set Am,∞k (�) = ⋂u∈R
A
m,u
k (�). In the case where � = R

n × R
n, we will write Am,uk

instead of Am,uk (�).

We also use the incoming and outgoing subsets of the phase space having the form

�±(R, d, σ ) = {(x, ξ) ∈ R
n × R

n : |x| > R, d−1 < |ξ | < d,±cos(x, ξ) > ±σ }
for R > 1, d > 1 and σ ∈ ]−1, 1[, where cos(x, ξ) = 〈x,ξ〉

|x||ξ | . For α > 1
2 , introduce F0(λ, h) :

L2
α(R

n) −→ L2(Sn−1), by

(F0(λ, h)f )(ω) = c0(λ, h)

∫
Rn

e−ih−1
√

2λ〈x,ω〉f (x) dx λ > 0.

The idea of Isozaki and Kitada was to approximate the wave operators by Fourier integral
operators Ih(a±,�±) with phases�± and symbols a±. Formally, with

Ih(a±,�±)(f )(x) = (2πh)−n
∫ ∫

exp(ih−1(�±(x, ξ)− 〈y, ξ〉))a±(x, ξ)f (y) dy dξ

the phases�± have to solve the eikonal equation
1
2 |∇x�±(x, ξ)|2 + V (x) = 1

2 |ξ |2
and the symbols a± are the solution to(− 1

2h
2� + V (x)− 1

2 |ξ |2) (a± eih−1�±
) ∼ 0. (2.1)
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Let R0 	 1, 1 < d4 < d3 < d2 < d1 < d0 and 0 < σ−
2 < σ−

1 < σ−
0 < σ +

0 <

σ +
1 < σ +

2 < 1. Denote τ±
j = −σ∓

j for j = 0, 1, 2, so that we have also −1 < τ−
2 < τ−

1 <

τ−
0 < τ +

0 < τ +
1 < τ +

2 < 0. According to proposition 2.4 of [6], we can find real C∞ smooth
functions�±a satisfying the following properties:

(ϕ1) �±a(x, ξ) solves the eikonal equation 1
2 |∇x�±a(x, ξ)|2 + V (x) = 1

2 |ξ |2 in
�±
(
R0, d0, τ

±
0

)
.

(ϕ2) �±a(x, ξ)− 〈x, ξ〉 belongs to Aε,00 for all ε > 0.

(ϕ3) For all (x, ξ) ∈ R
n×R

n,
∣∣ ∂2�±a
∂xj ∂ξk

(x, ξ)−δjk
∣∣ < ε(R0), δjk being the Kronecker symbol,

where ε(R0) can be made as small as we wish by taking R0 large enough.

Next, we determine a± in the form

a±(x, ξ, h) =
∑
j�0

a±j (x, ξ)hj .

Replacing a± by this expansion in (2.1) and identifying the power of h, we obtain the following
transport equations:{〈∇x�±a,∇xa±0〉 + 1

2�x�±aa±0 = 0

〈∇x�±a,∇xa±j 〉 + 1
2�x�±aa±j = i

2�xa±j−1 j � 1
(2.2)

with the conditions at infinity

a±0 → 1 and a±j → 0 j � 1 as |x| → 0. (2.3)

These equations are solved by the standard characteristic curve method (see [6, 7, 12]) and
finally, we find some symbols a±j such that: (s0) a±j belongs to A−j,−∞

0 . (s1) supp(a±j ) ⊂
�±
(
3R0, d1, τ

±
1

)
. (s2) a±j solves equation (2.2) with (2.3) in�±

(
4R0, d2, τ

±
2

)
. (s3) a±j solves

equation (2.2) in �±
(
4R0, d1, τ

±
2

)
. Now, fix an integer N large enough (to be chosen in the

following) and set a±(x, ξ, h) = ∑N
j=0 a±j (x, ξ)hj ∈ A

0,−∞
0 . Then the operator J±a(h) =

Ih(a±,�±a) is well defined and the operator K±a given by K±a = P(h)J±a − J±aP0(h) is
also a F.I.O. In fact, K±a = Ih(k±a,�±a) with

k±a = e−ih−1�±
(− 1

2h
2� + V (x)− 1

2 |ξ |2) (eih−1�±a±
)
.

It follows that the symbol k±a has the following properties: (k0) k±a belongs to A−1,−∞
1 .

(k1) supp(k±a) ⊂ �±
(
3R0, d1, τ

±
1

)
. (k2) k±a belongs to A−(N+2),−∞

N+2

(
�±
(
4R0, d1, τ

±
2

))
.

Similarly, we define J±b = Ih(b±,�±b) for the region �±
(
5R0, d3, σ

±
1

)
. First, we define

the phase functions �±b ∈ C∞(R2n) verifying (ϕ1) in �±
(
R0, d0, σ

±
0

)
, (ϕ2) and (ϕ3). Next,

we define a symbol

b±(x, ξ, h) =
N∑
j=0

b±j (x, ξ)hj

satisfying (s0), (s1) for the region �±
(
5R0, d3, σ

±
1

)
, (s2) for �±

(
6R0, d4, σ

±
2

)
and (s3) for

�±
(
6R0, d3, σ

±
2

)
. Using the same arguments as above, we define K±b(h) = P(h)J±b(h) −

J±b(h)P0(h) = Ih(k±b,�±b), with

k±b = e−ih−1�±b
(− 1

2h
2� + V (x)− 1

2 |ξ |2) (eih−1�±b b±
)
. (2.4)

Then k±b satisfies (k0), (k1) for �±
(
5R0, d3, σ

±
1

)
and (k2) for �±

(
6R0, d3, σ

±
2

)
. Now, the

Isozaki–Kitada formula is stated in the following proposition.
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Proposition 1 (Isozaki–Kitada [7]). For λ ∈ ] d−2
4
2 ,

d2
4

2

[
, we have

T (λ, h) = T1(λ, h)− T2(λ, h) (2.5)

with

T1(λ, h) = F0(λ, h)(J
∗
+a(h) + J ∗

−a(h))(K+b(h) +K−b(h))F ∗
0 (λ, h) (2.6)

and

T2(λ, h) = F0(λ, h)(K
∗
+a(h) +K∗

−a(h))R(λ + i0)(K+b(h) +K−b(h))F ∗
0 (λ, h). (2.7)

In formula (2.7), R(λ + i0) is the limit of the resolvent on the real line. More precisely,
let us denote R(z) = (P (h) − z)−1, z ∈ C\R the resolvent of P(h), then R(λ ± i0) =
limε→0,ε>0 R(λ ± iε). Here we take the limit in the spaces of bounded operators
L(L2

α, L
2
−α
)
, α > 1

2 with L2
α = {f : 〈x〉αf ∈ L2(Rn)} and for α, β ∈ R, ‖ · ‖α,β is the

natural norm on L(L2
α, L

2
β

)
.

Using this formula and a resolvent estimate proved by Burq [2] and improved by Vodev
[22] and Cardoso–Vodev [3], it was proved in [11] that the scattering amplitude is polynomially
bounded with respect to h. More precisely, one has the following theorem.

Theorem 2. Fix an energy λ > 0 and assume that the potential V satisfies (V)ρ with ρ > 0
and (Hol∞). Then we have

∀(ω, θ) ∈ Sn−1 × Sn−1\{θ = ω} f (θ, ω, λ, h) = O(h− n−1
2
)
. (2.8)

Let us remark that this result is not exactly the same as in [11], where it is assumed that ρ > 1.
Nevertheless, it is not hard to verify that the proof given in [11], still works in the case ρ > 0.

2.2. Meromorphic continuation of the scattering amplitude and estimates for complex
energies

Here, we recall briefly how Gérard and Martinez [4] extend the formula of Isozaki and Kitada
to a conic neighbourhood of the real axis in the complex plane. Starting from this formula, we
establish some estimates of the scattering amplitude in a conic neighbourhood of R

∗
+. Let us

begin with some notation. For R > 0 large enough, d > 0, ε > 0 and σ ∈ ]0, 1[, we denote

�±(R, d, ε, σ ) = {(x, ξ) ∈ C
2n; |Re x| > R, d−1 < |Re ξ | < d,

± cos(Re x,Re ξ) � ± σ, |Im x| � ε〈Re x〉, |Im ξ | � ε〈Re ξ〉}.
From propositions 2.1 and 3.1 in [4], we deduce that the phases �±a,�±b and the symbols
a± and b± can be constructed so that the following propositions hold.

Proposition 2. For each ε > 0, there exists R0 > 0 such that the phase function �±a
(resp.�±b) has a holomorphic continuation in �±(R0, d0, ε, τ

±
0

)
(resp.�±(R0, d0, ε, σ

±
0 ))

and satisfies

(∇x�±(x, ξ))2 + V (x) = ξ2 �±(x, ξ)− 〈x, ξ〉 = O(〈x〉 + 〈ξ〉)1−ρ 〈ξ〉−1

uniformly in �±(R0, d0, ε, τ
±
0

)
(resp. �±(R0, d0, ε, σ

±
0 )).

Proposition 3. For R0 > 0 large enough and ε > 0 small enough, there exists α > 0 such
that a± has an extension to �±(3R0, d1, ε, τ

±
1

)
which is holomorphic in �±(4R0, d2, ε, τ

±
2

)
.



4384 L Michel

Moreover, a±(x, ξ, h) is bounded uniformly with respect to (x, ξ) ∈ �±(3R0, d1, ε, τ
±
1

)
,

h ∈ ]0, 1] and we have the following estimates:

a±(x, ξ, h) = 1 + O(〈x〉−ρ)
(2.9)

k±a(x, ξ, h) = e−ih−1�±(x,ξ)
(
P(h) − 1

2ξ
2) (eih−1�±(x,ξ)a±(x, ξ, h)

) = O(e−α〈x〉〈ξ〉/h)

uniformly with respect to h ∈ ]0, 1] and (x, ξ) ∈ �±(4R0, d2, ε, τ
±
2

)
. Similarly, the preceding

statement is true for the symbol b± and the domains �±(5R0, d3, ε, σ
±
1

)
, �±(6R0, d4, ε, σ

±
2

)
respectively.

Now, using proposition 1, we can write the scattering matrix as

S(λ, h) = c(λ, h)(T1(λ, h)− T2(λ, h))

where T1 and T2 are given by (2.6), (2.7) and are associated with our new symbols. Denote by
T1(θ, ω, λ, h) the kernel of T1(λ, h) and by T2(θ, ω, λ, h) the kernel of T2(λ, h). Let us set

ψ±a
±b (x, θ, ω) = �±b(x,

√
2λω)−�±a(x,

√
2λθ).

It is easy to see that for λ > 0 we have

T1(θ, ω, λ, h) = (T +a
1,+b + T +a

1,−b + T −a
1,+b + T −a

1,−b
)
(θ, ω, λ, h) (2.10)

with

T ±a
1,±b(θ, ω, λ, h) = c0(λ, h)

2
∫

eih−1ψ±a
±b (x,θ,ω)k±b(x,

√
2λω)ā±(x,

√
2λθ) dx (2.11)

and

T2(θ, ω, λ, h) = (T +a
2,+b + T +a

2,−b + T −a
2,+b + T −a

2,−b
)
(θ, ω, λ, h) (2.12)

with

T ±a
2,±b(θ, ω, λ, h) = c0(λ, h)

2〈R(λ + i0)k±b(·,
√

2λω) eih−1�±b(·,
√

2λω),

k±a(·,
√

2λθ) eih−1�±a(·,
√

2λθ)〉. (2.13)

At the end of this section we will explain how we can extend the previous expression for
complex energies. As can be easily seen, in the above expressions of T1 and T2, it is natural to
use the analytic continuation of the symbols involved in these formulae. Moreover, to extend
the term T2, it is essential to holomorphically continue the resolvent to complex energies. This
is done by complex scaling, using hypothesis (Hol∞). We do not recall here the construction
of the complex scaled operator (see [14, 15]), we just give the main properties of this operator.
For µ0 > 0 small enough ε0 > 0 and 0 < µ < µ0, there exists fµ : R+ → C which is
injective for every µ and satisfies the following properties:

(i) fµ(t) = t for 0 � t � 7R0,
(ii) 0 � arg fµ(t) � µ and ∂tfµ(t) �= 0 ∀t

(iii) argfµ(t) � arg ∂tfµ(t) � argfµ(t) + ε0

(iv) argfµ(t) = eiµt, for t � 8R0.

Denoting by κµ the map given by

κµ : R
n � x = tω �−→ fµ(t)ω t = |x|

one defines �µ = κµ(R
n) and Uµ : L2(Rn) → L2(�µ) by Uµϕ(x) = Jµ(x)ϕ(κµ(x)) where

Jµ(x) is the Jacobian associated with the transformation κµ. Next, we define the modified
operator by Pµ(h) = UµP(h)U

−1
µ . This is an unbounded non self-adjoint operator onL2(�µ)

and the resonances of P(h) are exactly the eigenvalues of any Pµ(h). Moreover, the resolvent
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(Pµ − λ)−1 has a meromorphic continuation to {λ; |Imλ| � µ〈Re λ〉}. Using estimates (2.9)
for k±a and k±b and the properties of the phases�±a,�±b, it is easy to show that there exists
ε1 > 0 such that for Imλ > 0, we have

Uµ
(
eih−1�±b(x,

√
2λω)k±b(x,

√
2λω)

) = O(e−ε1〈x〉/h) (2.14)

uniformly with respect to |x| � 6R0, ω ∈ Sn−1, h ∈ ]0, 1] and |Imλ| � µ〈Re λ〉. Similarly,
if we denote by U−µ the operator associated with the conjugate deformation f̄ µ, then for all
|x| � 4R0, ω ∈ Sn−1, h ∈ ]0, 1] and |Imλ| � µ〈Re λ〉, we have

U−µ
(
eih−1�±a(x,

√
2λθ)k±a(x,

√
2λθ)

) = O(e−ε2〈x〉/h) (2.15)

where ε2 is a strictly positive constant. Therefore, using the analyticity of these quantities
with respect to µ, it is not hard to prove that

T ±a
2,±b(θ, ω, λ, h) = c0(λ, h)

2〈Rµ(λ, h)Uµ(k±b(·,
√

2λω) eih−1�±b(·,
√

2λω)),
U−µ
(
k±a(·,

√
2λθ) eih−1�±a(·,

√
2λθ))〉 (2.16)

for λ > 0, where Rµ(λ, h) = (Pµ(h) − λ)−1 is the resolvent of the modified operator. For
µ > 0 fixed, Sjöstrand [15] showed that Rµ(λ, h) is analytic in the region {Imλ > 0} and
is meromorphic in the sector e−i[0,µ]]0,+∞[. By definition, the resonances of P(h) are the
poles of Rµ(λ, h). It follows from (2.16) that the poles of T2(θ, ω, λ, h) coincide with the
resonances of P(h).

The next step is to extend T ±a
1,±b to complex energies. We need to extend T ±a

1,±b as a
function, so that we do not have to recall the general construction of [4]. More precisely, we
work in the case where ω, θ ∈ Sn−1 are fixed and ω �= θ . As mentioned in [4], we can choose
the parameters σ±

2 sufficiently close to 1 and δ > 0 small enough, such that

∀y ∈ R
n cos(y, ω) � σ−

2 − δ �⇒ 〈y, ω − θ〉
|y| � 2α > 0. (2.17)

We will use this property at the end of the demonstration, but for the moment we simply recall
that for λ ∈ R∗

+, T ±a
1,±b(θ, ω, λ, h) is given by

T ±a
1,±b(θ, ω, λ, h) = c0(λ, h)

2
∫

eih−1(
√

2λ〈ω−θ,x〉+r(x,λ))k±b(x,
√

2λω)ā±(x,
√

2λθ) dx

where r(x, λ) = r±a
±b (x, λ) = O(〈x〉1−ρ〈√λ〉1−ρ). Working as in [4], we can split T 2,±a

1,±b (θ, ω,
λ, h) into the sum of two terms

T ±a
1,±b(θ, ω, λ, h) = f1(θ, ω, λ, h) + f2(θ, ω, λ, h)

where f1 is given by

f1(θ, ω, λ, h) = c0(λ, h)
2
∫

|x|�6R0

eih−1(
√

2λ〈ω−θ,x〉+r(x,λ))k±b(x,
√

2λω)ā±(x,
√

2λθ) dx.

(2.18)

Using propositions 2 and 3, it is obvious that the functions (r, ρ) �→ k±b(rx, ρω)ā±(rx, ρθ)
are holomorphic with respect to r ∈ {|r| � 5R0} ∩ {|Im r| � ε〈Re r〉} and ρ ∈ {d−1

2 � |ρ| �
d2
} ∩ {|Imρ| � ε〈Re ρ〉}. Hence, we obtain that f1 has a holomorphic continuation to

�d2,ε =
{
λ ∈ C; |Imλ| � ε〈Re λ〉, d

−2
2

2
� |Re λ| � d2

2

2

}
.

Moreover, for λ ∈ �d2,ε we have d2√
2λ

� 1 and we can write f2 = f3 + f4 with

f3(θ, ω, λ, h) = c0(λ, h)
2
∫

6R0�|x|� 7R0d2√
2λ

eih−1(
√

2λ〈ω−θ,x〉+r(x,λ))k±b(x,
√

2λω)ā±(x,
√

2λθ) dx
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which gives after a change of variables

f3(θ, ω, λ, h) = c0(λ, h)
2

λn/2

∫
6R0

√
2λ�|y|�7R0d2

eih−1(〈ω−θ,y〉+r±(y/
√

2λ,λ))

× k±b

(
y√
2λ
,
√

2λω

)
ā±

(
y√
2λ
,
√

2λθ

)
dy. (2.19)

As in the case of f1, this expression has a holomorphic continuation to the domain �d2,ε and
it remains to examine

f4(θ, ω, λ, h) = c0(λ, h)
2

λn/2

∫
|y|�7R0d2

eih−1(〈ω−θ,y〉+r±(y/
√

2λ,λ))

× k±b

(
y√
2λ
,
√

2λω

)
ā±

(
y√
2λ
,
√

2λθ

)
dy. (2.20)

For this purpose, let us fix σ±
3 such that 0 < σ−

2 − δ < σ−
3 < σ−

2 < σ +
2 < σ +

3 < 1, where δ is
given by (2.17). We introduce a cut-off function χω such that

suppχω ⊂ {|y| � 7R0d2, cos(y, ω) ∈ [σ−
3 , σ

+
3

]}
and

χω = 1 on
{|y| � 8R0d2, cos(y, ω) ∈ [σ−

2 , σ
+
2

]}
.

We define also

u(y, λ, θ, ω, h) = eih−1r(y/
√

2λ,λ)k±b

(
y√
2λ
,
√

2λω

)
ā±

(
y√
2λ
,
√

2λθ

)
and we decompose f4 as f4 = f5 + f6, with

f5(θ, ω, λ, h) = c0(λ, h)
2

λn/2

∫
(1 − χω)(y) eih−1〈ω−θ,y〉u(y, λ, θ, ω, h) dy (2.21)

and

f6(θ, ω, λ, h) = c0(λ, h)
2

λn/2

∫
χω(y) eih−1〈ω−θ,y〉u(y, λ, θ, ω, h) dy. (2.22)

Using the fact that k±b(x, ξ) = O(e−ε2〈x〉/h) for cos(Re x,Re ξ) /∈ [σ−
2 , σ

+
2

]
, we show

easily that for ε3, ε > 0 small enough, λ ∈ �d2,ε and y ∈ supp(1 − χω), we have
k±b
(

y√
2λ
,
√

2λω
) = O(e−ε3〈x〉/h). Moreover, we deduce from proposition 3 that for λ ∈ �d2,ε

and y ∈ supp(1 − χω) we have

|u(y, λ, θ, ω, h)| � C e−ε3〈y〉/h∣∣eih−1r±(y/
√

2λ,λ)
∣∣ � C e−ε3〈y〉/h+C〈y〉1−ρ /h.

As ρ > 0, we can take R0 sufficiently large and ε4 small enough so that

∀λ ∈ �d2,ε ∀y ∈ supp(1 − χω) |u(y, λ, θ, ω, h)| � C e−ε4〈y〉/h.

It follows immediately from this estimate that f5 has a holomorphic continuation to �d2,ε

and that

∀λ ∈ �d2,ε , |f5(θ, ω, λ, h)| � Ch−n−1. (2.23)

The continuation of f6 is performed via a change of integration path in formula (2.22). Let
χ0 be a C∞-smooth function with suppχ0 ⊂ {|y| � 9R0d2} and χ0 = 1 on {|y| � 10R0d2}.
For ε > 0, the new path of integration will be Lε,χ0 = {1 + iεχ0(|y|), y ∈ Rn}. Using (2.17),
it is clear that for all y ∈ suppχω, 〈y, ω − θ〉 � α|y|. It follows, for ε sufficiently small and
y ∈ Lε,χ0 , that we have Im〈y, ω − θ〉 � α|y| and then∣∣eih−1〈y,ω−θ 〉∣∣ � e−α|y|/h.
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Therefore, the integral giving f6 becomes absolutely convergent and we can easily extend f6

holomorphically, to �d2,ε , for ε > 0 small enough, by

f6(θ, ω, λ, h) = c0(λ, h)
2

λn/2

∫
Lε,χ0

χω(y) eih−1〈ω−θ,y〉u(y, λ, θ, ω, h) dy. (2.24)

Thus, we have extended the kernel T ±a
1,±b(θ, ω, λ, h) to the domains �d2,ε , for ε > 0 small

enough. Moreover the continuation can be decomposed into the sum

T ±a
1,±b(θ, ω, λ, h) = (f1 + f3 + f5 + f6)(θ, ω, λ, h) (2.25)

where fj , j = 1, 3, 5, 6 are given by (2.18), (2.19), (2.21) and (2.24) respectively. These
formulae permit a bound for T ±a

1,±b to be obtained for complex energies.

Proposition 4. Let ω and θ be fixed in Sn−1 with θ �= ω. Then, there exist ε0, h0 > 0 and

C > 0 such that for all 0 < ε < ε0 and λ satisfying |Imλ| � ε〈Re λ〉, d−2
2
2 � |Reλ| � d2

2
2 ,

we have

∀0 < h < h0

∣∣T ±a
1,±b(θ, ω, λ, h)

∣∣ � C eC/h.

Proof. We have just shown that T ±a
1,±b = f1 + f3 + f5 + f6, so that we have to control each fj .

We begin by the analysis of f1. In the following, C will denote a positive constant that may
change from line to line. For λ ∈ �d2,ε , we deduce from equation (2.18) that

|f1(θ, ω, λ, h)| � Ch−n sup
|y|�6R0

|k±b(y,
√

2λω)ā±(y,
√

2λθ)|

×
∫

|x|�6R0

eh
−1(Im(

√
2λ)|ω−θ ||x|−|r(x,λ)|) dx.

Using the fact that r(x, λ) = O(〈x〉1−ρ 〈√λ〉1−ρ), we obtain for R0 sufficiently large

∀λ ∈ �d2,ε |f1(θ, ω, λ, h)| � Ch−n eC/h � C eC/h. (2.26)

The case of f3 is similar and we use the fact that after integration over a compact set we get

∀λ ∈ �d2,ε |f3(θ, ω, λ, h)| � Ch−n eC/h � C eC/h. (2.27)

The estimate of f5 has already been obtained in (2.23) and treating f6 remains. By the
definition of χω, there exists α > 0 such that∣∣χω(y, ω) eih−1〈y,ω−θ 〉∣∣ � e−α|y|/h.

Moreover, using the definition of r± and proposition 3, we can chooseR0 large enough so that
u(y, λ, θ, ω, h) � eα|y|/2h. Hence, we deduce from (2.24) that

∀λ ∈ �d2,ε , |f6(θ, ω, λ, h)| � Ch−n
∫

e−α|y|/2h dy � Ch−n−1. (2.28)

Combining equations (2.26), (2.27), (2.23) and (2.28) we obtain the result. �

3. Residues’ estimate

The aim of this section is to prove theorem 1. As in [18], we apply the semi-classical
maximum principle to a well-chosen function.
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3.1. Preliminary estimates of an auxiliary function

As a preparation, we introduce the following function. For z in �(h), we set

F(z, h) =

 ∏
ξ∈�(h)

z− ξ

z− ξ̄


 f (θ, ω, z, h). (3.1)

Following [18], we apply the semi-classical maximum principle to this function. The latter
was originally proved by Tang and Zworski [20, 21], generalizing lemma 1 in [19]. The
following lemma is a refined version of this principle, due to Stefanov [17].

Lemma 1. For 0 < h < 1, let a(h) � b(h). Suppose that G(z, h) is a holomorphic function
of z defined in a neighbourhood of

U(h) = [a(h)− 5ω(h), b(h) + 5ω(h)] + i[−S(h)h−n−2, 0]

where 0 < S(h) � ω(h)h
3n+5

2 and ω(h) → 0 as h → 0. Assume that F(z, h) satisfies

|G(z, h)| � A exp(Ah−n−1 log(1/h)) on U(h) (3.2)

|G(z, h)| � M(h) on [a(h)− 6ω(h), b(h) + 6ω(h)] (3.3)

with M(h) → +∞ when h → 0. Then, there exists h0 > 0 such that

|G(z, h)| � 2 e3M(h) ∀z ∈ Ũ(h) := [a(h)− ω(h), b(h) + ω(h)] + i[−S(h), 0]

for 0 < h < h0.

Using this lemma, we can prove the main result of this section which is stated in the
following proposition.

Proposition 5. Under the hypotheses of theorem 1, we can find h0 > 0 small enough and
C > 0 such that

∀h ∈ ]0, h0] ∀z ∈ Ũ(h) |F(z, h)| � Ch− n−1
2 (3.4)

where

Ũ(h) = [E1(h)− 2ω(h),E2(h) + 2ω(h)] + i[−2S(h), 0].

To prove this proposition we will show that the functionF(z, h) satisfies the estimates (3.3) and
(3.2). For this purpose, we need to control the norm of the modified resolvent (Pµ(h)− z)−1

near the poles ξ ∈ �(h).

Lemma 2. Under the hypotheses of theorem 1, we can find µ0 > 0, h0 > 0 small enough and
C > 0 such that for all µ < µ0, 0 < h < h0 and z ∈ � 3

4
(h) we have∥∥∥∥∥∥


 ∏
ξ∈�(h)

z− ξ

z− ξ̄


 (Pµ(h)− z)−1

∥∥∥∥∥∥
L2(�µ),L

2(�µ)

� C eCh
−n−1

(3.5)

where � 3
4
(h) is the domain

� 3
4
(h) =

{
z ∈ C;E1(h)− 21

4 ω(h) � Re z � E2(h) + 21
4 ω(h), 0 � −Im z � 3h−n−2S(h)

}
.
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Proof. The proof is based on the estimate established by Tang and Zworski in the proof of
lemma 1 of [20]:

‖(Pµ(h)− z)−1‖L2(�µ),L2(�µ) � C eCh
−n log 1

g(h) ∀z ∈ �(h)
∖ ⋃

zj∈ Res(P (h))

D(zj , g(h))

(3.6)

where 0 < g(h) � 1. Let us set

Fµ(z, h) =

 ∏
ξ∈�(h)

z− ξ

z− ξ̄


 (Pµ(h)− z)−1.

By construction, the resonances of P(h) coincide with the poles of (Pµ(h) − z)−1 with the
same multiplicity. As the resonances ξ ∈ �(h) are simple, then Fµ(·, h) is holomorphic in
�(h). Hence, applying the maximum principle, it suffices to show that estimate (3.5) holds
on the border ∂� 3

4
(h). Let us recall that according to Burq’s result ([2], theorem 1), there

exists C > 0 such that

Res(P (h)) ∩
([
E1(h)

2
,

3E2(h)

2

]
+ i[−e−C/h, 0]

)
= ∅.

Let us set g(h) = e−C/h � 1. With this choice of g(h) it is easy to prove that all resonances
are at least at distance g(h) from ∂� 3

4
(h). Indeed, as Res(P (h)) ∩ (�(h)\�0(h)) = ∅,

for z in ∂� 3
4
(h) we can write

dist(z,Res(P (h))) � min (dist(z,�(h)), dist(z,Res(P (h) ∩�(h)c)))
� min

(
S(h), dist

(
� 3

4
(h),�(h)c

))
� min

(
S(h),

h−n−2

4
S(h)

)
� e−C/h

where the second inequality comes from S(h) � −Im ξ � e−C/h,∀ξ ∈ �(h). It follows that
we can apply estimate (3.6) for z ∈ ∂ 3

4�(h) to get

∀z ∈ ∂� 3
4
(h) ‖Fµ(z, h)‖L2(�µ),L

2(�µ) � C


 ∏
ξ∈�(h)

|z− ξ |
|z− ξ̄ |


 eCh

−n−1 � C eCh
−n−1

and the proof is complete. �

Proof of proposition 5. Let us set a(h) = E1(h), b(h) = E2(h) and

U(h) = [a(h)− 6ω(h), b(h) + 6ω(h)] + i[−2S(h)h−n−2, 0].

By definition, 0 < S(h) � ω(h)h
3n+5

2 withω(h) → 0 as h → 0. It follows thatU(h) is exactly
in the form required in lemma 1. As each ξ ∈ �(h) is a simple resonance of P(h), F (z, h)
is a holomorphic function of z in �(h). We have just checked that the domain U(h) satisfies
the hypotheses of this lemma, so that we need only verify estimates (3.2) and (3.3) with
M(h) = h− n−1

2 .

Proof of estimate (3.3). It is based on the estimate of the scattering amplitude for real energies,
proved in [11]. First, note that for λ ∈ R∗

+ and ξ ∈ �(h), ∣∣ λ−ξ
λ−ξ̄
∣∣ = 1 and

|F(λ, h)| = |f (θ, ω, λ, h)|.
Now, it suffices to apply theorem 2 to obtain

|F(λ, h)| = O(h− n−1
2
)

and the proof of estimate (3.3) is complete.
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Proof of estimate (3.2). First we choose h0 > 0 such that for all 0 < h < h0, �(h) ⊂ �d2,ε ,
where �d2,ε is defined in section 2 and we suppose 0 < h < h0. For z ∈ �(h) we have the
decomposition

F(z, h) = �(z, h)(T1(θ, ω, z, h) − T2(θ, ω, z, h))

where T1 is defined by (2.10) with (2.25), T2 is defined by (2.10) with (2.16) and

�(z, h) = c(z, h)
∏

ξ∈�(h)

z− ξ

z− ξ̄
.

Here c(z, h) is given by formula (1.2) and is chosen to be holomorphic in C\]−∞, 0]. We
will estimate successively each term of the right-hand side of this equation. We begin by the
estimate of F2(z, h) = �(z, h)T2(θ, ω, z, h) and we note that

∀z ∈ {y ∈ C; Im y < 0} |�(z, h)| � |c(z, h)| � Ch
n−1

2 .

Using estimates (2.14) and (2.15) in combination with (2.16), it is obvious that

|F2(z, h)| � C‖�(z, h)(Pµ(h)− z)−1‖L2(�µ),L
2(�µ)

for z ∈ �(h). Using the fact that U(h) ⊂ 3
4�(h), we deduce immediately from lemma 2

that |F2(z, h)| � C eCh
−n−1

for all z ∈ U(h). Therefore, it remains to estimate F1(z, h) =
�(z, h)T1(θ, ω, z, h). Using proposition 4 and identity (2.10), we get immediately

∀z ∈ �(h) |F1(z, h)| �
∣∣ch n−1

2 T1(θ, ω, z, h)
∣∣ � C eC/h � C eCh

−n−1

and the proof of estimate (3.2) is complete. �

3.2. Proof of theorem 1

Let us recall that

f (θ, ω, z, h) =
∑
ξ∈�(h)

f res
ξ (θ, ω, h)

z− ξ
+ f hol(θ, ω, z, h)

where f hol(θ, ω, z, h) is holomorphic with respect to z ∈ �(h). By a simple calculation, we
obtain

f res
ξ (θ, ω, h) = 2i Im(ξ)F (ξ, h)


 ∏
ζ∈�(h)\{ξ}

ξ − ζ̄

ξ − ζ


 ∀ξ ∈ �(h) (3.7)

and

f hol(θ, ω, z, h) =

 ∏
ξ∈�(h)

z− ξ̄

z− ξ


F(z, h)−

∑
ξ∈�(h)

f res
ξ

z− ξ
∀z ∈ �(h). (3.8)

Using proposition 5, it follows that∣∣f res
ξ (θ, ω, h)

∣∣ � Ch− n−1
2 |Im ξ |

∏
ζ∈�(h)\{ξ}

|ξ − ζ̄ |
|ξ − ζ | � Ch− n−1

2 |Im ξ |
∏

ζ∈�(h)\{ξ}

(
1 +

2|Im ξ |
|ξ − ζ |

)
.

(3.9)

Hence, we have to estimate the product which appears in the right-hand side of the last
equation. If we just write that |Im ξ | � S(h) and ∀ζ ∈ �(h)\{ξ}, |ξ − ζ | � εS(h), we obtain∏

ζ∈�(h)\{ξ}

(
1 +

2|Im ξ |
|ξ − ζ |

)
� (1 + ε−1)K(h).
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As K(h) may grow as h−n, this estimate does not give a polynomial bound on f res
ξ

/|Im ξ |.
To overcome this difficulty, we use the fact that the resonances cannot accumulate in a given
area. In the following lemma, [x] denotes the integer part of x ∈ R.

Lemma 3. Assume (Sepε) with 0 < ε < 1 and let α ∈ [E1(h)− ω(h),E2(h) + ω(h)]. Then

we can find Lε(h) ∈ [ ε2K(h), ( 2
ε

− 1
)−1
K(h)

]
such that

�(h) =
Lε(h)⋃
j=1

[2/ε]⋃
i=1

{zij } (3.10)

and

∀z ∈ �(h) ∩ {Re z = α} ∀j � 2 ∀i ∈ {1, . . . , [2/ε]} |z− zij | � (j − 1)
εS(h)

6
.

(3.11)

Let us complete the proof of theorem 1, assuming lemma 3. From here until the end of this
paper,Cε will denote a positive constant independent of h, which can change from line to line.
Our aim is to give a good estimate of

�1(ξ, h) =
∏

ζ∈�(h)\{ξ}

(
1 +

2|Im ξ |
|ξ − ζ |

)
.

Let us apply lemma 3 with α = Re ξ . Then we can write

�(h) =
Lε(h)⋃
j=1

[2/ε]⋃
i=1

{zij }

with z11 = ξ and

∀j � 2 ∀i ∈ {1, . . . , [2/ε]} |ξ − zij | � (j − 1)
εS(h)

6
.

Using (Sepε) to separate ξ and z1i , i = 1, . . . , [2/ε], we obtain

�1(ξ, h) �
[2/ε]∏
i=2

(
1 +

2S(h)

εS(h)

) Lε(h)∏
j=2

[2/ε]∏
i=1

(
1 +

12S(h)

(j − 1)εS(h)

)

�
(

1 +
2

ε

)[2/ε]−1 Lε(h)∏
j=2

[2/ε]∏
i=1

(
1 +

12

(j − 1)ε

)
� Cε(1 + Lε(h))24/ε2

.

Here, we have used the elementary estimate
∏N
j=1

(
1 + α

j

)
� Nα,∀α > 0. By construction,

we have Lε(h) �
(

2
ε

− 1
)−1
K(h) � K(h) and we obtain

�1(ξ, h) � Cε(1 +K(h))24/ε2
. (3.12)

Finally, we deduce from equations (3.9) and (3.12) that∣∣f res
ξ (θ, ω, h)

∣∣ � Cεh
− n−1

2 K(h)24/ε2 |Im ξ |. (3.13)

Now we shall estimate the holomorphic part f hol of the scattering amplitude. Let us
denote Mε(h) = h− n−1

2 K(h)24/ε2
. Starting from formula (3.8) and using estimate (3.13), we

obtain

|f hol(θ, ω, z, h)| � �2(z, h)|F(z, h)| + CεMε(h)
∑
ξ∈�(h)

|Im ξ |
|z− ξ | ∀z ∈ �(h) (3.14)
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where �2(z, h) = ∏ξ∈�(h)
|z−ξ̄ |
|z−ξ | . Our aim is to estimate f hol on �̃(h). This function being

analytic on�(h), it suffices to obtain an estimate on ∂�̃(h). Let z ∈ ∂�̃(h) and apply lemma 3
with α = Re z in combination with estimate (3.4)

|f hol(θ, ω, z, h)| � Ch− n−1
2

Lε(h)∏
j=1

[2/ε]∏
i=1

(
1 +

|2 Im zij |
|z− zij |

)
+ CεMε(h)

Lε(h)∑
j=1

[2/ε]∑
i=1

|Im zij |
|z− zij |

� CεMε(h) + CεMε(h)

[2/ε]∑
i=1

|Im zi1|
|z− zi1| + CεMε(h)

Lε(h)∑
j=2

[2/ε]∑
i=1

6

(j − 1)ε

� CεMε(h)

(
1 +

2

ε
+

12

ε2
log(Lε(h)) +

[2/ε]∑
i=1

|Im zi1|
|z− zi1|

)
.

Moreover, for z ∈ ∂�̃(h) and zi1 ∈ �(h), we know that |z− zi1| � min(S(h), ω(h), |Im zi1|)
and we obtain

|f hol(θ, ω, z, h)| � CεMε(h)

(
1 +

4

ε
+

12

ε2
log(1 + εK(h))

)
� CεMε(h) log(1 +K(h)).

This estimate completes the proof of theorem 1.

Proof of lemma 3. First, we number the resonances such that �(h) = ⋃K(h)

j=1 {zj } and
∀i � j,Re zi � Re zj . Let us fix α ∈ [E1(h)−ω(h),E2(h)+ω(h)], then we can find i0(h) ∈
{1, . . . ,K(h)} such that

∀i � i0(h) Re zi � α and ∀i � i0(h) Re zi � α.

By induction, the proof is reduced to show that

∀i1 � i0 ∀i � i1 + [1/ε] Re zi � Re zi1 +
εS(h)

6
(3.15)

and

∀j1 � i0 ∀j � j1 − [1/ε] Re zj � Re zj1 − εS(h)

6
. (3.16)

We give the proof of (3.15) only, because the demonstration of (3.16) is identical. Suppose
that (3.15) does not hold. The sequence (Re zi)i being increasing, we can find i1 � i0 such
that

∀i ∈ {i1, . . . , i1 + [1/ε]} Re zi1 � Re zi � Re zi1 +
εS(h)

6
.

Let us denote α1 = Re zi1 and�ε = [α1, α1 + εS(h)

6

]
+ i[−S(h), 0]. Then as the surface Sε(h)

of the rectangle�ε is given by

Sε(h) = εS(h)2

6
. (3.17)

On the other hand, the balls B
(
zi,

εS(h)

2

)
, i = i1, . . . , i1 + [1/ε] do not intercept one another.

Denoting Si,ε (h) as the surface of each of these balls, it follows that

Sε(h) � 1

4

i1+[1/ε]∑
i=i1

Si,ε (h) � 1

4ε
π
ε2S(h)

4
� πεS(h)2

16
.

Combining this equation and (3.17), we obtain a contradiction. �
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[10] Lahmar-Benbernou A and Martinez A 1999 Semiclassical asymptotics of the residues of the scattering matrix

for shape resonances Asymptotic Anal. 20 13–38
[11] Michel L Semi-classical behavior of the scattering amplitude for trapping perturbations at fixed energy Can. J.

Math. at press
[12] Robert D and Tamura H 1989 Asymptotic behavior of scattering amplitudes in semi-classical and low energy

limits Ann. Inst. Fourier (Grenoble) 39 155–92
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