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1. Introduction and main result

1.1. Setting and assumptions. Let (Ω,F , (Ft)t≥0,P) be a filtered probability
space, where the filtration satisfies the usual conditions, and (Bt, t ≥ 0) be a Rd-
standard Brownian motion. Let (Xt, t ≥ 0) be the process solution to the following
elliptic Itô stochastic differential equation on Rd,

dXt = b(Xt)dt +
√
hdBt, (1.1)

where h > 0 and b ∶ Rd → Rd is a smooth vector field. The parameter h > 0 is
the temperature of the system. In this work, we consider the small temperature
regime, i.e. h≪ 1, see Section 1.2, and we make the following assumptions on the
vector field b. There exist ` ∶ Rd → Rd and f ∶ Rd → R which are both C∞ such
that:

[A⊥] The vector field b satisfies the following orthogonal decomposition:

for all x ∈ Rd, b(x) = −(∇f(x) + `(x)) and `(x) ⋅ ∇f(x) = 0.

[Ax0] The function f has a unique critical point x0 in Rd. Moreover, the
Hessian matrix Hessf(x0) at x0 is positive definite.
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[A∞] All the derivatives of f (resp. of `) of order larger or equal than 2
(resp. than 1) are bounded over Rd. In addition, f is bounded from below
and there exist C,R > 0 such that

∀∣x∣ ≥ R, ∣∇f(x)∣ ≥ C.

Assumption [A⊥] is rather generic as explained in Section 5.3 below. Besides,
the non local assumptions on the vector field b made in [A⊥], [Ax0], and [A∞] are
unnecessary for our main result to hold, see the note just after Theorem 1. In all
this work, we always assume that [A⊥], [Ax0], and [A∞] are satisfied. In addition,
throughout this work, Ω is a C∞ bounded subdomain1 of Rd containing x0 ∈ Ω.
The quantity of interest in this work is the first exit time from Ω for the process
(1.1) which will be denoted by τΩ, i.e.

τΩ ∶= inf{t ≥ 0,Xt ∉ Ω}.

Let us mention that the vector field b does not vanish over ∂Ω. In this case,
∂Ω is said to be non characteristic and the so-called generalized saddle points z of
f on ∂Ω (see the set Psp defined (1.4)) will play a crucial role in the asymptotic
formula of the mean exit time E[τΩ] from Ω. Such critical points are associated
with edge shaped barriers (or reflected barriers) and were considered by Kramers
in its celebrated work [26], see also [40, p. 836-837].

1.2. Purpose of this work. In this work, we derive a new sharp asymptotic
formula in the limit h → 0 (and actually prove a complete asymptotic expansion
in power of h) of the mean exit time E[τΩ] from Ω for the process (1.1) when
X0 = x ∈ Ω (uniformly in the relevant compact sets), see our main result below,
Theorem 1.

Contrary to previous contributions in this field (see Section 1.6), we do not
assume the process (1.1) to be Gibbsian, which is the main novelty of this work.
More precisely, we do not assume that the Gibbs measure

µGibbs(dx) ∶= e−
2
hfdx

is invariant for the process (1.1) (where dx is the Lebesgue measure over Rd), or
equivalently that div(`) = 0 over Rd.

This has a strong impact on the Eyring-Kramers formula we derive in Theo-
rem 1 for the mean exit time from Ω for the process (1.1). Indeed, compared to
the Gibbsian case, the new (non local) terms exp[∫

+∞

0 div(`)(ψt(z))dt], which are

1We recall that by definition, a domain is a nonempty connected open set.
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attached to each generalized saddle point z of f over ∂Ω, appear in the pre-factor
as a measure of the non-Gibbsianness of the process, see (1.6). Let us empha-
size that these terms can be greater or bigger than 1, see the comments following
Theorem 1. Hence, in comparison with the Gibbsian case, both an acceleration
or a deceleration of the exit time from Ω can occur. A very similar formula was
already derived in [8] with formal computations when the saddle points z are
critical points of f . In this case, the difference appears in the fact that the inte-
gral of div(`)(ψt(z)) runs from −∞ to +∞. The non-Gibbsianness of the process
(1.1) introduces several difficulties in the analysis of the precise h-limit of the
mean exit time from Ω. This follows in particular from the fact that a sufficiently
good approximation (at least in C1-norm) of the non explicit invariant probability
density ph is needed.

In addition, the spectral analysis performed here is more involved than in our
previous work in the Gibbsian case [32], with the construction of a different and
much more precise quasi-mode for the principal eigenfunction of the infinitesimal
generator of (1.1) than the one built in [32, Section 5.2]. As a by-product, to
derive a sharp asymptotic formula in the limit h→ 0 for E[τΩ], we do not assume
that the vector field ` vanishes at each generalized saddle point z of f on ∂Ω as it
was the case in [32, Section 5.1]. In particular, when the process (1.1) is Gibbsian,
Theorem 1 improves the statement of [32, Theorem 2] in the case where the vector
field b does not vanish over ∂Ω2.

Let us finally mention that we do not neither assume b ⋅nΩ < 0 over ∂Ω, where
nΩ(z) denotes the unit outward normal vector to ∂Ω at z ∈ ∂Ω, as it was the case
for technical reasons in the classical pioneering works dealing with the exit event
from a bounded domain when h→ 0, see e.g. [15, 12, 13] or [20, Chapter 4].

Remark 1. This work opens up several possibilities, such as considering the case
where b has a critical saddle point on the boundary of Ω. The behavior as h → 0
of the invariant measure near such a point is tricky to derive. Such a situation is
left to a future work.

1.3. Direct consequences of Assumptions [A⊥], [Ax0], and [A∞]. In this
section, we give some consequences of [A⊥], [Ax0], and [A∞] which will be used
in this work. On the one hand, note that [A∞] implies that f is coercive, i.e.

f(x) → +∞ as ∣x∣ → +∞. (1.2)

Furthermore, [A⊥] and [A∞] imply that for all x ∈ Rd, the curve t↦ ϕt(x) solution
on Rd to

d

dt
ϕt(x) = b(ϕt(x)), ϕ0(x) = x, (1.3)

2Let us mention that this technical issue did not appear at a critical point.
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is well defined over R+. Moreover, when in addition [Ax0] is satisfied, x0 is the
unique local minimum of the function f and it holds {z ∈ Rd, b(z) = 0} = {x0} (in
particular `(x0) = 0). For all x ∈ Rd, the ω-limit set ω(x) of x is reduced to {x0}
(see [32, Section 1.3]), i.e.

ω(x) = {x0}.

In addition, thanks to [6, Lemma 1.4] (see also [30] for a similar result), the
matrix Jac b(x0) = −t(Hessf(x0)+t Jac `(x0)) admits precisely d eigenvalues which
all have a negative real part. Finally, the relation ` ⋅ ∇f = 0 yields that the matrix
Hess(f)(x0)Jac `(x0) is antisymmetric and hence div `(x0) = Tr (Jac `(x0)) = 0.

1.4. Preliminary analysis and generalized saddle points.

1.4.1. The domain Ω is a well of potential. Recall that Ω is assumed to be a C∞
bounded domain of Rd containing x0. Let us define

Cmin ∶= Ω ∩ {f < min
∂Ω

f},

where for µ ∈ R, we use the notation {f < µ} ∶= {x ∈ Rd, f(x) < µ}. The sets
{f ≤ µ} and {f = µ} are defined similarly.

When [Ax0] and [A∞] are satisfied, we are thus in the following geometrical
situation which shows that the domain Ω looks like a single well of the potential
function f ∶ Rd →R.

Lemma 2. Assume that [Ax0] and [A∞] are satisfied. Then:

[a] The function f admits for sole global minimum point x0 in Rd and thus in Ω.

[b] The set Cmin is equal to {f < min∂Ω f}; it contains x0 and is connected. In
addition, ∂Cmin ∩ ∂Ω ≠ ∅.

Proof. The proof is elementary. Recall first that thanks to (1.2) following from
[A∞], f admits a global minimum on Rd, and using [Ax0], it has for only global
minimum point x0. This implies Item [a].

Notice moreover that Cmin contains x0 and satisfies Cmin = Ω ∩ {f < min∂Ω f}.
It is thus nonempty and both open and closed in {f < min∂Ω f}. Note also that
for any λ > f(x0), the nonempty (and relatively compact) open set {f < λ} is
connected. In particular, the set {f < min∂Ω f} is connected, which implies that

Cmin = {f < min
∂Ω

f} is connected.
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Finally, since f ∶ Rd → R does not have any local minimum on {f = min∂Ω f}, it
follows that

∂Cmin = {f = min
∂Ω

f},

which implies that ∂Cmin ∩ ∂Ω = {f = min∂Ω f} ∩ ∂Ω ≠ ∅. �

1.4.2. Set of generalized saddle points of f . When [Ax0] and [A∞] are satisfied,
we define the (nonempty) set

Psp ∶= ∂Cmin ∩ ∂Ω. (1.4)

Note that every z ∈ Psp is a global minimum of f ∣∂Ω. A point z ∈ Psp is a so-
called generalized saddle point. This is due to the fact that ∂nΩ

f(z) > 0 and, for
that reason, when the potential function f is extended by −∞ outside Ω (notice
that this extension is the one which is compatible with the absorbing boundary
condition on ∂Ω), the point z is geometrically a first-order saddle point of f .
These points have a crucial role in the asymptotic equivalents of the mean exit
time from Ω, see indeed Theorem 1.

Our last assumption is the following

[APsp] For all z ∈ Psp, det Hess(f ∣∂Ω)(z) ≠ 0.

Observe that when [APsp] holds, the set Psp has a finite number of elements. We
say that Assumption [A] holds when all the four assumptions above are satisfied.

1.5. Main result. In this section, we state our main result which is Theorem 1.
We first recall some notation. For every x ∈ Ω, on sets tx ∶= inf{t ≥ 0, ϕt(x) ∉ Ω} > 0
the first time the curve ϕt(x) exits Ω and we define the domain of attraction of a
subset F of Ω by

AΩ(F ) ∶= {x ∈ Ω, tx = +∞ and ω(x) ⊂ F}.

Note that when [A⊥], [Ax0], and [A∞] hold, Cmin ⊂ AΩ({x0}).
Throughout the paper, we shall say that a family of scalar (ah)h∈]0,1] admits a

h-classical expansion, if there exists a sequence (an)n∈N such that for all N ∈ N,
ah = ∑N

n=0 anh
n +O(hN+1). Such an expansion will be denoted by ah ∼ ∑n≥0 anh

n.
More generally, we shall say that a family of smooth functions (uh)h∈]0,1] on an
open set Ω of Rd or of Rd

− ∶= Rd−1 × R− admits a h-classical expansion on Ω, if
there exists a sequence (un)n∈N of smooth functions on Ω such that for all compact
K ⊂ Ω, for all k ∈ N, and for all N ∈ N, uh = ∑N

n=0 unh
n +O(hN+1) in the Ck(K)

topology. This expansion is also denoted uh ∼ ∑n≥0 unh
n and when un ≡ 0 for all

n ∈ N, we write uh = O(h∞).
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Theorem 1. Assume that [A] holds. Then for every compact subset K ∈ AΩ(x0),
it holds uniformly in x ∈K,

Ex[τΩ] = κ(h)
√
he

2
h(min∂Ω f−f(x0)), (1.5)

where κ(h) admits a h-classical expansion κ(h) ∼ ∑j≥0 κjh
j and

1

κ0
=

√
det Hessf(x0)√

π
∑

z∈Psp

∂nΩ
f(z)√

det Hessf∣∂Ω(z)
exp [∫

+∞

0
div(`)(ψt(z))dt], (1.6)

where t ≥ 0↦ ψt(x) is the (global) solution on Rd to

d

dt
ψt(x) = −(∇f − `)(ψt(x)), ψ0(x) = x. (1.7)

Let us make two comments on this theorem.

1. Given a domain Ω, the mean exit time E[τΩ] only depends on the killed
process (Xt,0 ≤ t < τΩ) and thus only on the values of b in Ω (roughly
speaking, it does not depend on the non local assumptions in [A]). For
that reason, the Eyring-Kramers formula we derive in Theorem 1 above
does not depend on the values of b outside Ω.

2. It appears that for each z ∈ Psp, the term ∫
+∞

0 div(`)(ψt(z)), which in some
sense measures the non-Gibbsianness of the process when it is not 0, can be
positive or negative. Hence, compared with the reversible case ` = 0 or with
the Gibbsian case div ` = 0 [32], both can occur, acceleration or deceleration
of the (mean) exit time from Ω.

To observe that both situations can occur, consider, in R2, the open disc
Ω =D((0,−1),2) of center (0,−1) and radius 2 and the fields b± = −(∇f+`±),
where f(x) = 1

2 ∣x∣2 on R2 and `±(x) = ±(x1x2,−x2
1) on Ω. In this setting,

the assumption [A] is satisfied with x0 = 0 (once `± have been conveniently
defined outside Ω), Cmin = D(0,1), and Psp = ∂Cmin ∩ ∂Ω = {z}, where z =
(0,1). In addition, we have ψt(z) = (0, e−t) for all t ≥ 0 and div `±(x) = ±x2

for all x ∈ Ω. It follows that ∫
+∞

0 div(`±)(ψt(z)) = ±1 can be negative or
positive.

1.6. Related results. In the boundary case, the first works on the mean exit time
were probably those of Freidlin–Wentzell, where in the one well setting, and when
h → 0, the limit of h lnEx[τΩ] has been derived in [20, Chapter 4] when b ⋅ nΩ < 0
over ∂Ω. In this setting, it has also been proved in [12] that Ex[τΩ]λh = 1 + o(1)
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when h → 0, where λh is the principal eigenvalue of (minus) the generator Lh
of (1.1), see Section 3.1 below. Closely related results have also been derived
in [15, 43] still in this setting. We also refer to [39, 47] where asymptotic formulas
for E[τΩ] when h→ 0 have been obtained through formal computations in different
geometrical settings. A comprehensive review of the literature until the 2010s on
this topic can be found in [2]. Moreover, in the case when b ⋅ nΩ ≠ 0 on ∂Ω, the
asymptotic behavior of the solution to the parabolic equation ∂tu = Lhu has been
studied in [24, 25] (where the quasilinear case is also treated). In the reversible
case (i.e. when ` = 0), Eyring-Kramers type formulas have been derived in [44]
when f has critical saddle points on ∂Ω, see also [38, 49, 22, 36, 17, 33, 37] for
related results in the reversible case.

Let us also mention that asymptotic estimates on eigenvalues and on mean
transition times in the boundary less case have been widely studied. When the
process is reversible, we refer to [10, 9, 4, 3, 21, 41, 1]. In the non-reversible case
and when the process (1.1) is Gibbsian (i.e. when div(`) = 0), sharp equivalent
of mean transition times have been derived in [29, 34, 27] (see also [28, 35]), and
sharp asymptotic formulas for the smallest eigenvalues of Lh have been obtained
in [31] (see also [23, 6, 7]). Finally, as already mentioned, the generalization of
the Eyring–Kramers formula for mean transition times to non Gibbsian diffusion
processes have been derived in [8] with formal calculations.

2. Asymptotic behavior of the stationary distribution

2.1. Asymptotic expansion of the stationary distribution. In this section,
we recall and improve a result of Sheu [48] and Mikami [42] (see also [13]) on the
properties of the stationary measure of (1.1), see Theorem 2.

For a measure ν over a subset M of Rd, the set Hk(M , ν(dx)) stands for the
usual (weighted) Sobolev space of regularity k ≥ 0 over M for the measure ν(dx).
The infinitesimal generator of the diffusion (1.1) is h

2∆+ b ⋅ ∇ and will rather work
with minus this operator, namely with

Lh = −
h

2
∆ + (∇f + `) ⋅ ∇. (2.1)

The formal adjoint of Lh in L2(Ω, dx) is denoted by L⋆h. It is the operator acting
on smooth function u ∶ Rd →R as

L⋆hu = −
h

2
∆u + div (bu). (2.2)

For all h > 0 fixed, the existence of an invariant probability measure µh for the
process (1.1) follows from [48, Lemma 1.2] (note that according to the discussion in
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Section 1.3, [A⊥], [Ax0], and [A∞] are simply a shorten formulation Assumption
(A) in [48]). It is well-known that since the vector field b is smooth, µh is the
unique invariant probability measure. This follows from the fact that the process
(1.1) is topologically irreducible and strongly Feller [46, Theorem 1.1]. Moreover,
µh has a smooth density ph ∶ Rd → R+ w.r.t. the Lebesgue measure dx, see e.g.
[45, 5], which is positive over Rd.

Theorem 2. Assume [A⊥], [Ax0], and [A∞]. Then, the positive function Rh

defined by
Rh ∶ x ∈ Rd ↦ ph(x)hd/2e

2
h(f(x)−f(x0)) (2.3)

admits a real-valued h-classical expansion on Rd. More precisely, we have Rh ∼
∑k≥0 h

kRk for a sequence of real-valued functions (Rk)k∈N ⊂ C∞(Rd) which satisfy

− (∇f − `) ⋅ ∇R0 +R0 div(`) = 0, R0(x0) = c0, (2.4)

and for, any k ≥ 1,

− (∇f − `) ⋅ ∇Rk +Rk div(`) = −1

2
∆Rk−1, (2.5)

where c0 > 0 is defined by c0 ∫Rd e−x⋅Hess f(x0)xdx = 1, that is by

c0 = ∣det Hessf(x0)∣
1
2π−

d
2 . (2.6)

We recall that Rh ∼ ∑k≥0 h
kRk means that for every n ∈ N, for every compact

set K of Rd, and for every α ∈ Nd, the smooth function W h
n ∶= Rh − ∑n

k=0 h
kRk

satisfies
sup
x∈K

∣∂αW h
n (x)∣ ≤ CK,αhn+1 (2.7)

when h→ 0, for some constant CK,α independent of h. As we shall see in the proof,
the case when ∣α∣ = 0 is already known [48, 42]. To perform our analysis we need
a stronger control on the derivatives of the W h

n ’s. This is the reason we extend it
to the case ∣α∣ > 1.

Proof. From [48, Lemma 1.1], one deduces that f = 1
2V where V is the so-called

Freidlin–Wentzell quasi-potential defined by

V (x) = 1

2
inf

φ(0)=x, φ(+∞)=x0
∫

∞

0
∣φ̇(s) + b(φ(s))∣2ds.

In particular, the function V is C∞ on Rd. In addition, Assumptions (A.2), (A.3),
and (A.4.r) in [42] are satisfied. Hence, by [42, Theorem 1.3], we get exactly all
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the assertions of the theorem except the estimates (2.7) when ∣α∣ ≥ 1, which we
prove now (observe indeed that (2.7) with ∣α∣ = 0 is proved in [42]).

In the following C > 0 denotes a constant independent of h > 0 that may change
from one occurence to another. The Sobolev space Hk(Rd, dx) is simply denoted
by Hk and its norm by ∥ ⋅ ∥Hk. The scalar product in L2(Rd, dx) is denoted by
⟨⋅, ⋅⟩L2. For ease of notation, we set b∗ = 2(∇f −`). Then, Equations (2.4) and (2.5)
rewrite

b∗ ⋅ ∇Rk − 2 div(`)Rk −∆Rk−1 = 0

for all k ≥ 0, with the convention R−1 = 0. On the other hand, since ph is the
invariant density of the process (1.1), it follows that L⋆h ph = 0 (see (2.2)). Hence,
we deduce that

h∆Rh − b∗ ⋅ ∇Rh + 2 div(`)Rh = 0.

Combining these two identities, we get for every n ∈ N,

(h∆ − b∗ ⋅ ∇ + 2 div(`))W h
n = −hn+1∆Rn. (2.8)

By Sobolev embedding, in order to prove (2.7), it is sufficient to prove that for
any χ ∈ C∞

c (Rd) and any α ∈ Nd, there exists C > 0, such that

∥χ∂αW h
n ∥L2 ≤ C hn+1. (2.9)

To prove (2.9), we first show the following a priori estimate:

∀α ∈ Nd,∀χ ∈ C∞
c (Rd), ∃C > 0, ∥χ∂αW h

n ∥L2 ≤ Chn+1− ∣α∣2 . (2.10)

We prove this estimate by induction on s = ∣α∣. To lighten the notation, the
function ∂αW h

n will be simply denoted by wα. As explained above, the case s = 0
holds true since it is proved in [42]. Let us now assume that the estimate (2.10)
is true for all s′ ≤ s, for some s ≥ 0. Let χ ∈ C∞

c (Rd) be a real-valued function and
let α ∈ Nd be such that ∣α∣ = s. Differentiating α times Equation (2.8), wα satisfies

(h∆ − b∗ ⋅ ∇)wα = −hn+1∂α∆Rn + ∑
β,∣β∣≤∣α∣

aα,βw
β, (2.11)

where the functions aα,β, which are linear combinations of derivatives of div(`)
and b∗, are smooth functions over Rd and are independent of h. Since the aα,β are
bounded on supp(χ), using the Cauchy–Schwarz inequality, one deduces that

∣⟨(h∆ − b∗ ⋅ ∇)wα, χ2wα⟩L2 ∣ ≤ C( ∑
β,∣β∣≤∣α∣

∥χwβ∥L2 + hn+1∥χ∂α∆Rn∥L2)∥χwα∥L2.
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Since all the derivatives of ∆Rn are bounded on any compact set and using the
induction hypothesis, this implies

∣⟨(h∆ − b∗ ⋅ ∇)wα, χ2wα⟩L2 ∣ ≤ Ch2n+2−s,

and hence
∣⟨h∆wα, χ2wα⟩L2 ∣ ≤ ∣⟨b∗ ⋅ ∇wα, χ2wα⟩L2 ∣ +Ch2n+2−s. (2.12)

On the other hand, integrating by parts, we get

⟨b∗ ⋅ ∇wα, χ2wα⟩L2 = − ⟨b∗ ⋅ ∇wα, χ2wα⟩L2 − ⟨div(b∗χ2)wα,wα⟩L2,

so that 2⟨b∗ ⋅∇wα, χ2wα⟩L2 = −⟨div(b∗χ2)wα,wα⟩L2. Since div(b∗χ2) has a compact
support, using again the induction hypothesis, it follows that

∣⟨b∗ ⋅ ∇wα, χ2wα⟩L2 ∣ ≤ Ch2n+2−s.

Combined with (2.12), this finally yields

∣⟨∆wα, χ2wα⟩L2 ∣ ≤ Ch2n+2−s−1. (2.13)

On the other hand, by successive integration by parts, one gets

−⟨∆wα, χ2wα⟩L2 = ⟨∇wα, χ∇χwα⟩L2 + ⟨χ∇wα,∇(χwα)⟩L2

= ⟨∇wα, χ∇χwα⟩L2 + ∥∇(χwα)∥2
L2 − ⟨∇χwα,∇(χwα)⟩L2

= ∥∇(χwα)∥2
L2 − ∥∇(χ)wα∥2

L2.

Combining this previous identity with (2.13) and using once again the induction
hypothesis, we deduce that ∥∇(χwα)∥2

L2 = O(h2n+2−s−1). Therefore, it holds:

∥χ∇wα∥L2 = O(hn+1− s+1
2 ). (2.14)

This proves the estimate (2.10) at rank s+1. Let us now improve this bound, and
more precisely let us show (2.9). We observe that for any n ≤ n′ ∈ N, one has

χ∂αW h
n = χ∂αW h

n′ +
n′

∑
k=n+1

hkχ∂αRk.

Consequently, since the Rk are C∞ and independent of h, for any s ∈ N, one
deduces from (2.10) that

∥χ∂αW h
n ∥L2 ≤ ∥χ∂αW h

n′∥L2 +
n′

∑
k=n+1

hk∥χ∂αRk∥L2 ≤ Cshn
′
+1− ∣α∣2 +Chn+1

We finally obtain (2.9) by taking n′ = n + ⌈ ∣α∣2 ⌉, which completes the proof. �
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We now discuss the term R0 which will play a crucial role in the Eyring-
Kramers formula for the mean exit time. As already noticed in [48, Theorem 3.1]
(see also [13]), it is standard to show that R0 actually admits the expression

R0(x) = c0 exp [∫
+∞

0
div(`)(ψt(x))dt], ∀x ∈ Rd, (2.15)

where we recall that t↦ ψt(x) is the global solution to (1.7). Indeed, using (2.4),
it holds

d

dt
R0(ψt(x)) + div(`)(ψt(x))R0(ψt(x)) = 0,∀t ≥ 0.

Hence, for t ≥ 0, R0(ψt(x)) = R0(x) exp[− ∫
t

0 div(`)(ψs(x))ds]. The identity (2.15)
then follows taking the limit t → +∞. Note that div(`)(ψs(x)) → 0 exponentially
fast as s → +∞ since ψs(x) → x0 exponentially fast as s → +∞ (x0 being non-
degenerate), div(`) is globally Lipschitz, and div(`)(x0) = 0. Note also that the
formula (2.15) implies that R0(x) is positive over Rd.

3. Spectral point of view

In the two next sections we recall some results from [32] that will be used to
prove our main result. We first note that since ph is smooth and positive over Rd

and because Ω is bounded, it holds for every h > 0 and k ≥ 0,

Hk(Ω, e− 2
hfdx) =Hk(Ω, dx) =Hk(Ω, phdx), (3.1)

and all the involved norms are equivalent (with constants depending on h > 0).
In the following, the norm (resp. the scalar product) of the space L2(Ω, ν(dx)) is
denoted by ∥ ⋅ ∥L2(ν(dx)) (resp. ⟨⋅, ⋅⟩L2(ν(dx))) and we write Hk(Ω, ν(dx)) to indicate
that the ambient space under consideration is the space L2(Ω, ν(dx)).

3.1. Spectral results at fixed h > 0. In [32, Proposition 3], we proved that the

operator Lh with domain D1 = H2(Ω, e− 2
hfdx) ∩H1

0(Ω, e−
2
hfdx) had the following

spectral properties at h > 0 fixed, which are quite standard for an elliptic operator
over a bounded domain:

1. The operator Lh∣D1 is maximal quasi-accretive and has a compact resol-
vent. Its spectrum is thus discrete.

2. The operator Lh∣D1 has a principal eigenvalue λh ∈ R∗
+, i.e. λh has

algebraic multiplicity one, and Re µ > λh for every µ ∈ σ(Lh) ∖ {λh}.

In addition, any associated eigenfunction uh has a sign in Ω. The normalized
positive one is called the principal eigenfunction.
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On the other hand, we also notice that for all real function u ∈ D∞
0 ∶= {g ∈

C∞(Ω), g = 0 on ∂Ω},

∫
Ω
Lhu

2(x)ph(x)dx = 0,

stemming from the identity L⋆h ph = 0 together with the fact that ∇u2 ⋅ nΩ = 0 on
∂Ω. Consequently, we have for any such real function u the identity

⟨u,Lhu⟩L2(phdx) = ∫
Ω
u(x)Lhu(x)ph(x)dx =

h

2 ∫Ω
∣∇u(x)∣2 ph(x)dx. (3.2)

As simple as it may seem, this formula is a key ingredient in our analysis. More-
over, the gradient structure (3.2) strongly suggests to rather work with the oper-
ator Lh with domain D2 = H2(Ω, phdx) ∩H1

0(Ω, phdx). In view of (3.1), one can
also consider Lh with domain D3 = H2(Ω, dx) ∩H1

0(Ω, dx). It is actually easy to
see that the spectrum of Lh is the same on each domain Di, i = 1,2,3 (associated
with their respective scalar product), as well as both the algebraic and geomet-
ric multiplicities of an eigenvalue. In addition, Items 1 and 2 above are satisfied
for each Lh∣Di

, i = 1,2,3, with the same principal eigenvalue λh and associated
eigenspace Span(uh). Note also that the identity (3.2) extends by density to every
real u ∈ Di, i = 1,2,3.

In the following, for all h > 0, we choose uh such that

uh > 0 in Ω and ∫
Ω
∣uh∣2ph = 1.

3.2. Spectral results when h→ 0. In this section, we recall the following result
which will be the starting point of the proof of Theorem 1.

Theorem 3 ([32]). Assume [A⊥], [Ax0], and [A∞]. Then, there exists c1 > 0
such that, for all c2 ∈ (0, c1), there exist h0 > 0 and C > 0 such that, for all
z ∈ {z ∈ C, Re z ≤ c1, ∣z∣ ≥ c3} and h ∈ (0, h0],

Lh − z is invertible and ∥(Lh − z)−1∥L2(phdx) ≤ C. (3.3)

In addition, there exist c > 0 and h0 > 0 such that for all h ∈ (0, h0],

σ(Lh) ∩ {z ∈ C, Re z ≤ c} = {λh} and lim
h→0

h lnλh = −2 (min
∂Ω

f − f(x0)). (3.4)

Moreover, for every compact subset K of A ({x0}), there exist c > 0 and h0 > 0
such that for all h ∈ (0, h0] and x ∈K,

λhEx[τΩ] = (1 +O(e− ch)) uniformly in x ∈K. (3.5)
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Note. It has also been proved in [32] that the law of λhτΩ(x) converges exponen-
tially fast to the exponential law of mean 1, uniformly in x in the compact subsets
of A ({x0}).

Proof. All the statements of Theorem 3 have been proved in [32], see indeed Theo-
rems 1 and 4 there3. Let us mention that concerning the second estimate in (3.3),
we actually proved in [32] that for such complex numbers z and for all h > 0 small
enough,

∥(Lh − z)−1∥
L2(e−

2
h
fdx)

≤ C,

namely that for all φ ∈ L2(Ω, e− 2
hfdx), ∫Ω ∣(Lh − z)−1φ∣2e− 2

hf ≤ C2 ∫Ω ∣φ∣2e− 2
hf , or

equivalently (see (2.3) and Theorem 2)

∫
Ω
∣(Lh − z)−1φ∣2 ph

R0 + o(1)
≤ C2∫

Ω
∣φ∣2 ph

R0 + o(1)
,

where o(1) is uniform over Ω. The fact that ∥(Lh−z)−1∥L2(phdx) = O(1) then follows
noticing that over Ω, there exists r1, r2 > 0 such that r1 ≤ R0 ≤ r2. �

In the next section we state the spectral counterpart of Theorem 1.

3.3. Sharp asymptotics of the principal eigenvalue. The following theorem
provides the sharp equivalent of λh in the limit h→ 0.

Theorem 4. Assume that [A] holds. Then, there exists h0 > 0 and a sequence
(ζj)j∈N of real numbers such that for all h ∈]0, h0], one has

λh = h−
1
2ζ(h)e− 2

h(min∂Ω f−f(x0)), (3.6)

where ζ(h) admits a h-classical expansion ζ(h) ∼ ∑j≥0 ζjh
j with

ζ0 =
√

det Hessf(x0)√
π

∑
z∈Psp

∂nΩ
f(z)√

det Hessf∣∂Ω(z)
exp [∫

+∞

0
div(`)(ψt(z))dt], (3.7)

and where we recall that t ≥ 0↦ ψt(x) is the solution to (1.7).

Note that combining Theorem 4 with (3.5) yields the assertion of Theorem 1.
The rest of this work is thus dedicated to the proof of Theorem 4.

3In the setting of [32], Ω is subdomain of the d-dimensional torus. It is actually straightforward
to see that the assertions [32, Theorems 1 and 4] are indeed still valid under [A⊥], [Ax0], and
[A∞].



14 D. LE PEUTREC, L. MICHEL, AND B. NECTOUX

4. Construction of an accurate quasi-mode for uh

The goal of this section is to construct a very precise quasi-mode uapp
h for the

principal eigenvalue λh of Lh in L2(Ω, phdx), namely a function approximating the
principal eigenfunction uh sufficiently well so that we can compute asymptotically
λh as h → 0. The conditions on uapp

h are listed in Proposition 7 below. Roughly
speaking, we want to choose the function uapp

h equal to 1 on a very large part
of Cmin but satisfying the boundary condition uapp

h = 0 on ∂Ω. This requires the
construction of a quasi-mode uapp

h realizing the appropriate transition from 1 to 0
around ∂Ω. The delicate part of this construction occurs around Psp = ∂Cmin∩∂Ω
(see (1.4)), where we use suitable local coordinates near each z ∈ Psp.

From now on, we assume [A].

4.1. Local coordinates near Psp. It turns out that the system of coordinates
introduced in [22] near such points is well appropriate for defining uapp

h and the
upcoming computations. Recall that Psp = ∂Cmin ∩ ∂Ω ≠ ∅ (see (1.4)) and that
thanks to [APsp], Psp has a finite cardinality. In the following, we consider z ∈ Psp.

Then, there exists a neighborhood Uz of z in Ω and a coordinate system

x ∈ Uz ↦ v = (v′, vd) = (v1, . . . , vd−1, vd) ∈ Rd
− = Rd−1 ×R− (4.1)

such that

v(z) = 0, {x ∈ Uz, vd(x) < 0} = Ω ∩Uz, {x ∈ Uz, vd(x) = 0} = ∂Ω ∩Uz, (4.2)

and

∀i, j ∈ {1, . . . , d}, gz(
∂

∂vi
(z), ∂

∂vj
(z)) = δij and

∂

∂vd
(z) = nΩ(z),

where gz is the metric tensor in the new coordinates. We denote by G = (Gij)1≤i,j≤d

its matrix, by G−1 = (Gij)1≤i,j≤d the inverse of G, and by ∣G∣ = detG its determinant.
We also denote the canonical basis of Rd by (e1, . . . , ed). Then, defining J ∶=
Jacv−1, we have:

G = tJJ , G(0) = (δij) i.e. tJ(0) = J−1(0) , and nΩ(z) = J(0)ed . (4.3)

Let us now determine the operator Lh in the above coordinates, see (2.1).
Throughout this work, for any function u defined on Uz, we denote û = u○v−1 where
v is the above change of coordinates. For any u ∈ C∞(Uz), we have L̂hu = L̂hû
with

L̂h = −
h

2
√

∣G∣
div ○

√
∣G∣G−1 ○ ∇ + (G−1∇f̂ + J−1 ˆ̀) ⋅ ∇. (4.4)
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We can write this operator as follows:

L̂h = −
h

2
div ○G−1 ○ ∇ − (b○ + hρ○) ⋅ ∇ , (4.5)

where b○ and ρ○ are the following smooth vector fields over Uz:

b○ = −G−1∇f̂ − J−1 ˆ̀ and ρ○ = 1

2
√

∣G∣
∇(

√
∣G∣)G−1. (4.6)

Let us now introduce the notation `○ = J−1 ˆ̀, so that b○ rewrites

b○ = −G−1∇f̂ − `○. (4.7)

In addition, according for example to [22, Section 3.4] (see also [43]), the v-
coordinates can be chosen such that:

f̂(v′, vd) = f(z) + µzvd +
1

2
v′ ⋅Hzv

′, (4.8)

where
µz ∶= ∂nΩ

f(z) > 0 and Hz ∶= Hessf ∣∂Ω(z). (4.9)

Moreover, thanks to [APsp], 0 is a non degenerate (global) minimum of f̂ ∣{vd=0}.
For δ1 > 0 and δ2 > 0 small enough, one finally defines the following neighborhood
of z in Ω (see (4.1)-(4.2)),

U δ
z = {x ∈ Uz, ∣v′(x)∣ ≤ δ2 and vd(x) ∈ [−2δ1,0]}, δ = (δ1, δ2). (4.10)

The set defined in (4.10) is a cylinder centered at z in the v-coordinates. The
parameters δ1, δ2 > 0 will be reduced a finite number of times to ensure several
properties needed in Section 7 to perform computations. Recall also that f(z) =
min∂Ω f > f(x0). Then, up to choosing δ1 > 0 and δ2 > 0 smaller, we can assume
that

[Cδ
1] The sets U δ

z , z ∈ Psp, are pairwise disjoint, so in particular

argminU δ
z ∩∂Ω f = {z} .

[Cδ
2] minU δ

z
f > f(x0), so in particular x0 ∉ U δ

z .

Finally, according to [Cδ
1] and using a continuity argument, once δ2 > 0 is fixed,

one can choose δ1 > 0 small enough such that

[Cδ
3] There exists r > 0 such that

{x ∈ Uz, ∣v′(x)∣ = δ2 and vd(x) ∈ [−2δ1,0]} ⊂ {f ≥ f(z) + r}.

We refer to Figure 4.1 for a schematic representations of the sets U δ
z .
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4.2. General form of the quasi-mode near Psp. Let χ ∈ C∞(R−, [0,1]) be a
cut-off function such that (see (4.9)):

supp χ ⊂ [ − δ1

2
µz,0] and χ = 1 on [ − δ1

4
µz,0]. (4.11)

Define now, for each z ∈ Psp, the cylinder V δ
z by

V δ
z ∶= v(U δ

z ) = {v = (v′, vd) ∈ Rd, ∣v′∣ ≤ δ2, −2δ1 ≤ vd ≤ 0}. (4.12)

The set V δ
z is a neighborhood of 0 in Rd

−. For every z ∈ Psp, we look for a
quasi-mode uapp

h defined on the cylinder U δ
z by

∀x ∈ U δ
z , u

app
h (x) ∶= ϕz(v(x)) (4.13)

with a function ϕz defined on the set V δ
z by

∀v ∈ V δ
z , ϕz(v) ∶=

1

Nz,h
∫

0

ξz(v,h)
χ(t)e thdt, (4.14)

where for every h ∈]0,1], v ∈ V δ
z ↦ ξz(v, h) is a real nonpositive smooth function

which will be constructed later, and Nz,h is the normalizing constant

Nz,h ∶= ∫
0

−∞
χ(t)e thdt = h +O(e− ch). (4.15)

We now turn to the construction of an appropriate function ξz vanishing on {vd = 0}
and such that uapp

h satisfies the Dirichlet boundary condition on ∂Ω.

4.3. Construction of the function ξz. We begin this section by deriving equa-
tions that shall satisfy ξz in order to make uapp

h sufficiently close to the principal
eigenfunction uh near each z. To this end, let us fix z ∈ Psp.

Since λh is exponentially small, we look for a function ξz such that uapp
h is an

approximate solution of Lhu
app
h = 0. More precisely, we look for a smooth function

ξz admitting a h-classical expansion ξz ∼ ∑j≥0 h
jξzj in V δ

z such that ξz0 /≡ 0, ξz

vanishes on {vd = 0}, and Lhu
app
h (x) = O(h∞) in U δ

z . The latter relation reads in
the v-coordinates

L̂hϕz = O(h∞).
By (4.14), one has ∇ϕz = −χ(ξz)eξ

z
/h∇ξz/Nz,h. Consequently, using (4.5), one has

L̂hϕz = −
h

2
div(G−1∇ϕz) − (b○ + hρ○) ⋅ ∇ϕz

= χ(ξ
z)eξz/h
Nz,h

[1

2
(G−1∇ξz) ⋅ ∇ξz + [b○ ⋅ ∇ξz + h(ρ○ ⋅ ∇ξz + 1

2
div(G−1∇ξz))]]

+ h

2Nz,h
(G−1∇ξz) ⋅ ∇ξz χ′(ξz)eξz/h. (4.16)
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Note moreover that (4.11) and (4.15) imply that the last term of (4.16) is of

the order O(e− ch) for some c > 0. Hence, in order to ensure L̂hϕz = O(h∞), it is
sufficient to choose ξz ∼ ∑j≥0 h

jξzj such that

1

2
(G−1∇ξz) ⋅ ∇ξz + b○ ⋅ ∇ξz + h(ρ○ ⋅ ∇ξz + 1

2
div(G−1∇ξz)) = O(h∞). (4.17)

Identifying the powers of h in (4.17), this amounts to the following equations:

G−1∇ξz0 ⋅ ∇ξz0 + 2b○ ⋅ ∇ξz0 = 0 (E)

and, for all j ≥ 1,
(G−1∇ξz0 + b○) ⋅ ∇ξzj = Qj, (T-j)

where Qj is a function which depends smoothly on the functions ξzk and their
derivatives for k ∈ {0, . . . , j − 1}. Equation (E) is an eikonal equation while Equa-
tions (T-j), j ≥ 1, are transport equations.

The existence of functions ξzj , j ≥ 0, satisfying these equations follows from
standard results on non-linear first order PDE with non-characteristic boundary
(see for example [18, pages 7 to 9] or [19, Section 3.2 in Part I]). We are more
specific below.

4.3.1. Resolution of the eikonal equation. In this section, we look for a solution
ξz0 /≡ 0 of (E) which vanishes in a neighborhood of 0 in the hyperplane {vd = 0}.

The fact that {vd = 0} is non-characteristic near 0 means that the vector field b○

involved in (E) is transverse to {vd = 0} near 0. Indeed, we have b○ = −G−1∇f̂ − `○,
G(0) = Id, and ∇f̂(0) = µzed according respectively to (4.7), (4.3), and (4.8),
where we recall that (e1, . . . , ed) denotes the canonical basis of Rd. Since moreover

∇f̂(0) ⋅ `○ = 0 according to [A⊥] and µz > 0 (see (4.9)), it follows that

b○(0) = −µzed − `○(0) and ed ⋅ `○(0) = 0 . (4.18)

Hence, the vector b○ is transverse to {vd = 0} at 0, and thus near 0 by continuity.

We can thus apply [18, Theorem 1.5] to

p(v, η) ∶= G−1(v)η ⋅ η + 2b○(v) ⋅ η around (0, η∗) ∈ Rd ×Rd

for any η∗ = (η′∗, η∗d) ∈ Rd satisfying p(0, η∗) = 0: for any smooth real function ψ
defined near 0 in Rd−1 such that ∇x′ψ(0) = η′∗, there exists a unique smooth real
function ξz0 defined around 0 ∈ Rd such that on this neighborhood p(x,∇ξz0(x)) = 0,
ξz0(x′,0) = ψ(x′), and ∇ξz0(0) = η∗. Since we look for ξz0 /≡ 0 vanishing on {vd = 0},
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this amounts to choose ψ ≡ 0 and thus η′∗ = 0, and η∗d as the nonzero solution of
p(0, (0, η∗d)) = ∣η∗∣2 + 2b○(v) ⋅ η∗ = 0, that is to take ψ ≡ 0, η′∗ = 0, and

η∗d ∶= −2b○(0) ⋅ ed = 2µz.

Note also that Taylor’s theorem with integral form of the remainder then implies
that ξz0 factorizes as ξz0 = vda, where a is a smooth function defined around 0 ∈ Rd.
Since ∇ξz0(0) = η∗, we have in addition a(0) = η∗d = 2µz, and we have thus proved
the

Proposition 3. There exists a function a ∈ C∞(Rd) satisfying a(0) = 2µz such
that the function ξz0 defined by ξz0(v) = vda(v) satisfies the eikonal equation (E) in
a neighborhood of 0.

4.3.2. Resolution of the transport equations. The following proposition permits to
solve the equations (T-j).

Proposition 4. There exists a neighborhood V of 0 in Rd
− and a sequence of

functions (ξzj )j≥1 such that for all j ≥ 1, ξzj ∈ C∞(V ) satisfies (T-j) on V and
vanishes on V ∩ {vd = 0}.

Proof. We proceed by induction on j ≥ 1. All the transport equations have the
same structure, only the right hand side of (T-j) depending on the preceding step.
Hence, it is sufficient to prove that there exists a neighborhood V of 0 such that,
for any smooth function Q defined on V , we can find a smooth function u on V
which vanishes on {vd = 0} and solves

(G−1∇ξz0 + b○) ⋅ ∇u = Q. (4.19)

Let us recall that ∇ξz0(0) = 2µzed (see Proposition 3 and the lines above) and
b○(0) = −µzed − `○0(0) with ed ⋅ `○(0) = 0 (see (4.18)). Thus, the vector field F ○ ∶=
G−1∇ξz0 + b○ satisfies F ○(0) = µzed − `○0 and is transverse to {vd = 0} around 0.

Hence, the characteristics curves

d

dt
yt = F ○(yt), y0(v′) = v′

define a smooth coordinate system (t, v′) ∈ R− ×Rd−1 ↦ yt(v′) near 0 in Rd
−. We

then define u in these coordinates by u(yt(v′)) = ∫
t

0 Q(ys(v′))ds. It is straightfor-
ward to deduce that the function u solves (4.19). Moreover taking t = 0 in the
above equation, one gets u(v′,0) = 0. The proof of the proposition is complete. ◻

A Borel construction then leads to the existence of a solution ξz to (4.17).
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Proposition 5. Let (ξzj )j≥0 be the sequence of functions given by Propositions 3

and 4. Then, there exist a neighborhood V of 0 in Rd
− and a family of smooth

functions ξz = ξz(⋅, h), h ∈]0,1], admitting the h-classical expansion ξz ∼ ∑j≥0 h
jξzj

on V , which vanishes on V ∩ {vd = 0} and satisfies on V ,

1

2
(G−1∇ξz) ⋅ ∇ξz + b○ ⋅ ∇ξz + h(ρ○ ⋅ ∇ξz + 1

2
div(G−1∇ξz)) = O(h∞).

In particular, we have indeed built up a function ϕz in the v-coordinates such
that L̂hϕz = O(h∞) near 0 in Rd

−.

4.4. Extra conditions on the size parameters δ1, δ2. Recall that for δ1, δ2 > 0,
δ = (δ1, δ2) measures the sizes of the cylinders V δ

z = v(U δ
z ) (see (4.12)). In this

section, we adjust the size parameters δ1, δ2 to get the extra conditions [Cδ
4] to

[Cδ
8] below which will be needed in the quasi-modal estimates of Section 5.1 and

in the definition of the quasi-mode uapp
h (see (4.31) below). This adjustment is

made while preserving the properties [Cδ
1] to [Cδ

3] of these neighborhoods which
were imposed in Section 4.1.

First of all, introduce the following notation (see (4.9)) for v ∈ V δ
z :

Q(v) ∶= µzvd +
1

2
Hzv

′ ⋅ v′ and Q+(v) = −µzvd +
1

2
Hzv

′ ⋅ v′. (4.20)

Note that Q+ ≥ 0. Recall also that µz > 0, Hz is a positive definite matrix, and
that according to Proposition 3,

ξz0 = 2µzvd + vdA (v),

where A is a smooth function such that A (0) = 0. Therefore, using (4.20), we
get for v ∈ V δ

z :

Q(v) − ξz0(v) = Q+(v) − vdA (v) = −vd(µz +A (v)) + 1

2
Hzv

′ ⋅ v′. (4.21)

Note also that ∣vdA (v)∣ ≤ c∣vd∣∣v∣ ≤ c∣vd∣2 + c∣vd∣∣v′∣ ≤ c(1 + ε−1)∣vd∣2 + cε∣v′∣2 for some
c > 0 and any ε > 0. Thus, by (4.21), one has:

Q(v) − ξz0(v) ≥ −µzvd − c(1 + ε−1)∣vd∣2 +
1

2
Hzv

′ ⋅ v′ − cε∣v′∣2.

On the other hand, recall that the support of 1 − ∣χ∣2 is included in the set {t ∈
R, t ≤ −µzδ1/4} (see (4.11)). Consequently, choosing ε > 0 small enough above and
up to decreasing δ1, δ2 > 0, the two following conditions hold:
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[Cδ
4] argminV δ

z
(Q − ξz0) = {0}.

[Cδ
5] (1 − ∣χ∣2)(ξz0(v)) ≠ 0 and v ∈ V δ

z imply that

vd ≤ −δ1/9 and Q(v) − ξz0(v) ≥ µzδ1/10.

In addition, recall (see Proposition 5) that the family of functions ξz(⋅, h) ∼
∑j≥0 h

jξzj is defined in a h-independent neighborhood of 0 in Rd
−. Therefore, up to

decreasing again δ1, δ2 > 0, there exists h0 > 0 such that for all h ∈]0, h0]:

[Cδ
6] The function v = (v′, vd) ↦ ξz(v, h) is well defined and satisfies Propo-

sition 5 on V δ
z , and for very v ∈ V δ

z , ξz((v′, vd), h) < 0 when vd < 0.

[Cδ
7] For any v = (v′, vd) ∈ V δ

z , ξz((v′, vd), h) ≤ −δ1µz when vd ≤ −δ1.

[Cδ
8] For any v ∈ V δ

z , one has

ξz(v, h) ∈ suppχ′⇒ vd ≤ −
δ1

9
and Q(v) − ξz(v, h) ≥ µzδ1/10.

Note that in order to deduce that ξz((v′, vd), h) < 0 when vd < 0 for v ∈ V δ
z , we

used the fact that ξz((v′, vd), h) = vd(2µz +O(v) +O(h)).

4.5. Definition of the quasi-mode. We are now in position to define uapp
h near

the generalized saddle point z ∈ Psp (see (1.4)). Let ξz be given by Proposition 5
and χ satisfying (4.11). Recall that (see (4.12) and (4.14)):

∀v ∈ V δ
z , ϕz(v) =

1

Nz,h
∫

0

ξz(v,h)
χ(t)e thdt, where Nz,h ∶= ∫

0

−∞
χ(t) e thdt. (4.22)

Note that ϕz also depends on h > 0 but for ease of notation, we have decided not
to indicate this dependency in its notation. By construction of ξz(⋅, h), and using
[Cδ

6] and [Cδ
7], it holds for h > 0 small enough:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕz ∈ C∞(V δ
z , [0,1]),

ϕz(v′,0) = 0,
∀(v′, vd) ∈ V δ

z , ϕz(v′, vd) = 1 when vd ∈ [−2δ1,−δ1].
(4.23)

We now want to glue all these definitions near z ∈ Psp into a globally defined

quasi-mode uapp
h over Ω vanishing on ∂Ω. Recall the conditions [Cδ

1] to [Cδ
8]. On

the other hand, for every x ∈ ∂Cmin, one has ∇f(x) ≠ 0, which implies that for
every r > 0 small enough, {f < f(x)} ∩B(x, r) is connected and thus included in
Cmin.

These considerations imply the existence of the following subsets C− and C+

of Ω.
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Proposition 6. Assume [A]. Then, there exist two C∞ connected open sets C−

and C+ of Ω satisfying the following properties:

1. C min ⊂ C+ ∪ ∂Ω.

2. C + is a neighborhood in Ω of each set U δ
z , for z ∈ Psp.

3. C − ⊂ C+ and the strip C + ∖C− satisfies

∃c > 0 , f ≥ f(x0) + c on C + ∖C− and C + ∖C− = ⋃
z∈Psp

U δ
z ⋃ O, (4.24)

where the subset O of Ω is such that:

∃c > 0 , f ≥ min
∂Ω

f + c on O. (4.25)

∂Ω

●
●x0

C+

∂Cmin ⊂ {f = min∂Ω f}
C−

C−

C−

Cmin = Ω ∩ {f < min∂Ω f}

z2

O

O

U δ
z2

U δ
z1

z1

Figure 4.1. Schematic representation of C−, C+, and O (see Propo-
sition 6). On the figure, Psp = {z1, z2}.

We refer to Figure 4.1 for a schematic representation of C−, C+, and O. Note
that x0 ∈ C− and hence,

argminC +

f = argminC −

f = {x0}. (4.26)
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Using the above sets C+ and C−, we define a function

wapp
h ∶ Ω→ [0,1]

as follows:

[-] For every z ∈ Psp, wapp
h is defined on the cylinder U δ

z (see (4.10)) by

∀x ∈ U δ
z , w

app
h (x) ∶= ϕz(v(x)), see (4.22). (4.27)

[-] From (4.23), (4.24), and the fact that C − ⊂ C+ (see Proposition 6), the
above function wapp

h satisfying (4.27) can be extended to Ω so that

wapp
h = 0 on Ω ∖C+, wapp

h = 1 on C−, and wapp
h ∈ C∞(Ω, [0,1]). (4.28)

Note that wapp
h = 0 on ∂Ω. Moreover, in view of (4.22) and (4.24), wapp

h can
be chosen on O such that, for some C > 0 and for every h small enough,

∀α ∈ Nd, ∣α∣ ∈ {1,2}, ∥∂αwapp
h ∥L∞(O) ≤ Ch−2. (4.29)

Notice that (4.28) implies

supp∇wapp
h ⊂ C + ∖C−. (4.30)

We finally define the normalized quasi-mode uapp
h over Ω by

uapp
h = wapp

h /Zapp
h where Zapp

h = (∫
Ω
∣wapp

h ∣2ph(x)dx)
1
2

. (4.31)

5. Proof of Theorem 4

In all this section, we assume [A].

5.1. Action of Lh on the quasi-mode.

Proposition 7. Assume [A]. There exist h0 > 0 and a family of real numbers
(ζ(h))h∈]0,h0] admitting a h-classical expansion ζ(h) ∼ ∑j≥0 h

jζj with ζ0 given by
(3.7) such that, defining

λapp
h = h− 1

2ζ(h)e− 2
h(min∂Ω f−f(x0)),

the following holds true:
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[1] ⟨Lhuapp
h , uapp

h ⟩L2(phdx) = λ
app
h (1 +O(h∞))

[2] ∥Lhuapp
h ∥2

L2(phdx)
= O(h∞)λapp

h .

[3] ∥L†
hu

app
h ∥2

L2(phdx)
= O(h−1λapp

h ), where L†
h is the adjoint of the operator Lh

in L2(Ω, phdx).

Proof. In what follows, C, c > 0 are constants independent of h > 0 and of x ∈ Ω
which can change from one occurence to another. We start by estimating Zapp

h in
the limit h→ 0.

Asymptotic equivalent of Zapp
h . Recall that uapp

h = wapp
h /Zapp

h , see (4.31). From
(4.28), we have

∣Zapp
h ∣2 = ∫

Ω
∣wapp

h (x)∣2ph(x)dx = ∫
C−

∣wapp
h (x)∣2ph(x)dx + ∫

C+∖C−

∣wapp
h (x)∣2ph(x)dx.

Recall that from Theorem 2, ph(x) = h−
d
2Rh(x)e− 2

h(f(x)−f(x0)), where Rh admits a
h-classical expansion Rh ∼ ∑j≥0 h

jRj on Rd. In particular Rh is uniformly bounded

on the compact Ω ⊂ Rd. Since f ≥ f(x0) + c on C+ ∖C− (see (4.24)) and ∣wapp
h ∣ ≤ 1,

it follows that

∫
C+∖C−

∣wapp
h (x)∣2ph(x)dx = O(e− ch).

Moreover, using the fact that wapp
h = 1 on C−, and Lemma 1.2 of [48], we get

∫
C−

∣wapp
h (x)∣2ph(x)dx = ∫

C−

ph(x)dx = ∫
Rd
ph(x)dx +O(e− ch) = 1 +O(e− ch).

We thus obtain that in the limit h→ 0,

Zapp
h = 1 +O(e− ch). (5.1)

Proof of [1]. Note that wapp
h ∈ Di, for all i = 1,2,3. Then, from (3.2), and the fact

that wapp
h is supported in C + and equal to 1 on C−, we have

⟨Lhwapp
h ,wapp

h ⟩L2(phdx) =
h

2 ∫Ω
∣∇wapp

h (x)∣2 ph(x)dx =
h

2 ∫C+∖C−

∣∇wapp
h (x)∣2 ph(x)dx.

Using (4.24), this implies that

⟨Lhwapp
h ,wapp

h ⟩L2(phdx) =
h

2 ∫O
∣∇wapp

h (x)∣2 ph(x)dx+
h

2
∑

z∈Psp

∫
U δ
z

∣∇wapp
h (x)∣2 ph(x)dx.
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Moreover, thanks to Theorem 2 and (4.25), for all x ∈ O, ph(x) ≤ Ce−2(min∂Ω f−f(x0)+c)/h

and thanks to (4.29), one deduces that

⟨Lhwapp
h ,wapp

h ⟩L2(phdx) =
h

2
∑

z∈Psp

ϑz,h +O(e− 2
h(min∂Ω f−f(x0)+c))), (5.2)

where
ϑz,h ∶= ∫

U δ
z

∣∇wapp
h (x)∣2 ph(x)dx.

We now estimate each integral ϑz,h when h→ 0. To this end, fix z in Psp. Recall
the coordinates x ↦ v(x) defined over Uz in Section 4.1, see (4.1)–(4.3). We also

recall that f̂ = f ○ v−1 (see (4.8)), ˆ̀= ` ○ v−1, and that for any smooth function u,
we have (∇u)(v−1) = tJ−1∇û. Using the v-coordinates, together with (4.12) and
(4.27), one has

ϑz,h = ∫
V δ
z

(G−1∇ϕz) ⋅ ∇ϕz p̂h
√

∣G∣(v)dv.

Let ξz be given by Proposition 5. Recall that by (4.22), one has for all v ∈ V δ
z ,

∇ϕz(v) = −
1

Nz,h
χ(ξz(v, h))eξz(v,h)/h∇ξz(v, h).

Using (2.3), we then obtain that:

ϑz,h =
h−

d
2

∣Nz,h∣2 ∫V δ
z

G−1∇ξz(v, h) ⋅ ∇ξz(v, h)∣χ(ξz(v, h))∣2

× R̂h(v)e− 2
h(f̂(v)−f(x0)−ξ

z
(v,h))

√
∣G∣(v)dv.

Moreover, using (4.8) and the fact that f(z) = min∂Ω f , one has f̂(v) − f(x0) =
min∂Ω f − f(x0) +Q(v), see (4.20). Then, one has

∣Nz,h∣
2

h−
d
2
e

2
h(min∂Ω f−f(x0))ϑz,h

= ∫
V δ
z

G−1∇ξz(v, h) ⋅ ∇ξz(v, h)∣χ(ξz(v, h))∣2 R̂h(v)e− 2
h(Q(v)−ξz(v,h))

√
∣G∣(v)dv.

Recall that ξz(v, h) ∼ ∑j≥0 h
jξzj and Rh(v) ∼ ∑j≥0 h

jRj(v), see respectively Propo-
sition 5 and Theorem 2. Recall also that according to Propositions 3 and 4, ξz0
solves the eikonal equation (E) and ξz1 solves the first transport equation (T-j).
We deduce that for any N ∈ N,

∣Nz,h∣2

h−
d
2

e
2
h(min∂Ω f−f(x0))ϑz,h =

N

∑
j=0

hjϑ(j)
z,h + O(hN+1), (5.3)
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where (ϑ(j)
z,h)j≥0 ⊂ R and

ϑ(0)
z,h = ∫

V δ
z

G−1∇ξz0(v) ⋅ ∇ξz0(v)R̂0(v)∣χ(ξz0(v))∣2e2ξz1(v)e−
2
h(Q(v)−ξz0(v))

√
∣G∣(v)dv.

Note that we have used [Cδ
4] in see Section 4.4, and more precisely that Q(v) −

ξz0(v) ≥ 0, to obtain the remainder term O(hN+1) in (5.3).

Recall (4.21). Using the condition [Cδ
5] (see Section 4.4), we deduce that

ϑ(0)
z,h = ∫

V δ
z

G−1∇ξz0(v) ⋅ ∇ξz0(v) R̂0(v) e2ξz1(v)e−
2
h(Q

+
(v)−vdA (v))

√
∣G∣(v)dv

+O(e− ch). (5.4)

By Propositions 3 and 4, one has ∣∇ξz0(0)∣2 = 4∣µz ∣2 and ξz1(0) = 0. Then, performing
a Taylor expansion, we deduce from (2.15) and (4.3) that there exists a sequence
(θα)α∈Nd ⊂ R such that for any K ∈ N:

√
∣G∣(v)G−1(v)∇ξz0(v) ⋅ ∇ξz0(v)R̂0(v) e2ξz1(v) = ∑

∣α∣≤K

θαv
α +O(∣v∣K+1), (5.5)

where

θ0 = 4∣µz ∣2c0 exp [∫
+∞

0
div(`)(ψt(z))dt] (5.6)

and c0 > 0 is given by (2.6). For α ∈ Nd, we write α = (α′, αd) with α′ ∈ Nd−1 and
αd ∈ N. Set vh = (

√
hv′, hvd). Then, combining (5.4) and (5.5), it follows that for

any K ∈ N, using a change of variables,

ϑ(0)
z,h = ∑

∣α∣≤2K

θα∫
V δ
z

vαe−
2
h(Q

+
(v)−vdA (v))dv + ∫

V δ
z

O(∣v∣2K+1)e− 2
h(Q

+
(v)−vdA (v))dv

= hd+1
2 [ ∑

∣α′∣
2 +αd≤K

θαh
∣α′∣
2 +αd ∫

∣v′∣≤δ2/
√
h
∫

0

−2δ1/h
vαe−2(Q+

(v)−vdA (vh))dv +O(hK+ 1
2)].

Recall that A (0) = 0. Hence, performing a second Taylor expansion and denoting,
for k ∈ N, by (vβ)β∈Nd,∣β∣=k the monomial basis of the homogeneous polynomials of
order k, there exists a family (λβ)β∈Nd ⊂ R such that, for every K ∈ N,

2vdA (vh) = ∑
∣β∣≥1, ∣β

′∣

2 +βd≤K

h
∣β′∣
2 +βd 2λβvdvβ(v) +O(hK+ 1

2).

Thus, it holds

e2vdA (vh) = 1 + ∑
∣γ∣≥1,∣γ′∣/2+γd≤K

h
∣γ′∣
2 +γdAγ(v) +O(hK+ 1

2),



26 D. LE PEUTREC, L. MICHEL, AND B. NECTOUX

where each Aγ(v) is a linear combination of monomials of the form vmd vβ1(v)
. . .vβm(v) with m ≥ 1 and where

γ = (β′1 + . . . + β′m, (β1)d + . . . + (βm)d) ∈ Nd and
1

2
∣γ′∣ + γd =

1

2

m

∑
i=1

∣β′i ∣ +
m

∑
i=1

(βi)d ≥
1

2
.

Therefore, there exist coefficients θ∗α such that θ∗0 = θ0 and

ϑ(0)
z,h = h

d+1
2 [ ∑

∣α′∣
2 +αd≤K

θ∗αh
∣α′∣
2 +αd ∫

∣v′∣≤δ2/
√
h
∫

0

−2δ1/h
vαPα(vd)e−2Q+

(v)dv +O(hK+ 1
2)]

= hd+1
2 [ ∑

∣α′∣
2 +αd≤K

θ∗αh
∣α′∣
2 +αd ∫

v′∈Rd−1
∫
vd<0

vαPα(vd)e−2Q+
(v)dv +O(hK+ 1

2)],

where for α ∈ Nd, Pα ∈ R[X]. For a parity reason, if α′ is an odd number,

∫v′∈Rd−1 vαe−2Q+
(v)dv′ = 0. Hence, we deduce that as h→ 0,

ϑ(0)
z,h ∼ h

d+1
2 ∑
k≥0

hkK(0)
z,k

for some sequence (K(0)
z,k )k≥0 ⊂ R such that

K(0)
z,0 = θ0∫

Rd−1×R−

e2µzvd−Hzv
′
⋅v′dv = θ0π

d−1
2

2µz
√

detHz

.

Combined with (5.6) and (2.6), this gives

K(0)
z,0 = 2µz√

π

√
det Hess(f)(x0)√

detHz

exp [∫
+∞

0
div(`)(ψt(z))dt].

Similar arguments show that for any j ≥ 1, there exists a sequence (K(j)
z,k )k≥0 ⊂ R

such that
ϑ(j)
z,h ∼ h

d+1
2 ∑
k≥0

hkK(j)
z,k .

Using (5.2), (5.3), and (4.15), we finally obtain

⟨Lhwapp
h ,wapp

h ⟩L2(phdx) ∼
e−

2
h(min∂Ω f−f(x0))

√
h

∑
j≥0

hjζj(z) with ζ0(z) = ∑
z∈Psp

1

2
K(0)
z,0 .

Moreover since uapp
h = wapp

h

Zapp
h

and Zapp
h = 1 +O(e− ch) (see (5.1)), we deduce that

⟨Lhuapp
h , uapp

h ⟩L2(phdx) ∼
e−

2
h(min∂Ω f−f(x0))

√
h

∑
j≥0

hjζj(z).
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This completes the proof of [1].

Proof of [2]. Since wapp
h is supported in C +, equal to 1 in C− and since Lh has no

zero order term, then

∥Lhwapp
h ∥2

L2(phdx)
= ∫

C+∖C−

∣Lhwapp
h (x)∣2ph(x)dx.

Since C + ∖C− = ⋃
z∈Psp

U δ
z ⋃ O, thanks to (4.29), (4.25) and Theorem 2, we get

∥Lhwapp
h ∥2

L2(phdx)
= ∑
z∈Psp

∫
U δ
z

∣Lhwapp
h (x)∣2ph(x)dx +O(e− 2

h(min∂Ω f−f(x0)+c)). (5.7)

Using the v-coordinates, it follows from (4.27) that

Jz,h ∶= ∫
U δ
z

∣Lhwapp
h (x)∣2ph(x)dx = ∫

V δ
z

∣L̂hϕz(v)∣2p̂h(v)
√

∣G∣(v)dv. (5.8)

On the other hand, recall (4.16):

L̂hϕz =
χ(ξz)eξz/h
Nz,h

[1

2
(G−1∇ξz) ⋅ ∇ξz + [b○ ⋅ ∇ξz + h(ρ○ ⋅ ∇ξz + 1

2
div(G−1∇ξz))]]

+ h

2Nz,h
(G−1∇ξz) ⋅ ∇ξz χ′(ξz)eξz/h.

Recall also that f̂ = f(z)+Q (see (4.8)). Then, using Theorem 2 and Proposition 5,
one deduces that (see (4.20))

Jz,h =
h−

d
2e

− 2
h(min

∂Ω
f−f(x0))

∣Nz,h∣2 ∫
V δ
z

∣O(h∞) +O(h)χ′(ξz)∣2R̂h(v)e− 2
h(Q(v)−ξz(v,h))dv

Moreover, thanks to [Cδ
8] in Section 4.4, there exists c > 0 such thatQ(v)−ξz(v, h) ≥

c for every v ∈ V δ
z satisfying ξz(v, h) ∈ supp(χ′). Hence, we have

Jz,h =
h−

d
2e

− 2
h(min

∂Ω
f−f(x0))

∣Nz,h∣2 ∫
V δ
z

O(h∞)R̂h(v)e− 2
h(Q(v)−ξz(v,h))dv +O(h∞e−

2
h(min

∂Ω
f−f(x0))))

= O(h∞e−
2
h(min

∂Ω
f−f(x0)))).

In view of (5.7) and (5.8), this yields the desired result, namely [2].

Proof of [3]. We start with the computation of the adjoint L†
h of Lh in L2(phdx).

Set
ψh = −h ln(ph).
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Recall that the function ψh is well-defined and smooth. Note that ∇ψh = (−h∇Rh+
2Rh∇f)/Rh. Hence, according to Theorem 2 and formula (2.15), for every h > 0
small enough and α ∈ Nd, ∂αψh is bounded uniformly with respect to h on Ω. On
the other hand, since L⋆h ph = 0 (see (2.2)), a direct computation shows that

L†
h = −

h

2
∆ + (b +∇ψh) ⋅ ∇. (5.9)

Now, the same computation as the one leading to (5.7) shows that

∥L†
hw

app
h ∥2

L2(phdx)
= ∑
z∈Psp

∫
U δ
z

∣L†
hw

app
h (x)∣2ph(x)dx +O(e− 2

h(min∂Ω f−f(x0)+c)). (5.10)

Using the v-coordinates, we have:

∥L†
hw

app
h ∥2

L2(phdx)
= ∑
z∈Psp

∫
V δ
z

∣L̂†
hϕz(v)∣2p̂h(v)

√
∣G∣dv +O(e− 2

h(min∂Ω f−f(x0)+c)).

Note that L̂†
h = −

h
2 div ○G−1 ○∇+ eh ⋅ ∇, where eh is a smooth vector field uniformly

bounded with respect to h. In particular, one has for every h small enough

L̂†
hϕz = O(eξz/h/Nz,h).

Using (4.15) and the fact that

p̂he
2ξz/h = h−d2e− 2

h(min∂Ω f−f(x0))R̂he−
2
h(Q−ξ

z
),

we get, since ∫V δ
z
e−

2
h(Q−ξ

z
)dv = O( ∫V δ

z
e−

2
h(Q−ξ

z
0)dv) = O(hd+1

2 ),

∥L†
hw

app
h ∥2

L2(phdx)
= O(h− 3

2e−
2
h(min∂Ω f−f(x0))) = O(h−1)λapp

h .

This concludes the proof of [3]. �

5.2. Proof of Theorem 4. According to Theorem 3, for all β > 0 small enough,
the projector

πh ∶=
1

2iπ ∫{∣z∣=β}
(z −Lh)−1dz

is of rank one for all h > 0 small enough, and more precisely Ranπh = Span(uh).
Moreover, Theorem 3 implies that there exists C > 0 such that for all ∣z∣ = β, ∥(z −
Lh)−1∥L2(phdx) ≤ C. In particular, one has πh = O(1) and for all u ∈ D2, ∥(1 −
πh)u∥L2(phdx) ≤ C∥Lhu∥L2(phdx), which follows from the identity

(1 − πh)u =
−1

2πi ∫{∣z∣=β}
z−1(z −Lh)−1Lhudz.
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Thus, thanks to Item [2] in Proposition 7, one obtains that in the limit h→ 0:

πhu
app
h = uapp

h +O(h∞∣λapp
h ∣ 12) in L2(Ω, phdx). (5.11)

We thus have for every h small enough,

λh =
⟨Lhπhuapp

h , πhu
app
h ⟩L2(phdx)

∥πhuapp
h ∥2

L2(phdx)

=
⟨Lhuapp

h , uapp
h ⟩L2(phdx) +Eh

1 +O(e− ch)
= λapp

h (1 +O(h∞)) +Eh(1 +O(e− ch)),

where Eh ∶= ⟨Lh(πh − 1)uapp
h , uapp

h ⟩L2(phdx) + ⟨Lhπhuapp
h , (πh − 1)uapp

h ⟩L2(phdx) is the
so-called projection error. It satisfies

∣Eh∣ ≤ C∥(πh − 1)uapp
h ∥L2(phdx)(∥L

†
hu

app
h ∥L2(phdx) + ∥Lhuapp

h ∥L2(phdx))

which, combined with (5.11) and [3] of Proposition 7, yields

∣Eh∣ = O(h∞)∣λapp
h ∣ 12 ×O(h− 1

2)∣λapp
h ∣ 12 +O(h∞)λapp

h = O(h∞)λapp
h .

This proves the desired result using Item [1] in Proposition 7.

5.3. On the assumption [A⊥]. In statistical physics, we are typically given a
vector field b ∶ Rd →Rd, that we assume to be smooth. Metastability occurs when
there exist several stable equilibrium positions for the dynamics (1.3), see e.g. [16]
and references therein. Let x0 be one of them and assume that

all the eigenvalues of Jac b(x0) have negative real parts. (5.12)

Let us denote by Bx0 the basin of attraction of x0 for the dynamics (1.3) and
by V (x) = V (x0, x) the Freidlin-Wentzell quasi-potential from x0 to x ∈ Bx0 of
the process (1.1) in Bx0 (see e.g. [20] or [14, Equation (2.14)]). According to [14,
Corollaries 2 and 7], V (x) > 0 over Rd∖{0} and there exists a connected open and
dense subset Gx0 of Bx0 containing x0 such that x ∈ Gx0 ↦ V (x) is C∞. By [20,
Section 4.3], one deduces that there exists a smooth vector field ` ∶ Gx0 →Rd such
that b admits the following transversal decomposition over Gx0:

b = −1

2
∇V + ` and ∇V ⋅ ` = 0.

This shows that the assumption [A⊥] is generic with f = V /2, at least in the
(large) set Gx0. Note that though the domain Gx0 is very large in Bx0, without
any extra assumption, it might not necessarily be the whole space Bx0. We also
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mention that by [13, Equation (4.2) and Theorem 3], ∇V (x0) = 0, the Hessian
matrix HessV (x0) at x0 is positive definite, and all the statements in Theorem 2
holds true uniformly in the compacts of Gx0 as well as the formula (2.15).

In conclusion, if x0 ∈ Rd is such that b(x0) = 0 and (5.12) holds, then, for any
smooth bounded domain Ω containing x0 such that Ω ⊂ Gx0 and [APsp] holds,
the Eyring-Kramers formula (1.5) holds uniformly for x in the compact subsets of
AΩ(x0).
Remark 8. The regularity of the quasi-potential is at the heart of the transversal
decomposition of b which is possible in the regions of Bx0 where V is sufficiently
smooth (say at least C1, see [20, Section 4.3]). More generally, finding the regions
where the quasi-potential is smooth is a very challenging task for the success of
several asymptotic formulas in statistical physics [14, 11, 13, 8], as it is the case
here.

Acknowledgement. This work was supported by the ANR-19-CE40-0010, Anal-
yse Quantitative de Processus Métastables (QuAMProcs). B.N. is supported by
the grant IA20Nectoux from the Projet I-SITE Clermont CAP 20-25.

References

1. B. Avelin, V. Julin, and L. Viitasaari, Geometric characterization of the Eyring–Kramers
formula, Communications in Mathematical Physics 404 (2023), no. 1, 401–437.

2. N. Berglund, Kramers’ law: Validity, derivations and generalisations, Markov Process. Related
Fields 19 (2013), no. 3, 459–490.

3. N. Berglund and S. Dutercq, The Eyring-Kramers law for Markovian jump processes with
symmetries, Journal of Theoretical Probability 29 (2016), no. 4, 1240–1279.

4. N. Berglund and B. Gentz, The Eyring-Kramers law for potentials with nonquadratic saddles,
Markov Process. Related Fields 16 (2010), no. 3, 549–598.
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Nantes

Email address : dorian.lepeutrec@univ-nantes.fr
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