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Université de Nice

Probability and Related Aspects
Alba Iulia, Romania
May 22 - 26, 2012



Introduction The case of compact manifolds Random walk on surfaces with hyperbolic ends Euclidean space case

Plan

1 Introduction

2 The case of compact manifolds
Spectral analysis
Convergence to stationary measure
Ingredient of proof

3 Random walk on surfaces with hyperbolic ends
Framework and results
Sketch of proof

4 Euclidean space case
Framework and results
Sketch of proof
Convergence to equilibrium



Introduction The case of compact manifolds Random walk on surfaces with hyperbolic ends Euclidean space case

1 Introduction

2 The case of compact manifolds
Spectral analysis
Convergence to stationary measure
Ingredient of proof

3 Random walk on surfaces with hyperbolic ends
Framework and results
Sketch of proof

4 Euclidean space case
Framework and results
Sketch of proof
Convergence to equilibrium



Introduction The case of compact manifolds Random walk on surfaces with hyperbolic ends Euclidean space case

General framework

Let

(M, g) be a Riemanian manifold, dgx be the volume form and
dg (x , y) the associated distance.

ρ(x) be a measurable, bounded, strictly positive function such
that dπ(x) = ρ(x)dgx is a probability measure on M.

Let us define the semiclassical random walk operator on the space
of bounded continuous function, by

Thf (x) =
1

π(Bh(x))

∫

M

1Bh(x)(y)f (y)dπ(y)

where h > 0 is a small parameter and Bh(x) is the geodesic ball
centred in x and with radius h.
Motivations: These operators appear in probabilistic framework
since they are associated to natural random walk on M.
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The kernel of Th is given by

th(x , dy) =
1{dg (x ,y)≤h}

π(Bh(x))
dπ(y), ∀x ∈ Ω.

This is a Markov kernel (th(x ,M) = Th(1)(x) = 1, ∀x ∈ M).

Definition

Let νh be a probability measure on M. We say that νh is
stationnary for th(x , dy) if T t

h(νh) = νh, where T t
h denotes the

transpose operator of Th acting on Borel measure.

One can see easily that th(x , dy) admits the following stationnary
measure

dνh =
π(Bh(x))

Zh

dπ(x)

where Zh is a normalizing constant.
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Convergence to stationnary measure

Given a Markov kernel k(x , dy) on a metric space (X , d) and K
the associated operator, we denote kn(x , dy) the kernel of the
operator Kn.

Theorem (cf Feller)

Assume that k(x , dy) is a strictly positive and regular Markov
kernel and that π is a stationnary measure for k. Then,

∀x ∈ X ,∀B ∈ B, lim
n→∞

kn(x ,B) = π(B)

k strictly positive means that there exists p ∈ N such that
kp(x ,A) > 0 for all open subset A. Think the regularity condition
as, k(x , dy) having a continuous density.
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Question

What can we say about the convergence speed?

The answer is closely related to precise study of the spectral theory
of Th.
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Spectral analysis

Framework

Assume that M is a compact manifold without boundary and that
ρ = 1/vol(M). We prove easily the following facts:

Th is self-adjoint on L2(M, dνh).

Th is compact

For all p ∈ [1,∞], ‖Th‖Lp→Lp = 1.

Hence, the spectrum of Th is made of eigenvalues and {0} is the
only possible accumulation point. We denote

1 = µ0(h) ≥ µ1(h) ≥ µ2(h) ≥ ... ≥ µk(h)... > 0

its positive eigenvalues, (eh
k )k∈N the associated L2-normalized

eigenfunctions.
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Spectral analysis

Reference operator

We use the following notations:

∆g is the (negative) Laplace-Beltrami operator on (M, g).

0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ ... denotes the spectrum of
the self adjoint operator −∆g on L2(M, dgx).

for ξ ∈ R
d

Gd(ξ) :=
1

αd

∫

|y |≤1
e iyξdy

where αd = volume of the unit ball in R
d .

the function Gd is radial and we let Γd be such that
Gd(ξ) = Γd(|ξ|2). Then, Γd is analytic and near s = 0 we
have

Γd(s) = 1 −
s

2(d + 2)
+ O(s2)
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Spectral analysis

An explicit example: the flat torus

Suppose that M = (R/2πZ)d is the flat d-dimensional torus
endowed with the Euclidean metric. Then

Th = Γd(−h2∆g ).

Indeed, using Fourier expansion , it suffices to show that
Thfk = Γd(−h2∆g )fk with fk(x) = e i〈k,x〉, k ∈ Z

d . Using the
flatness of the metric, it comes

Thfk(x) =
1

cdhd

∫

B(x ,h)
e i〈k,y〉dy =

e i〈k,x〉

cd

∫

B(0,1)
e i〈hk,u〉du

= Γd(h2|k|2)e i〈k,x〉 = Γd(−h2∆g )fk(x)

Using the Taylor expansion of Γd in 0, this implies for all
k ∈ N:

µk(h) = 1 −
λk

2(d + 2)
h2 + O(h4)
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Spectral analysis

Theorem [Lebeau-Michel, Annals of Probability, 2010]

Assume that M is compact without boundary. Let h0 > 0 be small.
There exist γ < 1 such that for any h ∈]0, h0] one has
Spec(Th) ⊂ [−γ, 1] and 1 is a simple eigenvalue of Th. Moreover,
for any k ∈ N,

µk(h) = 1 −
λk

2(d + 2)
h2 + Ok(h4)
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Spectral analysis

Theorem (part 2)

Let N(τ, h) = card(Spec(Th) ∩ [1 − τ, 1]). For any δ ∈]0, 1[, there
exist C > 0 s.t. for any h ∈]0, h0] and any τ ∈ [0, δ], we have

|N(τ, h) − (2πh)−d

∫

Γd (|ξ|2x)∈[1−τ,1]
dxdξ| ≤ C (1 + τh−2)

d−1
2

In particular, one has

N(τ, h) ≤ C (1 + τh−2)d/2

Suppose that µk(h) ∈ [δ, 1], then the associated eigenfuction eh
k

satisfies

‖eh
k ‖L∞ ≤ C

(

1 +
1 − µk(h)

h2

)d/4
‖eh

k ‖L2 .
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Convergence to stationary measure

Total variation estimate

The total variation distance between two probability measures µ, ν
is defined by

‖µ−ν‖TV := sup
A measurable

|µ(A)−ν(A)| =
1

2
sup

f ∈L∞,‖f ‖≤1
|

∫

fdµ−

∫

fdν|

In particular,

sup
x∈M

‖tn
h (x , dy) − dνh(y)‖TV =

1

2
‖T n

h − Π0‖L∞→L∞

where Π0 denotes the othogonal projection on constant functions
in L2(M, dνh).
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Convergence to stationary measure

Theorem [Lebeau-Michel, AOP, 2010]

Let h0 > 0 small. There exists C > 0 such that for all h ∈]0, h0]
the following holds true :

e−γ′(h)nh2
≤ 2 sup

x∈M

‖tn
h (x , dy) − dνh‖TV ≤ Ce−γ(h)nh2

for all n

Here γ(h), γ′(h) are positive functions s.t. γ(h) ≃ γ′(h) ≃ λ1
2(d+2)

when h → 0.
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Ingredient of proof

Let φ ∈ C∞
0 (R) be a smooth function equal to 1 near 0.

Lemma

The operator Ah = h−2(Th − Γd (h2∆g ))φ(h2∆g ) is an
h-pseudodifferential operator whose principal symbol a0 verifies

a0(x , ξ) =
(S(x)

3
|ξ|2x(Γ

′′
d (0)−Γ′d(0)2)+

Γ′′d(0)

3
Ric(x)(ξ, ξ)

)

φ(|ξ|2x )+O(ξ3)

where Ric(x) and S(x) denotes the Ricci tensor and the scalar
curvature at point x .

Using this Lemma, one can shows that for any (λk , ek) s.t.
−∆ek = λkek , one has

Thek = (1 −
h2

2(d + 2)
λk + O(h4))ek .

Hence, to each eigenvalue λk of −∆ corresponds at least one
eigenvalue µl(h) of Th such that µl(h) = 1 − h2

2(d+2)λk + O(h4).
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Ingredient of proof

Using the preceding Lemma, on can show that for any k and any
s > 0, there exists h0 > 0 such that the eigenfunctions (eh

k )h∈]0,h0]

(normalized in L2), associated to the eigenvalue µk(h) satisfy

‖eh
k ‖Hs (M) ≤ C

(

1 +
1 − µk(h)

h2

)s/2

Since M is compact and 1 − µk(h) = O(h2), this shows that the
family (eh

k )h∈]0,h0] is compact in H2. Hence, there exists hn → 0,

λ > 0 and ek ∈ H2 such that ehn

k → ek , µk(hn) → λ and

−∆ek = λek .

This shows that to each eigenvalue µl(h) of Th corresponds at least

one eigenvalue λk of −∆ such that µl(h) = 1− h2

2(d+2)λk + O(h4).
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Framework and results

Semiclassical random walk on surfaces with hyperbolic ends

Consider a surface (M, g) with finite volume and finitely many
ends E1, . . . En, with Ei isometric to a hyperbolic cusp isometric to

{(x , y) ∈ [xi ,∞[×(R/ℓZ)} endowed with the metric g = dx2+dy2

x2

for some xi > 0.
Assume that ρ = 1 and let π = dgx/vol(M). Since M has finite
volume, the kernel

th(x , dy) =
1

π(Bh(x))
1ldg (x ,y)<h dπ(y)

is a Markov kernel and the probability dνh = π(Bh(x))
Zh

dπ(x) is well
defined. Moreover, dνh is stationnary for th(x , dy).
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Framework and results

Basic facts

Let Th be the operator with kernel th(x , dy):

Thf (x) =
1

π(Bh(x))

∫

M

1Bh(x)(y)f (y)dπ(y)

One can see easily that

Th is self-adjoint on L2(M, dνh)

Th acts on any Lp, p ∈ [1,∞] with norm 1.

Th is not compact on L2 anymore (since M is unbounded).
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Framework and results

Theorem [Christianson-Guillarmou-Michel, Ann. H. Poincaré, 2011]

There exists h0 > 0 and c , δ > 0 such that the following hold true:

i) For any h ∈]0, h0], the essential spectrum of Th is given by
the interval

Ih = [
h

sinh(h)
A,

h

sinh(h)
]

where A = minx>0
sin(x)

x
> −1.

ii) For any h ∈]0, h0], Spec(Th) ∩ [−1,−1 + δ] = ∅.

iii) For any h ∈]0, h0], 1 is a simple eigenvalue of Kh and the
spectral gap g(h) := dist(Spec(Th) \ {1}, 1) enjoys

ch2 ≤ g(h) ≤ min
((λ1 + α(h))h2

8
, 1 −

sinh(h)

h

)

where λ1 is the smallest non-zero L2 eigenvalue of ∆g on M
and α(h) a function tending to 0 as h → 0.
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Sketch of proof

Assume to simplify that there is only one cusp. The surface
M can be written M = M0 ∪ E0 with M0 compact and E0

isometric to {(x , y) ∈ [x0,∞[×(R/ℓZ)} endowed with the

metric g = dx2+dy2

x2 .

Setting x = et , E0 = {(t, y) ∈]t0,∞[×(R/ℓZ)} is endowed
with the metric g = dt2 + e−2tdy2.

The function m ∈ E0 7→ t(m) can be extended to a smooth
function on the whole suface M such that 0 < t(m) < t0 for
all m ∈ M0.
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Sketch of proof

Structure of geodesic balls in the cusp

In H
2, the hyperbolic ball centered in (et , y) and with radius h > 0

is the Euclidean ball centered in (etcosh(h), y) and with radius
et sinh(h).

ℓ

et cosh(h)

et+h

et sinh(h)

et−h

Figure: The hyperbolic ball of radius h is tangent to itself when the
center is at t = log(ℓ/2 sinh(h)). For t > log(ℓ/2 sinh(h) the ball
overlaps on itself.
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Sketch of proof

Consequence:

For f smooth supported in t < th := log(ℓ/2 sinh(h)), Thf is
well approximated by Γd(h2∆g )f , but it is not the case for f
supported in t ≥ th.

The function (et , y) 7→ |Bh(e
t , y)| is singular at t = th. This

prevents to describe Th as a pseudo with regular symbol.

We use instead a variational approach.
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Sketch of proof

Variational approach

Let us define the variance

Vh(f ) = ‖f ‖2
L2(M,dνh)

− 〈f , 1〉2L2(M,dνh)
.

and the Dirichlet form assiocated to our problem

Eh(f ) = 〈(1 − Th)f , f 〉L2(M,dνh)

The spectral gap g(h) is the the best constant such that the
following inequality holds true:

Vh(f ) ≤
1

g(h)
Eh(f )

Observe also that

Eh(f ) =
1

2Zh

∫

M×M

1ldg (m,m′)<h(f (m) − f (m′))2dvg (m)xdvg (m′)

Vh(f ) =
1

2

∫

M×M

(f (m) − f (m′))2dνh(m)dνh(m
′)
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Sketch of proof

Difficulties due to unbounded domain

In the case where the state space M is bounded we can use a
standard ”path method” to prove that there exists a constant
C > 0 such that

Vh(f ) ≤
C

h2
Eh(f ).

Indeed we can decompose any geodesic curve γ from m to m′ into
a finite reunion of small curves of length h. Using some change of
variable we can prove the lower bound for the spectral gap.
Here, the surface M is unbounded and this argument fails.



Introduction The case of compact manifolds Random walk on surfaces with hyperbolic ends Euclidean space case

Sketch of proof

Estimate gluing

For 0 ≤ a < c < b ≤ ∞, define

V
[a,b]
h (f ) =

1

2

∫

t(m),t(m′)∈[a,b]
(f (m) − f (m′))2dνh(m)dνh(m

′),

E
[a,b]
h (f ) =

1

2Zh

∫

t(m′),t(m)∈[a,b],d(m,m′)<h

(f (m) − f (m′))2dvg (m)dvg (m′),

Ic
h(f ) =

1

2

∫

t(m)∈[a,c],t(m′)∈[c,b]
(f (m) − f (m′))2dνh(m)dνh(m

′)

Then, we have

V
[a,b]
h (f ) = V

[a,c]
h (f ) + V

[c,b]
h (f ) + 2Ic

h (f )

and we want to control Ih with respect to the variance.
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Sketch of proof

Using the fact that

Ic
h(f ) =

1

νh(Cc)

∫

m′′∈Cc

Ic
h (f )dνh(m

′′)

where Cc := {m ∈ M; c − 1 < t(m) < c + 1}, we get

Ic
h(f ) ≤

2νh(t(m) ∈ [c , b])

νh(Cc )
V

[a,c+1]
h (f )+

2νh(t(m) ∈ [a, c])

νh(Cc)
V

[c−1,b]
h (f )

for any a + 1 ≤ c ≤ b − 1. Taking a = 0, c = t0 and b = +∞, we
obtain

Vh(f ) ≤ C
(

V
[0,t0+1]
h (f ) + et0V

[t0−1,∞]
h (f )

)
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Sketch of proof

On the other hand, we have clearly

Eh(f ) ≥
1

2

(

E
[0,t0+1]
h (f ) + E

[t0−1,∞]
h (f )

)

.

Hence, we are reduced to prove that

E
[0,t0+1]
h (f ) ≥ Ch2V

[0,t0+1]
h (f )

E
[t0−1,∞]
h (f ) ≥ Ch2et0V

[t0−1,∞]
h (f ).

We will concentrate on the second inequality (which corresponds
to the cusp part).
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Sketch of proof

Reduction to the study of a random walk on euclidean

space

Assume that t0 = 1 and consider the surface W := Rt × (R/ℓZ)y .
Then E0 can be seen as the subset {t > 1} of W and the metric g
can be extended to W by g := dt2 + e−2µ(t)dy2 where µ(t) is a
smooth function on R equal to |t| on R \ [−1, 1] and such that
e−µ(t) ≥ c0 when t ∈ [−1, 1] for some c0 > 0.
Let us introduce the random walk operator associated to W :

TW
h f (m) =

1

|Bh(m)|

∫

Bh(m)
f (m′)dvg (m′)

and the associated functionals:

EW
h (f ) = 〈(1 − TW

h )f , f 〉L2(W ,dνW
h

)

and
VW

h (f ) = ‖f ‖2
L2(W ,dνW

h
)
− 〈f , 1〉2

L2(W ,dνW
h

)
.
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Sketch of proof

For any f ∈ L2(E0) we denote f s the function obtained by
extending f by symmetry t 7→ 1 − t. One can see easily that

V
[0,∞)
h (f ) ≤ VW

h (f s)

and
EW

h
2

(f s) ≤ CE
[0,∞)
h (f ).

Hence, it remains to show the following

Proposition

There exists C > 0 and h0 > 0 such that for all f ∈ L2(W ) and for
all h ∈]0, h0], we have:

Ch2VW
h (f ) ≤ EW

h (f )
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Sketch of proof

Let us decompose the operator TW
h in fourier series. First, observe

that

Bh(t, y) := {(t ′, y ′); |t − t ′| ≤ h, |y − y ′| ≤ αh(t, t
′)}

for a certain function αh(t, t
′) satisfying

αh(t, t
′) ≤ ℓ/2 for all t, t ′, h.

αh(t, t
′) ≥ ǫh for some ǫ > 0 and for |t| < 1 and

|t − t ′| < h/2.

For t ≥ t0 + 1,

αh(t, t
′) = min

(

et
√

sinh(h)2 − (cosh(h) − et′−t)2, ℓ/2
)
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Sketch of proof

For f (t, y) =
∑

k∈Z
fk(t)e2ikπy/ℓ, we have

TW
h f =

∑

k∈Z

(TW
h,k fk)(t)e2iπky/ℓ

with

TW
h,k fk(t) =

2

|Bh(t)|

∫ t+h

t−h

fk(t ′)
sin(2πkαh(t, t

′)/ℓ)

2πkαh(t, t ′)/ℓ
αh(t, t

′)e−µ(t′)dt ′

and

TW
h,0f0(t) =

2

|Bh(t)|

∫ t+h

t−h

αh(t, t
′)f0(t

′)e−µ(t′)dt ′
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Sketch of proof

From the inequality αh(t, t
′) ≥ ǫh for |t| < 1 and |t − t ′| < h/2,

we deduce easily that for any k 6= 0 one has

||TW
h,k f ||L2(R,|Bh(t)|e−µ(t)dt) ≤ (1 − ǫh2)||f ||L2(R,|Bh(t)|e−µ(t)dt).

Hence, it remains to show a spectral gap for TW
h,0 acting on

L2(R, e−µ(t)dt):

TW
h,0f0(t) =

2

|Bh(t)|

∫ t+h

t−h

αh(t, t
′)f0(t

′)e−µ(t′)dt ′
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Sketch of proof

Let ρ(t) = e−µ(t) and denote introduce the associated probability
measure π = ρ(x)dx/(

∫

R
ρ(y)dy). Consider the random walk

operator on R defined by

K ρ
h (f )(t) =

1

π(Bh(t))

∫ t+h

t−h

f (t)dπ(t).

Then, using the structure of αh and |Bh(t)| we can show that

TW
h,0f0 ≃ K ρ

h (f0).

To complete the proof, it suffices to use the fact that operators of
type K ρ

h have spectral gap g(h) ≃ ch2. This is proved in the next
section.
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Framework and results

Semiclassical random walk on Euclidean space

Let ρ ∈ C 1(Rd) be a strictly positive bounded function such that
dπ = ρ(x)dx is a probability measure. Consider the random-walk
operator defined by

Thf (x) =
1

π(Bh(x))

∫

Bh(x)
f (x ′)dπ(x ′).

and its stationnary measure

dνh =
π(Bh(x))ρ(x)

Zh

dx

where Zh is chosen so that dνh is a probability on R
d .
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Framework and results

Definition

We say that a density ρ is smooth tempered of exponential type
(STE) if ρ is smooth and if there are some positive numbers
(Cα)α∈Nd , R > 0, κ0 > 0, such that

∀|x | ≥ R , |∂α
x ρ(x)| ≤ Cαρ(x)

and
∀|x | ≥ R , ∆ρ(x) ≥ κ0ρ(x).

Definition

We say that a density ρ is gaussian if ρ(x) = (α
π )

d
2 e−α|x |2 for some

α > 0.
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Framework and results

In order to describe the eigenvalues of Th, let us introduce the
operator

Lρ = −∆ + V (x)

with V (x) := ∆ρ(x)
ρ(x) . Observe that :

Lρ is non-negative on L2(Rd) and 0 is a simple eigenvalue
associated to ρ ∈ L1 ∩ L∞ ⊂ L2.

ρ gaussian =⇒ σess(Lρ) = ∅.

ρ STE =⇒ σess(Lρ) = [κ,+∞[ with κ = lim inf |x |→∞
∆ρ(x)
ρ(x) .

In the following, we will denote 0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λk . . .
the L2(Rd , dx) eigenvalues of Lρ and
1 = µ0(h) > µ1(h) ≥ . . . µk(h) ≥ . . . those of Th.
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Framework and results

Spectral analysis in the Gaussian case

Theorem (Guillarmou-Michel, Math. Res. Letters, 2011)

Suppose that ρ is gaussian, then the operator Th is compact and
for any k ∈ N fixed,

µk(h) = 1 −
λk

2(d + 2)
h2 + Ok(h4).

Moreover, there exists τ0 > 0 such that for any τ ∈ [0, τ0], the
number N(τ, h) of eigenvalues of Th in [1 − τ, 1] satisfies

N(τ, h) ≤ C (1 + τh−2)d .
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Framework and results

Spectral analysis in the tempered case

Theorem (Guillarmou-Michel, Math. Res. Letters, 2011)

Suppose that ρ is STE, then:

the essential spectrum of Th on L2(Rd , dνh) is contained in
[M,Ah] where M > −1 and Ah = 1 − κ

2(d+2)h
2 + O(h4).

for all α ∈]0, 1[, if λk ∈ [0, ακ], then

µk(h) = 1 −
λk

2(d + 2)
h2 + Ok,α(h4).
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Sketch of proof

Sketch of proof

The operator Th acting on L2(Rd , dπ) is unitarily conjugated
to T̃h : L2(Rd , dx) → L2(Rd , dx) defined by

T̃h = ah(x)Γd (h2∆)ah(x)

with ah(x) = (αdhdρ(x)/π(Bh(x)))1/2.

The function ah enjoys nice estimates. For instance, in the
gaussian case

∃C ,R > 0,∀|x | ≥ R ,
1

a2
h(x)

≥ max(1 + Ch2|x |2,Ceh|x |)

Using this inequality and properties of the function Γd , one
can show some spatial-decay estimate of the eigenfuntions of
Th. This allow to over come the lack of compactness of R

d
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Convergence to equilibrium

Total variation estimates: Upper bound

Theorem (Guillarmou-Michel, Math. Res. Letters, 2011)

There exist C > 0 and h0 > 0 such that for all n ∈ N, h ∈]0, h0]
and τ > 0,

sup
|x |<τ

‖tn
h (x , dy) − dνh‖TV ≤ Cq(τ, h)e−ng(h)

where q(τ, h) = eατ(τ+3h) if ρ = (α
π )

d
2 e−α|x |2 is gaussian and

q(τ, h) = h−
d
2 sup|x |<τ

1
ρ(x) if ρ is STE.
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Convergence to equilibrium

Total variation estimates: Lower bound

The following theorem shows that contrary to compact case,
convergence (for the total variation distance) can not be uniform
with respect to the starting point x .

Theorem (Guillarmou-Michel, Math. Res. Letters, 2011)

There exists C > 0 such that for all n ∈ N, h ∈]0, 1], τ > 0, we
have

inf
|x |≥τ+(n+1)h

‖tn
h (x , dy) − dνh‖TV ≥ 1 − Cp(τ)

where p(τ) = e−2ατ(τ−h) if ρ = (α
π )

d
2 e−α|x |2 is gaussian and

p(τ) =
∫

|y |≥τ ρ(y)2dy if ρ is STE.

Proof: Compute (T n
h − Π0,h)fτ with

fτ (x) = 1l[τ,+∞[(|x |) − 1l[0,τ [(|x |)
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