| Introduction | The case of compact manifolds | Random v |
|--------------|-------------------------------|----------|
|              |                               |          |

Random walk on surfaces with hyperbolic ends

Euclidean space case

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Semiclassical Random Walk on Manifolds

#### L. Michel

Laboratoire J.-A. Dieudonné Université de Nice

Probability and Related Aspects Alba Iulia, Romania May 22 - 26, 2012

| - | n | tr | Ô | d | П | C | tι | 0 | n |  |
|---|---|----|---|---|---|---|----|---|---|--|
|   |   |    |   |   |   |   |    |   |   |  |

The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Plan

## 1 Introduction

- 2 The case of compact manifolds
  - Spectral analysis
  - Convergence to stationary measure
  - Ingredient of proof

### 8 Random walk on surfaces with hyperbolic ends

- Framework and results
- Sketch of proof

#### 4 Euclidean space case

- Framework and results
- Sketch of proof
- Convergence to equilibrium

# 1 Introduction

### The case of compact manifolds

- Spectral analysis
- Convergence to stationary measure
- Ingredient of proof

#### 3 Random walk on surfaces with hyperbolic ends

- Framework and results
- Sketch of proof

#### 4 Euclidean space case

- Framework and results
- Sketch of proof
- Convergence to equilibrium

| Intr | oduc | tion  |
|------|------|-------|
|      | Juuc | LIUII |
|      |      |       |

The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic end

Euclidean space case

# General framework

#### Let

- (M,g) be a Riemanian manifold,  $d_g x$  be the volume form and  $d_g(x, y)$  the associated distance.
- $\rho(x)$  be a measurable, bounded, strictly positive function such that  $d\pi(x) = \rho(x)d_gx$  is a probability measure on M.

Let us define the semiclassical random walk operator on the space of bounded continuous function, by

$$T_h f(x) = \frac{1}{\pi(B_h(x))} \int_M \mathbf{1}_{B_h(x)}(y) f(y) d\pi(y)$$

where h > 0 is a small parameter and  $B_h(x)$  is the geodesic ball centred in x and with radius h. Motivations: These operators appear in probabilistic framework since they are associated to natural random walk on M.

The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

▲日▼▲□▼▲□▼▲□▼ □ ののの

The kernel of  $T_h$  is given by

$$t_h(x, dy) = \frac{\mathbf{1}_{\{d_g(x, y) \le h\}}}{\pi(B_h(x))} d\pi(y), \, \forall x \in \Omega.$$

This is a Markov kernel  $(t_h(x, M) = T_h(1)(x) = 1, \forall x \in M)$ .

#### Definition

Let  $\nu_h$  be a probability measure on M. We say that  $\nu_h$  is stationnary for  $t_h(x, dy)$  if  $T_h^t(\nu_h) = \nu_h$ , where  $T_h^t$  denotes the transpose operator of  $T_h$  acting on Borel measure.

One can see easily that  $t_h(x, dy)$  admits the following stationnary measure

$$d\nu_h = \frac{\pi(B_h(x))}{Z_h} d\pi(x)$$

where  $Z_h$  is a normalizing constant.

The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

# Convergence to stationnary measure

Given a Markov kernel k(x, dy) on a metric space (X, d) and K the associated operator, we denote  $k^n(x, dy)$  the kernel of the operator  $K^n$ .

#### Theorem (cf Feller)

Assume that k(x, dy) is a strictly positive and regular Markov kernel and that  $\pi$  is a stationnary measure for k. Then,

$$\forall x \in X, \forall B \in \mathcal{B}, \lim_{n \to \infty} k^n(x, B) = \pi(B)$$

*k* strictly positive means that there exists  $p \in \mathbb{N}$  such that  $k^p(x, A) > 0$  for all open subset *A*. Think the regularity condition as, k(x, dy) having a continuous density.

| Introduction | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space ca |
|--------------|-------------------------------|----------------------------------------------|--------------------|
|              |                               |                                              |                    |
|              |                               |                                              |                    |

#### Question

What can we say about the convergence speed?

The answer is closely related to precise study of the spectral theory of  $T_h$ .

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

◆□> ◆□> ◆三> ◆三> ・三 のへで

# 1 Introduction

# 2 The case of compact manifolds

- Spectral analysis
- Convergence to stationary measure
- Ingredient of proof

#### 3 Random walk on surfaces with hyperbolic ends

- Framework and results
- Sketch of proof

#### 4 Euclidean space case

- Framework and results
- Sketch of proof
- Convergence to equilibrium

| Introduction      | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-------------------|-------------------------------|----------------------------------------------|----------------------|
| Spectral analysis | 5                             |                                              |                      |
| Framev            | vork                          |                                              |                      |

Assume that *M* is a compact manifold without boundary and that  $\rho = 1/vol(M)$ . We prove easily the following facts:

- $T_h$  is self-adjoint on  $L^2(M, d\nu_h)$ .
- *T<sub>h</sub>* is compact
- For all  $p \in [1, \infty]$ ,  $||T_h||_{L^p \to L^p} = 1$ .

Hence, the spectrum of  $T_h$  is made of eigenvalues and  $\{0\}$  is the only possible accumulation point. We denote

 $1 = \mu_0(h) \ge \mu_1(h) \ge \mu_2(h) \ge ... \ge \mu_k(h)... > 0$ 

its positive eigenvalues,  $(e_k^h)_{k \in \mathbb{N}}$  the associated  $L^2$ -normalized eigenfunctions.

| Introduction       | The case of compact manifolds<br>00000000 | Random walk on surfaces with hyperbolic ends | Euclidean space case |  |
|--------------------|-------------------------------------------|----------------------------------------------|----------------------|--|
| Spectral analysi   | s                                         |                                              |                      |  |
| Reference operator |                                           |                                              |                      |  |

We use the following notations:

- $\Delta_g$  is the (negative) Laplace-Beltrami operator on (M, g).
- $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le ... \le \lambda_n \le ...$  denotes the spectrum of the self adjoint operator  $-\Delta_g$  on  $L^2(M, d_g x)$ .
- for  $\xi\in \mathbb{R}^d$   $G_d(\xi):=rac{1}{lpha_d}\int_{|y|\leq 1}e^{iy\xi}dy$

where  $\alpha_d$  = volume of the unit ball in  $\mathbb{R}^d$ .

• the function  $G_d$  is radial and we let  $\Gamma_d$  be such that  $G_d(\xi) = \Gamma_d(|\xi|^2)$ . Then,  $\Gamma_d$  is analytic and near s = 0 we have

$$\Gamma_d(s) = 1 - \frac{s}{2(d+2)} + \mathcal{O}(s^2)$$

The case of compact manifolds

Random walk on surfaces with hyperbolic ends

Euclidean space case

Spectral analysis

# An explicit example: the flat torus

• Suppose that  $M = (\mathbb{R}/2\pi\mathbb{Z})^d$  is the flat *d*-dimensional torus endowed with the Euclidean metric. Then

$$T_h = \Gamma_d(-h^2 \Delta_g).$$

Indeed, using Fourier expansion, it suffices to show that  $T_h f_k = \Gamma_d(-h^2 \Delta_g) f_k$  with  $f_k(x) = e^{i \langle k, x \rangle}$ ,  $k \in \mathbb{Z}^d$ . Using the flatness of the metric, it comes

$$T_h f_k(x) = \frac{1}{c_d h^d} \int_{B(x,h)} e^{i\langle k, y \rangle} dy = \frac{e^{i\langle k, x \rangle}}{c_d} \int_{B(0,1)} e^{i\langle hk, u \rangle} du$$
$$= \Gamma_d(h^2 |k|^2) e^{i\langle k, x \rangle} = \Gamma_d(-h^2 \Delta_g) f_k(x)$$

• Using the Taylor expansion of  $\Gamma_d$  in 0, this implies for all  $k \in \mathbb{N}$ :

$$\mu_k(h) = 1 - \frac{\lambda_k}{2(d+2)}h^2 + O(h^4)$$

| Introduction      | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-------------------|-------------------------------|----------------------------------------------|----------------------|
| Spectral analysis | 0000000                       | 000000000000000                              | 0000000              |

#### Theorem [Lebeau-Michel, Annals of Probability, 2010]

Assume that M is compact without boundary. Let  $h_0 > 0$  be small. There exist  $\gamma < 1$  such that for any  $h \in ]0, h_0]$  one has  $Spec(T_h) \subset [-\gamma, 1]$  and 1 is a simple eigenvalue of  $T_h$ . Moreover, for any  $k \in \mathbb{N}$ ,

$$\mu_k(h) = 1 - rac{\lambda_k}{2(d+2)}h^2 + O_k(h^4)$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

| Introduction The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|--------------------------------------------|----------------------------------------------|----------------------|
| Spectral analysis                          |                                              | 0000000              |

#### Theorem (part 2)

Let  $N(\tau, h) = card(Spec(T_h) \cap [1 - \tau, 1])$ . For any  $\delta \in ]0, 1[$ , there exist C > 0 s.t. for any  $h \in ]0, h_0]$  and any  $\tau \in [0, \delta]$ , we have

$$|N(\tau,h) - (2\pi h)^{-d} \int_{\Gamma_d(|\xi|^2_x) \in [1- au,1]} dx d\xi| \le C(1+ au h^{-2})^{\frac{d-1}{2}}$$

In particular, one has

$$N(\tau,h) \leq C(1+\tau h^{-2})^{d/2}$$

Suppose that  $\mu_k(h) \in [\delta, 1]$ , then the associated eigenfuction  $e_k^h$  satisfies

$$\|e_k^h\|_{L^{\infty}} \leq C \Big(1 + \frac{1 - \mu_k(h)}{h^2}\Big)^{d/4} \|e_k^h\|_{L^2}.$$

The total variation distance between two probability measures  $\mu,\nu$  is defined by

$$\|\mu-\nu\|_{TV} := \sup_{A \text{ measurable}} |\mu(A)-\nu(A)| = \frac{1}{2} \sup_{f \in L^{\infty}, \|f\| \le 1} |\int f d\mu - \int f d\nu|$$

In particular,

$$\sup_{x \in M} \|t_h^n(x, dy) - d\nu_h(y)\|_{TV} = \frac{1}{2} \|T_h^n - \Pi_0\|_{L^{\infty} \to L^{\infty}}$$

where  $\Pi_0$  denotes the othogonal projection on constant functions in  $L^2(M, d\nu_h)$ .

Introduction The case of compact manifolds

Random walk on surfaces with hyperbolic ends

Euclidean space case

▲日▼▲□▼▲□▼▲□▼ □ ののの

Convergence to stationary measure

#### Theorem [Lebeau-Michel, AOP, 2010]

Let  $h_0 > 0$  small. There exists C > 0 such that for all  $h \in ]0, h_0]$  the following holds true :

$$e^{-\gamma'(h)nh^2} \leq 2 \sup_{x \in \mathcal{M}} \|t_h^n(x, dy) - d\nu_h\|_{TV} \leq C e^{-\gamma(h)nh^2} \quad \text{for all} \quad n$$

Here  $\gamma(h), \gamma'(h)$  are positive functions s.t.  $\gamma(h) \simeq \gamma'(h) \simeq \frac{\lambda_1}{2(d+2)}$ when  $h \to 0$ .

The case of compact manifolds

Random walk on surfaces with hyperbolic ends

Euclidean space case

Ingredient of proof

# Let $\phi \in C_0^\infty(\mathbb{R})$ be a smooth function equal to 1 near 0.

#### Lemma

The operator 
$$A_h = h^{-2}(T_h - \Gamma_d(h^2 \Delta_g))\phi(h^2 \Delta_g)$$
 is an   
*h*-pseudodifferential operator whose principal symbol  $a_0$  verifies

$$a_0(x,\xi) = \left(\frac{S(x)}{3}|\xi|_x^2(\Gamma_d''(0) - \Gamma_d'(0)^2) + \frac{\Gamma_d''(0)}{3}Ric(x)(\xi,\xi)\right)\phi(|\xi|_x^2) + \mathcal{O}(\xi^3)$$

where Ric(x) and S(x) denotes the Ricci tensor and the scalar curvature at point x.

Using this Lemma, one can shows that for any  $(\lambda_k, e_k)$  s.t.  $-\Delta e_k = \lambda_k e_k$ , one has

$$T_h e_k = (1 - rac{h^2}{2(d+2)}\lambda_k + O(h^4))e_k.$$

Hence, to each eigenvalue  $\lambda_k$  of  $-\Delta$  corresponds at least one eigenvalue  $\mu_l(h)$  of  $T_h$  such that  $\mu_l(h) = 1 - \frac{h^2}{2(d+2)}\lambda_k + O(h^4)$ .

| ntroduction       | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-------------------|-------------------------------|----------------------------------------------|----------------------|
|                   | 00000000                      |                                              |                      |
| ngredient of proc | f                             |                                              |                      |

Using the preceding Lemma, on can show that for any k and any s > 0, there exists  $h_0 > 0$  such that the eigenfunctions  $(e_k^h)_{h \in ]0, h_0]}$  (normalized in  $L^2$ ), associated to the eigenvalue  $\mu_k(h)$  satisfy

$$\|e_k^h\|_{H^s(M)} \le C\Big(1 + \frac{1 - \mu_k(h)}{h^2}\Big)^{s/2}$$

Since *M* is compact and  $1 - \mu_k(h) = O(h^2)$ , this shows that the family  $(e_k^h)_{h \in ]0, h_0]}$  is compact in  $H^2$ . Hence, there exists  $h_n \to 0$ ,  $\lambda > 0$  and  $e_k \in H^2$  such that  $e_k^{h_n} \to e_k$ ,  $\mu_k(h_n) \to \lambda$  and

$$-\Delta e_k = \lambda e_k.$$

This shows that to each eigenvalue  $\mu_l(h)$  of  $T_h$  corresponds at least one eigenvalue  $\lambda_k$  of  $-\Delta$  such that  $\mu_l(h) = 1 - \frac{h^2}{2(d+2)}\lambda_k + O(h^4)$ .

◆□> ◆□> ◆三> ◆三> ・三 のへで

# 1 Introduction

# 2 The case of compact manifolds

- Spectral analysis
- Convergence to stationary measure
- Ingredient of proof

### 8 Random walk on surfaces with hyperbolic ends

- Framework and results
- Sketch of proof

#### 4 Euclidean space case

- Framework and results
- Sketch of proof
- Convergence to equilibrium

Introduction The ca

The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

#### Framework and results

# Semiclassical random walk on surfaces with hyperbolic ends

Consider a surface (M, g) with finite volume and finitely many ends  $E_1, \ldots E_n$ , with  $E_i$  isometric to a hyperbolic cusp isometric to  $\{(x, y) \in [x_i, \infty[\times(\mathbb{R}/\ell\mathbb{Z})\} \text{ endowed with the metric } g = \frac{dx^2 + dy^2}{x^2}$ for some  $x_i > 0$ .

Assume that  $\rho = 1$  and let  $\pi = d_g x / vol(M)$ . Since M has finite volume, the kernel

$$t_h(x, dy) = \frac{1}{\pi(B_h(x))} \, \mathbb{1}_{d_g(x, y) < h} \, d\pi(y)$$

is a Markov kernel and the probability  $d\nu_h = \frac{\pi(B_h(x))}{Z_h} d\pi(x)$  is well defined. Moreover,  $d\nu_h$  is stationnary for  $t_h(x, dy)$ .



Let  $T_h$  be the operator with kernel  $t_h(x, dy)$ :

$$T_h f(x) = \frac{1}{\pi(B_h(x))} \int_M \mathbf{1}_{B_h(x)}(y) f(y) d\pi(y)$$

One can see easily that

- $T_h$  is self-adjoint on  $L^2(M, d\nu_h)$
- $T_h$  acts on any  $L^p$ ,  $p \in [1, \infty]$  with norm 1.
- $T_h$  is not compact on  $L^2$  anymore (since M is unbounded).

The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

Framework and results

#### Theorem [Christianson-Guillarmou-Michel, Ann. H. Poincaré, 2011]

There exists  $h_0 > 0$  and  $c, \delta > 0$  such that the following hold true:

i) For any  $h \in ]0, h_0]$ , the essential spectrum of  $T_h$  is given by the interval

$$I_h = \left[\frac{h}{\sinh(h)}A, \frac{h}{\sinh(h)}
ight]$$

where 
$$A = \min_{x>0} \frac{\sin(x)}{x} > -1$$
.

- ii) For any  $h \in ]0, h_0]$ ,  $Spec(T_h) \cap [-1, -1 + \delta] = \emptyset$ .
- iii) For any  $h \in ]0, h_0]$ , 1 is a simple eigenvalue of  $K_h$  and the spectral gap  $g(h) := dist(Spec(T_h) \setminus \{1\}, 1)$  enjoys

$$ch^2 \leq g(h) \leq \min\left(rac{(\lambda_1 + lpha(h))h^2}{8}, 1 - rac{\sinh(h)}{h}
ight)$$

where  $\lambda_1$  is the smallest non-zero  $L^2$  eigenvalue of  $\Delta_g$  on M and  $\alpha(h)$  a function tending to 0 as  $h \to 0$ .

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-----------------|-------------------------------|----------------------------------------------|----------------------|
|                 |                               | 000000000000000000000000000000000000000      |                      |
| Sketch of proof |                               |                                              |                      |

- Assume to simplify that there is only one cusp. The surface M can be written  $M = M_0 \cup E_0$  with  $M_0$  compact and  $E_0$  isometric to  $\{(x, y) \in [x_0, \infty[\times(\mathbb{R}/\ell\mathbb{Z})\} \text{ endowed with the metric } g = \frac{dx^2 + dy^2}{x^2}$ .
- Setting  $x = e^t$ ,  $E_0 = \{(t, y) \in ]t_0, \infty[\times(\mathbb{R}/\ell\mathbb{Z})\}$  is endowed with the metric  $g = dt^2 + e^{-2t}dy^2$ .
- The function  $m \in E_0 \mapsto t(m)$  can be extended to a smooth function on the whole surface M such that  $0 < t(m) < t_0$  for all  $m \in M_0$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The case of compact manifold: 000000000 Random walk on surfaces with hyperbolic ends

Euclidean space case

Sketch of proof

# Structure of geodesic balls in the cusp

In  $\mathbb{H}^2$ , the hyperbolic ball centered in  $(e^t, y)$  and with radius h > 0 is the Euclidean ball centered in  $(e^t \cosh(h), y)$  and with radius  $e^t \sinh(h)$ .



Figure: The hyperbolic ball of radius h is tangent to itself when the center is at  $t = \log(\ell/2\sinh(h))$ . For  $t > \log(\ell/2\sinh(h))$  the ball overlaps on itself.

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends<br>○○○○○●○○○○○○○○○ | Euclidean space case |
|-----------------|-------------------------------|-----------------------------------------------------------------|----------------------|
| Sketch of proof |                               |                                                                 |                      |
| Conseq          | uence:                        |                                                                 |                      |

- For f smooth supported in t < t<sub>h</sub> := log(ℓ/2 sinh(h)), T<sub>h</sub>f is well approximated by Γ<sub>d</sub>(h<sup>2</sup>Δ<sub>g</sub>)f, but it is not the case for f supported in t ≥ t<sub>h</sub>.
- The function  $(e^t, y) \mapsto |B_h(e^t, y)|$  is singular at  $t = t_h$ . This prevents to describe  $T_h$  as a pseudo with regular symbol.

• We use instead a variational approach.

| Introduction | The case of compact manifolds | Random walk on surfa                    |
|--------------|-------------------------------|-----------------------------------------|
|              |                               | 000000000000000000000000000000000000000 |

walk on surfaces with hyperbolic ends

Euclidean space case

Sketch of proof

# Variational approach

Let us define the variance

$$\mathcal{V}_h(f) = \|f\|^2_{L^2(\mathcal{M}, d
u_h)} - \langle f, 1 
angle^2_{L^2(\mathcal{M}, d
u_h)}.$$

and the Dirichlet form assiocated to our problem

 $\mathcal{E}_h(f) = \langle (1 - T_h)f, f \rangle_{L^2(M, d\nu_h)}$ 

The spectral gap g(h) is the the best constant such that the following inequality holds true:

$$\mathcal{V}_h(f) \leq rac{1}{g(h)} \mathcal{E}_h(f)$$

Observe also that

 $\mathcal{E}_{h}(f) = \frac{1}{2Z_{h}} \int_{M \times M} \mathbb{1}_{d_{g}(m,m') < h}(f(m) - f(m'))^{2} dv_{g}(m) \times dv_{g}(m')$  $\mathcal{V}_{h}(f) = \frac{1}{2} \int_{M \times M} (f(m) - f(m'))^{2} d\nu_{h}(m) d\nu_{h}(m')$  Introduction The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

Sketch of proof

# Difficulties due to unbounded domain

In the case where the state space M is bounded we can use a standard "path method" to prove that there exists a constant C > 0 such that

 $\mathcal{V}_h(f) \leq \frac{C}{h^2} \mathcal{E}_h(f).$ 

Indeed we can decompose any geodesic curve  $\gamma$  from *m* to *m'* into a **finite** reunion of small curves of length *h*. Using some change of variable we can prove the lower bound for the spectral gap. Here, the surface *M* is unbounded and this argument fails.

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends<br>○○○○○○○●○○○○○○○ | Euclidean space case |
|-----------------|-------------------------------|-----------------------------------------------------------------|----------------------|
| Sketch of proof |                               |                                                                 |                      |
| Estimat         | te gluing                     |                                                                 |                      |

For 
$$0 \leq a < c < b \leq \infty$$
, define

$$\begin{aligned} \mathcal{V}_{h}^{[a,b]}(f) &= \frac{1}{2} \int_{t(m),t(m')\in[a,b]} (f(m) - f(m'))^{2} d\nu_{h}(m) d\nu_{h}(m'), \\ \mathcal{E}_{h}^{[a,b]}(f) &= \frac{1}{2Z_{h}} \int_{t(m'),t(m)\in[a,b],d(m,m')$$

Then, we have

$$\mathcal{V}_h^{[a,b]}(f) = \mathcal{V}_h^{[a,c]}(f) + \mathcal{V}_h^{[c,b]}(f) + 2\mathcal{I}_h^c(f)$$

and we want to control  $\mathcal{I}_h$  with respect to the variance.

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-----------------|-------------------------------|----------------------------------------------|----------------------|
|                 |                               | 000000000000000                              |                      |
| Sketch of proof |                               |                                              |                      |

Using the fact that

$$\mathcal{I}_h^c(f) = \frac{1}{\nu_h(C_c)} \int_{m'' \in C_c} \mathcal{I}_h^c(f) d\nu_h(m'')$$

where  $C_c := \{m \in M; c - 1 < t(m) < c + 1\}$ , we get

$$\mathcal{I}_{h}^{c}(f) \leq \frac{2\nu_{h}(t(m) \in [c, b])}{\nu_{h}(C_{c})} \mathcal{V}_{h}^{[a, c+1]}(f) + \frac{2\nu_{h}(t(m) \in [a, c])}{\nu_{h}(C_{c})} \mathcal{V}_{h}^{[c-1, b]}(f)$$

for any  $a + 1 \le c \le b - 1$ . Taking a = 0,  $c = t_0$  and  $b = +\infty$ , we obtain

$$\mathcal{V}_h(f) \leq C\Big(\mathcal{V}_h^{[0,t_0+1]}(f) + e^{t_0}\mathcal{V}_h^{[t_0-1,\infty]}(f)\Big)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-----------------|-------------------------------|----------------------------------------------|----------------------|
|                 |                               | 0000000000000000                             |                      |
| Sketch of proof |                               |                                              |                      |

On the other hand, we have clearly

$$\mathcal{E}_h(f) \geq rac{1}{2} \Big( \mathcal{E}_h^{[0,t_0+1]}(f) + \mathcal{E}_h^{[t_0-1,\infty]}(f) \Big).$$

Hence, we are reduced to prove that

• 
$$\mathcal{E}_{h}^{[0,t_{0}+1]}(f) \geq Ch^{2}\mathcal{V}_{h}^{[0,t_{0}+1]}(f)$$
  
•  $\mathcal{E}_{h}^{[t_{0}-1,\infty]}(f) \geq Ch^{2}e^{t_{0}}\mathcal{V}_{h}^{[t_{0}-1,\infty]}(f)$ 

We will concentrate on the second inequality (which corresponds to the cusp part).

Introduction The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

#### Sketch of proof

# Reduction to the study of a random walk on euclidean space

Assume that  $t_0 = 1$  and consider the surface  $W := \mathbb{R}_t \times (\mathbb{R}/\ell\mathbb{Z})_y$ . Then  $E_0$  can be seen as the subset  $\{t > 1\}$  of W and the metric g can be extended to W by  $g := dt^2 + e^{-2\mu(t)}dy^2$  where  $\mu(t)$  is a smooth function on  $\mathbb{R}$  equal to |t| on  $\mathbb{R} \setminus [-1, 1]$  and such that  $e^{-\mu(t)} \ge c_0$  when  $t \in [-1, 1]$  for some  $c_0 > 0$ . Let us introduce the random walk operator associated to W:

$$T_h^W f(m) = \frac{1}{|B_h(m)|} \int_{B_h(m)} f(m') dv_g(m')$$

and the associated functionals:

$$\mathcal{E}_{h}^{W}(f) = \langle (1 - T_{h}^{W})f, f \rangle_{L^{2}(W, d\nu_{h}^{W})}$$

and

$$\mathcal{V}_{h}^{W}(f) = \|f\|_{L^{2}(W,d\nu_{h}^{W})}^{2} - \langle f,1 \rangle_{L^{2}(W,d\nu_{h}^{W})}^{2}.$$

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-----------------|-------------------------------|----------------------------------------------|----------------------|
|                 |                               | 000000000000000000000000000000000000000      |                      |
| Sketch of proof |                               |                                              |                      |

For any  $f \in L^2(E_0)$  we denote  $f^s$  the function obtained by extending f by symmetry  $t \mapsto 1 - t$ . One can see easily that

 $\mathcal{V}_h^{[0,\infty)}(f) \leq \mathcal{V}_h^W(f^s)$ 

and

$$\mathcal{E}^W_{rac{h}{2}}(f^s) \leq C\mathcal{E}^{[0,\infty)}_h(f).$$

Hence, it remains to show the following

#### Proposition

There exists C > 0 and  $h_0 > 0$  such that for all  $f \in L^2(W)$  and for all  $h \in [0, h_0]$ , we have:

$$Ch^2 \mathcal{V}_h^W(f) \leq \mathcal{E}_h^W(f)$$

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-----------------|-------------------------------|----------------------------------------------|----------------------|
|                 |                               | 000000000000000000000000000000000000000      |                      |
| Sketch of proof |                               |                                              |                      |

Let us decompose the operator  $T_h^W$  in fourier series. First, observe that

$$B_h(t,y) := \{(t',y'); |t-t'| \le h, |y-y'| \le lpha_h(t,t')\}$$

for a certain function  $\alpha_h(t, t')$  satisfying

- $\alpha_h(t,t') \leq \ell/2$  for all t,t',h.
- $\alpha_h(t, t') \ge \epsilon h$  for some  $\epsilon > 0$  and for |t| < 1 and |t t'| < h/2.
- For  $t \geq t_0 + 1$ ,

$$\alpha_h(t,t') = \min\left(e^t \sqrt{\sinh(h)^2 - (\cosh(h) - e^{t'-t})^2}, \ell/2\right)$$

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-----------------|-------------------------------|----------------------------------------------|----------------------|
|                 |                               | 000000000000000000000000000000000000000      |                      |
| Sketch of proof |                               |                                              |                      |

For 
$$f(t, y) = \sum_{k \in \mathbb{Z}} f_k(t) e^{2ik\pi y/\ell}$$
, we have  
$$T_h^W f = \sum_{k \in \mathbb{Z}} (T_{h,k}^W f_k)(t) e^{2i\pi ky/\ell}$$

with

$$T_{h,k}^{W}f_{k}(t) = \frac{2}{|B_{h}(t)|} \int_{t-h}^{t+h} f_{k}(t') \frac{\sin(2\pi k\alpha_{h}(t,t')/\ell)}{2\pi k\alpha_{h}(t,t')/\ell} \alpha_{h}(t,t') e^{-\mu(t')} dt'$$

 $\mathsf{and}$ 

$$T_{h,0}^{W}f_{0}(t) = \frac{2}{|B_{h}(t)|} \int_{t-h}^{t+h} \alpha_{h}(t,t')f_{0}(t')e^{-\mu(t')}dt'$$

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-----------------|-------------------------------|----------------------------------------------|----------------------|
|                 |                               | 000000000000000000000000000000000000000      |                      |
| Sketch of proof |                               |                                              |                      |

From the inequality  $\alpha_h(t, t') \ge \epsilon h$  for |t| < 1 and |t - t'| < h/2, we deduce easily that for any  $k \ne 0$  one has

 $||T_{h,k}^W f||_{L^2(\mathbb{R},|B_h(t)|e^{-\mu(t)}dt)} \leq (1-\epsilon h^2)||f||_{L^2(\mathbb{R},|B_h(t)|e^{-\mu(t)}dt)}.$ 

Hence, it remains to show a spectral gap for  $T_{h,0}^W$  acting on  $L^2(\mathbb{R}, e^{-\mu(t)}dt)$ :

$$T_{h,0}^{W}f_{0}(t) = \frac{2}{|B_{h}(t)|} \int_{t-h}^{t+h} \alpha_{h}(t,t')f_{0}(t')e^{-\mu(t')}dt'$$

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-----------------|-------------------------------|----------------------------------------------|----------------------|
|                 |                               | 0000000000000000                             |                      |
| Sketch of proof |                               |                                              |                      |

Let  $\rho(t) = e^{-\mu(t)}$  and denote introduce the associated probability measure  $\pi = \rho(x) dx / (\int_{\mathbb{R}} \rho(y) dy)$ . Consider the random walk operator on  $\mathbb{R}$  defined by

$$\mathcal{K}_h^{\rho}(f)(t) = \frac{1}{\pi(B_h(t))} \int_{t-h}^{t+h} f(t) d\pi(t).$$

Then, using the structure of  $\alpha_h$  and  $|B_h(t)|$  we can show that

 $T_{h,0}^W f_0 \simeq K_h^{\rho}(f_0).$ 

To complete the proof, it suffices to use the fact that operators of type  $K_h^{\rho}$  have spectral gap  $g(h) \simeq ch^2$ . This is proved in the next section.

▲口 → ▲圖 → ▲注 → ▲注 → □注 □

# 1 Introduction

# 2 The case of compact manifolds

- Spectral analysis
- Convergence to stationary measure
- Ingredient of proof

#### 3 Random walk on surfaces with hyperbolic ends

- Framework and results
- Sketch of proof

### 4 Euclidean space case

- Framework and results
- Sketch of proof
- Convergence to equilibrium

The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

Framework and results

# Semiclassical random walk on Euclidean space

Let  $\rho \in C^1(\mathbb{R}^d)$  be a strictly positive bounded function such that  $d\pi = \rho(x)dx$  is a probability measure. Consider the random-walk operator defined by

$$T_hf(x)=\frac{1}{\pi(B_h(x))}\int_{B_h(x)}f(x')d\pi(x').$$

and its stationnary measure

$$d\nu_h = \frac{\pi(B_h(x))\rho(x)}{Z_h}dx$$

where  $Z_h$  is chosen so that  $d\nu_h$  is a probability on  $\mathbb{R}^d$ .

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|-----------------|-------------------------------|----------------------------------------------|----------------------|
| Framework and r | esults                        |                                              |                      |

#### Definition

We say that a density  $\rho$  is smooth tempered of exponential type (STE) if  $\rho$  is smooth and if there are some positive numbers  $(C_{\alpha})_{\alpha \in \mathbb{N}^d}$ , R > 0,  $\kappa_0 > 0$ , such that

$$orall |x| \geq R, \; |\partial^lpha_x 
ho(x)| \leq \mathcal{C}_lpha 
ho(x)$$

and

$$\forall |x| \geq R, \ \Delta \rho(x) \geq \kappa_0 \rho(x).$$

#### Definition

We say that a density  $\rho$  is gaussian if  $\rho(x) = (\frac{\alpha}{\pi})^{\frac{d}{2}} e^{-\alpha|x|^2}$  for some  $\alpha > 0$ .

| Introduction  | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case |
|---------------|-------------------------------|----------------------------------------------|----------------------|
| Framework and | results                       |                                              |                      |

In order to describe the eigenvalues of  $T_h$ , let us introduce the operator

 $L_{\rho} = -\Delta + V(x)$ 

with  $V(x) := \frac{\Delta \rho(x)}{\rho(x)}$ . Observe that :

L<sub>ρ</sub> is non-negative on L<sup>2</sup>(ℝ<sup>d</sup>) and 0 is a simple eigenvalue associated to ρ ∈ L<sup>1</sup> ∩ L<sup>∞</sup> ⊂ L<sup>2</sup>.

•  $\rho$  gaussian  $\Longrightarrow \sigma_{ess}(L_{\rho}) = \emptyset$ .

•  $\rho$  STE  $\implies \sigma_{ess}(L_{\rho}) = [\kappa, +\infty[ \text{ with } \kappa = \lim \inf_{|x|\to\infty} \frac{\Delta\rho(x)}{\rho(x)}]$ . In the following, we will denote  $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \ldots \le \lambda_k \ldots$  the  $L^2(\mathbb{R}^d, dx)$  eigenvalues of  $L_{\rho}$  and

 $1 = \mu_0(h) > \mu_1(h) \ge \ldots \mu_k(h) \ge \ldots$  those of  $T_h$ .

The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

▲日▼▲□▼▲□▼▲□▼ □ ののの

Framework and results

# Spectral analysis in the Gaussian case

#### Theorem (Guillarmou-Michel, Math. Res. Letters, 2011)

Suppose that  $\rho$  is gaussian, then the operator  $T_h$  is compact and for any  $k \in \mathbb{N}$  fixed,

$$\mu_k(h) = 1 - \frac{\lambda_k}{2(d+2)}h^2 + O_k(h^4).$$

Moreover, there exists  $\tau_0 > 0$  such that for any  $\tau \in [0, \tau_0]$ , the number  $N(\tau, h)$  of eigenvalues of  $T_h$  in  $[1 - \tau, 1]$  satisfies

$$N(\tau,h) \leq C(1+\tau h^{-2})^d.$$

The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

Framework and results

# Spectral analysis in the tempered case

#### Theorem (Guillarmou-Michel, Math. Res. Letters, 2011)

Suppose that  $\rho$  is STE, then:

- the essential spectrum of  $T_h$  on  $L^2(\mathbb{R}^d, d\nu_h)$  is contained in  $[M, A_h]$  where M > -1 and  $A_h = 1 \frac{\kappa}{2(d+2)}h^2 + O(h^4)$ .
- for all  $\alpha \in ]0,1[$ , if  $\lambda_k \in [0,\alpha\kappa]$ , then

$$\mu_k(h) = 1 - \frac{\lambda_k}{2(d+2)}h^2 + O_{k,\alpha}(h^4).$$

| Introduction    | The case of compact manifolds | Random walk on surfaces with hyperbolic ends | Euclidean space case<br>○○○○○●○○ |
|-----------------|-------------------------------|----------------------------------------------|----------------------------------|
| Sketch of proof |                               |                                              |                                  |
| Sketch          | of proof                      |                                              |                                  |

• The operator  $T_h$  acting on  $L^2(\mathbb{R}^d, d\pi)$  is unitarily conjugated to  $\tilde{T}_h : L^2(\mathbb{R}^d, dx) \to L^2(\mathbb{R}^d, dx)$  defined by

 $\tilde{T}_h = a_h(x) \Gamma_d(h^2 \Delta) a_h(x)$ 

with  $a_h(x) = (\alpha_d h^d \rho(x) / \pi(B_h(x)))^{1/2}$ .

• The function *a<sub>h</sub>* enjoys nice estimates. For instance, in the gaussian case

$$\exists C, R > 0, \forall |x| \ge R, \ rac{1}{a_h^2(x)} \ge \max(1 + Ch^2 |x|^2, Ce^{h|x|})$$

Using this inequality and properties of the function Γ<sub>d</sub>, one can show some spatial-decay estimate of the eigenfunctions of T<sub>h</sub>. This allow to over come the lack of compactness of ℝ<sup>d</sup>

The case of compact manifolds 00000000

Random walk on surfaces with hyperbolic ends

Euclidean space case

Convergence to equilibrium

# Total variation estimates: Upper bound

#### Theorem (Guillarmou-Michel, Math. Res. Letters, 2011)

There exist C > 0 and  $h_0 > 0$  such that for all  $n \in \mathbb{N}$ ,  $h \in ]0, h_0]$ and  $\tau > 0$ ,

$$\sup_{|x|<\tau} \|t_h^n(x,dy) - d\nu_h\|_{TV} \le Cq(\tau,h)e^{-ng(h)}$$

where  $q(\tau, h) = e^{\alpha \tau (\tau+3h)}$  if  $\rho = (\frac{\alpha}{\pi})^{\frac{d}{2}} e^{-\alpha|x|^2}$  is gaussian and  $q(\tau, h) = h^{-\frac{d}{2}} \sup_{|x| < \tau} \frac{1}{\rho(x)}$  if  $\rho$  is STE.

Euclidean space case

Convergence to equilibrium

# Total variation estimates: Lower bound

The following theorem shows that contrary to compact case, convergence (for the total variation distance) can not be uniform with respect to the starting point x.

Theorem (Guillarmou-Michel, Math. Res. Letters, 2011)

There exists C > 0 such that for all  $n \in \mathbb{N}$ ,  $h \in ]0,1]$ ,  $\tau > 0$ , we have

$$\inf_{|x|\geq \tau+(n+1)h} \|t_h^n(x,dy)-d\nu_h\|_{TV}\geq 1-C\rho(\tau)$$

where  $p(\tau) = e^{-2\alpha\tau(\tau-h)}$  if  $\rho = (\frac{\alpha}{\pi})^{\frac{d}{2}}e^{-\alpha|x|^2}$  is gaussian and  $p(\tau) = \int_{|y| \ge \tau} \rho(y)^2 dy$  if  $\rho$  is STE.

**Proof:** Compute  $(T_h^n - \Pi_{0,h})f_{\tau}$  with

 $f_{\tau}(x) = \mathbb{1}_{[\tau, +\infty[}(|x|) - \mathbb{1}_{[0,\tau[}(|x|))$