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Université de Nice

April 14, 2008

L. Michel (joint work with G. Lebeau) Semiclassical analysis of a random walk on a manifold



General framework
Analysis of the spectrum

Convergence to stationary measure
Sketches of proof

General framework

Let (M, g) be a smooth, compact, connected Riemannian manifold
of dimension d, equipped with its canonical volume form dgx . We
denote

dg (x , y) the Riemannian distance on M ×M.

for x ∈ M and h > 0, B(x , h) = {y , dg (x , y) ≤ h}
|B(x , h)| =

∫
B(x ,h) dgy

For any given h > 0, let Th be the operator acting on continuous
functions on M

(Thf )(x) =
1

|B(x , h)|

∫
B(x ,h)

f (y)dgy
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The Markov kernel

We denote by Kh the kernel of Th, which is given by

Kh(x , y)dgy =
1{dg (x ,y)≤h}

|B(x , h)|
dgy

for any x ∈ M, Kh(x , y)dgy is a probability measure on M
(hence, Kh is a Markov kernel)

Kh is associated to the following natural random walk (Xn) on
M: if the walk is at x , then it moves to a point y ∈ B(x , h)
with a probability given by Kh(x , y)dgy . For f ∈ C 0(M),
Th(f )(Xn) = E (f (Xn+1)|Xn). Or equivalently, for A,B
measurable,

P(Xn+1 ∈ A and Xn ∈ B) = E (Th(1A)(Xn)1B(Xn)).
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Basic properties

We define dνh = |B(x ,h)|
hdZh

dgx where Zh is chosen so that dνh is a
probability measure. We have the following facts:

Th is self-adjoint on L2(M, dνh).

Th is compact

For all p ∈ [1,∞], ‖Th‖Lp→Lp = 1.

Hence, the spectrum of Th is made of eigenvalues and {0} is the
only possible accumulation point. We denote

1 = µ0(h) ≥ µ1(h) ≥ µ2(h) ≥ ... ≥ µk(h)... > 0

the positive eigenvalues, (eh
k )k the associated normalized

eigenfunctions.
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Reference operator

We use the following notations:

∆g is the (negative) Laplace-Beltrami operator on (M, g).

0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ ... denotes the spectrum of
the self adjoint operator −∆g on L2(M, dgx).

for ξ ∈ Rd

Gd(ξ) =
1

cd

∫
|y |≤1

e iyξdy

where cd = volume of the unit ball inRd .

the function Gd is radial and we let Γd be such that
Gd(ξ) = Γd(|ξ|2). Then, Γd is analytic and near s = 0 we have

Γd(s) = 1− s

2(d + 2)
+O(s2)

We denote Γd ,h = Γd(−h2∆g ).
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Localization an Weyl asymptotics
Resolvent

Theorem 1 (part 1)

Let h0 > 0 be small. There exist γ < 1 such that for any h ∈]0, h0]
one has Spec(Th) ⊂ [−γ, 1] and 1 is a simple eigenvalue of Th.
For any given L > 0, there exists C such that for all h ∈]0, h0] and
all k ≤ L, one has

|1− µk(h)

h2
− λk

2(d + 2)
| ≤ Ch2
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Theorem 1 (part 2)

Let N(a, h) = card(Spec(Th)∩ [a, 1]). For any δ ∈]0, 1[, there exist
C > 0 s.t. for any h ∈]0, h0] and any τ ∈ [0, (1− δ)h−2], we have

|N(1− τh2, h)− (2πh)−d

∫
Γd (|ξ|2x )∈[1−τh2,1]

dxdξ| ≤ C (1 + τ)
d−1

2

In particular, one has

N(1− τh2, h) ≤ C (1 + τ)d/2

Denote eh
k the eigenfunction of Th associated to µk(h) ∈ [δ, 1],

and set τk(h) = h−2(1− µk(h)), then

‖eh
k‖L∞ ≤ C (1 + τk(h))d/4‖eh

k‖L2 .
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Let |∆h| be the positive, bounded, self adjoint operator on
L2(M, dνh) defined by

1− Th =
h2

2(d + 2)
|∆h|

Let F1 and F2 be the two closed subset of C,

F1 = {z , dist(z , spec(−∆g )) ≤ ε}
F2 = {z ,Re(z) ≥ A, |Im(z)| ≤ εRe(z)}

with ε > 0 small and A > 0 large. Let F = F1 ∪ F2 and U = C \ F .

Theorem 2

There exists C , h0 > 0 such that for all h ∈]0, h0], and all z ∈ U

‖(z − |∆h|)−1 − (z + ∆g )−1‖L2→L2 ≤ Ch2
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Case of the geodesic random walk
The Metropolized operator

Convergence to stationary measure

As Th1 = 1 and Th self-adjoint on L2(M, dνh) then dνh is a
stationary measure for Kh(x , y)dgy , ie: for all f ∈ C (M)∫

M
f (x)dνh(x) =

∫
M

Thf (x)dνh(x)

it follows from general theory of Markov chains that for all
x ∈ M, Kn

h (x , y)dgy → dνh(y), when n →∞, where
Kn

h (x , y)dgy denotes the kernel of T n
h .

Question: how fast does it converge?
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Case of the geodesic random walk
The Metropolized operator

Total variation estimate

The total variation distance between two probability measures µ, ν
is defined by

‖µ− ν‖TV = sup
A measurable

|µ(A)− ν(A)|

Theorem 3

Let h0 > 0 small. There exists C > 0 such that for all h ∈]0, h0]
the following holds true :

e−γ′(h)nh2 ≤ 2 sup
x∈M

‖Kn
h (x , y)dgy−dνh‖TV ≤ Ce−γ(h)nh2

for all n

Here γ(h), γ′(h) are positive functions s.t. γ(h) ' γ′(h) ' λ1
2(d+2)

when h → 0.
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The Metropolized operator

The Metropolized operator

If one is interested in sampling the probability measure
dµM = dgx/Vol(M), we can use a kernel modified according to
the Metropolis strategy. Remark that dµM = ρh(x)dνh with

ρh(x) = hdZh
Vol(M)|B(x ,h)| . We define

Mh(x , dy) = mh(x)δy=x +Kh(x , y)dgy

where the functions mh and Kh are defined by

Kh(x , y) := Kh(x , y)min
(ρh(y)

ρh(x)
, 1

)
=

1dg (x ,y)≤h

|B(x , h)|
min

( |B(x , h)|
|B(y , h)|

, 1
)

mh(x) = 1−
∫

M
Kh(x , y)dgy
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Case of the geodesic random walk
The Metropolized operator

Then, Mh(x , dy) is still a Markov kernel and the operator

Mh(f )(x) =

∫
M

f (y)Mh(x , dy)

is self-adjoint on the space L2(M, dgx), and therefore dµM is
invariant for Mh.

Theorem 4

Let h0 > 0 small. There exists C > 0 such that for all h ∈]0, h0]
the following holds true :

e−γ′(h)nh2 ≤ 2 sup
x∈M

‖Mn
h (x , dy)−dµM‖TV ≤ Ce−γ(h)nh2

for all n

Here γ(h), γ′(h) are two positive functions such that
γ(h) ' γ′(h) ' λ1

2(d+2) when h → 0.
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Structure of the operator

Let x = (x1, . . . , xd) be a local system of coordinates and gi ,j(x)
the metric g . In these coordinates, the geodesic ball of radius r
centred at x is given by

B(x , r) = {x + u,
∑

ki ,j(x , u)uiuj ≤ r2}

where (ki ,j(x , u)) is a symmetric matrix smooth w.r.t. (x , u) such
that ki ,j(x , 0) = gi ,j(x). In these local coordinates, we have

Thf (x) =
1

|B(x , h)|

∫
tuk(x ,u)u≤h2

f (x + u)
√

det(g(x + u))du

=
hd

|B(x , h)|

∫
|v |≤1

f (x + hm(x , hv)v)ρ(x , hv)dv

where m(x ,w) is a symmetric and positive matrix s.t.
m(x , 0) = g−1/2(x) and ρ(x , 0) = 1.
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Computation of the symbol

We define the symbol of Th by σ(Th)(x , ξ, h) = e−ixξ/hTh(e
ixξ/h).

Then,

σ(Th)(x , ξ, h) =
hd

|B(x , h)|

∫
|v |≤1

e i tξ.m(x ,hv)vρ(x , hv)dv

In particular, since m(x , 0) = g−1/2(x) and ρ(x , 0) = 1, one has

σ(Th)(x , ξ, 0) = Γd(|ξ|2x)

Remark

∀α, β, ∃Cα,β independent of h such that

|∂α
x ∂β

ξ σ(Th)(x , ξ, h)| ≤ Cα,β(1 + |ξ|)|α|

Hence, σ(Th)(x , ξ, h) is not in a good symbol class.
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Class of operator

Definitions

a(x , ξ, h) ∈ S−∞ if |∂α
x ∂β

ξ a(x , ξ, h)| ≤ Ck(1 + |ξ|)−k ,∀k ∈ N.

S−∞cl = {a ∈ S−∞, a has an expansion in powers of h}.
A family of operators (Rh)h∈]0,1] is smoothing if for all s, t,N
we have

‖Rh‖Hs→Ht ≤ Cs,t,NhN , ∀h ∈]0, 1]

Ah ∈ E−∞cl if Ah = a(x , hDx , h) + Rh with a ∈ S−∞cl and Rh

smoothing.

A family of operators (Ch)h∈]0,1] on D′(M), belongs to Ẽ0
cl if

Ch is bounded uniformly in h on L2(M) and for any Φ0 ∈ C∞
0 :

Φ0(−h2∆g )Ch and ChΦ0(−h2∆g ) belongs to E−∞cl
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Lemma 1

Let h0 small. For h ∈]0, h0], the operator Th belongs to the class
Ẽ0

cl .

Proof. Let φ0 ∈ C∞
0 .

Observe that φ0(−h2∆g ) ∈ E−∞cl . As Th is bounded on
C k(M) for all k, it suffices to show that for all a ∈ S−∞cl ,
Tha(x , hDx) ∈ E−∞cl .

In local coordinates, we have Tha(x , hDx) = b(x , hDx) with

b(x , ξ, h) =
hd

|B(x , h)|

∫
|v |≤1

e i tξ.m(x ,hv)v

a(x + hm(x , hv)v , ξ, h)ρ(x , hv)dv

thanks to the cut off function a, it is clear that b ∈ S−∞cl . �
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Lemma 2

Let Φ0 ∈ C∞
0 ([0,∞[), then (Th − Γd ,h)Φ0(−h2∆g ) = h2Ah with

Ah ∈ E−∞cl . Its principal symbol, σ0(Ah), satisfies near ξ = 0

σ0(Ah)(x , ξ) =
(S(x)

3
|ξ|2x(Γ′′d(0)− Γ′d(0)2)

+
Γ′′d(0)

3
Ric(x)(ξ, ξ)

)
Φ0(|ξ|2x) +O(ξ3)

where Ric(x) and S(x) are the Ricci tensor and the scalar
curvature at x . Moreover, denoting

∑
hkak(x , ξ) the symbol of

Ah, we have ak(x , 0) = 0 for all k ≥ 0.

In particular for f ∈ H2(M) we have ‖(Th−Γd ,h)f ‖L2 ≤ Ch4‖f ‖H2 .
It is one of the main ingredient in the proof of Theorem 2.
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Proof. Let m0 ∈ M be fixed. We use the geodesic coordinates x ,
centred at m0. Thanks to the formula giving the principal symbol
of a pseudo conjugate by a change of variable, it suffices to
compute σ(Th) in x = 0. In the geodesic coordinates we have√

det(g)(y) = 1− 1
6Ric(y , y) + O(y3),

m(0, v) = Id , ρ(0, v) = 1

Consequently, |B(0, h)| = hdcd(1 +
Γ′d (0)

3 S(0)h2) + O(h3) and

σ(Th)(0, ξ, h) =
hd

|B(0, h)|

∫
|v |≤1

e iξ.v
√

det(g)(hv)dv

= Γd(|ξ|2) + h2
(
− Γd(|ξ|2)

Γ′d(0)

3
S +

1

6

∑
Ricj ,k

∂2Gd

∂ξj∂ξk
(ξ)

)
+O(h3)

�
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Control of high frequencies

Lemma 3

Let χ ∈ C∞
0 (R) be equal to 1 near 0. There exists h0 > 0,C > 0

such that

‖Th(1− χ)(
−h2∆g

s
)‖L2→L2 ≤

C√
s

for all h ∈]0, h0] and all s ≥ 1 .
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Proof. Thanks to the support properties of χ we have

‖(−h2

s
∆g )−1/2(1− χ)(

−h2

s
∆g )‖L2→L2 = O(1)

Hence, it suffices to prove that

‖Th(−h2∆g )1/2‖L2→L2 = O(1)

On the other hand, in local coordinates we have

Thf (x) = Ch−d

∫
e ih−1(x−y)ξb(x , ξ, h)f (y)dy

with

b(x , ξ, h) =

∫
|v |≤1

e ih−1 tξm(x ,hv)vρ(x , hv)dv ,

m(x , 0) = g(x)−1/2 and ρ(x , 0) = 1.
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Using the stationary phase method, we can compute the symbol
b(x , ξ, h):

b(x , ξ, h) = e iΦ+(x ,ξ,h)τ+(x , ξ, h)+ e iΦ−(x ,ξ,h)τ−(x , ξ, h)+ n(x , ξ, h)

where n ∈ S−∞, τ± are two symbols of degree −(d + 1)/2 and the
phase φ± satisfy

φ±(x , ξ, h) = |ξ|x + O(h)

Therefore, Th is locally the sum of two quantized canonical
transformation with symbol of degree −(d + 1)/2 and phases close
to (x − y)ξ + h|ξ|x . In particular , as (d + 1)/2 ≥ 1 we gain one
h-derivative. �
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Estimate on eigenfunctions(I)

Let δ ∈]0, 1[ and for h > 0, eh ∈ L2 and zh ∈ [δ, 1] be such that
‖eh‖L2 = 1 and (Th − zh)e

h = 0.

Lemma 4

There exists h0 > 0, and for all j ∈ N there exists Cj > 0, such
that, the following inequality holds true

sup
h∈]0,h0]

‖(−h2∆g + 1)jeh‖L2 ≤ Cj

Proof. We localize as before. As eh = 1
zh

The
h and Th is the sum

of two quantized canonical transformation of degree
−(1 + d)/2 ≤ −1, we gain one h-derivative, and we can iterate
this argument. �
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Estimate on eigenfunctions(II)

Lemma 5

Let s1 be such that |Γd(s)| ≤ δ/2 for s ≥ s1 − 1 and let
χ1 ∈ C∞

0 (R+) be equal to 1 on [0, s1]. Then,

(1− χ1(−h2∆g ))eh = OC∞(h∞)

Proof. Recall that zh ∈ [δ, 1]. We write 1− χ1 = χ2 + χ3 with χ3

supported in [s2,∞[, s2 >> 1. For j = 2, 3 we have

χj(−h2∆g )(zh − Th)χj(−h2∆g ) ≥ δ

3
χj(−h2∆g )

(apply Lemma 2 in the case j=2 and Lemma 3 in the case j=3).
Hence, ‖χj(−h2∆g )eh‖L2 = O(h∞). To gain regularity, use
interpolation and the preceding Lemma. �
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Estimate on eigenfunctions(III)

Lemma 6

For all j ∈ N, there exists Cj such that for all h ∈]0, h0], we have

‖eh‖H j (M) ≤ Cj(1 + h−2(1− zh))
j/2

Proof. Let ẽh = χ1(−h2∆g )eh. From Lemma 5 and Lemma 2 we
have

O(h∞) = (Th − zh)ẽ
h = ((Γd − 1)(−h2∆g ) + O(h2) + (1− zh))ẽ

h

Moreover, there exists a smooth function Fd non vanishing on
[0, s1 + 2] s.t. (Γd − 1)(s) = sFd(s). Hence,

−∆gFd(−h2∆g )ẽh = (O(1) +
1− zh

h2
)ẽh

This shows that ‖ẽh‖H j ≤ C (1 + h−2(1− zh))
j/2‖ẽh‖L2 . �
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Localization of the spectrum

Recall that (−∆g − λk)ek = 0, (Th − µk(h))eh
k = 0 and

1− Th =
h2

2(d + 2)
|∆h|

Let k ∈ N be fixed and χ ∈ C∞
0 (R+). Then

for h > 0 small enough, ek = χ(−h2∆g )ek

Lemma 2=⇒ (Th − Γd(−h2∆g ))ek = O(h4).

As Γd(−h2∆g )ek = (1 + h2Γ′d(0)λk)ek + O(h4)ek and Th is
selfadjoint on L2(M, dνh) it follows that for h > 0 small enough

card
(
Spec(|∆h|) ∩ [λk − C0h

2, λk + C0h
2]

)
≥ mk .

where mk is the multiplicity of λk .
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Localization of the spectrum

On the other hand, if eh ∈ L2(M) satisfies |∆h|eh = τheh with τh

bounded, we have

eh = χ1(−h2∆g )eh + OC∞(h∞) (thanks to Lemma 5 ).

hence, Lemma 2 =⇒ (Th − Γd(−h2∆g ))eh = O(h4) and
dist(τh,Spec(−∆g )) = O(h2)

Hence, it remains to show that for h > 0 small we have

card
(
Spec(|∆h|) ∩ [λk − C0h

2, λk + C0h
2]

)
≤ mk .
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Multiplicity of the eigenvalues

Let p ≥ mk and eh
1 , . . . , eh

p satisfy (|∆h| − τl(h))eh
l = 0 with

τl(h) ∈ [λk − C0h
2, λk + C0h

2], (eh
l ) orthonormal for the scalar

product 〈., .〉L2(M,dνh).
By Lemma 6, we have

‖eh
l ‖H j ≤ Cj(1 + τl(h))j/2,∀j

and we can suppose that eh
l converges in H2 when h → 0.

Denoting fl its limit we get −∆g fl = λk fl for all l = 1, . . . , p and
the functions fl are orthogonal for the scalar product 〈., .〉L2(M,dgx).
Consequently, p ≤ mk .
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Proof of Weyl type estimate

Use Lemma 2 and Lemma 3 to approximate the number of
eigenvalues of Th in an interval by those of Γd(−h2∆g ).

Use wellknow Weyl estimates on pseudodifferential operators
on a manifold.
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From Theorem 1 to Theorem 3

We can suppose that n ≥ h−2. Recall that the total variation
between two probability µ, ν on M is given by

‖µ− ν‖TV := sup
A⊂M

|µ(A)− ν(A)| = 1

2
sup

‖f ‖L∞≤1
|µ(f )− ν(f )|

Consequently,

sup
x∈M

‖T n
h (x , dy)− dνh‖TV =

1

2
‖T n

h − Πh
0‖L∞→L∞

where Πh
0 is the orthogonal projector in L2(M, dνh) on the space of

constant functions.
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From Theorem 1 to Theorem 3

Recall that eh
k denotes the normalized eigenfunction of Th

associated to the eigenvalue µk(h) and let Πh
k be the orthogonal

projector on span(eh
k ). Then,

(T n
h − Πh

0)e
h
1 = µ1(h)neh

1 = (1− h2 λ1

2(d + 2)
+ O(h4))neh

1

and the left inequality in Theorem 3 is straightforward.
To prove the right inequality, let δ ∈]0, 1[ and denote

Th − Π0(h) = Th,1 + Th,2

with Th,1 =
∑

1−δ≤µk≤µ1
µk(h)Πk(h).
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From Theorem 1 to Theorem 3

Denote τk(h) = h−2(1− µk(h)), thanks to the eigenfunction
estimate, we have

‖T n
h,1‖L∞→L∞ ≤

∑
τ1≤τk≤h−2(1−δ)

(1− h2τk)n(1 + τk)α

Thanks to Weyl law, we get for nh2 ≥ 1,

‖T n
h,1‖L∞→L∞ ≤ C

∫ +∞

τ1

e−nh2x(1 + x)βdx ≤ Ce−nh2τ1

Finally, we observe that

‖T n
h,2‖L2,L∞ ≤ ‖T n−1

h,2 ‖L2,L2‖Th,2‖L2,L∞

≤ C (1− δ)nh−d/2 << e−nh2γ(h)
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