Semiclassical analysis of a random walk on a manifold

L. Michel (joint work with G. Lebeau)

Laboratoire J.-A. Dieudonné Université de Nice

April 14, 2008

伺 ト イヨト イヨ

-

General framework

Let (M, g) be a smooth, compact, connected Riemannian manifold of dimension d, equipped with its canonical volume form $d_g x$. We denote

- $d_g(x, y)$ the Riemannian distance on $M \times M$.
- for $x \in M$ and h > 0, $B(x, h) = \{y, d_g(x, y) \le h\}$

•
$$|B(x,h)| = \int_{B(x,h)} d_g y$$

For any given h > 0, let T_h be the operator acting on continuous functions on M

$$(T_h f)(x) = \frac{1}{|B(x,h)|} \int_{B(x,h)} f(y) d_g y$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The Markov kernel

We denote by K_h the kernel of T_h , which is given by

$$\mathcal{K}_h(x,y)d_g y = \frac{\mathbf{1}_{\{d_g(x,y) \le h\}}}{|B(x,h)|}d_g y$$

- for any x ∈ M, K_h(x, y)d_gy is a probability measure on M (hence, K_h is a Markov kernel)
- K_h is associated to the following natural random walk (X_n) on M: if the walk is at x, then it moves to a point $y \in B(x, h)$ with a probability given by $K_h(x, y)d_g y$. For $f \in C^0(M)$, $T_h(f)(X_n) = E(f(X_{n+1})|X_n)$. Or equivalently, for A, B measurable,

$$P(X_{n+1} \in A \text{ and } X_n \in B) = E(T_h(1_A)(X_n)1_B(X_n)).$$

4 同 1 4 三 1 4 三 1 4 二

Basic properties

We define $d\nu_h = \frac{|B(x,h)|}{h^d Z_h} d_g x$ where Z_h is chosen so that $d\nu_h$ is a probability measure. We have the following facts:

- T_h is self-adjoint on $L^2(M, d\nu_h)$.
- T_h is compact
- For all $p \in [1,\infty]$, $||T_h||_{L^p \to L^p} = 1$.

Hence, the spectrum of T_h is made of eigenvalues and $\{0\}$ is the only possible accumulation point. We denote

$$1 = \mu_0(h) \ge \mu_1(h) \ge \mu_2(h) \ge ... \ge \mu_k(h)... > 0$$

the positive eigenvalues, $(e_k^h)_k$ the associated normalized eigenfunctions.

- 4 同 2 4 日 2 4 日 2 4

Reference operator

We use the following notations:

- Δ_g is the (negative) Laplace-Beltrami operator on (M, g).
- $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le ... \le \lambda_n \le ...$ denotes the spectrum of the self adjoint operator $-\Delta_g$ on $L^2(M, d_g x)$.
- for $\xi \in \mathbb{R}^d$

$$G_d(\xi) = \frac{1}{c_d} \int_{|y| \le 1} e^{iy\xi} dy$$

where c_d = volume of the unit ball in \mathbb{R}^d .

• the function G_d is radial and we let Γ_d be such that $G_d(\xi) = \Gamma_d(|\xi|^2)$. Then, Γ_d is analytic and near s = 0 we have

$$\Gamma_d(s) = 1 - \frac{s}{2(d+2)} + \mathcal{O}(s^2)$$

• We denote $\Gamma_{d,h} = \Gamma_d(-h^2\Delta_g)$.

イロト イポト イヨト イヨト

Localization an Weyl asymptotics Resolvent

Theorem 1 (part 1)

Let $h_0 > 0$ be small. There exist $\gamma < 1$ such that for any $h \in]0, h_0]$ one has $Spec(T_h) \subset [-\gamma, 1]$ and 1 is a simple eigenvalue of T_h . For any given L > 0, there exists C such that for all $h \in]0, h_0]$ and all $k \leq L$, one has

$$\frac{1-\mu_k(h)}{h^2}-\frac{\lambda_k}{2(d+2)}|\leq Ch^2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Localization an Weyl asymptotics Resolvent

Theorem 1 (part 2)

Let $N(a, h) = card(Spec(T_h) \cap [a, 1])$. For any $\delta \in]0, 1[$, there exist C > 0 s.t. for any $h \in]0, h_0]$ and any $\tau \in [0, (1 - \delta)h^{-2}]$, we have

$$|N(1-\tau h^2,h)-(2\pi h)^{-d}\int_{\Gamma_d(|\xi|_x^2)\in[1- au h^2,1]}dxd\xi|\leq C(1+ au)^{rac{d-1}{2}}$$

In particular, one has

$$N(1-\tau h^2,h) \leq C(1+\tau)^{d/2}$$

Denote e_k^h the eigenfunction of T_h associated to $\mu_k(h) \in [\delta, 1]$, and set $\tau_k(h) = h^{-2}(1 - \mu_k(h))$, then

$$\|e_k^h\|_{L^{\infty}} \leq C(1+\tau_k(h))^{d/4} \|e_k^h\|_{L^2}.$$

- 4 同 6 4 日 6 4 日 6

-

Localization an Weyl asymptotics Resolvent

Let $|\Delta_h|$ be the positive, bounded, self adjoint operator on $L^2(M, d\nu_h)$ defined by

$$1-T_h=\frac{h^2}{2(d+2)}|\Delta_h|$$

Let F_1 and F_2 be the two closed subset of \mathbb{C} ,

$$F_1 = \{z, dist(z, spec(-\Delta_g)) \le \varepsilon\}$$

$$F_2 = \{z, Re(z) \ge A, |Im(z)| \le \varepsilon Re(z)\}$$

with $\varepsilon > 0$ small and A > 0 large. Let $F = F_1 \cup F_2$ and $U = \mathbb{C} \setminus F$.

Theorem 2

There exists $C, h_0 > 0$ such that for all $h \in]0, h_0]$, and all $z \in U$

$$\|(z - |\Delta_h|)^{-1} - (z + \Delta_g)^{-1}\|_{L^2 \to L^2} \le Ch^2$$

L. Michel (joint work with G. Lebeau) Semiclassical analysis of a random walk on a manifold

Case of the geodesic random walk The Metropolized operator

Convergence to stationary measure

As T_h1 = 1 and T_h self-adjoint on L²(M, dν_h) then dν_h is a stationary measure for K_h(x, y)d_gy, ie: for all f ∈ C(M)

$$\int_M f(x) d\nu_h(x) = \int_M T_h f(x) d\nu_h(x)$$

• it follows from general theory of Markov chains that for all $x \in M$, $K_h^n(x, y)d_g y \to d\nu_h(y)$, when $n \to \infty$, where $K_h^n(x, y)d_g y$ denotes the kernel of T_h^n .

Question: how fast does it converge?

伺 ト イ ヨ ト イ ヨ ト

Case of the geodesic random walk The Metropolized operator

Total variation estimate

The total variation distance between two probability measures μ,ν is defined by

$$\|\mu -
u\|_{TV} = \sup_{A ext{ measurable}} |\mu(A) -
u(A)|$$

Theorem 3

Let $h_0 > 0$ small. There exists C > 0 such that for all $h \in]0, h_0]$ the following holds true :

$$e^{-\gamma'(h)nh^2} \leq 2 \sup_{x \in M} \|\mathcal{K}_h^n(x,y) d_g y - d
u_h\|_{TV} \leq C e^{-\gamma(h)nh^2}$$
 for all n

Here $\gamma(h), \gamma'(h)$ are positive functions s.t. $\gamma(h) \simeq \gamma'(h) \simeq \frac{\lambda_1}{2(d+2)}$ when $h \to 0$.

Case of the geodesic random walk The Metropolized operator

The Metropolized operator

If one is interested in sampling the probability measure $d\mu_M = d_g x/Vol(M)$, we can use a kernel modified according to the Metropolis strategy. Remark that $d\mu_M = \rho_h(x)d\nu_h$ with $\rho_h(x) = \frac{h^d Z_h}{Vol(M)|B(x,h)|}$. We define

$$M_h(x, dy) = m_h(x)\delta_{y=x} + \mathcal{K}_h(x, y)d_g y$$

where the functions m_h and \mathcal{K}_h are defined by

$$\begin{aligned} \mathcal{K}_h(x,y) &:= \mathcal{K}_h(x,y) \min\left(\frac{\rho_h(y)}{\rho_h(x)}, 1\right) = \frac{1_{d_g(x,y) \le h}}{|B(x,h)|} \min\left(\frac{|B(x,h)|}{|B(y,h)|}, 1\right) \\ m_h(x) &= 1 - \int_M \mathcal{K}_h(x,y) d_g y \end{aligned}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Then, $M_h(x, dy)$ is still a Markov kernel and the operator

$$M_h(f)(x) = \int_M f(y) M_h(x, dy)$$

is self-adjoint on the space $L^2(M, d_g x)$, and therefore $d\mu_M$ is invariant for M_h .

Theorem 4

Let $h_0 > 0$ small. There exists C > 0 such that for all $h \in]0, h_0]$ the following holds true :

$$e^{-\gamma'(h)nh^2} \leq 2 \sup_{x \in M} \|M_h^n(x, dy) - d\mu_M\|_{TV} \leq C e^{-\gamma(h)nh^2}$$
 for all n

Here $\gamma(h), \gamma'(h)$ are two positive functions such that $\gamma(h) \simeq \gamma'(h) \simeq \frac{\lambda_1}{2(d+2)}$ when $h \to 0$.

Symbolic calculus of T_h The spectral theory of T_h Proof of Theorem 1 Proof of Theorems 3 and 4

Structure of the operator

Let $x = (x_1, ..., x_d)$ be a local system of coordinates and $g_{i,j}(x)$ the metric g. In these coordinates, the geodesic ball of radius r centred at x is given by

$$B(x,r) = \{x+u, \sum k_{i,j}(x,u)u_iu_j \leq r^2\}$$

where $(k_{i,j}(x, u))$ is a symmetric matrix smooth w.r.t. (x, u) such that $k_{i,j}(x, 0) = g_{i,j}(x)$. In these local coordinates, we have

$$T_h f(x) = \frac{1}{|B(x,h)|} \int_{t_{uk}(x,u)u \le h^2} f(x+u) \sqrt{\det(g(x+u))} du$$
$$= \frac{h^d}{|B(x,h)|} \int_{|v| \le 1} f(x+hm(x,hv)v)\rho(x,hv) dv$$

where m(x, w) is a symmetric and positive matrix s.t. $m(x, 0) = g^{-1/2}(x)$ and $\rho(x, 0) = 1$.

Symbolic calculus of T_h The spectral theory of T_h Proof of Theorem 1 Proof of Theorems 3 and 4

Computation of the symbol

We define the symbol of T_h by $\sigma(T_h)(x,\xi,h) = e^{-ix\xi/h}T_h(e^{ix\xi/h})$. Then,

$$\sigma(T_h)(x,\xi,h) = \frac{h^d}{|B(x,h)|} \int_{|v| \leq 1} e^{i^t \xi \cdot m(x,hv)v} \rho(x,hv) dv$$

In particular, since $m(x,0) = g^{-1/2}(x)$ and $\rho(x,0) = 1$, one has $\sigma(T_h)(x,\xi,0) = \Gamma_d(|\xi|_x^2)$

Remark

 $\forall \alpha, \beta, \exists C_{\alpha, \beta} \text{ independent of } h \text{ such that}$

$$|\partial^lpha_{\chi}\partial^eta_{\xi}\sigma({\it T}_h)(x,\xi,h)|\leq C_{lpha,eta}(1+|\xi|)^{|lpha|}$$

Hence, $\sigma(T_h)(x,\xi,h)$ is not in a good symbol class.

Symbolic calculus of T_h The spectral theory of T_h Proof of Theorem 1 Proof of Theorems 3 and 4

Class of operator

Definitions

- $a(x,\xi,h) \in S^{-\infty}$ if $|\partial_x^{\alpha} \partial_{\xi}^{\beta} a(x,\xi,h)| \leq C_k (1+|\xi|)^{-k}, \forall k \in \mathbb{N}.$
- $S_{cl}^{-\infty} = \{a \in S^{-\infty}, a \text{ has an expansion in powers of } h\}.$
- A family of operators (R_h)_{h∈]0,1]} is smoothing if for all s, t, N we have

$$\|R_h\|_{H^s \to H^t} \leq C_{s,t,N} h^N, \ \forall h \in]0,1]$$

- $A_h \in \mathcal{E}_{cl}^{-\infty}$ if $A_h = a(x, hD_x, h) + R_h$ with $a \in S_{cl}^{-\infty}$ and R_h smoothing.
- A family of operators (C_h)_{h∈]0,1]} on D'(M), belongs to *E*⁰_{cl} if C_h is bounded uniformly in h on L²(M) and for any Φ₀ ∈ C₀[∞]:

$$\Phi_0(-h^2\Delta_g)C_h$$
 and $C_h\Phi_0(-h^2\Delta_g)$ belongs to $\mathcal{E}_{cl}^{-\infty}$

(4回) (4 回) (4 回)

Symbolic calculus of T_h The spectral theory of T_h Proof of Theorem 1 Proof of Theorems 3 and 4

Lemma 1

Let h_0 small. For $h \in]0, h_0]$, the operator T_h belongs to the class $\widetilde{\mathcal{E}}^0_{cl}$.

Proof. Let $\phi_0 \in C_0^\infty$.

- Observe that $\phi_0(-h^2\Delta_g) \in \mathcal{E}_{cl}^{-\infty}$. As T_h is bounded on $C^k(M)$ for all k, it suffices to show that for all $a \in S_{cl}^{-\infty}$, $T_ha(x, hD_x) \in \mathcal{E}_{cl}^{-\infty}$.
- In local coordinates, we have $T_ha(x, hD_x) = b(x, hD_x)$ with

$$b(x,\xi,h) = \frac{h^d}{|B(x,h)|} \int_{|v| \le 1} e^{i^t \xi \cdot m(x,hv)v} a(x+hm(x,hv)v,\xi,h)\rho(x,hv)dv$$

thanks to the cut off function a, it is clear that $b \in S_{cl}^{-\infty}$.

→ ∃ → → ∃ →

-

 General framework
 Symbolic calculus of T_h

 Analysis of the spectrum
 The spectral theory of T_h

 Convergence to stationary measure
 Proof of Theorem 1

 Sketches of proof
 Proof of Theorems 3 and 4

Lemma 2

Let $\Phi_0 \in C_0^{\infty}([0,\infty[))$, then $(T_h - \Gamma_{d,h})\Phi_0(-h^2\Delta_g) = h^2A_h$ with $A_h \in \mathcal{E}_{cl}^{-\infty}$. Its principal symbol, $\sigma_0(A_h)$, satisfies near $\xi = 0$

$$\sigma_{0}(A_{h})(x,\xi) = \left(\frac{S(x)}{3}|\xi|_{x}^{2}(\Gamma_{d}'(0) - \Gamma_{d}'(0)^{2}) + \frac{\Gamma_{d}''(0)}{3}Ric(x)(\xi,\xi)\right)\Phi_{0}(|\xi|_{x}^{2}) + \mathcal{O}(\xi^{3})$$

where Ric(x) and S(x) are the Ricci tensor and the scalar curvature at x. Moreover, denoting $\sum h^k a_k(x,\xi)$ the symbol of A_h , we have $a_k(x,0) = 0$ for all $k \ge 0$.

In particular for $f \in H^2(M)$ we have $\|(T_h - \Gamma_{d,h})f\|_{L^2} \leq Ch^4 \|f\|_{H^2}$. It is one of the main ingredient in the proof of Theorem 2.

・ロト ・同ト ・ヨト ・ヨト

 General framework
 Symbolic calculus of T_h

 Analysis of the spectrum
 The spectral theory of T_h

 Convergence to stationary measure
 Proof of Theorem 1

 Sketches of proof
 Proof of Theorem 3 and 4

Proof. Let $m_0 \in M$ be fixed. We use the geodesic coordinates x, centred at m_0 . Thanks to the formula giving the principal symbol of a pseudo conjugate by a change of variable, it suffices to compute $\sigma(T_h)$ in x = 0. In the geodesic coordinates we have

•
$$\sqrt{det(g)(y)} = 1 - \frac{1}{6}Ric(y,y) + O(y^3)$$
,

•
$$m(0, v) = Id, \ \rho(0, v) = 1$$

Consequently, $|B(0,h)| = h^d c_d (1 + rac{\Gamma_d'(0)}{3}S(0)h^2) + O(h^3)$ and

$$\sigma(T_h)(0,\xi,h) = \frac{h^d}{|B(0,h)|} \int_{|v| \le 1} e^{i\xi \cdot v} \sqrt{\det(g)(hv)} dv$$

= $\Gamma_d(|\xi|^2) + h^2 \Big(-\Gamma_d(|\xi|^2) \frac{\Gamma_d'(0)}{3} S + \frac{1}{6} \sum Ric_{j,k} \frac{\partial^2 G_d}{\partial \xi_j \partial \xi_k}(\xi) \Big) + \mathcal{O}(h^3)$

Symbolic calculus of T_h The spectral theory of T_h Proof of Theorem 1 Proof of Theorems 3 and 4

Control of high frequencies

Lemma 3

Let $\chi \in C_0^\infty(\mathbb{R})$ be equal to 1 near 0. There exists $h_0 > 0, C > 0$ such that

$$\|T_h(1-\chi)(\frac{-h^2\Delta_g}{s})\|_{L^2\to L^2} \leq \frac{C}{\sqrt{s}}$$

for all $h\in]0,h_0]$ and all $s\geq 1$.

▲ □ ▶ ▲ □ ▶ ▲

General framework Analysis of the spectrum Convergence to stationary measure Sketches of proof Sketches of proof Sketches of proof

Proof. Thanks to the support properties of χ we have

$$\|(\frac{-h^2}{s}\Delta_g)^{-1/2}(1-\chi)(\frac{-h^2}{s}\Delta_g)\|_{L^2\to L^2} = O(1)$$

Hence, it suffices to prove that

$$\|T_h(-h^2\Delta_g)^{1/2}\|_{L^2\to L^2} = O(1)$$

On the other hand, in local coordinates we have

$$T_h f(x) = Ch^{-d} \int e^{ih^{-1}(x-y)\xi} b(x,\xi,h) f(y) dy$$

lk on a manifold

with

m(

$$b(x,\xi,h) = \int_{|v| \le 1} e^{ih^{-1}t\xi m(x,hv)v} \rho(x,hv) dv,$$
$$x,0) = g(x)^{-1/2} \text{ and } \rho(x,0) = 1.$$

Using the stationary phase method, we can compute the symbol $b(x, \xi, h)$:

$$b(x,\xi,h) = e^{i\Phi_+(x,\xi,h)}\tau_+(x,\xi,h) + e^{i\Phi_-(x,\xi,h)}\tau_-(x,\xi,h) + n(x,\xi,h)$$

where $n \in S^{-\infty}$, au_{\pm} are two symbols of degree -(d+1)/2 and the phase ϕ_{\pm} satisfy

$$\phi_{\pm}(x,\xi,h) = |\xi|_x + O(h)$$

Therefore, T_h is locally the sum of two quantized canonical transformation with symbol of degree -(d+1)/2 and phases close to $(x - y)\xi + h|\xi|_x$. In particular , as $(d+1)/2 \ge 1$ we gain one *h*-derivative.

< ロ > < 同 > < 三 > < 三 > 、

Symbolic calculus of T_h The spectral theory of T_h Proof of Theorem 1 Proof of Theorems 3 and 4

Estimate on eigenfunctions(I)

Let $\delta \in]0,1[$ and for h > 0, $e^h \in L^2$ and $z_h \in [\delta,1]$ be such that $||e^h||_{L^2} = 1$ and $(T_h - z_h)e^h = 0$.

Lemma 4

There exists $h_0 > 0$, and for all $j \in \mathbb{N}$ there exists $C_j > 0$, such that, the following inequality holds true

$$\sup_{h\in]0,h_0]} \|(-h^2\Delta_g+1)^j e^h\|_{L^2} \le C_j$$

Proof. We localize as before. As $e^h = \frac{1}{z_h}T_he^h$ and T_h is the sum of two quantized canonical transformation of degree $-(1+d)/2 \le -1$, we gain one *h*-derivative, and we can iterate this argument.

Symbolic calculus of T_h The spectral theory of T_h Proof of Theorem 1 Proof of Theorems 3 and 4

Estimate on eigenfunctions(II)

Lemma 5

Let s_1 be such that $|\Gamma_d(s)| \le \delta/2$ for $s \ge s_1 - 1$ and let $\chi_1 \in C_0^{\infty}(\mathbb{R}^+)$ be equal to 1 on $[0, s_1]$. Then,

$$(1-\chi_1(-h^2\Delta_g))e^h=O_{\mathcal{C}^\infty}(h^\infty)$$

Proof. Recall that $z_h \in [\delta, 1]$. We write $1 - \chi_1 = \chi_2 + \chi_3$ with χ_3 supported in $[s_2, \infty[, s_2 >> 1]$. For j = 2, 3 we have

$$\chi_j(-h^2\Delta_g)(z_h-T_h)\chi_j(-h^2\Delta_g) \geq \frac{\delta}{3}\chi_j(-h^2\Delta_g)$$

(apply Lemma 2 in the case j=2 and Lemma 3 in the case j=3). Hence, $\|\chi_j(-h^2\Delta_g)e^h\|_{L^2} = O(h^\infty)$. To gain regularity, use interpolation and the preceding Lemma.

Symbolic calculus of T_h The spectral theory of T_h Proof of Theorem 1 Proof of Theorems 3 and 4

Estimate on eigenfunctions(III)

Lemma 6

For all $j \in \mathbb{N}$, there exists C_j such that for all $h \in]0, h_0]$, we have

$$\|e^h\|_{H^j(M)} \le C_j(1+h^{-2}(1-z_h))^{j/2}$$

Proof. Let $\tilde{e}^h = \chi_1(-h^2\Delta_g)e^h$. From Lemma 5 and Lemma 2 we have

$$O(h^{\infty}) = (T_h - z_h)\tilde{e}^h = ((\Gamma_d - 1)(-h^2\Delta_g) + O(h^2) + (1 - z_h))\tilde{e}^h$$

Moreover, there exists a smooth function F_d non vanishing on $[0, s_1 + 2]$ s.t. $(\Gamma_d - 1)(s) = sF_d(s)$. Hence,

$$-\Delta_g F_d(-h^2\Delta_g)\tilde{e}^h=(O(1)+rac{1-z_h}{h^2})\tilde{e}^h$$

This shows that $\|\tilde{e}^h\|_{H^j} \leq C(1+h^{-2}(1-z_h))^{j/2}_{\mathbb{Z}}\|\tilde{e}^h_{\mathbb{Z}}\|_{L^2}$

Symbolic calculus of T_h The spectral theory of T_h **Proof of Theorem 1** Proof of Theorems 3 and 4

Localization of the spectrum

Recall that
$$(-\Delta_g - \lambda_k)e_k = 0$$
, $(T_h - \mu_k(h))e_k^h = 0$ and

$$1-T_h=\frac{h^2}{2(d+2)}|\Delta_h|$$

Let $k \in \mathbb{N}$ be fixed and $\chi \in C_0^{\infty}(\mathbb{R}^+)$. Then

- for h > 0 small enough, $e_k = \chi(-h^2 \Delta_g) e_k$
- Lemma 2 \Longrightarrow $(T_h \Gamma_d(-h^2\Delta_g))e_k = O(h^4).$

As $\Gamma_d(-h^2\Delta_g)e_k = (1 + h^2\Gamma'_d(0)\lambda_k)e_k + O(h^4)e_k$ and T_h is selfadjoint on $L^2(M, d\nu_h)$ it follows that for h > 0 small enough

$${\it card} \left({\it Spec}(|\Delta_h|) \cap [\lambda_k - C_0 h^2, \lambda_k + C_0 h^2]
ight) \geq m_k.$$

where m_k is the multiplicity of λ_k .

Symbolic calculus of T_h The spectral theory of T_h **Proof of Theorem 1** Proof of Theorems 3 and 4

Localization of the spectrum

On the other hand, if $e^h \in L^2(M)$ satisfies $|\Delta_h|e^h = \tau^h e^h$ with τ^h bounded, we have

•
$$e^h = \chi_1(-h^2\Delta_g)e^h + O_{C^\infty}(h^\infty)$$
 (thanks to Lemma 5).

• hence, Lemma 2 \implies $(T_h - \Gamma_d(-h^2\Delta_g))e^h = O(h^4)$ and $dist(\tau^h, Spec(-\Delta_g)) = O(h^2)$

Hence, it remains to show that for h > 0 small we have

$${\it card} \left({\it Spec}(|\Delta_h|) \cap [\lambda_k - C_0 h^2, \lambda_k + C_0 h^2]
ight) \leq m_k.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Symbolic calculus of T_h The spectral theory of T_h **Proof of Theorem 1** Proof of Theorems 3 and 4

Multiplicity of the eigenvalues

Let
$$p \ge m_k$$
 and e_1^h, \ldots, e_p^h satisfy $(|\Delta_h| - \tau_l(h))e_l^h = 0$ with $\tau_l(h) \in [\lambda_k - C_0 h^2, \lambda_k + C_0 h^2]$, (e_l^h) orthonormal for the scalar product $\langle ., . \rangle_{L^2(M, d\nu_h)}$.
By Lemma 6, we have

$$\|\boldsymbol{e}_{l}^{h}\|_{H^{j}} \leq C_{j}(1+\tau_{l}(h))^{j/2}, \forall j$$

and we can suppose that e_l^h converges in H^2 when $h \to 0$. Denoting f_l its limit we get $-\Delta_g f_l = \lambda_k f_l$ for all $l = 1, \ldots, p$ and the functions f_l are orthogonal for the scalar product $\langle ., . \rangle_{L^2(M, d_g \times)}$. Consequently, $p \leq m_k$.

・ 同 ト ・ ヨ ト ・ ヨ

Symbolic calculus of T_h The spectral theory of T_h **Proof of Theorem 1** Proof of Theorems 3 and 4

Proof of Weyl type estimate

- Use Lemma 2 and Lemma 3 to approximate the number of eigenvalues of T_h in an interval by those of $\Gamma_d(-h^2\Delta_g)$.
- Use wellknow Weyl estimates on pseudodifferential operators on a manifold.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

From Theorem 1 to Theorem 3

We can suppose that $n \ge h^{-2}$. Recall that the total variation between two probability μ, ν on M is given by

$$\|\mu - \nu\|_{TV} := \sup_{A \subset M} |\mu(A) - \nu(A)| = \frac{1}{2} \sup_{\|f\|_{L^{\infty}} \le 1} |\mu(f) - \nu(f)|$$

Consequently,

$$\sup_{x \in M} \|T_h^n(x, dy) - d\nu_h\|_{TV} = \frac{1}{2} \|T_h^n - \Pi_0^h\|_{L^{\infty} \to L^{\infty}}$$

where Π_0^h is the orthogonal projector in $L^2(M, d\nu_h)$ on the space of constant functions.

・ 同 ト ・ ヨ ト ・ ヨ ト

From Theorem 1 to Theorem 3

Recall that e_k^h denotes the normalized eigenfunction of T_h associated to the eigenvalue $\mu_k(h)$ and let Π_k^h be the orthogonal projector on $span(e_k^h)$. Then,

$$(T_h^n - \Pi_0^h)e_1^h = \mu_1(h)^n e_1^h = (1 - h^2 \frac{\lambda_1}{2(d+2)} + O(h^4))^n e_1^h$$

and the left inequality in Theorem 3 is straightforward. To prove the right inequality, let $\delta \in]0,1[$ and denote

$$T_h - \Pi_0(h) = T_{h,1} + T_{h,2}$$

with $T_{h,1} = \sum_{1-\delta \le \mu_k \le \mu_1} \mu_k(h) \Pi_k(h)$.

伺 ト イヨト イヨト

 $\begin{array}{c} \mbox{General framework} \\ \mbox{Analysis of the spectrum} \\ \mbox{Convergence to stationary measure} \\ \mbox{Sketches of proof} \\ \mbox{Proof of Theorem 1} \\ \mbox{Proof of Theorem 3 and 4} \end{array}$

From Theorem 1 to Theorem 3

• Denote $\tau_k(h) = h^{-2}(1 - \mu_k(h))$, thanks to the eigenfunction estimate, we have

$$\|\mathcal{T}_{h,1}^n\|_{L^\infty o L^\infty} \leq \sum_{ au_1 \leq au_k \leq h^{-2}(1-\delta)} (1-h^2 au_k)^n (1+ au_k)^lpha$$

Thanks to Weyl law, we get for $nh^2 \ge 1$,

$$\|T_{h,1}^n\|_{L^{\infty}\to L^{\infty}} \leq C \int_{\tau_1}^{+\infty} e^{-nh^2x} (1+x)^{\beta} dx \leq C e^{-nh^2\tau_1}$$

• Finally, we observe that

$$\begin{aligned} \|T_{h,2}^n\|_{L^2,L^{\infty}} &\leq \|T_{h,2}^{n-1}\|_{L^2,L^2} \|T_{h,2}\|_{L^2,L^{\infty}} \\ &\leq C(1-\delta)^n h^{-d/2} << e^{-nh^2\gamma(h)} \end{aligned}$$

伺 ト イ ヨ ト イ ヨ ト