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General framework

General framework

Let (M, g) be a smooth, compact, connected Riemannian manifold
of dimension d, equipped with its canonical volume form dgx. We
denote

@ dg(x,y) the Riemannian distance on M x M.

e for x € M and h >0, B(x, h) = {y, dg(x,y) < h}

° |B(X> h)| = fB(x,h) dgy
For any given h > 0, let T, be the operator acting on continuous
functions on M
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General framework

The Markov kernel

We denote by K}, the kernel of T, which is given by

1 dg(x,y)<h
Ki(x,y)dgy = 7{|Bgéx%’ Ly

e for any x € M, Kp(x, y)dgy is a probability measure on M
(hence, K}, is a Markov kernel)

@ Kj, is associated to the following natural random walk (X,) on
M: if the walk is at x, then it moves to a point y € B(x, h)
with a probability given by Ky(x,y)dgzy. For f € CO(M),
Th(f)(Xn) = E(f(Xnt1)|Xn). Or equivalently, for A, B
measurable,

P(Xn+1 €Aand X, € B) = E( Th(lA)(Xn)].B(Xn)).
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General framework

Basic properties

We define dvy = ‘i(j}i:)ldgx where Zj, is chosen so that dvy is a
probability measure. We have the following facts:
o T, is self-adjoint on L?(M, dvy,).

@ T is compact

e Forall pe[1,00], || Thlltp—1r = 1.

Hence, the spectrum of T is made of eigenvalues and {0} is the
only possible accumulation point. We denote

1= po(h) = pa(h) = pa(h) = ... = puc(h)... >0

the positive eigenvalues, (e/'(’)k the associated normalized
eigenfunctions.
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General framework

Reference operator

We use the following notations:

@ Ag is the (negative) Laplace-Beltrami operator on (M, g).

0 0=)Xg <A <X <...< )\, < ... denotes the spectrum of
the self adjoint operator —A, on L?(M, dgx).

o for & € RY
1 .
O
Cd Jly|<1

where ¢y = volume of the unit ball inR¥.

@ the function Gy is radial and we let 'y be such that
Gq(€) = T4(|€[%). Then, Iy is analytic and near s = 0 we have

Fa(s)=1— ﬁ +O(s?)

o We denote Iy, = Mg(—h2A,).
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Analysis of the spectrum Localization an Weyl asymptotics

Resolvent

Theorem 1 (part 1)

Let hg > 0 be small. There exist 7 < 1 such that for any h €]0, ho]
one has Spec(Ty) C [—7,1] and 1 is a simple eigenvalue of Tj.
For any given L > 0, there exists C such that for all h €]0, hg] and
all k <L, one has

1 —/,Lk(h) Ak

—_ < Ch?
| h?2 2(d—|—2)|_ e
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Analysis of the spectrum Localization an Weyl asymptotics
Resolvent

Theorem 1 (part 2)

Let N(a, h) = card(Spec(Tp)N[a, 1]). For any 6 €]0, 1], there exist
C > 0 s.t. for any h €]0, ho] and any 7 € [0, (1 — §)h~?], we have

IN(L = 72, h) — (27rh)_d/ dxdg] < C(1+ )7
Fa(l12)€ll—Th?1]
In particular, one has
N(1—7h? h) < C(1+4 7)9/?

Denote e’ the eigenfunction of T}, associated to ux(h) € [4,1],
and set 7x(h) = h=2(1 — px(h)), then

lefll= < C(1+ (k)| efl -
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Analysis of the spectrum Localization an Weyl asymptotics

Resolvent

Let |Ap| be the positive, bounded, self adjoint operator on
L?(M, dvy) defined by
h2
1-Th=—7+——|A
" 2(d+ 2)’ d
Let F; and F> be the two closed subset of C,

Fi1 = {z, dist(z, spec(—Ag)) < ¢}
Fo ={z,Re(z) > A, |Im(z)| < eRe(z)}

with € > 0 small and A > 0 large. Let F=F,Uf, and U=C\ F.

There exists C, hg > 0 such that for all h €]0, ho], and all z € U

Iz = |ARD ! = (2 + Ag) 1212 < CH
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Case of the geodesic random walk
Convergence to stationary measure The Metropolized operator

Convergence to stationary measure

o As Ty1 =1 and T}, self-adjoint on L?(M, dvy,) then dvy is a
stationary measure for K(x, y)dgy, ie: for all f € C(M)

/M F()dvp(x) = /M ThF(x)dvs(x)

o it follows from general theory of Markov chains that for all
x €M, Ki'(x,y)dgy — dvp(y), when n — oo, where
K/ (x,y)dgy denotes the kernel of T/

Question: how fast does it converge?
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Case of the geodesic random walk
Convergence to stationary measure The Metropolized operator

Total variation estimate

The total variation distance between two probability measures u, v
is defined by

lw=virv = sup [u(A)—v(A)]

A measurable

Theorem 3

Let ho > 0 small. There exists C > 0 such that for all h €]0, ho]
the following holds true :

e (" < 2 sup [|KF(x, y)dgy—dup|| v < Ce ™" for all ;
xeM

Here ~v(h),~'(h) are positive functions s.t. y(h) ~ +/(h) ~
when h — 0.
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Case of the geodesic random walk
Convergence to stationary measure The Metropolized operator

The Metropolized operator

If one is interested in sampling the probability measure
dpp = dgx/Vol(M), we can use a kernel modified according to
the Metropolis strategy. Remark that dup = pp(x)dvy with
hiz :
ph(X) = WBh(th)‘ We deﬁne
Mhi(x, dy) = mp(x)dy=x + Kn(x, y)dgy

where the functions my, and K, are defined by

e . P (}/) _ 1 g(Xv)’)S . ‘B(X7 h)|
Kr(x,y) = Kh(x,y)m/n<p:(x) , 1) = ]Cé(x, h)hmm(|B(y, Ak 1)

~—

ma(x) = 1 /M Kn(x, y)dsy
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Case of the geodesic random walk

Convergence to stationary measure The Metropolized operator

Then, My(x, dy) is still a Markov kernel and the operator

My(F)(x) = /M F(y)M(x. dy)

is self-adjoint on the space L2(M, dgx), and therefore dyup is
invariant for Mj,.
Theorem 4

Let hp > 0 small. There exists C > 0 such that for all h €]0, ho]
the following holds true :

e~ (0" < 2 sup | ME(x, dy)~dumllrv < Ce™ "™ for all n
xeM

Here ~v(h),~'(h) are two positive functions such that

y(h) =~ v/(h) ~ % when h — 0.
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Symbolic calculus of T}

The spectral theory of T

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

Structure of the operator

Let x = (x1,...,Xq) be a local system of coordinates and g; j(x)
the metric g. In these coordinates, the geodesic ball of radius r
centred at x is given by

B(x,r) = {x+u, Z ki j(x, u)uju; < r*}

where (k;j(x, u)) is a symmetric matrix smooth w.r.t. (x, u) such
that k; j(x,0) = g j(x). In these local coordinates, we have

Thf(x) = ’(th)’ o O 0 et(gOc )t
hd
= Bl h)| e f(x 4+ hm(x, hv)v)p(x, hv)dv

where m(x, w) is a symmetric and positive matrix s.t.
m(x,0) = g~/?(x) and p(x,0) = 1.
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Symbolic calculus of T}

The spectral theory of T

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

Computation of the symbol

We define the symbol of T}, by o(Th)(x, &, h) = e *X&/h T, (eX¢/h).
Then,

hd
[BOx h)] Jivj<1
In particular, since m(x,0) = g~1/2(x) and p(x,0) = 1, one has
a(Th)(x,€,0) = Ta([€[3)

a(Th)(x; &, h) = e &b p(x, hv)dv

Va, 8, 3C,, 3 independent of h such that

020 o (Th)(x, € h)] < Cap(L+ €N

Hence, o(Tp)(x,&, h) is not in a good symbol class.

L. Michel (joint work with G. Lebeau) Semiclassical analysis of a random walk on a manifold



Symbolic calculus of T}

The spectral theory of T

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

Class of operator

a(x, €, h) € S™° if 9207 a(x, €, h)| < Ci(1+[€]) ™, Vk € N.

S, ={a € 57, a has an expansion in powers of h}.

(]

A family of operators (Rk)pejo,1] is smoothing if for all s, t, N
we have
Rl ke < Csenh™, Vh €]0,1]

Ap € £, if Ay = a(x, hDy, h) + R, with a € S_;°° and Ry,
smoothing.

A family of operators (Cp)pejo,1) on D'(M), belongs to 5?, if
Ch is bounded uniformly in h on L?(M) and for any &y € C§°:

®o(—h°Ag)Ch and  Cp®o(—h°Ag) belongs to &£
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Sketches of proof

I:et ho small. For h €]0, ho], the operator T} belongs to the class
9.

Proof. Let ¢g € C5°.

o Observe that ¢o(—h?Ag) € £,°°. As Tj is bounded on
Ck(M) for all k, it suffices to show that for all a € S,
Tha(x, hDy) € £,.

@ In local coordinates, we have Tha(x, hDy) = b(x, hDy) with

b )= o [ eemtmy
T |B(X7 h)‘ lv|<1

a(x + hm(x, hv)v, &, h)p(x, hv)dv

thanks to the cut off function a, it is clear that b € SC_IOO. O
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Symbolic calculus of T}

The spectral theol f Th
Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

Let &g € Cg"([O, OO[), then (Th = deh)%(—thg) = thh with
Ap € €%, Its principal symbol, go(Ap), satisfies near { = 0

5(x)

00(An)(x, §) = (252 A(T4(0) — T4 (0)?)

+ 2 ic()(c. ) ooll2) + O(€)

where Ric(x) and S(x) are the Ricci tensor and the scalar
curvature at x. Moreover, denoting > h*ax(x, €) the symbol of
Ap, we have ag(x,0) =0 for all k > 0.

In particular for f € H?>(M) we have ||(Ty —Tg.n)fll2 < Ch*|f|| 42
It is one of the main ingredient in the proof of Theorem 2.
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Symbolic calculu
The spect
Proof of

Sketches of proof Proof of The

Proof. Let myg € M be fixed. We use the geodesic coordinates x,
centred at mg. Thanks to the formula giving the principal symbol
of a pseudo conjugate by a change of variable, it suffices to
compute o(Tp) in x = 0. In the geodesic coordinates we have

det(g)(y) =1 — §Ric(y,y) + O(y®),
e m(0,v)=Id, p(0,v) =1
Consequently, |B(0, h)| = h9cq(1 + Fo0 )S( 0)h?) + O(h3) and

d
(T 0.6,h) = —1 [ et /det(g)(hv)dv

B0 e
2
= TallEP) + 12 =Tl S + § 5 Ricucyio (9) + O

g
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Symbolic calculus of T}

The spectral theory of T

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

Control of high frequencies

Let x € C§°(R) be equal to 1 near 0. There exists hg > 0,C >0
such that

C

—h?A
ITh(L = X))l < 2

for all h €]0, hg] and all s > 1.
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Symbolic calculus of T}
The spe:

Proof of T
Sketches of proof Proof of T

Proof. Thanks to the support properties of x we have

(8020~ (- gz = O(1)

Hence, it suffices to prove that
ITh(—h*Ag) || 22 = O(1)
On the other hand, in local coordinates we have

Tof(x) = Ch~ / M b, £, WY F(y)dy

with
b(x,&, h) = /l - ei/rl tgm(x,hv)vp(x’ hv)dv,

m(x,0) = g(x)~%/? and p(x,0) = 1.
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Symbollc calcu
T

Sketches of proof

Using the stationary phase method, we can compute the symbol

b(x, &, h):
b(x, &, h) = 8N (x & h) + =8N (x € h) + n(x, &, h)

where n € $7°°, 71 are two symbols of degree —(d +1)/2 and the
phase ¢ satisfy

i(ngv h) - |€’X + O(h)

Therefore, T, is locally the sum of two quantized canonical
transformation with symbol of degree —(d + 1)/2 and phases close
to (x — y)& + h|¢|x. In particular , as (d +1)/2 > 1 we gain one
h-derivative. O

L. Michel (joint work with G. Lebeau) Semiclassical analysis of a random walk on a manifold



Symbolic calculus of T}

The spectral theory of T}

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

Estimate on eigenfunctions(l)

Let 6 €]0,1[ and for h > 0, e € L2 and z, € [6, 1] be such that
lle?||;2 =1 and (T, — z,)e" = 0.

There exists hg > 0, and for all j € N there exists C; > 0, such
that, the following inequality holds true

swp (~RAg +1YeMz < G
h€]0,ho)

Proof. We localize as before. As el = Z—lhTheh and Tp, is the sum
of two quantized canonical transformation of degree

—(1+d)/2 < —1, we gain one h-derivative, and we can iterate
this argument. O

L. Michel (joint work with G. Lebeau) Semiclassical analysis of a random walk on a manifold



Symbolic calculus of T}

The spectral theory of T}

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

Estimate on eigenfunctions(ll)

Let s; be such that [[4(s)| < /2 for s > s; — 1 and let
x1 € C§°(R™) be equal to 1 on [0,s1]. Then,

(1—x1(—h*Dg))e" = Oc(h)

Proof. Recall that z, € [§,1]. We write 1 — x1 = x2 + X3 with x3
supported in [sp,00[, 52 >> 1. For j = 2,3 we have

0
Xi(=h*Dg)(zn = Ta)xj(—h*Ag) = 3xj(—h*Ay)
(apply Lemma 2 in the case j=2 and Lemma 3 in the case j=3).

Hence, ||x;(—h*Ag)e|2 = O(h™®). To gain regularity, use
interpolation and the preceding Lemma. O
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Symbolic calculus of T}

The spectral theory of T}

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

Estimate on eigenfunctions(lII)

For all j € N, there exists C; such that for all h €]0, hg], we have

le®llsmy < G(L+ h72(1 — z4) Y/

Proof. Let 8" = y1(—h?Ag)e”. From Lemma 5 and Lemma 2 we
have

O(h) = (Th — 23)&" = ((Tg — 1)(=h*Dg) + O(h*) + (1 — 2,))&"

Moreover, there exists a smooth function Fy non vanishing on
[0,s1 4+ 2] s.t. (T4 —1)(s) = sF4(s). Hence,

—NgFg(—h?0g)8" = (0(1) +

This shows that [|&"|; < C(1+ h=2(1 — z,) /2|81 2. U
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Symbolic calculus of T}

The spectral t f Th

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

Localization of the spectrum

Recall that (—Ag — Ak)ex =0, (Th — pk(h))el = 0 and

h2

1-Th=~-—
" o(d+2)

7AVY

Let k € N be fixed and x € C§°(R™). Then

o for h > 0 small enough, ex = x(—h>A,)ex

o Lemma 2= (T) — Ty(—h*Ag))ex = O(h*).
As Ta(—h?Ag)ex = (1 + M7 (0)Ak)ex + O(h*)ex and T is
selfadjoint on L2(M, dvy,) it follows that for h > 0 small enough

card(Spec(|Ah|) N [Ak — Coh?, A + Coh2]) > my.

where my is the multiplicity of Ak.
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Symbolic calculus of T}
The spectral theory of T
Proof of Theol

Sketches of proof Proof of Theorems 3 and 4

Localization of the spectrum

On the other hand, if e € [?(M) satisfies |Ap|e = Theh with 7h
bounded, we have
o e = x1(—h*Ag)el + Oc(h*) (thanks to Lemma 5 ).
o hence, Lemma 2 = (T — T4(—h?Ag))e" = O(h*) and
dist(Th, Spec(—Ag)) = O(h?)

Hence, it remains to show that for A > 0 small we have

card<5pec(mhy) A — Coh?, A + c0h2]) < my.
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Symbolic calculus of T}

The spectral theory of T

Proof of Theorem
Sketches of proof Proof of Theorems 3 and 4

Multiplicity of the eigenvalues

Let p> my and e, ..., e} satisfy (|As| — 7i(h))ef = 0 with
71(h) € [M — Goh?, M\ + Goh?], (e,h) orthonormal for the scalar

prOdUCt <., '>L2(M7duh)'
By Lemma 6, we have

el < Gi(1 + m(h))y/2,Vj

and we can suppose that e,h converges in H?> when h — 0.
Denoting f; its limit we get —Agfy = A\cfy forall I =1,...,p and
the functions f; are orthogonal for the scalar product (., .)Lz(Mng).
Consequently, p < my.
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Symbolic calculus o

The spectral theory Th

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

Proof of Weyl type estimate

@ Use Lemma 2 and Lemma 3 to approximate the number of
eigenvalues of Ty in an interval by those of [y(—h?A,).

@ Use wellknow Weyl estimates on pseudodifferential operators
on a manifold.
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Symbolic calculus of T}

The spectral theory of T

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

From Theorem 1 to Theorem 3

We can suppose that n > h~2. Recall that the total variation
between two probability u, v on M is given by

1
I =vli7v = sup |u(A) —v(A)l = 5 sup |u(f) —v(f)]
ACM 1100 <1

Consequently,

1
sup || T (x, dy) — dvpl| v = 5” T — NGl oo oo
xeM

where M5 is the orthogonal projector in L2(M, dv}) on the space of
constant functions.
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Symbolic calculus of T}

The spectral theory of T

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

From Theorem 1 to Theorem 3

Recall that e,’: denotes the normalized eigenfunction of T
associated to the eigenvalue px(h) and let M7 be the orthogonal
projector on span(el). Then,

A1

W + O(h4))”eh

(TH —NE)el = pa(h)"ef = (1~ K

and the left inequality in Theorem 3 is straightforward.
To prove the right inequality, let ¢ €]0, 1[ and denote

Th—Mo(h) = Th1+ Tho

with Thl Zl §<pr<m Mk(h)nk(h).
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Sy c calculus of T,

The spectral theory of T

Proof of Theorem 1
Sketches of proof Proof of Theorems 3 and 4

From Theorem 1 to Theorem 3

@ Denote 7x(h) = h=2(1 — pk(h)), thanks to the eigenfunction
estimate, we have

HTi,:,lHLO"HLw < Z (1-— hzrk)”(l + )
11 <1 <h=2(1-6)

Thanks to Weyl law, we get for nh®> > 1,
+oo ) .
| T llemre < C / e X (1 1 x)Pdx < Ce N
T1

e Finally, we observe that

ITi2ll20e < I T 2,2l Thll 2, oo
< C(1—68)"h 92 << e *(h)
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