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General framework

Semiclassical random walk

Let φ ∈ C∞(Rd) be a real function such that dµh = e−φ(x)/hdx is
a probability measure. We are interrested in the random-walk
operator defined on the space C0 of continuous function going to 0
at infinity by

Thf (x) =
1

µh(Bh(x))

∫

Bh(x)
f (x ′)dµh(x

′),

where Bh(x) = B(x , h). By duality, this defines an operator T ⋆
h on

the set Mb of bounded Borel measures

∀f ∈ C0,∀ν ∈ Mb, T ⋆
h (ν)(f ) = ν(Thf )
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General framework

Stationnary distribution

Observe that if dν has a density with respect to Lebesgue measure
dν = ρ(x)dx ,then

T ⋆
h (dν) = (

∫

|x−y |<h

1

µh(B(x , h))
ρ(x)dx)e−φ(y)/hdy

As a consequence, the measure

dνh,∞ =
µh(Bh(x))e−φ(x)/h

Zh

dx := mh(x)dx

where Zh is chosen so that dνh,∞ is a probability on R
d satisfies

T ⋆
h (dνh,∞) = dνh,∞.

We say that dνh,∞ is stationnary for Th.
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General framework

Convergence to equilibrium

Question

For dν ∈ Mb, what is the behavior of (T ⋆
h )n(dν) when n → ∞?

Under suitable assumptions on φ we can easily prove the following:

Theorem

For any probability measure dν, we have

lim
n→+∞

(T ⋆
h )n(dν) = dνh,∞

We are willing to compute the speed of convergence in the above
limit. The answer is closely related to the spectral theory of Th.
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General framework

Some elementary properties

The operator Th can be extended to L2(Rd , dνh,∞) by density. We
denote Th this extension. We have the following elementary
properties:

Proposition

The following hold true:

Th is self-adjoint on L2(M, dνh,∞).

For all p ∈ [1,∞], ‖Th‖Lp→Lp = 1.

1 is an eigenvalue of Th (Markov property) and 1 /∈ σess(Th).
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Spectral result

Assumptions on φ

We make the following assumptions on φ:

there exists c ,R > 0 and some constants Cα > 0, α ∈ N
d

such that:

∀α ∈ N
d \ {0}, ∀x ∈ R

d |∂α
x φ(x)| ≤ Cα

and
∀|x | ≥ R , |∇φ(x)| ≥ c and |φ(x)| ≥ c |x |.

φ is a Morse function (i.e. φ the critical points of φ are
non-degenerate).

Denoting U (k) the set of critical points of φ of index k, the

values φ(U
(1)
j ) − φ(U

(0)
k ), U

(1)
j ∈ U (1), U

(0)
k ∈ U (0) are

distincts.
(recall that the index of a criticall point U is the number of
negative eigenvalues of Hess(φ)(U)).
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Spectral result

Describtion of “small“ eigenvalues

Theorem [Bony-Hérau-Michel]

Suppose that the previous assumptions are fullfilled. Then

There exists κ0 > 0 such that:

- σess(Th) ∩ [1 − κ0, 1] = ∅
- σ(Th) ∩ [−1,−1 + κ0] = ∅

There are m0 eigenvalues of Th in the interval [1 − h3/2, 1]
and these eigenvalues enjoy the following asymptotics

µk,h = 1 − hθke−Sk/h(1 + O(h))

where the coefficient θk ,Sk are defined later.
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Spectral result

Short heuristics

Let f ∈ C∞
0 (Rd) be fixed, using the change of variable y = x + hz

and Taylor expansion, we show easily that

(1 − Th)f (x) = −
1

2(d + 2)
∆φ,hf (x) + O(h3)

where −∆φ,h = −h2∆ + |∇φ|2 − h∆φ is the semiclassical Witten
Lapacian.

Remark

This expansion is not uniform with respect to f

−∆φ,h is known to have very small eigenvalues λ ≃ e−α/h for
some α > 0

The term O(h3) is not an error term from a spectral point of
view.
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Accurate description of the low lying spectrum

Description of small eigenvalues (I)

Under the above assumptions, the spectrum of semiclassical
Witten laplacian has been analyzed by many authors: Witten
85, Helffer-Sjöstrand 85, Cycon-Froese-Kirch-Simon 87,
Bovier-Gayrard-Klein 04, Helffer-Klein-Nier 04.

It is well known that −∆φ,h has m0 := ♯U (0) eigenvalues
0 = λ1 ≤ . . . ≤ λm0, in the interval [0, h3/2].

The most accurate result in [HKN04] gives an approximation
of these eigenvalues:

λk = (2d + 4)bke−Sk/h

with bk(h) =
∑

j≥0 hjβk,j (x), βk,1 = θk .



Introduction Reminders on Witten Laplacian Using supersymmetry in our problem Factorization of pseudodifferential operators

Accurate description of the low lying spectrum

Description of small eigenvalues (II)

The quantities, Sk , θk can be comptuted: there exists a

labelling U (0) = {U
(0)
1 , . . . ,U

(0)
m0 } and

j : {1, . . . ,m0} → {1, . . . ,m1} such that

Sk = 2(φ(U
(1)
j(k)) − φ(U

(0)
k ))

and

θk =
|λ̂1(U

(1)
j(k))|

π

√√√√ det(Hess φ(U
(0)
k ))

det(Hess φ(U
(1)
j(k)))

where λ̂1(U
(1)
j(k)) is the negative eigenvalue of Hessφ(U

(1)
j(k)).

If m0 = 2 then the above labelling and the function j are such
that

S2 = min
U(0)∈U (0),U(1)∈U (1)

φ(U(1)) − φ(U(0)).
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Strategy of proof

Interraction matrix

The strategy of Helffer-Klein-Nier is the following:

Introduce

F (0) = eigenspace associated to the m0 low lying eigenvalues
on 0-forms
Π(0) = projector on F (0) .
M = restriction of ∆φ,h to F (0).

We have to compute the eigenvalues of M.

We compute suitable BKW approximations ψ
(0)
k of ek , show

that
Π(0)ψ

(0)
k = ψ

(0)
k + error

and compute the matrix of M in the base Π(0)ψ
(0)
k .

Doing that leads to error terms which are too big.

In order to overcome this difficulty, use the super symmetric
structure.
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Strategy of proof

Using Supersymmetry (I)

For p = 0, . . . , d − 1, denote d (p) : Λp
R

d → Λp+1
R

d the
exterior derivative and d (p),∗ : Λp+1

R
d → Λp

R
d its formal

adjoint. Then the Hodge Laplacian on p-form is defined by

∆(p) = d (p),∗d (p) + d (p−1)d (p−1),∗.

The semiclassical Witten Laplacian (Witten, 1985) on p-form
is defined by introducing the twisted exterior derivatives

d
(p)
φ,h = e−φ/h(hd (p))eφ/h and d

(p),∗
φ,h its adjoint and by setting

∆
(p)
φ,h = d

(p),∗
φ,h d

(p)
φ,h + d

(p−1)
φ,h d

(p−1),∗
φ,h

In particular, for p = 0, the Witten Laplacian on function is
given by

∆φ,h = ∆
(0)
φ,h = d

(0),∗
φ,h d

(0)
φ,h = h2∆ − |∇φ|2 + h∆φ.
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Strategy of proof

Using Supersymmetry (II)

The fondamental remarks are the following:

∆
(p+1)
φ,h d

(p)
φ,h = d

(p)
φ,h∆

(p)
φ,h and d

(p),∗
φ,h ∆

(p+1)
φ,h = ∆

(p)
φ,hd

(p),∗
φ,h

Denote F (1) the eigenspace associated to low lying

eigenvalues on 1 forms, then d
(0)
φ,h(F

(0)) ⊂ F (1) and

d
(0),∗
φ,h (F (1)) ⊂ F (0). Hence

M = L∗L

where L is the matrix of d
(0)
φ,h : F (0) → F (1).

The matrix L is well approximated by

L ≃ (〈d
(0)
φ,hψ

(0)
j , ψ

(1)
k 〉)j=1,...,m0,k=1,...,m1

where ψ
(1)
k are BKW approximations of eigenfunctions on

1-form.

We can conclude by computing the singular values of L.
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General structure of the operator

First Reduction (I)

The operator Th is self-adjoint on L2(Rd , dνh,∞).

Using a unitary transformation, we are reduce to analyze the
operator T̃h on L2(Rd) which is given by

T̃hf (x) = ah(x)
1

αdhd

∫

|x−y |<h

ah(y)f (y)dy

where ah(x)−2 = 1
αdhd

∫
|x−y |<h

e(φ(x)−φ(y))/hdy .

Observe that the operator f 7→ 1
αdhd

∫
|x−y |<h

f (y)dy is a

fourier multiplier G (hDx) with

G (ξ) =
1

αd

∫

|x |<1
e ix ·ξdx

Here we use the notation Dx = 1
i
∇x .
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General structure of the operator

First Reduction (II)

From the preceding observations we deduce:

T̃h = ahG (hDx)ah and a−2
h = eφ/hG (hDx)(e

−φ/h)

Since we study the spectrum of T̃h near 1, we introduce

P̃h := 1 − T̃h = ah(Vh(x) − G (hDx))ah

where Vh(x) = a−2
h (x) = eφ/hG (hDx)(e

−φ/h).

The important operator in the sequel is

Ph = Vh(x) − G (hDx) = eφ/hG (hDx)(e
−φ/h) − G (hDx)

The Witten Laplacian on functions has the same form:

−∆φ,h = −h2∆ + |∇φ|2 − h∆φ = −h2∆ + eφ/hh2∆(e−φ/h)
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Supersymmetry for random walk?

We have seen the factorization −∆φ,h = d∗
φ,hdφ,h.

Question

Can we generalize such factorization to pseudodifferential operator
Ph s.t. Ph(e

−φ/h) = 0? In particular to Ph = G (hD) − Vh(x)?

More precise question

Let Ph be a self-adjoint pseudodifferential operator with symbol p,
such that Ph(e

−φ/h) = 0. What assumption do we need on p so
that there exists a pseudodifferential operator Q s.t.

Ph = (dφ,hQ)∗Qdφ,h.
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Framework and result

Recall on pseudodifferential operators

Let τ > 0, we say that a symbol p ∈ C∞(R2d ,C) belongs to
the class S0

τ (1) if

for all x ∈ R
d , ξ 7→ p(x , ξ) is analtytic with respect to

ξ ∈ Bτ = {ξ ∈ Cd , | Im ξ| < τ}

∀(x , ξ) ∈ Rd × Bτ , |∂α
x ∂

β
ξ p(x , ξ)| ≤ Cα,β.

We say that p ∈ S0
∞(1) if p ∈ S0

τ (1) for all τ > 0.

For p ∈ S0
τ (1), τ ∈ [0,∞] we define the Weyl-quantization of

p:

Opw
h (p)u(x) = (2πh)−d

∫

R2d

e i(x−y)ξ/hp(
x + y

2
, ξ)u(y)dydξ

for any u ∈ S(Rd).
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Framework and result

Let φ be as before. Let p ∈ S0
∞(1) and Ph = Opw

h (p). Assume
that the following assumptions hold true:

p is real-valued (and hence Ph is self-adjoint).

Ph(e
−φ/h) = 0

For all x ∈ R
d , the function ξ ∈ R

d 7→ p(x , ξ) is even.

Near any critical points U ∈ U we have

p(x , ξ) = |ξ|2 + |∇φ(x)|2 + O(h + |(x − U, ξ)|4).

∀δ > 0, ∃α > 0,∀(x , ξ) ∈ T ∗
R

d , (d(x ,U)2 + |ξ|2 ≥ δ =⇒
p(x , ξ) ≥ α)

Remark

The operator Ph = G (hD)− Vh(x) satisfies the above assumptions
since G is the fourier transform of 1l|z |<1.
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Framework and result

Let us introduce the operator Dφ,h = −i(h∇x + ∇φ(x)) and
A : T ∗

R
d → Md(R) given by Ai ,j(x , ξ) = (〈ξi 〉〈ξj 〉)

−1.

Theorem (Bony-Hérau-Michel)

Under the above assumptions, there exists τ > 0 and a real valued
symbol q ∈ S0

τ (T ∗
R

d ,A) such that

Ph = D*
φ,h Q∗Q Dφ,h

with Q = Opw
h (q). Moreover, the principal symbol q0 of Q

satisfies q0(x , ξ) = Id + O((x − U, ξ)2) near (U, 0) for any critical
point U ∈ U .
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Sketch of proof

The proof goes in several steps:

Step 1: Show that there exists Q̂φ s.t. Ph = D*
φ,h Q̂φ Dφ,h

Step 2: Show that we can modify Q̂φ in order that it has a

pseudodifferential squareroot Q̂φ = Q̌∗Q̌

Step 3: Arrange things so that Q̌ has analytic symbol in a
small strip
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Sketch of proof

Step 1: Show that there exists Q̂φ s.t. Ph = D*
φ,h Q̂φ Dφ,h.

Let Pφ,h = eφ/hPhe
−φ/h. Since Ph has a symbol which is

analytic w.r.t. ξ, Pφ,h is a pseudo. Moreover, Pφ,h(1) = 0.
Hence, we can factorize

Pφ,h = Q̃φhDx .

Going back to Ph, we get Ph = Qφ Dφ,h . Moreover, we have
an exact expression for Qφ.
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Sketch of proof

It remains to factorize Qφ by D*
φ,h on the left.

This is equivalent to show that

Q̌φ := e−φ/hQφeφ/h = e−2φ/hQ̃φe2φ/h

can be factorized by div on the left.

We introduce the symbol q̌φ of the left-quantization of Q̌φ.
Since ξ 7→ p(x , ξ) is an even function for all x ∈ R

d , exact
computations shows that q̌φ(y , 0) = 0 for all y .

Going back to the original operator by conjugation by eφ/h,
we get the first step.
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Sketch of proof

Second Step: Show that you can choose Q̂φ non
negative and construct its squareroot
To simplify, assume we work on R

2. Then

Ph =

(
D∗

1,φ

D∗
2,φ

)
·

(
Q̂11 Q̂12

Q̂∗
12 Q̂22

)(
D1,φ

D2,φ

)

The key point is that [D1,φ,D2,φ] = 0 so that for any bounded
operators A,B , we can rewrite P as

Ph =

(
D∗

1,φ

D∗
2,φ

)
·

(
Q̂11 + BD2,φ + D∗

2,φB∗ Q̂12 − BD1,φ

Q̂∗
12−D∗

1,φB∗ Q̂22

)(
D1,φ

D2,φ

)

or

Ph =

(
D∗

1,φ

D∗
2,φ

)
·

(
Q̂11 + D∗

2,φAD2,φ Q̂12

Q̂∗
12 Q̂22 − D∗

1,φAD1,φ

)(
D1,φ

D2,φ

)
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Sketch of proof

To simplify, asume that φ has only one critical point in x = 0.
Denote p(x , ξ) = p(x1, x2, ξ1, ξ2) the symbol of P .
Given δ > 0, we have to deal with 3 microlocal regions:
Ω0 = {|ξ|2 + |x |2 ≤ 2δ}, Ω1 = {|ξ1|

2 + |x1|
2 ≥ δ},

Ω2 = {|ξ2|
2 + |x2|

2 ≥ δ}.

On Ω0, since

p(x , ξ) = |ξ|2 + |∇φ(x)|2 + O(|(x , ξ)|3),

it is easy to prove that Q̂ij = δij + O(h + ǫ).

Ω1 and Ω2 are treated in a similar way, using the preceding
remark. Let us study Ω1.
The idea is to chose A and B in order to kill the antidiagonal
terms and get a positive lower bound for diagonal terms.
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Sketch of proof

Killing Q̂12 is done by choosing B = Q̂12/D1,φ. This is
possible since on Ω1, D∗

1,φD1,φ ≥ ǫ > 0.

Assume now that Q̂12 ≃ 0. We want to insure that Q̂11 and
Q̂22 are positive. The fondamental point is that there exists
α > 0 such that

∀(x , ξ) ∈ Ω1, p(x , ξ) ≥ 2α.

On the other hand,

p(x , ξ) = (|ξ1|
2+|∂1φ|

2)q̂11(x , ξ)+(|ξ2|
2+|∂2φ|

2)q̂22(x , ξ)+O(h)

As a consequence

q̂11(x , ξ)+(|ξ2|
2+|∂2φ|

2)
q̂22(x , ξ) −

α
(1+|ξ2|2+|∂2φ|2)

(|ξ1|2 + |∂1φ|2)
≥

α

|ξ1|2 + |∂1φ|2

and we can take A = Oph(
bq22(x ,ξ)− α

1+(|ξ2|2+|∂2φ|2)

(|ξ1|2+|∂1φ|2)
).
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Sketch of proof

Doing that we get a new factorisation on Ω1:

P =

(
D∗

1,φ

D∗
2,φ

)
· Opw

h

(
q11 o(a(ξ))

o(a(ξ)) α
1+(|ξ2|2+|∂2φ|2)

)(
D1,φ

D2,φ

)

with q11 ≥ α
|ξ1|2+|∂1φ|2

on Ω1 and a(ξ) = 〈ξ1〉
−1〈ξ2〉

−1.

Gluing all microlocal region we get a final prefactorisation:

P =

(
D∗

1,φ

D∗
2,φ

)
· Opw

h

(
q11 o(a(ξ))

o(a(ξ)) q22

)(
D1,φ

D2,φ

)

with q11, q22 ≥ α
|ξ|2+|∇φ|2

Finally, operators such that Opw
h

(
q11 o(a(ξ))

o(a(ξ)) q22

)
can be

written as square of pseudo by standard arguments.
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Sketch of proof

Back to random walk

The factorization theorem applies to Ph = G (hDx) − Vh(x).
This shows that

P
(0)
h := 1 − T̃h = L∗φLφ

with Lφ = QφDφah and Qφ = Opw
h (qφ)

We define an operator on 1-form:

P
(1)
h = LφL∗φ + (Q∗

φ)−1D∗
φΩDφQ−1

φ

where Ω is an operator acting on 1-form such that P
(1)
h is

elliptic.

Observe that P
(1)
h Lφ = LφP

(0)
h

Using this structure we can follow the strategy of proof of
[Helffer-Klein-Nier] to get the announced result.
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