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Abstract

We consider the scattering theory for the Schrédinger equation-with— |x|¢ as a reference
Hamiltonian, for O< « < 2, in any space dimension. We prove that, when this Hamiltonian is per-
turbed by a potential, the usual short range/long range condition is weakened: the limiting decay for
the potential depends on the valueogfand is related to the growth of classical trajectories in the
unperturbed case. The existence of wave operators and their asymptotic completeness are established
thanks to Mourre estimates relying on new conjugate operators. We construct the asymptotic veloc-
ity and describe its spectrum. Some results are generalized to the case-\#tiérés replaced by a
general second order polynomial.

00 2004 Elsevier SAS. All rights reserved.

Résumé

Nous considérons la théorie de la diffusion pour I'équation de Schrédinger ayant |x|*
pour hamiltonien de référence, avee® < 2, en toute dimension d’'espace. Nous démontrons que
lorsque cet hamiltonien est perturbé par un potentiel, la notion habituelle de courte portée/longue
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portée est affaiblie : la décroissance limite de la perturbation dépend de la valepetdest liée a

la vitesse des trajectoires classiques dans le cas non perturbé. Nous établissons I'existence d’opéra-
teurs d’ondes ainsi que leur complétude asymptotique grace a des estimations de Mourre reposant
sur de nouveaux opérateurs conjugués. En outre, nous construisons la vitesse asymptotique et nous
décrivons son spectre. Enfin, nous généralisons certains résultats au-epgest remplacé par

un polyndme du second degré.
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1. Introduction

The aim of this paper is to study the scattering theory for a large class of Hamiltoni-
ans with repulsive potential. We find optimal short range conditions for the perturbation,
and prove asymptotic completeness under these conditions. The family of Hamiltonians is
given by:

Ho=-A—[x% 0<a<2  Hy=Hyo+Velx); xeR", n>1 (L)

The main new feature with respect to the usual free Schrédinger opéagos —A is
the acceleration due to the potentialx|“. The casex = 2 is a borderline case: if > 2
classical trajectories reach infinite speed érgo, C3°(R")) is not essentially self-adjoint
(see [12)).

The consequence of the acceleration is that the usual position variable increases faster
thant along the evolution. Roughly speaking, the usual short range condition is:

[Vo(x)| < (x)27%, (1.2)

for somes > 0, where(x) = (1+|x|%)/2. One expects it to be weakened in the casd,of

For the Stark Hamiltonian, associated to a constant electricKied®” (see [8]),— A +
E -x, itis well known that the short range condition (1.2) becomggy)| < (E - x) =122,
We refer to the papers by J.E. Avron and |.W. Herbst [2,18] for weaker conditions. The idea
is that the drift caused b¥ (which may also model gravity, see, e.g., [33]) accelerates the
particles in the direction of the electric field. This phenomenon has been observed for a
larger class of Hamiltonians by M. Ben-Artzi [3,4]: generalizing the Stark Hamiltonian
(¢ =1), let

Roo=—A—sgnx)lx1%, O<a<2  Fy=Fo+ Vulx),

with x = (x1, x’). In [4], asymptotic completeness is proved under the condition:

V| S M(x') - { ()™ forx1 <0, (1.3)

(x1)"1+e/2=¢ for x1 >0,
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with ¢ > 0 andM (x’) — 0 as|x’| — oo. In the one-dimensional case, we obtain similar
results for O< o < 2, and a weaker condition for = 2. The proofs in [3,4] rely on some
specific properties of one-dimensional Hamiltonians, and it seems they cannot be adapted
to (1.1) whenn > 2. Our approach is completely different, since it is based on Mourre
estimates.

Notice that fore €10, 2], the HamiltoniarH, o shares an interesting difficulty with the
Stark Hamiltonian: its symbol|2 — |x|%, is not signed, and can take arbitrarily large
negative values.

The caser = 2 is in some sense very instructive. A nonlinear scattering theory is already
available in this case. In [7], the second author studied nonlinear perturbatiblag ahd
showed that all the usual nonlinearities are short range. This is closely related to the fact
that the classical trajectories can be computed explicitly:

1 1
x(1) = 5 (xo+ €0) e + 5(x0—0) e 2.

Thus x(#) grows exponentially fast (in general). For<0a < 2, a formal computa-
tion shows that the classical trajectaryr) can go to infinity liker/1=%/2: denoting
Uy (x) = —|x|%, the equations of motion imply:

0=X(t) + VU, (x (1)) = ¥(1) — |x()|* *x(0).

Seeking a particular solution of the forntr) = ¢*y, for a constany € R”, yieldsk — 2=

(¢ — D«, hencex = 2/(2 — ). We will prove that in generaly(z) does go to infinity

like ¢1/1=2/2 This shows that the acceleration caused-y|? increases progressively
asa ranges|0, 2]. For a smallx > 0, the particle moves hardly faster than in the free case
|x(¢)| = O(t). As« increases, the particle goes to infinity faster and faster, and reaches the
maximal exponential growth far = 2. Fora > 2, it is known that particles can reach an
infinite speed, which is the reason witi, 0, Cg°(R)) is not essentially self-adjoint. This
suggests to define as a new position variable,

In{x) fora =2,

Pa(x) = { (x)yI=%/2 for0<a <2. (4

We assume that the multiplication potentid}(x) is real-valued, and write¥, (x) =
V3x) + V2(x), with:

Val is a measurable real-valued function, compactly supportedAacaimpact (1.5)
andV?2 e L>(R"; R) satisfies theshort range condition
|Va2(x)| < Pa(X)"1E,  aexeR”, (1.6)
for somee > 0.

The operatoH, is essentially self-adjoint, with domain the domain of the harmonic
oscillator, and we denote agalify, its self-adjoint extension. In Section 2, we prove that
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H, has no singular continuous spectrum ar@t,) = R. Under general assumptions (see
Theorem 2.8), we also show that its point spectrum is empty. We can now state the main
result of this paper:

Theorem 1.1(Asymptotic completenessiet0 < « < 2, andH, o, Hy defined by(1.1).
Assume thav,, = V! + V2 satisfieg1.5)and (1.6). Then the following limits exist

S-[Iirrgoej’H* g iHo, (1.7)
s—t[)ngoe”"l“’ e iHae ), (1.8)

where1¢(H,) is the projection on the continuous spectrumtpf If we denotg1.7) by
27, then(1.8)is equal to(2™)*, and we have

(7)'2t=1 and 2% (27)" =1H.). (1.9)

In the casex = 2, Korotyaev [25] has shown, with a different approach, the asymptotic
completeness under the hypothqﬁﬁ(xﬂ < {(x)7%, withe > 0.

To prove this result, we establish Mourre estimates, relying on new conjugate operators,
adapted to the repulsive potentialx|* (as a matter of fact, we work with the smoother
repulsive potential-(x)*; see below). To give an idea of the difficulty at this stage, con-
sider the one-dimensional case. ko= 2, the natural idea for a conjugate operator is to
consider the generator of dilatiosD + Dx)/2:

i[Hz.0. (D + Dx)/2] = —2A + 2x2.

This is the harmonic oscillator, which is of course positive. This seems an encouraging
point. Nevertheless, itis néb o-bounded; we must find another conjugate operator. There-
fore, we look for a pseudo-differential operatbs with symbolaz(x, £), and try to solve:

{52_x2,a2(x,§)} =4, onthe energy Ieve{l(x,g); 52—x2=E},

A solution to this equation is given by (x, &) = In(¢ +x) — In(¢ — x). Now consider the
case O< a < 2. Forx > 0, we try to solve:

[£2—x" a(x,6)} =2—@a, on{(x,&) eR} xR; 2 —x*=E}.
Pluggingay (x, &) = £x17% into this equation, we get:
{52 —xa,aa(x,é)} =2—a+2El—a)x~ %, fore?—x*=E.

The term inx~® should not matter for the Mourre estimate, since it is compact on the
energy level. This formal discussion is the foundation for the constructions of Section 3.3.
To apply Mourre’s method, truncations in energy are needed, of thefor — |x|%).
However,H, ¢ is not elliptic, so it is not clear that this defines a good pseudo-differential
operator. These difficulties are solved in Section 3, where we consider the general case.
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Theorem 1.1 shows how the short range condition (1.6) takes the acceleration caused by
the potential into account. Let us note that the condition (1.6) is not necessarily the weakest
one, but the decayV (x)| < pq(x)~! at infinity is expected to be the borderline case be-
tween long range and short range scattering, because the position variable increases exactly
like r along the evolution (compare with Theorem 1.2). For the case of the Stark Hamil-
tonian, it is well-known that the case= 0 in (1.3) is the limiting case, which involves
long range effects (see [27]).

We obtain more precise informations by constructing the asymptotic velocity (see,
e.g., [10]). We noteC(R") the set of continuous functions which go to Ocat Let
B™ = (B",..., B") be a sequence of commuting self-adjoint operators on a Hilbert
spaceH. Suppose that for eveye Coo (R"), there exists

s- lim g(B™). (1.10)

m— o0

Then by [10, Proposition B.2.1], there exists a unique veBter (B1, ..., B,) of commut-
ing self-adjoint operators such that (1.10) equdlB). B is densely defined if, for some
g € Coo(R™) such thatg(0) =1,

S-Rll)moo(s-mll)moo(g(R By))) =1
We denoteB := s-Cyo-lim,,, o0 B™.
Theorem 1.2(Asymptotic velocity) Leto, be given by

_[2-a if0<a<?2,
=12 if o =2.

There exists a bounded self-adjoint operafgf, which commutes withi,, such that

(i) P =5Coo-lim,_, o €M 220 grithl
(i) The operatorP; satisfiesP;” = 04 1°(Hy).
(i) ForanyJ € Co(R), we have

J(P)1zy0 (P) =5 lim &P vy e 1z (7)),

whereV, := [iHy, p«(x)] is the local velocity.

Let us note that the limits we stated in Theorems 1.1 and 1.2 are-fo#-o00; analogous
results obviously hold for — —oc.

Notice that computing the asymptotic velocity is all the more interesting that the free
dynamics, &i'Mo, is not known in the case @ « < 2. On the other hand, it is very well
understood in the cagse= 2, since a generalized Mehler’s formula is available (see [21]
and Section 2.2 below). Far= 2, we also consider more general Hamiltonians:
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n— n_+ny n_+ny+ng
_ 2.2 2 2 .
Ho=—A=) o+ WX + Epxi;
k=1 k=n_+1 k=n_4n,+1 (1.11)

H=Ho+ V(x),

with w; > 0 andE; # 0. We prove the existence of wave operators in this more general
case, under weaker conditions than (1.6) (see Section 6.1). The proof is based on an explicit
formula for the dynamics@ o (Mehler’s formula, see Section 2.2).

Asymptotic completeness is showrvif + n4 = n, under a condition similar to (1.6)
in Section 6.2. In that case, we also construct asymptotic velocities in each space direction.
The asymptotic velocity, given by Theorem 1.2, also exists and is equa,j*toNhere
W =Maxigj<n. @, amdP;r is the asymptotic velocity in the direction.

To our knowledge, there is very little motivation from a physical point of view to study
the above Hamiltonians: in general, electromagnetic fields have saddle points, like the po-
tential in Hp, but the above model should then be valid dolgally, in a neighborhood of
the saddle point. In (1.1), the potentialgx|* are unbounded from below; this does not
seem physically relevant (notice however that the Stark potefitialis also unbounded).

On the other hand, we believe that these models are mathematically interesting. The de-
pendence ow € ]0, 2] is somehow well understood, in particular thanks to the definition
of the position variableg, (1.4) and to the study of the asymptotic velocity. We also intro-
duce new conjugate operators in order to obtain Mourre estimates (see (3.13) and (3.17)).
Here again, the dependence of the analysis upseems to be interesting (in particular
the limiting casex = 2 is better understood than in [4]).

As mentioned above, in our analysis, we replbige andH, by:

Hyo=—A—{(x)* and Hy = Hyo+ Vy(x). (1.12)

This does not affect the results, since for latge |(x)¥ — |x|¥| is estimated byx)*~2,
which is a short range perturbation foOx < 2 (ho smoothness is required for the per-
turbative potentials). We therefore prove Theorems 1.1 and 1. 2Hyigt{respectivelyH,)
replaced byH, o (respectivelyH,).

The paper is organized as follows.

e In Section 2 we show some elementary properties of the Hamiltonians. In particular,
we recall Mehler's formula fos = 2, and prove the absence of eigenvaluesHgrin
many cases.

e Section 3 is devoted to the Mourre estimate. In Section 3.2, we treat some rather tech-
nical features. For examplg,(€2 — (x)%) is not a good symbol, and we need some
preparations before being able to use the pseudo-differential calculus (see Proposi-
tion 3.5). We give the conjugate operatty, which is a pseudo-differential operator,
in Section 3.3. Section 3.4 is devoted to the regularity results and the Mourre estimate
is established in Section 3.5.

o In Section 4 we prove asymptotic completeness. The Mourre estimate yields a minimal
velocity estimate forA,. We obtain a minimal velocity estimate for the observable
Pa(x) using a lemma due to C. Gérard and F. Nier (see [15]).
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e In Section 5, we construct the asymptotic velocity and describe its spectrum.
e In Section 6, we generalize our results in the case of the Hamiltonians defined in (1.11).

The main results of this paper were announced in [5].

2. Elementary properties
2.1. Domain and spectrum

We begin with some properties on the spectrum of the opetdior-or 0< o < 2,
introduceN, = —A + (x)“. It is self-adjoint, with domain

D(Ny) = {u € HAR"); (x)*u € LAR")}.

It can be viewed as the “confining” counterpartif, o (the repulsive potentiat (x)* is
replaced by the confining org(x)%). Since it is not easy to know the domainsHf o, we
work on a core for these operatof3(N>), the domain of the harmonic oscillator. We recall
an extension of Nelson’s theorem due to C. Gérard and I. taba [14, Lemma 1.2.5]:

Theorem 2.1(Nelson’s theorem)LetH be a Hilbert space]N > 1 a self-adjoint operator
onH, H a symmetric operator such th&t(N) c D(H), and

[Hull SIINull, ue D(N), (2.1)
|(Hu, Nu) — (Nu, Hu)| SIINY?u)|?,  u e D(N). (2.2)

ThenH is essentially self-adjoint o®(N), and we denoté! its extension. If: € D(H),
then(1+ieN)~1u converges ta in the graph topology oD (H) ase — O.

From this theorem, we deduce the following:
Lemma 2.2.For anyw €10, 2], the operatorH, o is essentially self-adjoint o (N2).
Proof. Foru € D(N>), we have:
| Hoeoull < || (6)u] + lI—Aull < [ Naul|,
which proves (2.1). Now, let us prove (2.2). A straightforward computation shows that
[He,0, N2l = [(x)? + (x)*, A].
Hence, it suffices to show thaf(x)*, A]|l < ||N21/2u|| for 0 < a < 2. But we have:
[(x)”‘, A] = —2ia(x)*2xD — na(x)* "2 — a(a — 2)(x)* 42,

which is clearly bounded bwzl/z forO<a<2. O
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Before going further, let us notice the following characterizatioflgfcompactness:

Lemma 2.3.Let V, (x) = V.X(x) 4+ V2(x), whereV,! is a compactly supported measurable
function, andV2 e L>®(R") with V2(x) — 0 as |x| — co. Then,V, is H, o-compact if
and only ifV.! is A-compact.

Proof. Let x1, x2 € C3°(R") be such thaj, = 1 near the support gf;. We have:

X1 (Hyo+D) " = (A =) M A =) xa(Hoo+ )71
= (A=) txa(A =) (Heo+ D)7 4+ (A =D)AL X1 (Hoo+1) 77
=—(A =)t — (A=) () (Hy, 0477
+(A=DHA, xal(A =) HA = Dx2(Hao+D) 7t
=(A-DoW+ @A - HA, ala -t
x x2(—1— (x)* (Hyo+1) ")
+(A =D)AL x1)(A =) HA, x2l(Hao+ D77
= -)to), (2.3)
since[A, x1](A — i)~ T and[A, x11(A —i)"1[A, x2] are bounded. On the other hand, we
have:
X1()(A =)t = (Ho 0+ 1) H(Hao+ D xa(A — )77
= (Ho0+ 1) 12 (x)(Hoo + (A =)t
— (Hao+ D)7 HA yal(A =)
= (Ha0+1)7TO(D). (2.4)

SinceV2(x) — 0 asx — oo, we get:
L= R Va (0) (Ha0 + )7t = 1= g V2(xX)(He0 +1) 1 — 0 asR — oo,

andlj > g Vo (x)(A — i)~ — 0 for the norm topology a® — +o0. So, from (2.3) and
(2.4),

Va I8 Hy 0-compact<s 1< Ve is Hy,0-cOMpact <

VO[1 is Hy,0-compact< VO[1 is A-compact. O
Then Lemma 2.2 and the Kato—Rellich theorem [30, Theorem X.12] imply:

Lemma2.4.Let0<a < 2. For V, = V1+ VC(2 satisfying(1.5)and (1.6), the operatorH,,
is self-adjoint onD(Hy,0), and essentially self-adjoint ab (N>).
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Notice thatH, o + 1= —A — x? is conjugated to the generator of dilations. This is
obvious from a glance at the symba$®: — x2 can be written agé +x)- (£ —x) =y -7,
with suitable new variables corresponding to a rotation of anglein the phase space. To
make this argument precise, we set,dar S’ (R"):

Uu(x) = ﬁ e /2 / dV2re /2, (y) dy.

The operatolU is an isometry or.2(R"). We have:

qu:U(y_—Dyu) and Dqu(x)zU(Dy+yu). (2.5)
V2 V2
Using these relations, it is easy to see that
NoU =UN> and HaoU =UHa, (2.6)
where
Hzo=D,x +xD, — 1. (2.7)

Then, from [28, Proposition 6.2] on the spectrumiaf + x D and the Weyl's essential
spectrum theorem [31, Theorem XIII.14], we obtain:

Proposition 2.5.The spectrum off, g is purely absolutely continuous, and Hz) = R if
V2 is an H» p-compact real-valued potential.

For O< a < 2, we have the following proposition:
Proposition 2.6.Let V,, be aH, o-compact potential witld < « < 2. Then
o(Hy) =R. (2.8)

Proof. Itis enough to show that (H, o) = R. In that case, we have.sd{ Hy,0) = R and
then, by the Weyl's theorem [31, Theorem XIIl.14}s{ H,) = R. SinceH,, is self-adjoint,
we get the proposition.

Letg € C3°(10, +ool; [0, 1]) so thaty =1 near 1. FoIE € R, we set:

w(ry) = s 1At/ gExy T 2a).

e 5(x) = u(x1)v/ep(ex1)8 " P20 (51x)).
wherex = (x1, x). We first note thafiu 51/ 2(rs) does not depend anands. We have:

Aug s = 02 ()v/2p(ex1)8" /20 (81x]) + 205, (1) dy, (vep(ex1)) 8" P/ 20 (5]x"))
+udZ (Vep(ex1)) 8" D20 (81x']) + uv/ep(ex1)dZ (8 D2 (51x'))).
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The second term is equal f@(x“/z)s3/2|go/|(exl)a(”*l)/2<p(8|x/|) which is O (e17/2) in

L?-norm. The third and fourth terms a€¢?) and©(82) respectively inL? norm. Then
Ha,0uz,5 = /29 (ex1)8" D20 (8|x"|) Ho,0(u) + 0(D),
ase, § — 0. Since
()% = (x1)* = Oy (x1)* 2 (x)2,
we get:
Vep(ex1)8" V2o (81x"]) ((x)* — (x1)*)u = O(s* 7“6 72).
If £2-26=2 — 0, we have
Hy otte.s = v/ep(ex1)8" D20 (8]x"|) (=82, — (x1)*)u(x1) + 0(1).
But we have:

aflu(xl) = (— —E— E2 “/4+ IotxOl/Z_l

/2 — Eax;*7 /8)u(xy),
and then, there is a > 0 so that

(Ha0 = Eduss = /ep(ex)8" D20 (31x)O(x; ") + 0(2) = O(e") + 0(1) = 0(1).
By the Weyl's criterion [29, Theorem VII.12F isino (Hy0). O

2.2. Generalized Mehler’s formula

In this section, we restrict our attention to the case 2 and drop the index 2. We
consider a more general Hamiltonian bA(R"),

n_+ny n—+ni+ng
=—A— Za)kxk + Z wix? + Z Exi, (2.9)
k=n_+1 k=n_+n4+1

With n_ +n4 +ng <n, o > 0andE; #0if ng # 0. By conventionzljza —0ifb <a.
In this case,Hp is essentially self-adjoint oil5°(R") from Faris—Lavine theorem

[30, Theorem X.38]. The kernel of &0 is known explicitly, through a generalized
Mehler’'s formula (see, e.g., [21]):

CiHe . T 1 1/2/ iS(.x.)
e Of_IE(—Zingk(Zt)) &505) £(y) dy, (2.10)
. J
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where
n 2 2 n_+ny+ng
1 Xp+ vy E
S(t,x,y)= hi(2t) — — — t4 =43
(t, x, y) ng(zﬂ( o hi (@) — xiyi > (xk+)’k) + 15
k=1 k=n_+ny+1

and the functiong; andh,, related to the classical trajectories, are given by:

sinhex?) — for 1 <k <n_

[0 ’
gk(1) = %‘Zk’) forn_ +1<k<n_+ng,
t, fork>i’l7+l’l+, (211)
cosiwyt), forl<k<n_,
hi () = {cos(wkt), forn_ +1<k<n_+ny,
1, fork>n_+n4.

Recall that ifn, > 1, then €'"Ho has some singularities (see, e.g., [24]). This affects
the above formula with phase factors we did not write (which can be incorporated in the
definition of (igx (2r))/2), but not the computations we shall make in Section 6.1.

The group generated bify is given by Mehler’s formula (2.10), and can be factored
in an agreeable way, in the same fashion &% esee for instance [26,22,16]). Recalling
(2.10) and (2.11), we have:

. .3
e itHo — A, D, F M, 2IEP, (2.12)
whereE = (En,+n++la cees En,+n++n5)a

n he (2t t}1_+n++ng
SRR (O R S|
k=1

k=n_+n4+1

n 1 1/2 X1 Xn
(Drp)(x) = ,!:[1<M> ‘p(gl(zt) g, (2t))’

and

Fo6) =€) = / & ¥ (), (2.13)

Rn

1
(27 )n/2

denotes the Fourier transform.
2.3. Absence of eigenvalues
We prove the absence of embedded eigenvalues under the unique continuation prop-

erty. This result is very similar to [31, Theorem XII1.58]. We recall the notion of unique
continuation property.
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Definition 2.7. A Hamiltonian H has theunique continuation propertif the following
holds: Suppose thafu = 0 for somex € L?, and tha vanishes outside a compact subset
of R"; thenu is identically zero.

Theorem 2.8.Let V, = V! + V2 be a real-valued potential satisfying..5) and (1.6).
Assume that-A + (Vo (x) — (x)*)1}x|<r has the unique continuation property for atl
large enough and

()12 In(x) | V2| - 0, as|x| — oo. (2.14)
ThenH, has no eigenvalue.

Remark 2.9. The unique continuation property for Schrédinger operators is known in
many situations but we recall only two cases. The works of M. Schechter and B. Simon
[32] forn =1, 2 and D. Jerison and C.E. Kenig [23] imply:

o If V2 LP(R") with p > 1 forn =1, 2, andp > n/2 for n > 3, then the unique
continuation property holds for A + (Vo (x) — (x)*) 1y <k.

We recall [31, Theorem XII1.57]:

e Assume there is a closed sebf measure zero so th&t’ \ S is connected, and so that
V2 is bounded on any compact subseRdf\ S, then the unique continuation property
holds for—A + (Vo (x) — (x)*)1jx|<k.

Proof of Theorem 2.8. We follow the proof of [31, Theorem XII1.58]. Suppose that
u € D(Hy) is an eigenfunction foH, with eigenvalueE. As in [31], we define a function
w from [0, co[ to L2(S"~1) by:

(n—1)/2

w(r,w)=r u(rw).

We have:

+00

2
/ ||w(r) ||L2(§n—1’ dw) dl" = ”u“iZ(R") < +OO (215)
0

Sinceu € D(H,,0), we have(x) " *Au € L?(R") and we get, using the pseudo-differential
calculus, thatd,, (x) ™9y, u)1<j k<n @ndV (x) /2y are inL2(R"). We have:

+00
/ ((dr(r)_“/zw, d,(r)_“/zw) —r 2 " (w, Bw)) dr = ||V(x)_°‘/2u
0

’ 2

)
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whereB is the Laplace—Beltrami operator @f(S"~1) such that-B > 0, and
d, f(r) =r" D2, (rm V2 £ ().

Here(-, -) is the scalar product oh?(S"~1). Using this formula, we get:

+o00 +00
/ () 1w 12 dr < +oo; / F2(r)~ (w, — Bw) dr < oo,
0 0

and the quantities’’ and(w, Bw) are defined almost everywhere 1) +oo[ .
Now we define, for large enough,

F(r)=r~|w'[I>+r~27%(w, Bw) + (r~*(r)® + Er ) |w||?.
From (2.15) and (2.16) (r) is integrable. On the other hand, we have:
(rIn)F(r) =2 Inr) ', w”) +r (L — ) In(r) + 1) w'||?

+2r "IN (', Bw) —r 27 ((1+ @) In(r) — 1) (w, Bw)
+r7(r)* (1= ) In(r) + e In@)r?(r) =2 + 1) w]|?

521

(2.16)

+ Er_‘"((l —a)In(r) + 1) ||w||2 +2r In(r)(r_“ (ry% + Er_“)(w/, w).

Sinceu is an eigenfunction of,, we have:

w” =—r"2Bw + %(n —D(n—3r 2w — (r)*w + Vow — Ew.
Then
(rIN@)F () =) (L= )™ w12+ lw]?) +r = [[w'|? + w])?
—r (A + ) In@r) — 1) (w, Bw)
+ %(n — D —3r 1 Iner)(w', w)

+ Er~* (A=) In) + 1) [w]® + O(r () 1w
+2r %) (W', Vew).

Using—B >0 and

r ) (', w) = o()r T w2 + o(D) w2,

NG (W', Vew) = o) 2w [ |w]l = o(L)r~* w12 + o(L) [w]|?,

(2.17)
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we get:

! — / - 1 1
omvﬂ«m)>muxa—aw“WUV+wwa+%;wuV+§mmﬁ (2.18)

for r large enough. Here(th) denotes a function which tends to Oratends to+oo. This
computation is formal, but we can give, as in [31], a rigorous proof of the integral version
of (2.18).

If 0 <« <1, we getthar In(r) F(r) is monotone increasing for> R large enough.
Integrate (2.18) betweer; and r: F(r) > ®NR p(Ry). Since F is integrable but
(rInr)~Lis not, we haveF (r) <0 forr > Ry.

Now, we assume thatd o < 2. For 1« a < b, we have:

bInbF(b) —alnaF(a) > /(In(r)((l —a)r w2 + lw]?)

a

+ 2 w2+ S wi?) d (2.29)
- — 7. .
2 Tl
Integration by parts yields:
b b
/r_“ Inr(w”, wydr =r=%Inrw’, w)|Z - /r_“ Inr|w'|?dr
a a

b
— /(1—a|nr)r*l*°‘(w’, w) dr.

a

The eigenfunction relation (2.17) yields:

b b b
/r_“ Inr(w”, w)dr = —/r_z_“ Inr(w, Bw)dr +fr_°‘ Inr(w, Vw)dr

a

b
+/r*“ |nr<%(n —D(n—3)r 2= (r)* — E>||w||2dr

b b
:—f(lnr+0(l))||w||2dr—fr_z_“ Inr(w, Bw) dr.

We infer:



J.-F. Bony et al. / J. Math. Pures Appl. 84 (2005) 509-579 523

b b b
fr‘“lnr||w’||2dr:/Inr||w||2dr—i—/r_z_“ Inr(w, Bw)dr
a a

b
+[r*Inr@’, w)]z + / o(L) (r~[|w'||* + ||w||2) dr,

and (2.19) becomes,

b
bInbF(b) —alnaF(a) > f((z— ) Inrlw(?+r=|lw'|2/3+ |lwl|?/3) dr

a

+A=a)[r *Inr@w’, w)]Z

b
+@A- oz)/rfzfa Inr(w, Bw) dr

b
>f(<2—a>Inr||w||2+r—“||w’||2/3+ lwl?/3) dr

+ Q- Inrw’, w]’, (2.20)
since(1—a)B > 0. Let F be defined by:

F(r)=F(@) + (@ — Dr %W, w), (2.21)
which is integrable from (2.15) and (2.16). Inequality (2.20) implies that- F (r) is
monotone increasing, and reasoning as befbre) < 0 forr > R1.

We now prove thaiw(r) = 0 for r > R» large enough. Fom € N, let w,, = r"w. It

satisfies:
w! =2mr~tw! —r2Bw,
o -2 1 -2
—|E+{@)* =V +m@m+Dr —Z(n—l)(n—3)r wy.  (2.22)

We also define:

G(r) = r2|lw), 1% +m(m + Dllwy 1? + (W, Bwy)

+ (r2(n)* + Er? —r)wn %, (2.23)
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and we have:

G'(r) = (4m + 2r|w,|I? + 2((r2V + %(n —1(n—23) — r>wm, w;n>
+ (20 () + ar3(r)* 2 + 2Er — 1) |wy ||
Using (2.14) and the Cauchy—Schwarz inequality, we get:
G'(r) = (4m + Drllwy, I+ r* wy %,

for r > R» > Ry independent ofz. ThenG (r) is monotone increasing gy, +oo .
Suppose that (rg) # 0 for somerg > R». Since we have:
G(r) =r® (r?|lw’ +mr~ w||® + m(m + 1) |w||*

+ (w, Bw) + (r2(r)* + Er? —r) |w|?),

we getG(rp) > 0 for m > 1 large enough, and now fixed. S@(r) > 0 for all » > rp. On
the other hand, if > r1 > rg, with r1 large enough, we have (2m + 1) — r < 0. Since
|lwl|? is integrable orfir1, +o0[ , the function||w||? is not monotone increasing; there exists
r > r1 such that

(Ilwll?)' () = 2w’, w)(r) <O.
Then
G(r)=r2" (r?[|w'|I> + 2mr (W', w) +m2m + 1) |w]?
+ (w, Bw) + (r2(r)* + Er? —r) |w]?)
< r2’”+2+°‘(r_°‘||w’||2+r‘2‘°‘(w, Bw)
+(r () + Er %) ||w||2) + 2mr (W', w).
Therefore, we get:
0<G(r)<r?"2 M Fr)<0 f0<a <1,

0<G(r) <r?"2Fr) <0 ifl1<a<2

which is impossible, saw(r) =0 for r > R. Theorem 2.8 follows from unique continua-
tion. O

3. Mourre estimates

In the following, we use the Weyl calculus of L. Hérmander, for which we refer to
[20, Section XVIII]. More precisely, we work with the simple metrics which areemp-
erate:
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go= |dx|* + |d&|?,
_ e |dg 2

gl 1+X2+§2 l+x2+$2’

p_ I dé |2

AT A2 e T @Az Edp
o fdx2 | |dg)?

g2_1+)€2 1+%_21

for 8 > 0. We refer to [20] for the definition of the space of symBdt:, g) and we note
¥ (m, g) the set of pseudo-differential operators whose symbol is in a spacegg). We
set¥(g) =, ¥(m, g).

The crucial point of the Mourre theory is the construction of the conjugate operator.
This is a self-adjoint operatot, such thatfiH,, A,] is positive on the energy level, and
H,-bounded. In our case, the generator of dilatign® + Dx)/2 is not satisfactory for
Hy 0 Since,

i[ Ha0, (xD + Dx)/2] = —2A + ax?(x)* 72,

which is positive, but not, o-bounded fore > 0. So we must find another conjugate
operator. We look for4,, as a pseudo-differential operator of symhbglx, £). Consider
the case of dimension one, and start with- 2. Formally, we want to solve:

62 —x% ap(x,6)} = 26dca + 2xdcaz =1, on{(x,&); E2—x?*=E}. (3.1)

We saw in the introduction that a solution to this equation is given by:

1
az(x,§) = ZU“(E +x) —In(¢ —x)). (3.2)
Now consider the case9a < 2. Replacingx) by x > 0, we try to solve:

{52 —x%, aq(x, E)} =2£0cay +ozx“_18,gaa =2—q,
on{(x,£); €2 —x*=E}. (3.3)

As we saw in the introduction, (x, £) = £x17% should do the job, up to an error which

is compact on the energy level (because it decaysdik®). In this section, we make this
heuristic approach rigorous. The main results (Mourre estimates) are proved in Section 3.5.
Here, we can find again the short range condition: on the energy level, we have formally:

In{x) if @ =2,

~ (x)2/2 ~

(&) ~ (x) and then |aa(xa 5)‘ { (x>l—a/2 ifO0 <a <2

By (3.1) and (3.3), we obtain that the position variable increases exactly &keng the
evolution. Then, in Section 4.2, we will replagg(x, £) by p, (x) and we will require that
the potential decays gs, (x) 1 7¢.
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3.1. General framework

We recall some results that we will use to prove regularity results on the groups gen-
erated byH, . A full presentation of such issues can be found in the book of O. Amrein,
A. Boutet de Monvel and V. Georgescu [1]. We start with the definitio6 bfA).

Definition 3.1.Let A andH be self-adjoint operators on a Hilbert spd¢eWe say thatd
is of classC" (A) for r > 0, if there isz € C \ o (H) such that

Rot— d4(H —z) e 4,
is C” for the strong topology of (H).
We have the following useful characterization of the regulafityA).

Theorem 3.2[1, Theorem 6.2.10]Let A and H be self-adjoint operators on a Hilbert
spaceH. ThenH is of classC1(A) if and only if the following conditions are satisfied

(1) There existg < oo such that for allu € D(A) N D(H),
|(Au, Hu) — (Hu, Aw)| < c(I1Hu|® + [u]?).

(2) For somez € C\o (H), the setiu € D(A); (H —z)"tu e D(A)and(H —2) tu e
D(A)} is a core forA.

If H is of classC1(A), then the following holds

(1) The spac&H — z)"1D(A) is independent of € C\o (H), and contained irD(A). It
is a core forH, and a dense subspace Bf A) N D(H) for the intersection topology
(i.e., the topology associated to the noflH u|| + || Au| + ||ul).

(2) The spaceD(A) N D(H) is a core forH, and the form{ A, H] has a unique extension
to a continuous sesquilinear form @ H) (equipped with the graph topolopyf this
extension is denoted hyr, H], the following identity holds of (in the form senge

[A,(H -2 =—(H -2 A HI(H -2,
forz e C\o (H).
We also have the following theorem from [1, Theorem 6.3.4]:

Theorem 3.3.Let A and H be self-adjoint operators in a Hilbert spad#. Assume that

the unitary one-parameter groexp(iAt)}.cr leaves the domai® (H) of H invariant.

ThenH is of classC1(A) if and only if[H, A] is bounded fronD(H) to D(H)*.

A criterion for the above assumption to be satisfied is given by the following result:
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Lemma 3.4[13, Lemma 2] Let A and H be self-adjoint operators in a Hilbert spadé.
Let H € C1(A) and suppose that the commutafoH, A] can be extended to a bounded
operator fromD(H) to H. Thene’4 preservesD(H).
3.2. Atechnical result

It is not clear that the energy cut-offg(Hy,0), x € C°(R), are pseudo-differential
operators, sincéd, o is not elliptic, andy (§% — (x)®) is not a good symbol. The next
proposition will allow us to use pseudo-differential calculus. Such techniques have been
used by M. Dimassi and V. Petkov [11].

Proposition 3.5.Let0 <a <2,1/2< <1,z C\Randy € CI°(R) such thaty =1
near0. Then

£2— (0)”

oo = ton{u( EUT
(Ho,0—2) (Ho,0—2)""Op| ¥ &2+ ()@)P

)) + O Op(r),

with r(x, £) € S(E% + (1)), go).
Proof. Fory >0, letgy’” be thes-temperate metric:

|dg |2
(E2+ (x)o)r”

g3” =lde|*+
Let B =Op(b), with b = (£2 — (x)*) /(% + (x)*)? € S((£2 + (x)¥)1F, gg"l). It satisfies
80 cb e S((2 4 (x)o) T FTMINEIUD pudy T ys e N2, (3.4)

We have:

(Hoo0—2) X1 —¥(B)) = (Hoo— 2 BB (1 - y(B)). (3.5)

Theorem 18.5.4 of [20] on the composition of pseudo-differential operatoﬁs@‘j’l),
and (3.4) imply that

(Ho,0— 2) 2B = (Ha,0 — 2~ (Ha0 OP((6% + (%) %) + Op(r)),
wherer € S((£2 + (x)*)~#, gg"l). So we have:
(Ho0—2) "B = 0(1) Op(r), (3.6)

for some other € S((£2 + (x)*)~ 7, 8%’1)-
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Leto(y) = (1—v(y))/y, andg be an almost analytic extension gf(see [19,9] and
[10, Appendix C.2]). This is &@°°(C) function which coincides witlp on R, whose sup-
port is contained in a region likdm z| < C{(Rez), and which satisfies:

|0:5(2)| < Ci() 2 ¥Imzl*,  VkeN.

Using the Helffer—Sjostrand formula (see [17] or [9]), we can write:

1
Op(r)B™*(1—y(B)) = - / 3:9(z) Op(r)(B — ) "1L(dz). (3.7)

ForImz #0and ¥2 < 8 <1, we haveb(x, &) —z)~te S(1, g%"zﬂ*l) and

33 ¢ (b(x, &) —2) L e S((E2 + (x)o)TPTHAMNEID a2 vs e NP (3.8)

Using [20, Theorem 18.5.5] on the composition of pseudo-differential operators in

lI/(gg"l), andlI/(gg"zﬂ_l), (3.4) and (3.8), we have, for lg£ 0,

(B —2)0p((b(x,£) —2z) ) =1+ 0p(d(2)),

whered(z) € S((§% + (x)*)173F, gg‘zﬁ’l), and each semi-norm af(z) in this space is

bounded by some power offl|Imz|~1. On the other hand, we have:
op((&2+ () +in) " #) op((82 + () + i) ¥ ) =14+ 007,
and then, forn. large enough,
Op(d(2)) = Op(d(2)) Op((% + (x)* + i1 ¥ O Op((6% + (x)* +ir) ¥ H

— Op(@) O Op((E2 + (1) +in) %),

with J(z) € S, gg’zﬂ’l) and each semi-norm is bounded by some poweref im z| 1.

The continuity inL2(R") of pseudo-differential operators yields:
(B —2)0p((b(x,£) —2) ) =1+ O(1+ |Imz] ™M) Op((£2 + (x)* +i2)* "),
for someM > 0. We infer:

(B -2~ =0p((bx,6) —2) )
+O(L+[Imz] ™M) Op((&2 + (x)* +ir)" ). (3.9)

Then, using the pseudo-differential calculus, (3.7) becomes:
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1 - _
Op(r)B~H(1—v¥/(B)) = ;/32¢(Z)Op(r)0p((b(x,§) ~2) 1)L(0|Z)

+ 0 Op((E2 + () +in) )
— O1) Op(r), (3.10)

for some other € S((€2+ (x)*)~#, gg"zﬁ_l). From (3.5), (3.6) and (3.10), we have:

(Hy.0 —2) "1 = (Hy0 — 2) 19 (B) + O(1) Op(r). (3.11)

Using the Helffer-Sjostrand formula:
1 ~ -1
V(B) = - / Y (2)(B —z)""L(dz),

1 ~ _
Op(v (b(x,§))) = / 3:9 (2) Op((b(x, £) — 2) ) L(dk),

T
and (3.16), we obtain:
¥ (B) = Op(¥ (b(x,§))) + O(1) Op(r), (3.12)
with r € S((£% + (x)*) 7P, gg’zﬂ’l). The proposition follows from (3.11) and (3.12)0

3.3. Conjugate operator

Following the discussion of the beginning of Section 3, we choose for the conjugate
operator ifoe = 2,

A =0p(az(x,£)), withaz = (In(€ +x) — In(§ —x)). (3.13)
One can see thab(x, &) € S({In(x)), go). Indeed, we have, fg€| < 2|x]|,
In(& + x) — In(€ — x) < In(3x) < (In{x)) + C, (3.14)
with C > 0. On the other hand, we get fi#| > 2|x]|,

2 2
1 (l+($+x) >< 1In(1+9§ /4

In(€ 4+ x) —In(g —x) == 1In 1+¢E—x2) 2 \1+£2/4

> ) <C, (3.15)

with C > 0. For computational reasons, it is better to have a another writingfor

Lemma 3.6.We have

Az =U(In(v2x) - In(v2D))U*.
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Proof. Using the exact composition of pseudo-differential operators (Theorem 18.5.4
of [20]), we have:
Op(In(& + x)) = Op((& +x)% + 1) Op(In(& + x) ((& +x) + 1)‘1),
Op((€ + )2+ ) = ((D+x2+2)

forImz £ 0. Lety c C be a contour enclosd@, +oo[ in the region where Iy + 1)(z +
1)~1 is holomorphic and coinciding with Re= |Imz| for z large enough. Using the
Cauchy formula and (2.5), we get:

op(In& +x)) = %(w +x)2+1) / NG+ D+ 0p(((6 + 02 —2) 1) d
Y

- %((D +x)2+1)/|n(z+1)(z+1)—1((1) +x)2—z) M

Y
1

=U—
2im

(2x2+1) / NGz + D+ (2x2—2) tdzU*
14

= U In(~2x)U*, (3.16)
and the lemma follows. O

In the case G< @ < 2, we choose for the conjugate operatigr= Op(ay (x, £)), where

o, 6) = x - s<x>—“w<ﬂ>
E2+ (x)@
€ 5012, g3/%) N S ((E)x) . g2), (3.17)

with ¢ € C3°([—1/2,1/2]), andys = 1 near 0. Notice that on supp, [¢] is like (x)2/2,
3.4. Regularity results

The aim of this section is to prove some regularity results Higr First, we give a
common core for the operatorg, and A,,. Using the results of the previous section, we
get:
Lemma 3.7.Let0 < o < 2. The operatord,, is essentially self-adjoint 0B (N2).

Proof. Asinthe proof of Lemma 2.2, we use Theorem 2.1. We distinguish the cases
and O< « < 2. First, we suppose that«a < 2; foru € D(N), we have:

I Aqull < )" 2u | < IIN2ull,
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and the composition rules for an operato#iiig,) by an operator imU(gg/ 2) yield
_ - 2
[Aq. Nol € ¥ ((x, §)17/2(x)172/2, g3/7),

which implies (2.2), from [20, Theorem 18.6.3]. The lemma follows fer & < 2. When
o =2,

A2ull < [{(In(x))u|| < I N2ull,

which proves (2.1). Moreover, sinee(x, &) € S((In(x)), go) andN» € ¥ ((x, £)2, g1), we
get[N2, Az] e W ({In{x))(x, &), go) and then

2

’

|(IN2. Azlu, u)| < | N3 %

which yields (2.2) and the lemma.0

3.4.1. Regularity forH> o

Lemma 3.8.For z € C\R, (Hz,0 — z) ! mapsD(Ny) into itself.

Proof. We use the notations of Section 2.2. kot D(N»), we have:

sze_itszou” = sz./\/l,th./\/l,uH = szD,]:Mtu”

= |(sinh2)2x2F Mu| = |—(sinh2)?AM,u||
= | M, (—(sinh2)2A + (cosh2)%x? — tanh 2 (x D + Dx))ul|
< | Noul.
We also have:
|—ae™ " H20u|| = || (Hao + x?)e " H20u | < || Ho oull + || Nou|| < €11 Noul|.

So, for Imz > 4, we get:

+00

< / e "M e dr | Nou || < || Noull,

+00
| Na(Ho0 — 2) " tu| = HiNz f diz gitH20, g
0

which shows thaiHz 9 — 2)~1 maps D(N>) into itself for Imz > 4. Then the lemma
follows from [1, Lemma 6.2.1]. O
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Lemma 3.9.Hzgisin C1l(Ay) and [H2,0, A2] is bounded orL2(R").

F:roof. From Theorem 3.2, it is enough to estim@fgg,o, A2]. Recall~that from (2.7),
Hz0= Dyx + xD, — 1. Using (2.6), Lemma 3.6 anHl2 0 + 1 = —F(H2,0 + D) F*, we
have:

[Ho0, A2l = U[ﬁz’o, In (\/ix) —In <\/§D>]U*

= U[ﬁz’o, |n(\/2x>]U* + U]:[ﬁz’o, In(«/ix)]}'*U*
2 2
— v iuF 2 ey

(v2x)2 (v2x)2
4x2 4D?
—_iv U*, 3.18
'<<¢ix>2+<ﬁ0>2> o

which is bounded oL 2(R"). O
For the asymptotic completeness, we need more regularity. We begin with:
Lemma 3.10.Hy ¢ is in C?(A2) and[[Hz,0. A2], A2] is bounded or.2(R").

Proof. Since we know that> ¢ is in C1(Ay), it is enough to prove thdf Hz 0, A2], A2]
is bounded. From (3.18), we can write:

4x? 4D?
=—i In{v2x) —In{~/2
[[Hz,0, A2], Az2] IU[<m>2+ VD) n{v2x) n(x/_D)]U

The symbols

-2 2§
S8 () <€>

g(x, &) =In{x) —In(§),

satisfy f € §(1, g2) andg € S(In(x) + In(&), g2). Then, from Theorems 18.5.4 and 18.6.3
of [20], we haveOp(f), Op(g)] = O(1) which completes the proof. O

3.4.2. Regularity fotH, gforO <o < 2

Lemma 3.11.The operatolf Hy o, A1 iS in ¥ (1, g2), and its symbol is supported inside
the support ofi, (x, £), moduloS({x, £) ™, g2).

Proof. Sinceay (x,£) € S((x)17%(£), g2) and &2 — (x)¥ € S((£)% + (x)%, g2), we get
[Ay, Hyol e W (14 (x)™¢ (£)2, g0), and each term in the development of its symbol is sup-
ported inside the support af, (x, £). Since(&) is like (x)*/2 on the support ofi (x, £),

we get the lemma. O
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Lemma 3.12.H, g isin clAy), and[Hy,0, Aq] is bounded orL2(R™).
Proof. As for Lemma 3.11, we have:
[A(vaOt]elI/(lv 82)1 (319)

and its symbol is supported inside the support @f(x, &), modulo a term in
S((x, &)™, g2). Then[Aqy, N,] is bounded onL2(R"). On the other hand, from the
pseudo-differential calculus, one can show ttét + i)~ mapsD(N») into itself. Then,
from Theorem 3.2N, is C1(Ay).

Since[Aq, N, is bounded, we get from the proof of [13, Lemma 2], tHét-epreserves
D(N,) and that

t
NaeitAa — eitAaNa + i / ei(t—S)Aa [Na’ Aa]eiSAa ds’ (320)
0

on D(N,). From (3.19), we infer thalf Ay, Nel, Nol € W ((x)1E) + () 1E) 72, g2)
and that each term in the development of its symbol is supported inside the support of
aq(x,&). Then[[Aqy, Nol, Nol € ¥ ((x)*/271, g2) C ¥(1, g2) because 6< o < 2. By in-
duction, we obtain that
[...[[[Aas Nal, No]. Na]. ... No| € ¥ (1, g2). (3.21)
Using (3.20) and (3.21), we obtain thét'e preservesD (NX) for all k € N and that
| Nagbeu]] < [ Ngu] + lull, (3.22)

for all u € D(N¥). Sincea # 0, there isk € N such that &4« maps continuously (N¥)
into D(N2). Then

f > 09 B, ol

is well-defined and’! for u € D(N¥). It follows that
t
Hy o€« =l H, o+ i/ g4 H, o, A, 164 ds, (3.23)
0

on D(N‘fj). Using Lemma 3.11[H, o, A,] Can be extended as a bounded operator on
L2(R"). On the other hand, o satisfies Nelson’s theorem 2.1 WiN‘g as reference oper-
ator. Then (3.23) can be extended bnH, o) and & Ax preservedD (Hy o).

Since[Hy,0, Al is bounded or.2(R"), Theorem 3.3 shows thad, o isin clay). O
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Lemma 3.13.H, o is in C?(A,) and[[Hy.0. Ael, Ag] is bounded o 2(R").

Proof. As in Lemma 3.10, it is enough to estimdiél, o, Ayl, Ay]. Since[Hy 0, Aol €
¥ (1, g2) andAq € ¥ ((x)17%(£), g2), we get[[Hy,0, Aal, Al € ¥ ({x)™%, g2) which im-
plies the lemma. O

3.4.3. Regularity forH,

Proposition 3.14.Assume thav, satisfies the assumptions of Theoreth ThenH,, is of
classC1*¥(A,) for somes > 0. Moreover[ H,, A,] is bounded fronD(H,) to L2(R").

Proof. We use an interpolation argument as in [14, Proposition 3.7.5]. We begin by prov-
ing that H, is in C1(A,) if V2 satisfies (1.6) withe > 0. Since H, o is C*(4,) and
[H,, A,] is bounded fromD(H,) to LZ(R"), g4« preservesD(Hy o) = D(Hy), from
Lemma 3.4. Then, from Theorem 3.3, it is enough to show|[tHat A, ] is bounded from
D(H,) to L2(R™).

Since we know from Lemma 3.9 and Lemma 3.12 tf¥} o, A, iS bounded from
D(H,) to L2(R"), it is enough to show that

[Vu, Ag)(Hy0+ i)~ is compact (respectively, continuous)
on L%(R") if ¢ > O (respectivelys = 0), (3.24)
wheree is the constant in (1.6). We can write:
[Va, Aal(Ho0+1) " = Vg Ag (Ha 0+ D) — Ag Vi (Ha 0+ 1)
+ V2, Agl(Hoo+1) 7" (3.25)

Let x € C3°(R") be equal to 1 near the support%j. SinceAy € ¥ ((py (%)), g0), AaX
andy A, are bounded. So

AgVEHy 0+ 1= Agx Vi Hyo+D) 1= OV Huo+D)7L,  (3.26)
which is compact becausit%1 is Hy o-compact. Since A, is bounded, we can write:
XAa(Ho0+D)7r = (Hao+1) " x A + (Heo + D) " Ho0 X Aa](Hao +1) 71

= (Hy0+ 1) 2O@) + (Hy0+ 1) " Ha0, x1Ag(Huo +i) 71
+ (Hy0 + 1) " [ He0, Ael(Hy0 4+ 1)L (3.27)

We have:
Op(c(x, §)) :=[Hq0. x1Ax € ¥ ((£)(x)™. g0).

Then Proposition 3.5 and the pseudo-differential calculus imply:

[Ho0, 1 1Aa(Ha0+1) 2 = <Op(c<x sw(u)) + R>(9(1)
” ’ ’ £24 (x)® ’
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with R € W((x)", go). Since we also have:(x, &)y ((62 — (x))/(E% + (x)) €
S((x)7°°, go), we get:

[He 0 X1Aa(Ho0+1)7 = O(D), (3.28)
AS [Hy0, Ay](Hy 0 — )1 is bounded, (3.27) becomes:
X Aa(Hy0+1) " = (Ho0+D) 1O,
and then
Vg A (Ho0 +1) 1 = Vg (He 0 +1) 71O, (3.29)
which is compact. Sincd,, € ¥ ({py(x)), go) and Vw2 satisfies (1.6), we have:
[VZ. Aa](Hoo+ D7t = (ViAa — AdVE) (Hao+)7"
= OW)(pe )" (Hao+D7H, (3.30)
which is compact (respectively, bounded} it O (respectivelyg = 0) from Lemma 2.3.

Sowe have (3.24Y, is of classC1(Ay) and[H,, A ] is bounded fronD(H,) to LZ(R").
To haveH,, in C1*3(A,), it remains to show that

T(VZ):=[(He +1) 7% Ag] = (Hy + 1) [Ho, Aal(Ho +1)71,
is of classC®(A,). We use an interpolation argument as in [14]. por 0, we set:
SO={W e L¥®R";R); [Wx)|<(pa(x)) " aex eR"}.

Then Sy is a Banach space, equipped with the ndi| .o = I|{pe (x))? W (x) || oo ).
We already have proved tha-) mapss_ into C%Ay). From (3.30), we get:

[Tow)y =T S |W-W],,,

and therT" is continuous. We now show th&t V2) is of classC1(A,) for V2 € 2. Using
Hy € CY(Ay), [Hy, Agl(Hy + 1)~ = O(1) and Lemma 6.2.9 of [1], it is enough to show
that[[Hy, A«l, Ae1(Hy +1)~1 is bounded. From Lemmas 3.10 and 3.13, it is enough to
show that{[V,, Aq], Ae](H, + 1)1 is bounded. As for (3.26) and (3.29), we have:
(VY Aol Ao](Hoy +1) "t = (VEAZ — 24, V2AL + A2VD)(Hy +D)71
=VYH, +) 00 - 20 VEH, +)7TOQ)
+ OV, (Hy +1)71

which is bounded. On the other hand,
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[[VZ Al Aa](Hy + )t = (VZAZ = 244 V2 AL + AZVR) (Hy +1) 72,

is bounded sinc&? € S2 andA, € ¥ ((py (x)), go)- ThenT (V2) € C1(A,) for V2 € S2.
Moreover, we know that for & ¢’ < 1, C¢'(Ay) is a real interpolation space between
C%A,) andC1(A,). Using the notation of [1], [1, Eq. (5.2.22)] implies:

C% (Aq) = (CO(Aq), CH(AY))

1—-¢',00°

On the other hand, mimicking the proof of Lemma A.3 of [14] with = x (ps (x)/R),
we prove that fop €11, 2[,

S5 C (2 5%) .00

By interpolation (see, e.g., [1, Theorem 2.6.1]), theré is O such thatH, is of class
C¥(Ay) for Vy e S withe > 0. O

3.5. Mourre estimates
First, we prove a Mourre estimate fék o.
Lemma 3.15.Letn > 0and x € C3°(R). There existk compact onL2(R") such that
X (Ho,0)[i Hz,0, A21x (Hz,0) > (2 — ) x*(H2,0) + X (H2,0 K x (Hz,0).  (3.31)
Proof. Using (3.18), we have:

2x2 N 2D?2
(vV2x)2  (V2D)?

x (H2,0)[iH2,0, Alx (H2,0) = 2X(H2,0)U( )U*X(Hz,o)- (3.32)

Forx? + &2 > C with C > 1, the symbol

2x2 N 2D?
(V2x)2  (v/2D)
satisfiesf > 1 — n/2. Then Garding inequality (Theorem 18.6.7 of [20]) yields

fx. 8=

S €51, g2)

Op(f) > (1—n/2) — COp(x (x, £)) = R,
with € > 0, x € CF(R?") andR € ¥ ((x)~4&)~%, g2). Then
X (Ha,0)[i Hz,0, Alx (Hz,0) > (2= n) x (H2,0)? + x (H2,0) K x (Hz2,0).,
whereK is compact. O

We have also a Mourre estimate 8, o with 0 < o < 2.



J.-F. Bony et al. / J. Math. Pures Appl. 84 (2005) 509-579 537

Lemma 3.16.Letn > 0. If the support of/ in (3.17)is close enough td and x € C3°(R),
there exists a compact operat&r on LZ(R") such that

X(Ha,O)[iHoz,O» Aot]X(Ha,O) >@2—-a-— U)XZ(Ha,O) + X(Hot,O)KX(Hoz,O)~ (3-33)

Proof. Sinceay(x,£) € S((x)1%(£), g2), €2 — (x)¥ € S(£2 + (x)¥, g2) and (&) is like
(x)*/2 on the support o, we have:

[iHa,O’ Ayl = Op(bl) + Op(bZ) + K3,

where

£2 — (x)*
£24 (x)*

b1(x, &) = (28%(x) ™ — 20(x.&)%(x) "2 + ax2<x>—2)1/f( ) e S(1, g2),

ba(x, &) € S(1, g2) with support inside the support af’ (6% — (x)*)/(£2 + (x)¥)) and
K1 e ¥ ((x) 1)L, g2). If the support ofiy is close enough to 0, we have:

£2— (0
bl(x’ S) 2 (2_(3( - 7))‘//<€2+ (X)a)’

for (x, &) large enough, and the Garding inequality implies:

£2— (x)®
Op(b1) > 2—a — 1) Op(w(gz - W)) + K2,

with K2 € & ((x)~1(£)~1, g2). Therefore

2 _ a
X (HOl,O)[iHOt,Oa Aqlx (Hy0) 2 2—a—nx (Hy,0) Op(l// (%-2 <X)a >>X (Hgy,0)
§°+ (x)

+ x (He.0)(OP(b2) + K1 + K2) x (Hy.0)- (3.34)

Let X € C3°(R) be equal to 1 near the support,pf Using Proposition (3.5), we get:

§2— ()
(v (i) o

= Op<1/f <52 — (x>a )) (Hy,0+ i)_l(Hoz o+ i))?(Ha O)X(Ha 0)
40 )) | o

= X (Hq,0) — O(1) Op(r)(Ha,0 + 1) X (Ha,0) X (He,0)-

Then we have:

2 _ (x>a

% (Ha0) 0p<¢<5

21 (x)e ))X(Ha,o) = x?(Ha,0) + X (Ho,0)K3X (He,0),
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whereK3 is compact. Let) € Co°([-1/2,1/2]) such that) = 1 near 0 ands = 1 on the
support ofw Using Proposmon 35 wnhjf we get:

2 o
Op(b2)(Hq,0 + i)_120p<b2(x,$)¢<g )

T ))Om +Op()O()

=0+0p(s)O(1),

with s (x, é}) eS({x)~ ($) 1. g0). Here we have used the fact tftat= 0 on the support of
V((E2 = (x)*)/(E2 + (x)*)). Then

X (Hy,0) Op(b2) x (Hy,0) = x (Hy,0)Kax (Hy,0),

with K4 compact. Then (3.34) becomes:

X (Ho 0)[i Ho,0, Ag1x (Ha,0) = (2 — o — ) x?(Hy,0)
+ X (Ha,0)(K1+ K2+ (2—a — n) K3+ K4) x (Hy,0),

which implies the lemma. O
Finally, we obtain a Mourre estimate féf, for 0 < o < 2.

Proposition 3.17.Letn > 0 and0 < « < 2. If the support ofy in (3.17)is close enough
toOandx € C°(R), there exists a compact operatéiron L2(R") such that

X (Ho)li Ho', Ao X (Ha) = (00 — ) x?*(Ha) + X (Ho) K x (Ho). (3.39)

Proof. Let ¥ € Cg°(R) with ¥ = 1 near the support of. X (Hy) — X (Hy,0) is compact
becausé/, is Hy o-compact. SincéH,, Aq] is H,-bounded from Proposition 3.14,

X (Ho)[I1Hy, Aqlx (Hy) = X(HW)Z(HQ,O)(“H(X,O’ Ayl +i[Va, Aa])Z(Ha,O)X(Ha)
+ x (Ho) K x (Ha),

with K compact. From (3.24), Lemmas 3.15 and 3.16, we have:
X (H)[iHy, A1X (Ho) > (00 — ) X (Ha) X*(Ho,0) X (Ho) + x (Ho) K x (Hy),
with anotherk compact. Therefore,
X (H)[1 Ho, Adx (H) > (00 — )X (Ha) + X (Ho) K x (Ho),

which implies the lemma. O
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4. Asymptotic completeness
4.1. Limiting absorption principle

From Proposition 3.14H, is of classCt%(A,), and [H,, A,] maps D(H,) into
L?(R"). Using Proposition 3.17, Theorems 1.1 and 4.13 of [6] yield:

Theorem 4.1 (Limiting absorption principle)Let 0 < « < 2. The singular continuous
spectrum offf, is empty, and its point spectrum is locally finite. ForC R\o,,(H) and
v > 1/2, we have, for somg > 0,

sup  [(Aa) " (Ho —2) HAa) "] < o0 (4.1)
z€A+i[—n,n]

As a corollary, we have:

Proposition 4.2.Let0 < a < 2 andn > 0. Assume that the support ¢fin (3.17)is close
enough tdd. For A e R\ 0,,,(Hy), there is a real open interval containing such that

1A(H0[)[iHOl7 Aa]lA(Ha) > (Ua - n)lA(Ha)~ (42)
Proof. Since the spectrum df, is absolutely continuous near we have:
S-g'l”f(\) 1.5, 5+81(Hy) =0.

Using Proposition 3.17, we infer th&t1, _s 5+51(H2,0) goes to 0 in norm whes — 0,
sinceK is compact. So we can find such that

1A(H)Hy, Ag114(Hy) 2 (04 — 2n)14(Hy).
Sincen > 0 is arbitrary, this yields the propositionO
4.2. Minimal velocity estimate

The following proposition is a simplified version of Proposition A.1 of [15], due to ideas
of I.M. Sigal and A. Soffer.

Proposition 4.3[15]. Let H and A be two self-adjoint operators on a separable Hilbert
spaceH. We suppose that

() HisinC3(A) for somes > 0.
(i) There exists an intervad such that1,(H)[H,iAl1o(H) > c14(H), withc > 0.
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Then for anyg € Cg°(]—o0, c[) and anyf € C3°(A), we have

+o00 2
[ e(2)e s S < 3
1
foru e H, and
s lim A e "M f(H)=0 (4.4)
t—>+oog t ’ )

From Propositions 3.14, 4.2 and 4.3, we get:

Proposition 4.4.For any g € C3°(]1—00, 0,[) and anyf € C3°(R), we have

+o0 A 2d
f 1
f Hg(%)e"”ﬁﬂfw 75||u||2, (4.5)
1
for u € L2(R"), and
: Aﬂt —itH,
S-t—llrpoog - e " f(Hy) =0. (4.6)

We want to replacel, by p,(x) in Proposition 4.4. For that, we use a slight modifica-
tion of Lemma A.3 of C. Gérard and F. Nier [15].

Lemma 4.5[15]. Let.4 and 3 be two self-adjoint operators on a separable Hilbert space
‘H such that, for eaclx > 0, we have

D(B)c D(A) and 1<B, 4.7)
AL A+ wB+Cy, (4.8)
with C,, > 0, and
[A, BIB~Y e L(H). (4.9)

Then for eachi € R, let ¢ € C*°(R) with supf¢) C]—o0,A[, ¢ = 1 near —oo and
Y € C*(R) with suppy) C 1A, +oo[, ¥ = 1 near+oo. We have

leB/OW A/ =00  ast — +oo. (4.10)
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Proof. We follow the proof of [15, Lemma A.3]. Lep1 € C*(R) with supfg1) C
]—o0, A[ andg; = 1 near the support af. We have by (4.8),

p1(B/ 1) Ap1(B/1) < 1+ w)e1(B/)Bp1(B/1) + O(1) < (14 w)rr + O(1).

So, if u is small enough andlarge enough, we get:

=0,

<¢1(B/I)«4§01(B/I))
4 t

and it remains to show that

¢ (B/1) (1//(_,4/1‘) -¥ (‘pl(B/t)“;l(pl(B/t))) =0(™h. (4.11)

The proof of (4.11) is the same as in [15]0
To apply the above result, we distinguish the cases2 and O< « < 2.

Lemma 4.6. The pairs(A4, B) = (A2, (In{x))) and (A, B) = (—Az2, {In{x))) satisfy the
assumptions of Lemm&5, provided that the support of in (3.13) is small enough
according tou.

Proof. We prove the lemma only fo(A, B) = (A2, (In{x))); the proof is the same in
the other case. Sincd € ¥ ({(In{x)), go), A is well-defined and symmetric oP(B) =
{u € LER™); (In(x))u € L2(R™")}. So the assumption (4.7) of Lemma 4.5 is true from The-
orem 2.1. MoreoveB3 € ¥ ((In(x)), g1) implies [A, BIB~1 € w((In(x))(x)~1, go), from
[20, Theorem 18.5.5]. Then the assumption (4.9) is also true.

Let f, g € C5°([0, 1]; [0, 1]) be equal to 1 near 0. Féy M > 0, we can write:

A = 0p(s1) + Op(s2) + Op(s3), (4.12)
with
(& +x) (& —x)
s1=(1n<s+x>f< Wx )—In<s—x>f( Wx ))g(m/M),
(& +x) (& —x)
sz=(|n<f;‘+X>f< o >—|n<$—X)f< o ))(1—g>(<x>/M),
(& +x) (& —x)
ss=<ln<§+x>(l—f)< o )—In<é—x><l—f>( W ))
Then

| (Op(su, u)| < Cllull?, (4.13)
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because; € S((x)~°, go). On the other hand, since

_172 |dx|? |d§|2)
Tx)2 0 (x)2

s2€ S((In(x)), go) and (In(x)>_1/zeS(<In(x)>

we get:

Y2 op((Ingx)) sa(x, ) + R, (4.14)

(In(x)) ™" Op(s2){In(x))
with R € ¥ ((x)~1, go). Since supg C [0, 1], we get:
|(Ingx)) " sa(x, £)] < 25,
We also have:

8208 {In(x))Ys2(x. )] < CapsIN(M) L,

whereC, g ; depends o4d. Fix § small enough, and theM large enough. Theorem 18.6.3
of [20] yields:

[ Op((Intx)) " satx. )| < n/2
Then (4.14) implies
((In(x)) ™2 optsa) (i)™, u) < n/20ull? + (Ru, w),
and sincer € ¥ ((x)~ 1, go),
(Op(s2)u, u) < n/2(Bu, u) + Clull?. (4.15)

So it remains to studys(x, £). Using (3.14) and (3.15), we get:

5306, €) <IN(E +x) — In(€ — x) +In(& _x)f<<$ —x>>

{x)?

< (14 8)(In(x)) + C. (4.16)

We also have:

dx|2  |dE|?
ot vl 55 + 25,

If we assume < 5/2, Garding inequality implies:

(OpGsa)u, u) < (L4 1/2)(Bu, u) + Cllull® + (Ru, u),
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with R € & ({In(x)){x)~%, go). So,
(Op(sa)u, u) < (L+ 1/2)(Bu, u) + Cllul®. (4.17)
Combining with (4.13), (4.15) and (4.17), we get:
(Au, u) < L+ ) (Bu, ) + Cllull?,
which is (4.8). O
Lemma 4.7.Let0 < « < 2. The pairs of operator§A, B) = (Aq, (x)1%/?) and (A, B) =

(—Aq, (x)179/2) satisfy the assumptions of Lem#h&, provided that the support af in
(3.17)is small enough according to.

Proof. We prove the lemma only fotA, B) = (Aq, (x)17%/2); the proof is the same in
the other case. Sincé € ¥ ((x)1-%/2, g‘f/z), A is well-defined and symmetric aR(B) =

{u € L2(R"); (x)1=%/2y e L2(R™)}. So the hypothesis (4.7) of Lemma 4.5 is true from

Theorem 2.1. Moreovel3 € ¥ ((x)1~%/2, g1) implies[A, BIB~ € ¥ ((x)~®, g2/?) from

Theorem 18.5.5 of [20]. Then the assumption (4.9) is also true.
On the support ofi, (x, £), with (x, &) large enough, we havé| = (x)*/%(1 + o(1)),
where @1) stands for an arbitrary small function as supp> {0}. Then,
aq(x,8) < (1+n/(x)"*? +C,
with C > 0. The Garding inequality iﬂ/(gi‘/z) implies that
(Au,u) < (L+1/2)(Bu, u) + Cllul|* + (Op(r)u, u), (4.18)

with r € S((x)1=34/2, ¢%/%) We have:

|(OP(r)u, u)| = [(() /4 Op(r) (o) 254 ()= (x) W27 Ay, () 22 )|
|

| (.X)*D‘ <x>1/270£/4u || || (x>l/27a/4u ||
< (n/4] (x)V/2-a/d, |+ Cllul) (x)V/2-a/d, ”

< /2] ()2 | 4 C 2.
So, (4.18) becomes
(Au, u) < (L4 n)(Bu, u) + Cllull?, (4.19)
which proves (4.8) and the lemman

From Proposition 4.4, Lemmas 4.5, 4.6 and 4.7, we obtain:
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Proposition 4.8 (Minimal velocity estimate) For any x € C5°(R) with suppy N
opp(Hy) =¥,0 <6 < 0y, andu € L%(R") we have

(22 e
1

Da(x)
t

2
dr 2
75 [l

s lim 1[0’(,»]< )e””al“(Ha):O.
t—>+00

4.3. Proof of Theorem 1.1

As mentioned in the introduction, we prove Theorem 1.1, Wil (respectivelyH,)
replaced byH, o (respectively,H,), since this substitution will turn out to yield a short
range perturbation. We prove (1.8); it will be clear from the proof that (1.7) follows the
same way. By a density argument and using that(H, 0) = ¢, ando,,(H,) has no
accumulating point, it is enough to show the existence of

S_t_l)iz_noo e'tHa.Oe_”Hot XZ(HO()9

with suppx No,p (Hy) = 9. We have:
g HaogtHa y 2( g ) — y (Hy o) P01 Ha y (H,,)
+ €Ha0 () (Ho0) — x(Ha))e "M x (Hy).  (4.20)

As the spectrum ofd,, is absolutely continuous on sugp), € 'H« y (H,) — 0 weakly.
Sincey (Hy,0) — x (Hy) is compact, the second term in (4.20) converges strongly to 0.
Letg1 € C3°(]—o0, o4 ) such thakg; = 1 near 0. From Proposition 4.8, we deduce that

Pa(X)
t

itHy 0

s- lim yx(Hyo)€ gl( )ei’H“X(Ha):O. (4.21)
t——+00

Now, let us consider:

Do ()
t

G (1) = x(Hy0)€Me0(1 - g1>( )e—””wHa)u.

The functionG(¢) is differentiable and

Pa(X)

G'(1) = x (Hy,0)€" 0 [gl( ) iHa,o} e "Ha y (Hy)u

Do ()

i Pa(X) i
+X(Ha,0)e”H"‘°0;—28/1< )e Ha y (Hy)u

D (x)

+ X(Ha,O)eitHa'o(l_ gl)( >Vot(x)e_itHaX(Ha)M~ (4.22)
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The first term of (4.22) is equal to

1 i o . Vx o 2 7 o —j
I(t)=?x(Ha,o)e"”“-O(Op(f)g’l(p t(X)> I Vepa ) g1<p (X)))e Ha (o,

t t

with
f(x, &) = =2V, pa()E € S((x)7*/%(E), g2).

Using Proposition 3.5 and the fact th&t, p, (x)| is bounded, we get:

_1‘ it Hy. 52_<x>a>) /<pa(x)) —itH,
I1(t) = tX(Ha,O)eI 0 Op(W(gz ¥ () Op(f)gl P € X (Hy)u

+0(t7h)

op(r) Op(f)g’l(p “f”) H +0(r72),

with r € S((¢§)72, go). Using the pseudo-differential calculus and the fact thatis
like /A-2/2) (respectively, 8 if 0 < o < 2 (respectively = 2) on the support of
81(pa(x)/1), we get:

__aj2
|opryomnes (742 | = o forazs

On the other hand, the pseudo-differential calculug {ig1) implies:

£2— (x)® B
Op(W(m)) Op(f) = Op(m),

withm(x, &) € S(1, g2). Letgz € C3°(]1—00, o[ ) such thak, = 0 near 0 ang2 = 1 near
the support og; . Using the pseudo-differential calculusdn(|dx|2(x)~* + |dg|?), we get:

op(m>g1(p “t(x)> =Op (m(x, S)g’1<p "‘t(x)))gz(p “f”) +0M <x>°’/2gz(—p "f”)

= gz(pat(x) )O(l)gz<pat(x)> +0(t7%),

with § > 0. Then

1) = Tx(Hlyo) é’H"*ng<paTm>0(l)gz<—p “t(x))e—"Ha ) (Hou +O(~17),

Proposition 4.8 and a duality argument imply tli&t) is integrable.
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The second term in (4.22) can be written:

X (Ho )@ Heo P22 iix)g’1<p “I(X)) e ey (Ho)u

=%X(Ha,o)é’”a-0 (p"‘( )>0(1) (pat(x)>e_i’H“x(Ha)u. (4.23)

Like for I (z), we get that (4.23) is integrable.
Finally, using assumptions (1.5) and (1.6), we get;for 1,

'(1—g1>(”"‘( ))V( >‘ ‘(1— (”“( )>V (x )‘ 0@,

which is integrable. This implies that the third term in (4.22), and &), is integrable.
SoG(¢) has a limit wherr — +o00 and the theorem follows from (4.20) and (4.21).

5. Asymptotic velocity

In this section, we construct the asymptotic velocity and describe its spectrum. In (1.4),
we defined the position variable so that it increasesdikéong the evolution. We define
the local velocity as

Vy = [iHa, pa(x)].

(We use typewriter style letters to avoid any confusion with previous notations.) We
denoteN = N, the harmonic oscillator. The observablg is defined as a quadratic form

on D(N). By a direct calculation and an application of Theorem 2.1, we obtainhat

is (well defined as an operator and) essentially self-adjoint with dodixvi); we note
againV,, the self-adjoint extension. Thanks to Theorem 1.1, it is sufficient to construct the
asymptotic velocity and to describe its spectrum in the free case. Nevertheless, the local
velocity does not commute with the free evolution, in particular the asymptotic velocity is
different from the local velocity even in the free case. First, we establish some propagation
estimates in the free case and the general case will follow. For an obse&ablewe
denoteD® (¢) its Heisenberg derivative with respectif o, i.e.,

d .
DO(t) := E@(” + [iHa0, © ()]

The main result we prove in this section is Theorem 1.2. It can be proved fokall & 2
in the same way. Like for the asymptotic completeness, we give some generalizations of
this result in the case = 2, see Section 6.3.
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5.1. Local velocity

This section is devoted to the study of the local velocity and the local acceleration.
A direct calculation yields ¥ py (x) = o (x)~17%/2x, and:

Oy X
Va:?(WD—i_hC), (51)

wherehc stands for the adjoint of the first term. We set:

x-&

W. (5.2)

Vo (x,§) =0q

Lemma 5.1.The operatorV,, D(N)) is well defined as an operator, and essentially self-
adjoint. We have/, € ¥ ((£)(x)~%/?, g2), and the symbol 0¥, is v,.

Proof. We clearly have||Vyu| < || Nul|, foru € D(N). We also have:

2 2 2
(62452 vu 0,0} =00 s — @) s ~ 2517 )
and the lemma follows from Theorem 2.10
Define the acceleration:
Ay = [iHy,0, Vo l;
2 2 2
ay(x, £) == oy <<x>21%/2 24w (i);éfj/z p <x>)3c—a/2>' (5.3)

The operatoA, is a pseudo-differential operator, with principal symbol
aq(x, £) € S((6)2(x) /% g).

We will often use the decompositica, (x, &) = al(x, £) + a2(x, &), with a2(x, &) =
2

Out i € S(() T2 g2), andag (x,§) € S((£)2(x) 12, g2).

Lemma 5.2.The operatord/, (i + Hy.0) "t and Ay (i + Hy.0) ", defined onD(N), can be
extended to bounded operators.

Proof. We prove a slightly more general result. leet S((£)" (x) ¥, g2), with am /2 —
k<0,0<m< 2. We prove:

The operator O@) (i + H,.0) %, defined onD(N),
can be extended to a bounded operator.



548 J.-F. Bony et al. / J. Math. Pures Appl. 84 (2005) 509-579

The lemma then follows using the decompositan=al + ag. Recall from Proposi-
tion 3.5that forall > g > 1/2,

£2 — (x)*

. -1 _
(1 a0y == Op(‘” ( €2+ )P

))(i + Hy0) "t + Ry, (5.4)

with No’? Rg bounded, angy € C3°(R), ¥ = 1 in a neighborhood of zero. Since @pNa‘l
is bounded, it is sufficient to prove:

op(e) Op<1ﬂ (ﬂ)) is bounded (5.5)
2+ (x))P
This is a pseudo-differential operator, with principal symbol

- '< am/2-k <M)<
C(x,g)w((é_2+(x>a)ﬂ> S () 14 (§2+<x>a)ﬁ S,

where we have uset) < (x)%/2 on suppy ((€2 — (x)%)/((€2 + (x)*)P)). This yields
(5.5), and the lemma. O

Lemma5.3.Let f, x € C°(R). Then, ag — oo:

() [x(ch, f(” "‘(x))] —o(Y).

t

(ii) If f is constantin a neighborhood 6f then there exists > 0 such that

Pa(x) _Joa@ra/Ewy fo<a <2,
[f< t )’V“]_{O(e—”) if o =2.

(i) If f is constantin a neighborhood 6f then there exists > 0 such that

Pa(x) o @0y ifo<a<2,
X(Ha,O)[f( " >7A011|X(Hot,0) = {(’)(e‘”) ifo =2

Proof. (i) Using Helffer—Sj6éstrand formula, it is sufficient to show:

1 o

(z— Ha)_lz—t <vaf/<p7(x)) + hc) (z—Hy) t=0(t"1), VvzeC\R.

The above relation follows from Lemma 5.2, and the fact ihék,) = D(H, o).
(ii) We have:

: Pa(X) _‘73 o Pa(x) x? _Jou@Ew/Cm0y i <a <2,
[Na,f( ¢ )}_§f< t )(x)2+“_{(’)(e“) if o =2,

for somee > 0.
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(iii) First notice that

[if(pat(x)>7Aa:| _ j-f (pa(x))op( ),

with ¢ € S((&) (x) 1%, go). We now use Proposition 3.5:

X(HaO)=Op<w<ﬂ>>X(HaO)+Rﬁv Vl>ﬂ>1/27
| €+ )y ’

with NfR,g bounded, and) € C5°(R), ¥ = 1 in a small neighborhood of zero. Let
0 < a < 2. We have:

Op(c)N, P € S((x)~1me2P/2 gq),

and thus
1, (pu(x) wBta)/(2—a
tf < t >Op(C)Rﬁ (t (4+ap+a)/(2 )).
Furthermore
£2— (x) —1-a/2
Op(c) Op(l//(m>> € S((x) ,82)
and thus

1 Pa(X) 52_ (x)* _ —4/(2—a)
rf( : )Op( )Op(‘”(@2+<x>a)ﬁ>>_o(t )

For « = 2 all these terms are idD(e ¢") for somee > 0. This completes the proof
of (ii). O

We now sefg,,, = |dx[2/(x)? + |d&|?/ (&)

Lemmab5.4.LetJ € C;°(R), J =0o0n[—e¢, ¢] for somes > 0, anda € S((§)"™, gy .,,) for
some realn. Then for alls with e > § > 0, there existg € C;°(R), J = 0on[-$, 5], with
JJ =J, such that

Pa(X) Pa(X) Pa(X) O ®) f0<a<2,
Opta )J< > J( t >Op(a)J( ‘ )+{O(e°°f) ifo =2

Proof. Lete > 68 >68,J C,°(R), with supp/ C R\ [—6,8], andJ =1 onR\ [—
Let J :=1— J. We have to estimate:

R(t, x) _J(p“t( ))(Op( )J(p“())q>)(x).
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By definition,
R(t.x) :/ ei("_y)'sa<xery,§>f(p"‘t(x))1<p“t(y)>q§(y)dydg.

Introduce the operatdi: = (x — y) - 9 /(ilx — y|%). We have for any € N:

We treat the case @ @ < 2, the other case is analogous. Notice that

¥ € SUPPI (pu()/1) = [y| = £/ @0 2/2=e) _q
x € SUPPJ (pe (/1) = |x] < §' %/ @) 2/ @)

= |x _ y| > (82/(2—11) _ 8/2/(2—a))t2/(2—a) -1

We infer:

TGRS

- (x) _ —
J(%)‘// = 317 )" @ (3) | dy die
f(pa(x))
t
for anyk, and: sufficiently large. Thus,

() o~ e

t

_k 2_
< DD,

for anyk, andr sufficiently large. O

Lemma5.5.Letx € C°(R;Ry), J € C°(R; Ry ), with J = 0in a neighborhood of zero.
Then we have for some> 0:

(i) Denoted (t) = o4 x (Hy,0)J?(pa(x)/1) X (Hy,0)-
Then

O +0(17°) < X(Ha,o)f(p “f”)vaJ(p “t(x))x(Ha,w <O +0(7°).

(i X (Ha0) (p"‘[(x) )%J(p"‘t(x))x(Ha,o) >0(1).

Pa(X) Pa(x)

(i) X(Ha,o)J< )Maa—vaw( )X(Ha,o)>(9(t_l_€).
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Proof. We start with an inequality which we will use in the following. Let- 0 such
thatJ =0 on[—¢’, ¢'], for somee’ > &. For 1< j < d, letc; € S((&)™i (x) 7%/, g2), with
0<m; <3, andlet :=min;{k; —am;/2} > 0. We suppose that fay € C°(R), v =1
in a small neighborhood of 0, we have:

d 2 a
- £°—(x)
cx, &)=Y cj(x, &)= —-C(x)~1P  on SUppﬁ(m) (5.6)

j=1

with ¢(8) > 0. For 1> 8 > 3/4, lety :=min{1, ¢(8), aB + I}. We prove that:

X(Ha,o)J<p “t(x)) Op<c)1<1’ “t(x))x(Ha,w

O@= %/ f0<a<2
> : g 5.7
{O(e—“”), if @ =2. ©.7)

Before proving (5.7), we show that it implies the lemma. First, on g2 — (x)%)/
2+ (x)9)P), we have:

|62 — ()%] < (0)*P. (5.8)
We start with proving (i). We have on sup(£2 — (£)%)/(£2 + (x)*)P):

x| ({x)*/2 + C(x)*P/?)

Sr e S+ C I (59
X

’Va(xvéj-)} < Oy

We haveg(B) = (1 — B)a/2>0 andaf +1 =apf > 0, for all 1> B8 > 3/4. This
yields (i). In order to prove (i), we decomposg, = al + a2. We then use that on

suppy (€2 — (x)4)/(E2 + (x)*)P):

(x)2 — x2 5 ()% — &2

_— B—1—a/2
(x)3tasz T ¥oaX W>—C<X)a ®/2 (5.10)

ay(x, £) > 20,£2

Now observe that A2 — «) > 1, and:

1 2 o 2 3

This yields (ii). Let us prove (iii). We have:

Ay(0q — Vo) = Op(aa(aa - Voz)) +Op(r1 +r2),
with

rieS(x) 2 g2),  raeS((E)%(x) 2%, g2).
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In particular we have, on supp((€2 — (x)%)/(£2 + (x))#):
ri>—Cx)72 (j=12).

We apply (5.7) tar1 + r2, and findl = 2= g(B8). Therefore 2/(2 — «) > 1.
Let us consider O@, (o, — V4)). We have:

L o24ao 2y, £2 — (x)° L
aa:pa(x) Oy (Ua—VO,)—Frs, 3= 20 <X>1+ol/2 _O[Ua<X)3—a/2=r3+r3’

r3e S(E)2x) 7% g2),  r3 e S((x) T2, gg).

We find on supp (62 — (x)*)/(£% + (x)*)F):
rg > _C<x)flfoz/2+af3.
Using that|v,| < 1 on suppp (2 — (x)%) /(€2 + (x)®)#), we find:

2 o
€3:=r3(0y — Vo) = —C(x)"17%/2+B  on suppp(s ) )

(62 + (x)2)P
We decomposes = el + e2 + €3 + e3 with
e S((E)2 )12 g0);  edes((x)THe2 gy),
Ses(En ™ g):  fesier )t e).

We apply (5.7), and find=1—«/2,9(8) =14+ «a/2 — af. In particular, /2 —a) > 1
if B <1.Itremains to consider:

24a 1
= — (0 — Va)z(o'a + V).
Oa  Pa

by :
We use (5.9) and find:

2 o
by = —C(x)"1TeF/2 on supp//(g ) )

(62 + (x))F

Notice thatb, = Y_; b4, With by € S((x)1T/2(£)™) (x) =112, g5), 0 < m; < 3. We
havel =1 — «/2 andq(8) =1 — «B/2. In particular, Z/(2—«) > 1 if 8 < 1. This
yields (iii).

It remains to show (5.7). Recall from Proposition 3.5 that

- 2w
K (Hx0) = (Hx0) Op(w ( (E2+ (x)0)P )) .



J.-F. Bony et al. / J. Math. Pures Appl. 84 (2005) 509-579 553
with N/ Rg bounded. Let

C dxf? n |dg |2
847 o) T e -1/

Notice thaty ((§2 — (x)%)/ (&2 + (x)*)P) € S(1, g4) N S(L, gup+1-a,26—1)- We have:

X(Ha,o)J<pa( ))Op( ),(M )>X(Ha,o)
B £2— (x)” Pa(x)
_X(H“’O)Op(‘/f((su<x>“>ﬂ>>J( : )Op(c)
Pa(x) £2 — (x)@
XJ( : )Op<w<<sz+<x>“>ﬂ))xw“’°)
Po(x )) <pa< )) < ( £2 — (x)@ ))
RgJ (@) J (@) _— H,
+ Ry ( p(c) PV gy ) )X e

+R,3J(pat()C)> op(c )J<Pot(x)>Rﬂ

=:F1+ F>+ Fs.

Let us start with estimating>. Using Lemma 5.4, we find € C{°(R), JJ = J, J =0 on
[—e, €], such that:

FZ_RﬁN;}J(pa(X))N /3]<poz(x)>o ( )J<Pa(x)>

2 — (x)
<08 (o))t

+O(f°°)
gy m(x)) < c(x, &) <52—<x>°‘ ) 2<pa<x>))
RﬁN”J( o)\ \ @@ mar )\
xJ (” at(X)>X(Ha,0)

+RﬂNﬁJ<pa(x)> p( tz)j<pat(x))X(Ha,0)+O(t_oo)'

We estimate:
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c(x, £) £2 — (x)@ ) 2(pa(x>)‘
s = J
[£20- 8| = | Gz e )ﬂ“’((ézﬂxw :

d 2 a
< _aﬁ Vi (x §°—(x) >
; ‘”((&2 + ()P

2

d
Z —oB (xyemi/2=kj < (xy=*=l " uniformly inz.
J:

2/\
N

Thus,

O ~2@B+D/2=0)  jf0 <o <2
= - i ’
O(es@h+Dr) if a=2.

The estimate fo#s is analogous; we have to estimate:

d

FEERISDD

1 .
W(E)"’f x)7h < ()7l ifl > B> 3/4.
J=1

Using the same arguments as in the estimate#{pFs, we find:

_ - Pa(x) £2— ()" \ j2( Pa¥)
R e e U e )

xJ (paT(x))X(Ha,o)

+X(Ha,o)j<p "’t(x)) Op(e})J (p f ))x<Ha,o>+O(r‘°")-

Using [20, Theorem 18.5.5] on the composition of pseudo-differential operators in
Y (gap+1-a,26—1) and¥(go), as well as the fact that) < (x)*/2 on suppy, we find:

el e S((0)¥2 P71 1/2(g5 + ga)) € S((x) 71, 1/2(g2 + ga)),

becauses > 1/2. Using (5.6) and the Garding inequalitydn(gs4) we get:

> X(Ha,o)f(pat(x)> Op(éy)/ (pa( ))X(Ha,O) + 017,

with él € S({x)~Ming(B)20p+1-30/2} oy = §((x)~MMaB).1 ¢4y (B > 3/4), uniformly
int > 1. Therefore:

O(I—Zmin{q(ﬂ),l}/(Z—“)) if0<a<?2
F1> —mi i ’
(e mln{q(ﬁ),l}st) if o =2

The estimates foF1, F> and F3 yield (5.7). O
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5.2. Propagation estimates

Lemma 5.6.Let H be a self-adjoint operator on a Hilbert spaéé and letDy be the as-
sociated Heisenberg derivative. L@{r) be a uniformly bounded observable. We suppose

Du®(1) > f(t) € LYR™", dr). (5.11)
Then the limit
tingo(@(t) e Hole )
exists for all® € H.

Proof. We set®, = e "H . By (5.11), we have:

t
d .
E((@m(p"@) — F()) >0, with F(r)= /(f(s)q>|q>)ds.
1

Thus(© (t)d;|®;) — F(¢) is increasing and bounded. Therefore, the limit
lim (02| ®;) — F(1))
exists. Since lim,  F (1) = ffo(f(s)¢|§b) ds exists, this gives the lemma.o

Proposition 4.8 yields a minimal velocity estimate. There is also a maximal velocity
estimate:

Proposition 5.7(Maximal velocity estimate)Let x € C5°(R), oy < 62 < 03 < 00. Then

2

dt
-5 @2

(i) / H 1[0zﬂal<p at(X)>e_itH°"°X(Ha,o)¢
1

(i) LetF e C*(R), with F" € Cg°(R) andsuppF C 162, oo[. Then

s lim F(p“TOC))e‘”HW:O.

—00

Proof. (i) Let f € Cg°(R), with f =1 on[62, 63], and suppf’ C Jog, oo[ . Let

Do (x)
t

F(s):= / f2(s)ds; @(I)I=X(Ha,0)F< >X(Ha,o)-

We compute:
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—DO1) = x(Ha,o>f2<”°‘7(")> Pe)  (Hoo)
——x(Hao)f(”"‘(x)) af<p°‘(x)>x<Ha,o)

X(H o f (p“( ))X(Ha0)+0( 1),

for somep, ¢ > 0. We have used Lemma 5.5. This proves (i), using [10, Lemma B.4.1].

(ii) Let the functionF satisfy the conditions in (ii). Clearly we can assume that 0,
and F(s) = 1 for s > Ro. Let f € C5°(R) be such thatf = 1 on suppF’, and suppf C
162, oo[ . Then,

D@(t)——x(Ha o)f(p“( ))B( >f<p°‘( )>x<Ha,o)+0(r“), (5.12)

with B(z) uniformly bounded irv. To see that (5.12) is true, we introdugec C3°(R)

with ¥ x = x. Using Lemma 5.3 to estimate the commutat@r Hy.o), f(p"‘T(x))]. and
arguments similar to the arguments used in the proof of Lemma 5.5, we chedk(tha
uniformly bounded irr > 1. From (i), there exists

s- Ilm gtfa0 g (1)g 1 Hoo, (5.13)

If, in addition, F is compactly supported, then by (i) we have:
i dr
/@(r)e—”Haome—"Hanb) <>
1

Thus if F satisfies the conditions in (ii), and is compactly supported, then the limit (5.13)
is zero. Now take; € C*°(R), f € C5°(R) such that suppy C 162, oo[ with Fi=1ina
neighborhood oo, andF, = f2. Set

Pa(x)
Rt

Or(?) I=X(Ha,o)F1< )X(Ha 0)-

From the previous discussion, we know that, for- 0, the limit S-liM_ o0 € H00 @R (1)
e~ '"Ha0 exists. Repeating the computations of the proof of (i), and keeping trakk we
obtain:

—DOR(1) = }X(Ha,o)f2<pa—m) Pa ()

Rt Rt

- _X( aO)f(pa(X)> R f(p(;e(;c))X(Ha,O)

Do (X)
Rt

X (Hy,0)

2;(92—004/R)X(Ha,0)f ( )X(Ha 0 +O(tR) 7).
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Hence forR > 1, —DOg(r) > O((tR)~17¢). Therefore, forg > 1, we have:

oo
s- lim 'Me0@p (1)e M0 = giofeogp 1g)e 00 + / s HaoDE g (5)e W Ha0 dg
—>00
fo

< &0 @ (19)e "0Ma0 4 O(15° R7L).

For a fixedrp, the terms on the right hand side go strongly to Ras oo, hence:

s- lim (s- lim €Ha0@ g (r)eHa0) = 0. (5.14)
11— 00

R—o0

We remark now that, foR > 1, the functionFy(py(x)) — F1(ps(x)/R) has a compact
support included ifig,, oo[ . So,

s- lim €0 (04(1) — Or(1))e™ " Hao = 0. (5.15)
—>00
Letting R go to infinity in (5.15) and using (5.14), we obtain:
s- lim @'fe0@ (1) e a0 — Q.
t—00
This completes the proof of (ii). O

The next estimate is a weak propagation estimate:

Proposition 5.8.Let x € C3°(R), 0 < 61 < 62. Then

() / H Lot (”““”) (”"‘(’” - va>e—‘fHa~°x<Ha,o>¢
1

2

dr
-3 2.

t t

(ii) s~ lim 1[91’92](170(()6)) (Pa(x) B VD,)ei’Ha-O o

t t

Proof. Let R € C®(R), with R” >0, R' = 0 on[—e¢, ¢] for somes > 0, andR (x) = x2/2
for |x| > 61. We takedz > max{6,, o, }. Let J € C3°(R), with J =1 on[0, f3]. We set:

M(t) = %(Va _ pat(x)>R/<pOlt(x)) + %R/(pat(x)>(va _ pat(x)> + R(pozt(x))7

o) = X(Ha,0)1<p "‘t(x) )M(t)J(p at(X))X(Ha,o)-
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The observabl® () is bounded uniformly in (see Lemmas 5.4 and 5.5). We have:

DO(1) = —x(Ha,o)J’(” "‘f“) P . ) pe )J(” au))X(Ha‘o)
+%X(Ha,0)< (”“f)‘)) +he )M(t)J(p"‘fx))x(Ha,o)Mc

+ x(Ha, o)J(”“( ))DM< >J<p“( )>X(Ha,o)

=:R1+ R2+ R3.

The first two terms are of the form:

1 ’ ’ 1
;x(Ha,on(p - )>B(> (p - )>X(Ha,o)+(9(t -e),

with j € Cy(R), suppj C low, oo[ (see Lemmas 5.3 and 5.4). They are integrable, from
Proposition 5.7. For the last term, we have:

Ra= (0t (P ) (242 ) e (P00 ) o
1 Pa(X) Pa(x) Pa(x)
_EX(Ha,O)J( P ){tR< : >+hc}-]< : >X(Hoz,0)
1 pa(x) Pa(X) ” Pa(X)
R G (e e G

x J(” "‘f”)x(Ha,o)

+X(Hoz.0)-]<pat(X)>p0;;X) /(pa(x)) (pa(X)>X(Ha,O)

t t

1 Pa(X) Pa(X)\ _,( Pa(X)\ pa(x)
() - ()82

x J<paT(X)>X(Ha,o)
+ }x(Ha,o)J(p“(x)){V—“R’<p“(x)> +hc}1(p“(x)>X(Ha,o)

2 t t t t
—x(Ha,o)J<p"‘t(x)>p“tgx) ( t( ))J<pat(x)>x(Ha,o)+(’)(t_2)

1 Pa(X) Pa(X)\ ( Pa(X) Pa(x)
S22} () )
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x J(” at(X)>X(Ha,o)

+ %x(Ha,ow(”“t(x)){&R’(”“f’”) +hC}J<pal(x)>x(Ha,o) +0(72).

Consider the second term. Léte C°(R; R*), with JJ = J andR'J = J2. We have:

1/ sof pa(x) ~2( Pa(X) _ 7 Pa(x) ~( Pa(x)
(57 7 () = () (47)
PER )

We estimate the double commutator. From Lemma 5.4, there ekistgith J, =0 in a
neighborhood of zero anéy J = J, such that:

I:j(pa(x))’ [j<pa(X)>’A“H
t t
_ jl(pa(X))l:j(pa(X))» |:j<pa(X)>aAa]:| A1<pa(x)> +O(Z_OO).
t t t t
Using [J (pe (x)/1), [J (pa (x)/1), A1l € ¥ ((x)~37%/2_ g5) uniformly in r we get:
~f pa(x) ~( pa(x) | Oo@EA3-2/2/C0)y if0 < <2,
() PR Ao
for somee > 0. Putting all together and using Lemmas 5.3, 5.5 we obtain:
1 o o o —1—
Rs> 5 x(Heo) (va - pT(x))lwl,ez](” fx))(va P fx))x(Ha,w + o).

This yields the desired estimate, thanks to [10, Lemma B.4.1].
(i) We can supposey, € [61, 62]. In the other case, (ii) follows from Propositions 4.8,
5.7, and Lemma 5.2. Let us first observe that

s- lim 1[01’92]<pa(x)> (Va _ Pa (x)>e—ifHa,0
t—00 t t

. X i
=s- |lim 1i6,.6,] <pa( )> (Va - U(X)e_”H""O,
t—00 t

that is:

s- lim 1[91’92] <pa (X)> <Pa x) — Ua>e_itH°‘~° =0. (5.16)
t—00 t t
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Indeed, let > 0. Then for® € H, we have:

P P i
|t 2) (2 =0 )00

P P _j
<e+ H 161,051\ (00 —,00+] <7a> (Ta — Ga)e Ha0 o ”

< Ze,

for ¢ sufficiently large, using Propositions 4.8 and 5.7. This yields (5.16)/leC3°(R*),
with J > 0 andJ(x) = 1 in a neighborhood dby, 6>]. Set

O(1) = ¥ (Ha0) Vg — aa)ﬂ(”“%x)yva — 00)x (Ha0)-

We compute:

Da(x)
1

~DO(t) = X(Ha,o)'%Jz( )(oa — Vo) x (Ha.0)

1 / o o
~ A (Ha) Ve = 00 (I?) (p fx)) (va _P f”)(va — 0w)x (Ha0) + he.

The second term is integrable along the evolution, by Propositions 4.8, 5.7 and Lemma 5.2
(the derivative of/? is zero in a neighborhood ef,). Using Lemmas 5.3 and 5.5, we find:

X (Ha,0)As J2<” "f”)(va — 62) X (Ha0)
- X(Ha,o)f<p ) )Mva - aa)1<” a2 )X(Ha,o) +0(7+)
>0 ),

for somee > 0. Setd, = e "H=0¢ By Lemma 5.6, the limit lin_, oo (@ (1), | ®,) exists.
Let

80) = (o (Vo = 20 ) 22 P42 ) (v, = P00 ) .
We have:
B - 0w = X(Ha,0)<<aa P “f“)ﬂ(’?“:x)) (va _ pa(”)

t
+ (Va _ O,a)JZ(pOlt(x))(Ga _ pOlt(x)

>> X (Hy,0).
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Using (5.16), we obtain:

lim (©1)®|®) = lim (6()®]Pr).

But by (i), we have[; (@16 (@)L < [|®||2. Hence the limit is zero. O
5.3. Asymptotic velocity
We now have all the technical tools to prove Theorem 1.2.

Proposition 5.9.Let J € Coo(R). Then there exists
s lim @t g PeX)gritn,
t—00 t ’
Moreover, if J(0) = 1, then

s lim (s— lim e”H“J<pa—(x))e_”Hﬂ) =1

R—o0 1—00 Rt

If we define
P =5Coo- lim 't Pal0) i,
t—00 t
then P is a self-adjoint operator, which commutes with.

Proof. We prove the proposition in two steps:

First step.We assumé/, = 0: H, = Hy 0.

By density, we may assume thate C3°(R), and that/ is constant in a neighborhood
of 0 and in a neighborhood ef,. It also suffices to prove the existence of

s- lim ei’H“vOJ<pa7m>e_i’H°"°X2(Ha,o)

t—0o0

P (X)
t

=s- lim X(Ha,o)ei'H‘”’OJ< )e”Hﬂ»Ox(Ha,o),

forany x € Cg°(R), using Lemma 5.3. Le® (1) := x (Hy,0)J (po (x)/1) x (Hy,0). We com-
pute:

1 () Vs
DO(1) = x(Ha,o>§<J’<”T(’“)> ks +hc> X (Hoo)

Pe t(x)> ”‘;S‘) X (He0).

- X(Ha,O)J/<
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This is integrable along the evolution by Lemmas 5.2, 5.3 and Propositions 4.8, 5.7.
Second stefGeneral case.
Let P,;fo be the asymptotic velocity associated wih o. Using Theorem 1.1, we obtain
the existence of;" by the formula:

T(PF) =% I(P[)(27)" + J(O)17 (Hy). (5.17)
The fact thatt,, commutes withP;" follows from Lemma 5.3. O
Proposition 5.10.We have

_ {0,004} if opp(Hy) # 9,
G(P;) - { {oa} if Gpp(Ha) =0.

Proof. We first observe thai(PJO) C {oq}, by Propositions 4.8 and 5.7. But the spec-
trum of P, cannot be empty, thus (P, ) = {oa}. If opp(He) = @, then by (5.17),

o (P) = o (P, = {o4}. We suppose in the following thabpp(H,) # ¥. By (5.17),
we haveo (P;)) C {0,0,}. Let J(0) # 0, and® # O be an eigenfunction off,. Then
J(PH® = J(Q)® # 0, thus Oc o(P;"). Let now J(on) # 0, J(P)® # 0, and

¥ = Q1. Since Im2+ C 1°(H,), we obtain by (5.17)7 (P,)y = 9+J(P;O)q> £0,

in particularo, € o(P}). O

Proposition 5.11.For 0 < « < 2, we havelyg(P,") = 177 (H,).
Proof. Take (an approximation off = 1;q in (5.17), and us&{o}(P(;fo) =0. O
Proposition 5.12.Letg € Coo(R). Then

s lim &' g(Vo)e " eday 0 () = g (P") Lo (Po)-

Proof. We first treat the casH, = Hy o. It is enough to assumge C3°(R) and to prove
that

S_tingoézHa,o (g(Va) _g(Pat(X)>>J<pat(X))X(Hm0) e itHao _

foranyJ e C°(R*) andy € C3°(R). By the Helffer-Sjostrand formula, it is sufficient to
show that for alk € C\ (o (V) UR™):

1
s- lim (z - va)‘1<va e “:“) <z _P “:”) J(—p "t(x))x(Ha‘o)e“”"av0 —0.

2 From Proposition 2.8 and Remark 2.9, this does not seem to be the generic case.
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We have:

-1
(- varl(va e “f”) (z _P “t(’“)) J(”%”) X (Hoo)

-1
=(z— Va)_l(Z _ pat(x)> (Va _ pQI(X)>J<pat(X)>X(Ha,0)

o -1 Otﬂv()l o -1 o
+(z —Va)_l(z -r t(x)> p ; ]<z _P t(x)> J(—p t(x)>X(Hoz,O)

=: R1+ Ro.
A direct computation shows that the commutdiy, p,]is bounded. Thus s-lim, o R2 x

e "He0 = 0. We have s-lim., o, R1e""H«0 = 0 by Proposition 5.8.
For the general case, we notice that

g(P) 1m0y (P) = g (P) 1 (Ho) = 27 g (Pp) (27)
- sz+s-t lim g Haog (Ve 1 Hao (2 F)"
=s- lim &M g(Vo)e™ "1 (Hy)
=s- lim e g (V)& " Ha g, 0 (PF),
which implies the proposition. O

Propositions 5.9-5.12 correspond to the three points in Theorem 1.2.

6. Generalizations in the casex = 2

In this section, we generalize our results, in the special case where the reference Hamil-
tonian is exactly the Laplace operator plus a second order polynomial. Resuming the
notations of Section 2.2, we may assume, as in (2.9) that

n— n—+ny n_+ny+ng
H0=—A—Za),§x,§+ Z a),fx,g+ Z Exxp=:—A+U(x), (6.1)
k=1 k=n_+1 k=n_+n{+1

on L2(R™), with n_ +ny +ng <n, wx > 0 andE; # 0. By conventionZ’j’.:a =0 if

b < a. We study the scattering theory for the Hamiltonidi®, H = Ho + V (x)). This

setting includes the presence of a Stark potential£ 0). Notice that, ifU (x) is a general
second order polynomial with real coefficients, the operator

—A+U(x),
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can always be written as (6.1), modulo a constant term, after a change of orthonormal basis
and origin (which leaves the Laplace operator invariant). With that approach, one could
even demandg < 1. The reason why we do not reduce to that case is that the pointwise
decay estimates required for the potential (see (6.4) below) are not invariant with respect
to such reductions.

In Section 6.1, we prove the existence of wave operators under rather weak assumptions
on the perturbative potenti®l. In the case:_ = n; = 1 for instance, the repulsive effects
due to—x? overwhelm the other effects: confinement due-t6 and drift due to the Stark
potential.

In Section 6.2, we give the asymptotic completenesHgfhas no Stark effect and
no Schrddinger part (this means that + n_ = n). The hypothesis oY are similar to
(1.5)—(1.6).

In Section 6.3, we construct the asymptotic velocity under the previous hypothesis. As
the free HamiltoniarHy is a sum of commuting self-adjoint “one-dimensional” operators,
the existence of asymptotic velocities in each space direction is a corollary of Theorem 1.2
applied to the one-dimensional case. For the Hamiltoifarihe asymptotic velocity of
Theorem 1.2 exists also and is equalRg, wherew, = max< <, ;, and P;} is the
asymptotic velocity in the direction.

6.1. Existence of wave operators
In this section, we prove the existence of wave operators for perturbatioHs b¥

Cook’s method. We consider the perturbatiin= Hy + V, whereV (x) is a real-valued
potential which can be decomposed as

V(x) = Vix) + Va(x) + W(x), (6.2)
where
2< pj <00 if n <3,
Ve LPI(R";R), forj=12 with { 2<p; <o0 if n=4, (6.3)

n/2<pj<oo ifn=5,
andW is a sum of terms irL°° (R") satisfying a.e.
n_ n_+ny+ng n
W] < (]‘[(ln<x>)’3-’> ( I1 <x,~>ﬂ-f/2) ( I1 <x,~>ﬂ-f), (6.4)
j=1 Jj=n_+ni+1 j=n_+ni+ng+1
with 8; > 0 and}_ 8; > 1. Notice that thé/;’s do not contain pointwise information.

Theorem 6.1.(i) Suppose that the quadratic part bf hasat mostone (simpl@ positive
eigenvalug(n < 1), andat leastone negative eigenvalu@_ > 1). Let V satisfying the
previous assumptions. Théh= Hp + V admits a unique self-adjoint extension, and the
following strong limits exist ilL.2(R"),
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s lim eItH ItHo
t—=+o00

(ii) If the quadratic part ofU hasat leastone negative eigenvalug_ > 1) and V
satisfies the previous assumptions withand V, compactly supported, then the same
conclusions hold.

(iii) If W satisfieg6.4)and V1 = V, = 0, then the same conclusions hold.

The self-adjointness property follows from Faris—Lavine theorem ([30], see also Sec-
tion 2). Before the proof of this result, a few remarks are in order.

Remark 6.2. This result shows that wave operators exist even for very slowly decaying
potentials. Potentials decaying even more slowly could be included (involviig| i)

for instance); like for Theorem 1.1, we do not seek so general results, and rather focus on
the method. Notice that in the first case, singular potentials, like

1 1
V(x):W I |x|<1+| 5 ly>1+0,

are allowed, provided that< min(2, n/2). This includes the case of Coulomb potentials
in space dimension > 3.

Remark 6.3. The dynamics associated ffy is known explicitly (see (2.10)), and cannot
be compared to that 6f A.

Remark 6.4. If the quadratic part of/ has more than one positive eigenvalue, results
similar to the first point of the theorem can be proved, provided thias at least one
negative eigenvalue. This will be clear from the proof below, as well as the reasons why
we did not wish to state too general a result.

Resuming the notations of Section 2.2, the dilation opef@tas crucial. As mentioned
in Section 2.2, a formula similar to (2.12) is available f6feThe factorM, in that case
is different, but still of modulus one, whit®; corresponds to dilations of size mhstead
of g(2¢). This is closely related to the properties of the classical trajectories. The operator
D, enables us to prove the existence of wave operators with Cook’s method.
It is of course sufficient to study the case> +oo, the case — —oo being similar.
A density argument shows that Theorem 6.1 follows from:

Lemma 6.5. Under the assumptions of Theoreri, for any ¢ = ¢1 ® --- ® ¢,, with
p; € 8(R), there exists a uniqug € L?(R") such that

”enH —irHy

Proof. Following Cook’s method, we compute:

d . , o .
_eltHe—ItHo(p —jeltHy g itHo

dr ¢
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Taking theL2-norm,

E eitHe—itHo

dr ¢

Under the assumptions of Theorem 6.1, it is sufficient to prove that the maps

| =lveogl,.

—itHp

1 |we"og|,, and t»—>||V/-e‘”H°<p||L2, j=12,

are integrable offil, +oo[ . Letr > 1. Since the operatdP, is unitary onL?2, we have,
from (2.12) and Hélder’s inequality,

|Vie " Hog|| = IV, D F Mgl 2
= | DV (8120, ... gn(2) FMig|
= [Vi(-g1@0), ..., 8. (20) F Mg ;2
<[ Vi(8220). ... -gn@0) | o 1F Mgl o

1 n_ wy 1/Pj
< - Villyrj |M . 6.5
~ <8n_+1(2t) ]!:[1 Smh(Za)kt)) IVillzes t(p”L"!' (6.5)

where ¥p; + 1/g; = 1/2 and the last estimate stems from Hausdorff—Young inequality
(¢'; denotes the Holder conjugate exponeny gt

In the first case of Theorem 6.1, the functign 41 is a sinus if the quadratic part &f
has one positive eigenvalge, = 1), and is linear otherwise.

The exponential decay of/#1(2¢) is enough to ensure the integrability of the right-
hand side of (6.5). The worst possible situation with our assumptions is 1, where
(6.5) yields, sinces_ > 1,

1
Sin(2w,,_y1t) sSinh(2w1t)

) 1/pj
l Vje_"H"(P”Lz S ( ) IVillpri ||<P||Lq_;~

From assumption (6.3p; > 2, and the map — 1/(sin(2w,_1t) sinh(2w11))Y/?i is in-
tegrable o1, +ocl. SinceL% ¢ LN L2, the lemma is proved for the;’s parts, in the
first case of Theorem 6.1.

In the second case of Theorem 6.1, we assume in addition that; thare compactly
supported: supp; C {|x| < R} =: B. Inthat case, they atEy-bounded (with bound zero),
the assumptions op; are such thav; is A-bounded, and the polynomial is bounded
on the support o¥/;. To take advantage of this, we write

Ho = —812 — w%x% + ﬁo,
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where Hy takes the lastn — 1) variables into account, and use a factorization like (2.12)
in the first variable only. Mimicking the above computations witreplaced byt yields:

[Vie " og] 2 = [Vie 0] oig, = Vi (520 ... ) FiMie g 2,

whereF; stands for the Fourier transform with respect to the first variable, and

1_ . 2 hl(Zt)
M; _exp<|x1 202 )

Notice that these two operators commute V\ﬁb. We also denoted; = {)cfgl(Zt)2 +
x% 4t x,? < R?}. From Hélder’s inequality, this last term is estimated by:

” Vj (-gl(ZI), IRERRE ) ”LP./'(B,) ”]:lMtl e_itHo‘p”L‘f./ (By)’

where ¥2=1/p; + 1/q;. The first term is equal thgl(Zz))—l/m||Vj||ij; since we
assumei_ > 1, g1 has an exponential growth, and this term is integrable. It suffices to
show that the second term is bounded. From our assumptiQJ},oHZ(]R") C LY (R,

and

|FiMEe 0] 1y 5, S [ FiMIE | o 4 | A (FIMEE ) | 2y

< lgllyz + [ (03— Ho) (Fumie og) | .

sinceU is bounded orB,, uniformly with respectte > 1 (B; C B for ¢ > 1). Finally, we
have:

H (8% - ﬁo) (flMtle_itHo‘P) HLZ(R”) = H (xf + I'NIO)QDHLZ(R")‘

Therefore, the lemma is proved for thg’s parts, in the second case of Theorem 6.1.
For the last component df (the functionW), we make no assumption an. or n.
This is where we use the tensor product structurepfoFhe idea is to proceed as above,
except for the components,_,_ +1, ..., x,), for which we proceed “as usual”. We de-

note:

fori<j<n_,

Bl — —ij+a)2.x. forn_ <j<n_+ny, (6.6)
0 —Ay;, +Ejx; forn_+ny <j<n_+ny+ng,
—Ay; forn_+ny+ng<j<n,

and we have €'fogp = e iHip ... @e tH g,
Since &4 is unitary, we have, fof =n_+1,...,n_ +ny:
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n_ n—+ny+ng )
[wetiog] , < [Tl e g, [T ooy /2By,
j j=n_+n++1
n
S O [ T T (6.7)

Jj=n_+ni+ng+1

and we estimate each term in the product.
For 1< j <n_, we have, from (2.12) in the one-dimensional case,

”(In(xﬂ)_ﬁje_imo‘/’ ||L2 = [[(In(x;))” ﬂijD]fj t(pl HL2
= |{inx;g; @) Fimlg)| 2.

whereM{, D,j andF/ are given by (2.12) in dimension 1. Denotig = }'j/\/l,jgo,- and
replacingg; (2¢) with €/, we get:

l(in(x;g; @) " 557 = / [(Infxjg;20) " @ |*d;

\xj‘|>efw-/'[

+ [ Il e P,

|xj\<e*”’f‘f

~j|2
S 2;‘3 | ||Lz+/1‘xj|<efw_,,|¢g| d,
T el

where we used Cauchy—Schwarz inequality. From Hausdorff-Young inequality, we have:

[inee ) e og; 7, zﬂ o122 + € 20 1245 (6.8)

Forthe case_ +ny < j <n_ +n4 +ng, we simply recall the approach of [2]. From
Avron—Herbst formula (see, e.g., [2,8]),

() xj) =€ BT ED (6120 1 412,
Using Avron—Herbst formula, the term we have to estimate reads

) Pir2e s g |, = |(x; = 2E) P2 20 o
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By a density argument, we may assumec F; (C5°(R)) (suppF;(¢;) C {|] < R} for
some positiveR). For|x ;| < 3Rt, the drift caused by Stark effect accelerates the particle:

_B./2 JtAy. _B. _B.
|y = 2E)) P12 0 | oy <arey S 1E17P 2l S 1P (6.9)

For|x;| > 3Rt, a nonstationary phase argument and sbpp;) C {|£| < R} show that

itAy . 1 —itE24ix &
e g; ||L2(|xj|>3Rt) = HE/E T ep@d L2(1x;|>3R1)
J
=0(™). (6.10)
These two estimates yield:
_B./2 _itH _a
[¢xj)~Fil2e o ||, St7Pi (6.11)

We now study the term with_ + n, + ng < j < n. By a density argument, we can
assume thap; satisfies:

0 (xj) = / / % (€ (v) dy .

whereyr € C°(R) (suppy C {ly] < R}), x € C°(R, [0,1]) and x =0 for |&] < c. We
get:

<xj)_ﬂ_i e_itH({goj — <xj)_ﬂ_i // e—itsz-‘ri(xj'—y)éx(é)l/f(y) dy dé
Obviously, we have:

_B. —itH! _B.
[ ™€ 00 2y ey ST NS 2 (6.12)

For|x| < ct, recall that on the support gf(y) x (¢), |¢| > c. Differentiating the phase, and
noting that

[2t5 +x —y| > |2t§ + x| - R>2t[§| — |x| —R>ct — R,

a nonstationary phase argument shows that, for lgrge

=0(™™).  (6.13)

L2(|x|<ct)

(xj) 7 / / e EHOGIE £y (y) dy d

Combining (6.12) and (6.13), we get, for +ny +ng < j <n,

[y Pre g |, S17h. (6.14)
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Gathering (6.7), (6.8) and (6.14) together yields:
[wetog, |2 5172
Since we assumell 8; > 1, the lemma follows. O
If the quadratic part o/ has more than one positive eigenvalue, the problem may
become intricate for the estimates related to¥hs. For instance, if the quadratic part of

U has one positive eigenvalue, whose order.is> 2, then (6.5) becomes:

1
| SiN(2w,,_ 4+11) |+ sinh(2w1t)

‘ 1/pj
[vie oo ,2 < ( ) Willeriltsl o

and ifn,. = 2 andn = 3 (see the Assumption 6.3), one has to adapt the assumption on the
power p; for this map to be integrable neao: the valuep; = 2 is not allowed, because
for that value, the above map is not even locally integrable.

Reasoning the same way, we notice that if the quadratic pdit lods several distinct
positive eigenvalues, then arithmetic properties of these eigenvalues will have to be taken
into account. We leave out the discussion at this stage.

6.2. Asymptotic completeness
In this part, we assume that + n, =n. Then
n n
Ho=—-A— Za),fx,g + Z a),%x,g.
k=1 k=n_+1
Like for Theorem 1.1, we assume tHatis a real-valued function with
V(x) =Vi(x) + Va(x), (6.15)
where
V1 is a compactly supported measurable function, Arcbmpact (6.16)

andV, € L*°(R"; R) satisfies the short range condition:

V20| S(Inx_)) 7, aex eR”, (6.17)

for somee > 0, andx = (x_, x4) € R"- x R"+. Notice that there is propagation only in
thex_ direction. It is therefore reasonable to impose decay only in that direction. Denote:

Hy =—Ar —(0_x2)%  Hy =—Ay, + (03x1)%,
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with w_ =diagws1, ..., w,_), o+ =diagw,_+1, ..., w,). Let Np = —A,, —i—xi. As in
Section 2.1, we can show that the opera(dlgt, D(N.1)) and(H, D(N)) are essentially
self-adjoint (v = N> is the harmonic oscillator oR"). The result of this section is:

Theorem 6.6.Assume thaV satisfieg6.15)(6.17) Then there exist

s lim g'H e itHo, (6.18)
—>0o0

s- lim g Hog=1tH 1¢(F), (6.19)
— 00

If we denotg6.18)by 2T, then(6.19)equals(27)* and we have
RHet=1, T2 =1°(H).

Remark 6.7.From the following discussion, it is clear that the conditians> 0 for all ;
(respectivelyn_ 4+ ny = n) are crucial for the proof. lf»; = 0 for onej, then Egs. (6.21),
(6.22) below fail to be true. For the same reason, we cannot include linear ternis-like

Proof. Since the proof is very similar to the case =n andw; = 1 for all j, we will be
very concise. The following points have to be addressed:

(1) Definition of the conjugate operatdr,

(2) The regularityHp € C2(A),

(3) The Mourre estimate faf,

(4) The regularityd € C1*3(A) and the Mourre estimate fdf,
(5) Replacement of the conjugate operatdoy (In{x,,_)),

(6) Proof of the asymptotic completeness.

(1) As in (3.13), we choose for the conjugate operates Op(a(x, £)), with
ax,&)=INE_+w_x_)—In{f_ —w_x_).

One can show as in Lemma 3.7 thdt, D(N)) is essentially self-adjoint. As in Proposi-
tion 3.5, we can prove that, far € C5°(R) with » =1 near O,

£2 — (0-x_)% + (04x4)?
(E2+x2+ 1P

(H+i)1=(H+i)10p<1//< )) +O(1) Op(r), (6.20)
with r € S((x, £)~#, go) for 1/2 < g < 1. If the support of is small enough, we have:
E2+E2 4 x2 Sx2 41, (6.21)

on the support off (62 — (w—x_)2 + (w1x4)?) /(2 + x2 + 1)).
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(2) First, note thafHo, A] and[[Ho, A], A] are bounded oi2(R"), by the same ar-
guments as in Lemmas 3.9 and 3.10. Notice tiat N_ + N, andD(N) = D(N_) N
D(Ny). Clearly,D(N) = D(Hy ). Since[Hy , Hol =0, we have:

(z— Ho)"1:D(Ny) — D(Ny).

To prove(z — Ho)~1: D(N_) — D(N_), we can proceed as in the proof of Lemma 3.8;
we use
o
(z — Ho)_l _ / e—itHoJre—itHO_eitz dr,
0

and[N_, Hi1=0.
(3) As in Lemma 3.15, one can show that, foe C3°(R),

(D) +wjxj)?  (Dj —w;x))?
(Dj+ijj)2 (Dj—a)jx]')z

X (Ho)li Ho. Alx (Ho) = x (Ho) chuj(
j=1

>X(Ho)~

Using Garding inequality, we get, for apy> 0,

x (Ho)[i Ho, Alx (Ho) > (2& — ) x?(Ho) + x (Ho) R (Ho),

where® = min;¢1,.. ,_y;, and R is a pseudo-differential operator whose symbol is
decreasing inx_, £_). Using (6.20) and (6.21), this decay becomes a decdy,if) on
the energy level, and then

x (Ho)li Ho, Alx (Ho) > (2 — 11) x*(Ho) + x (Ho)K x (Ho),

with K compact. If the support of is sufficiently small, we therefore obtain:

x (Ho)li Ho, Alx (Ho) > (2 — 1) x*(Ho).

(4) Using (6.21), one can show thHtA is compact fromD(Hp) to L?(R"), since the
decay ofV> in x_ (6.17) yields decay in all the variables. Thus, the Mourre estimate and
the regularityC1*+3(A) for H can be obtained as in Section 3.

(5) We apply the same arguments as in Section 4.2. We have to use that

(- —x) S{x-)s (- +x_) S (x-) (6.22)

on the energy levels, and (6.21). Then we show that the assumptions of Lemma 4.5 are
fulfilled.

(6) The proof of the asymptotic completeness is exactly as in Section 4.3, using the
minimal velocity estimate and the fact thatH) — x (Ho) is compact fory € C5°(R). O
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6.3. Asymptotic velocity

We assume that the hypothesis of Theorem 6.6 are satisfiedfet L2(R) for
ke{l,...,n}. ClearlyH = ®}_, H*. We write, as in (6.6),

n
- J i i 2,2
Ho=) Hg,. WithHy, =—Ay +wlxl. (6.23)
j=1

Obviously

(43

O,wj’

Hg,, ] =0. (6.24)

If we use this separation of variables and apply Theorem 1.2 to the one-dimensional case,
we obtain asymptotic velocities in each space directionM;et [H, In(x;)]. Like for V

we can show thatV;, D(N)) is well defined as an operator, and essentially self-adjoint.
We denote agail’; its self-adjoint extension.

Theorem 6.8 (Asymptotic velocities) There exists a vectoP™ = (P{.....P)) of
bounded self-adjoint commuting operatd?jér which commute witli, such that

0] pt= S_Coo_t“rgoeiz[{(m(txl) . ln(:n>>e_i’H.

(i) The operatoerJr satisfies

pt— 20;1°(H) forje{l,...,n_},
J 0 forje{n_+1,...,n}.

(i) ForanyJ € Cx(R), J(P]?L)l]R\{o}(P;r) =5 lim;o oo ei’HJ(vj)e‘i’HlR\{o}(P;’).
Proof. We denoteH,, = H, andHp ,, = Hp. We prove Theorem 6.8 in two steps.
First step.We assumé’ =0, that isH,, = Ho,e-

(i) We first treat the case_ =n = 1. If w = (—1), then the claim follows from Theo-
rem 1.2. Fow = (—w?), set:

(D)) = — ( a )
X)=—FF75V0 —}).
a)i/4 V@1
ThenD: L2(R) — L2(R) is unitary, and we have:
Ho,» = 01D* Ho,(-1D. (6.25)

Therefore:
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s- lim e”HOwJ(mix))e—itHQw — D*s- lim ei'HQ(1>J(In(x/“;wl)m)e‘”f’o»(1>D

—00 =00

= D*s- lim ei’HO‘(—DJ<—|n<);>wl>e‘i’H°~<‘1) D, (6.26)

—>0o0

because
(i) (0 _ oy,

Thus the result for general follows from the result fow = (—1). Let nown_ =0 and
ny =1. Then

s- lim dfﬂow<'”i >>e”H0~w —J0), (6.27)

becausd.?(R) possesses a basis of eigenfunction&gf,. The general case follows from
the one-dimensional cases using (6.23), (6.24). We deﬁ@tehe vector associated to
HO,w

(i) First note that

o
J(Py ) =s- I|me Hou, J<In<:cf))e "Ho,

The result on the spectrum follows from (6.26), (6.27), and from Theorem 1.2(ii).
(iii) By (ii), Py ; depends only om;, and we note “P+ - We havePy, = w;Py,. If
jen_+1,. n} both operators are zero. Fpe {1, . n 1, we have

+ + + At H —itHJ
J(Pg,,) = J(ijO’l) = D*J(w.,PO’l)D: D's- I|no10e' 01J(w;V)e "D

—s-lime' °“’JD*J(a)]V )De

—>00

Here we have used th&, =2, and thuDPy"; D" = Py, as well as (6.25). To prove (iv),
it is thus sufficient to show that:

(D*J (@;V;)D - J(vj))X(H({)w/) is compact orL2(R),
respectively(J (w;V;) — DJ (V;)D") x (H({,l) is compact orL2(R),

forany x € C3°(R). All operators have to be understood as operators actidg/@R). Let
V; =DvV,D". The operatolV; is a pseudo-differential operator, with symi¥gl(x;, £;) =
x,.;%j x]/ /@7)?. Recall from Proposition 3.5 that

£2 — 42 .
¢ ))X(Hé’l)—i-Rj,

J Y — J
Kt ) = Op(‘”(s} + (x))2
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with N;R; bounded §; = — Ay, + (x;)2), andyr € C§°(R) with y = 1 in a neighborhood
of zero. Clearly(J (w;V;) — J(Vj)))Rj is compact, and it remains to show that

%’2 — xz.
V) — . J J i
(J(w;V)) J(V]))Op(w(éjz_’_ (xj)z)) is compact.

By the Helffer-Sjostrand formula, it is sufficient to show that for any C \ (o (V;) U
o)),

— é '
AR

(V) Y oV >0p(( ] ))<z—w,v>1

+ (=) NV V) @ — V) Lo

J
x |:Op<¢<ﬂ)> v}(z—w-wl (6.28)
g4 x)2)) S

is compact. We have:

%‘2 —x2.
(Vj(x]',fj) - ijj(xj’éj))l//<Ejzj_|_7<xj]>2)‘

w6 () ()

1- o) w( §2—x% >‘
(xj/@7)? " \&2+ (x;)2) |
and each derivative of this symbol satisfies the same estimate. Thus the first term in (6.28)
is compact, by the pseudo-differential calculus. Next we compute:

2_ 42
[ivj, Op(lp (i’—%))} = Op(c1) + Op(c2),
£+ (xj)

%-2 %-Z_XZ %-Z_XZ
- i \_ i N\
4 w(sz <>>{ ety <>} "’(é,? m)”

We havecs € S((x)72, g2), c1 € S((x)"1(§)71, g2) and ez € S((x)73(§) 7%, g2). Thus
Op(c1) and Ogpc2) are compact by the pseudo-differential calculus.

Second stepGeneral case.

Let J € Coo(R™). We have:

<

with
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s- lim gfoy
— 00

In(x1) In(xn)

)e—”Hw = 9+J(130+)(9+)* + J(0)1PP(H,).
The existence oP* follows from the existence QT’J. Specializing/ (x1, ..., x,) = J(xj)
we obtain furthermore:
*
J(P) =27 (P )(27) + 701 (H,).

Then (ii), (iii) follow from this formula and the results cfg] as in the proof of Theo-
reml.2. O

One can ask whether the construction of Theorem 1.2 works also in the more general
case, and what is the possible link between the vektoand P*+. The answer is given by
the following theorem:

Theorem 6.9.Letwy, = max ¢ j<,_ w;. There exists,

g ln i
Pt =5Cx- lim gr 0 e

t—00 t
and we haveP™ = P}’

Proof. First step.We assumé’ = 0, that isH = Hp.
We already know thaP,™ = 2w;. Thus we only have to show that fdre Cyr(R),

o In ;
s- lim e"H0J<ﬂ>e_"H0 = J (2wy). (6.29)
—00 t
We can supposé =n_ andw; < w2 < - < wf < w41 = -+ = w,_. Let e > 0. For

je{l....k+1}, we choose/; € C°([2w; — &, 2w; + ¢]), with J; = 1 near ;. For
je{n_+1,...,n}, we choose/; € CF([—e, ¢]) with J; = 1 near 0. Then by Proposi-
tions 4.8, 5.7 and the separability of the variables, we have:

eitHo]<|n¥>eitHo — eitHOJ<|nix>>J~k+l<|n<xk+lat' ce xn_>>

x [T 7 <—In<txj) )e—”HO +R(®),

with s-lim R(z) = 0. It is clearly sufficient to show

s- lim é’”‘)(](lnﬂ) - J(Inm“—x”))>
t—00 t p

xikﬂ(—ln(xk”’t'”’x”)) I1 }(—ln(x"))e—”f'ozo. (6.30)

Jjefl,....n}
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We have:
J('n(x)) _ ]<|n(xk+1,...,xn)>‘ < In(x) IN(xgr1, ... %0 )
t ; , t
2
1 X
(e ¥ o)
) 2
t jell,....n} (Xk41, .- Xn)
jé{k+1,...,n_}
(6.31)
In(x ;)2
(x;) <dwj+28 = sz. < ol 632

We have, on supf1,
NGt .. X0 )2

t >4w;—2 = (Xpgls..., X )2 > edn™20 (5.33)

For j >n_ + 1 we have, on supg,

Gathering (6.31)—(6.34) together, we obtain:

'(J(mix)) _ J<|n<xk+1,t. .. ,xn_)>>jk+l<|n(xk+1,t. .. ,xn_))

~ |n<)Cj>
: <
x ]I J,( = )| s s,
je{l,...,n}
Jelk+1,...,n_}

where f (¢) is defined by

1 e(4w +2e)t 1 r_q
f(f)=;|”<1+ZW+ Z Qb —20)1
J

=1 j=n_+1

If ¢ is small enough, lin., o, /() = 0. This yields (6.30).
Second stepseneral case. We have:

s- I|m e"”](lni ))e”H =27 J(P)(27)" + 70177 (H)
= Q7T (PS,)(R1)" + (0177 (H)

= 2772w (27%)" + J(01PP(H)
= J(2w)1°(H) + J(0)17P (H).
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Thus P exists, and
J(PT) = JQRwy)I(H) + J(0)1PP (H). (6.35)

ThenP* = 2w,1°(H) = P,", which proves the theorem.O
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