# Sharp spectral gap for non-reversible metastable diffusions 

# L. Michel (joint work with D. Le Peutrec) 

Université de Bordeaux
Dispersive Waves and Related Topics June 17 to June 21, 2019

## Plan

(1) Introduction

- General framework
- The reversible case
- The non-reversible case
(2) The labelling procedure
- Separating saddle points
- The generic assumption
(3) Sketch of proof
- General strategy
- Quasimodal estimates
- Spectrum of non-symmetric matrices
(1) Introduction
- General framework
- The reversible case
- The non-reversible case
(2) The labelling procedure
- Separating saddle points
- The generic assumption

3 Sketch of proof

- General strategy
- Quasimodal estimates
- Spectrum of non-symmetric matrices


## Brownian Dynamics

Given a vector field $U(x)$ on $\mathbb{R}^{d}$, consider the overdamped Langevin equation

$$
\begin{equation*}
d x_{t}=U\left(x_{t}\right)+\sqrt{2 h} d B_{t} \tag{1}
\end{equation*}
$$

where $B_{t}$ is the Brownian motion, $h>0$ is proportional to the temperature of the system. The generator of this process is

$$
\mathscr{L}=\mathscr{L}_{U}:=h^{2} \Delta+U(x) h \partial_{x}
$$

Recall that

- for any bounded measurable function $f, u(t, x)=\mathbb{E}^{x}\left(f\left(x_{t}\right)\right)$ solves

$$
h \partial_{t} u=\mathscr{L} u
$$

- the law $\mu(t, x)$ of the Markov process $\left(x_{t}\right)_{t \geq 0}$ is governed by the Fokker-Planck equation

$$
h \partial_{t} \mu=\mathscr{L}^{t} \mu
$$

## General framework

## Assumption 1

The vector field decomposes $U(x)=U_{0}(x)+h \nu(x)$ and there exists a smooth function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
\mathscr{L}_{U}^{t}\left(e^{-2 \phi / h}\right)=0
$$

## Consequence

Denoting $b_{0}(x)=U_{0}-2 \nabla \phi(x)$, one has $U=-2 \nabla \phi+b_{0}+h \nu$ with

$$
\left\{\begin{array}{c}
b_{0} \cdot \nabla \phi=0 \\
\operatorname{div}(\nu)=0 \\
\operatorname{div}\left(b_{0}\right)=2 \nu \cdot \nabla \phi
\end{array}\right.
$$

## Particular case

A particular case is $\nu=0, \operatorname{div} b_{0}=0$ and $b_{0} \perp \nabla \phi$ which can be obtained by taking $b_{0}(x)=J \nabla \phi(x)$ for any antisymmetric matrix $J$ independent of $x$.

- Throughout, we denote $b_{h}=b_{0}+h \nu$. We have

$$
\mathscr{L}_{U}=h^{2} \Delta-2 \nabla \phi(x) h \partial x-b_{h}(x) h \partial_{x}
$$

We sometime denote $\mathscr{L}_{U}=\mathscr{L}_{\phi, b_{h}}$

- Let $\Omega \psi=e^{-\phi / h} \psi$, then

$$
\Omega \mathscr{L}_{\phi, b_{h}} \Omega^{-1}=-P_{\phi, b_{h}}
$$

with

$$
P_{\phi, b_{h}}=\Delta_{\phi}+b_{h}(x) \cdot \nabla_{\phi, h}
$$

where

- $\Delta_{\phi}=-h^{2} \Delta+|\nabla \phi|^{2}-h \Delta \phi$ is the Witten Laplacian associated to the function $\phi$
- $\nabla_{\phi, h}=e^{-\phi / h} \circ h \nabla \circ e^{\phi / h}$.


## Spectral study of the Witten Laplacian

## Assumption 2

There exists $C>0$ and a compact $K \subset \mathbb{R}^{d}$ such that for all $x \in \mathbb{R}^{d} \backslash K$, one has

$$
|\nabla \phi(x)| \geq \frac{1}{C},|\operatorname{Hess}(\phi(x))| \leq C|\nabla \phi|^{2}, \text { and } \phi(x) \geq C|x|
$$

Under this assumptions, one has the following properties on $\Delta_{\phi}$.

- $\Delta_{\phi}$ is essentially self-adjoint on $\mathcal{C}_{c}^{\infty}(X)$.
- $\Delta_{\phi} \geq 0$
- there exists $C_{0}, h_{0}>0$ such that for all $0<h<h_{0}$

$$
\sigma_{e s s}\left(\Delta_{\phi}\right) \subset\left[C_{0}, \infty[\right.
$$

- 0 is an eigenvalue of $\Delta_{\phi}$ associated to the eigenstate $e^{-\phi / h}$.


## Assumption 3

## $\phi$ is a Morse function

We denote

- $\mathcal{U}$ the set of critical points of $\phi$ (since $\phi$ is a Morse function, then $\mathcal{U}$ is finite).
- $\mathcal{U}^{(p)}$ the set of critical points of $\phi$ of index $p$
- $n_{p}=\sharp \mathcal{U}^{(p)}$.


## Theorem (Witten 82, Helffer-Sjöstrand 84):

There exists $\epsilon_{0}, h_{0}>0$ such that for all $0<h<h_{0}$, one has

$$
\sharp \sigma\left(\Delta_{\phi}\right) \cap\left[0, \epsilon_{0} h\right]=n_{0}(\phi) .
$$

Moreover, these $n_{0}$ eigenvalues are $\mathcal{O}\left(e^{-c / h}\right)$ for some $c>0$.

## The reversible case

## Sharp asymptotics of small eigenvalues

Let us write $\lambda(\mathbf{m}, h), \mathbf{m} \in \mathcal{U}^{(0)}$ the $n_{0}$ small eigenvalues of $\Delta_{\phi}$.

## Theorem (Bovier-Gayrard-Klein, Helffer-Klein-Nier 2004)

Under a generic assumption, there exist a injective map $\mathfrak{s}: \mathcal{U}^{(0)} \rightarrow \mathcal{U}^{(1)}$ such that the $n_{0}$ small eigenvalues of $\Delta_{\phi}$ satisfy

$$
\lambda(\mathbf{m}, h)=h \zeta(\mathbf{m}, h) e^{-2 S(\mathbf{m}) / h}
$$

where $\zeta(\mathbf{m}, h) \sim \sum_{r=0}^{\infty} h^{r} \zeta_{r}(\mathbf{m})$ and

$$
\zeta_{0}(\mathbf{m})=\pi^{-1}|\mu(\mathbf{s}(\mathbf{m}))| \sqrt{\frac{\left|\operatorname{det} \phi^{\prime \prime}(\mathbf{m})\right|}{\left|\operatorname{det} \phi^{\prime \prime}(\mathbf{s}(\mathbf{m}))\right|}}
$$

where $S(\mathbf{m})=\phi(\mathfrak{s}(\mathbf{m}))-\phi(\mathbf{m})$ and $\mu(\mathbf{s})$ is the unique negative eigenvalue of $\phi^{\prime \prime}$ in $\mathbf{s}$.

Let us go back to the general situation $U(x)=-2 \nabla \phi(x)-b_{h}(x)$ with $b_{h}(x)=b_{0}(x)+h \nu(x)$ such that

$$
\left\{\begin{array}{c}
b_{0} \cdot \nabla \phi=0 \\
\operatorname{div}(\nu)=0 \\
\operatorname{div}\left(b_{0}\right)=2 \nu \cdot \nabla \phi
\end{array}\right.
$$

In that case

$$
P_{\phi}=P_{\phi, b_{0}}=\Delta_{\phi}+b_{h}(x) \cdot \nabla_{\phi, h}
$$

## Assumption 4

$$
\exists C>0, \forall x \in \mathbb{R}^{d},\left|b_{0}(x)\right|+|\nu(x)| \leq C(1+|\nabla \phi(x)|)
$$

One aims to study the spectral properties of the unbounded operator $P_{\phi, b_{h}}$ on $L^{2}(d x)$.

- One has $P_{\phi, b_{h}}^{*}=P_{\phi,-b_{h}}$, hence our result hold also for $P_{\phi, b_{h}}^{*}$.
- One has $\mathscr{L}_{\phi, b_{h}}=\Omega P_{\phi, b_{h}} \Omega^{-1}$ with

$$
\Omega: L^{2}(d x) \rightarrow L^{2}\left(e^{-2 \phi / h} d x\right)
$$

isometry. Hence, spectral properties of $P_{\phi, b_{h}}$ yield

- spectral properties of $\mathscr{L}_{\phi, b_{h}}$ on $L^{2}\left(e^{-2 \phi / h} d x\right)$
- spectral properties of $\mathscr{L}_{\phi, b_{h}}^{t}$ on $L^{2}\left(e^{2 \phi / h} d x\right)$


## Accretivity

## Theorem (Le Peutrec-Michel)

(1) The operator $P_{\phi}:=P_{\phi, b_{h}}$ with domain $D\left(\Delta_{\phi}\right)$ is accretive.
(2) It admits a unique maximal accretive extension $P_{\phi}$ with domain $D\left(P_{\phi}\right)$ and one has $D\left(\Delta_{\phi}\right) \subset D\left(P_{\phi}^{*}\right)$.
(3) There exists $C, \Lambda_{0}>0$ such that $\sigma\left(P_{\phi}\right) \subset \Gamma_{\Lambda_{0}}$ where

$$
\Gamma_{\Lambda_{0}}=\left\{z \in \mathbb{C}, \operatorname{Re}(z) \geq 0,|\operatorname{lm} z| \leq \Lambda_{0}(\operatorname{Re}(z)+\sqrt{\operatorname{Re}(z)}\}\right.
$$

(1) One has

$$
\left\|\left(P_{\phi}-z\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq \frac{C}{\operatorname{Re}(z)}
$$

for all $z \in \Gamma_{\Lambda_{0}}^{c} \cap\{\operatorname{Re}(z) \geq 0\}$.
(3) There exists $c_{1}>0$ and $h_{0}>0$ such that for all $0<h<h_{0}$ the map $z \mapsto\left(P_{\phi}-z\right)^{-1}$ is meromorphic in $\left\{\operatorname{Re}(z)<c_{1}\right\}$ with finite rank residues.

## The non-reversible case

## First spectral localization

## Theorem (Le Peutrec-Michel) continued

There exists $\epsilon_{0}>0$ and $h_{0}>0$ such that for all $\left.\left.h \in\right] 0, h_{0}\right]$, $\sigma\left(P_{\phi}\right) \cap\left\{\operatorname{Re}(z) \leq \epsilon_{0} h\right\}$ is finite and

$$
\sharp \sigma\left(P_{\phi}\right) \cap\left\{\operatorname{Re}(z) \leq \epsilon_{0} h\right\} \leq n_{0}
$$

Moreover, one has

$$
\sigma\left(P_{\phi}\right) \cap\left\{\operatorname{Re}(z) \leq \epsilon_{0} h\right\} \subset B\left(0, e^{-C / h}\right)
$$

for some $C>0$. Eventually, for any $0<\epsilon<\epsilon_{0}$, one has

$$
\left(P_{\phi}-z\right)^{-1}=\mathcal{O}\left(h^{-1}\right)
$$

uniformly with respect to $z$ such that $\epsilon h<|z|<\epsilon_{0} h$.

## Proof I

- Use

$$
\begin{aligned}
2 \operatorname{Re}\left\langle P_{\phi, b_{h}} u, u\right\rangle & =\left\langle\left(P_{\phi, b_{h}}+P_{\phi,-b_{h}}\right) u, u\right\rangle \\
& =\left\langle\Delta_{\phi} u, u\right\rangle=\left\|\nabla_{\phi} u\right\|^{2} \geq 0
\end{aligned}
$$

and

$$
\left|\operatorname{Im}\left\langle P_{\phi, b_{h}} u, u\right\rangle\right| \leq C\left(\left\|\nabla_{\phi} u\right\|^{2}+\|u\|\left\|\nabla_{\phi} u\right\|\right)
$$

to prove accretivity and first spectral estimates.

- The spectral localization 'in the small' is obtained by mean of a Grushin problem associated to the eigenvectors $\left(e_{k}\right)_{k=1, \ldots, n_{0}}$ associated to small eigenvalues of $\Delta_{\phi}$ noticing
- $\Delta_{\phi} \geq C h$ on $\operatorname{Span}\left(e_{1}, \ldots, e_{n_{0}}\right)^{\perp}$
- $b_{h} \cdot \nabla_{\phi} e_{k}=\mathcal{O}\left(h^{1 / 2} e^{-S / h}\right)$.


## A geometric Lemma

## Lemma [Landim-Seo, 17]

Let $\mathbf{s} \in \mathcal{U}^{(1)}$ be saddle point of $\phi$. Denote $B(\mathbf{s})=d b(\mathbf{s})$.
i) The (in general non symmetric) matrix 2 Hess $\phi(\mathbf{s})+B^{*}(\mathbf{s}) \in \mathcal{M}_{d}(\mathbb{R})$ admits precisely one eigenvalue with negative real part. This eigenvalue, denoted by $\mu(\mathbf{s})$, is real and has geometric multiplicity one.
ii) We denote by $\xi=\xi(\mathbf{s})$ one of the two (real) unitary eigenvectors of 2 Hess $\phi(\mathbf{s})+B^{*}(\mathbf{s})$ associated with $\mu(\mathbf{s})$. The real symmetric matrix

$$
M_{\phi}:=\operatorname{Hess} \phi(\mathbf{s})+|\mu| \xi \xi^{*}
$$

is then positive definite and its determinant satisfies:

$$
\operatorname{det} M_{\phi}=-\operatorname{det} \operatorname{Hess} \phi(\mathbf{s})
$$

## Sharp asymptotics of small spectral values

## Theorem [Le Peutrec-Michel]

Suppose that the above Assumptions and that the generic assumption of Helffer-Klein-Nier hold true and let $\mathfrak{s}: \mathcal{U}^{(0)} \rightarrow \mathcal{U}^{(1)}$ denote the corresponding map. Then, there exists $c>0$ such that the following holds for every $h>0$ small enough:

$$
\operatorname{Spec}\left(P_{\phi, b_{h}}\right) \cap\{\operatorname{Re} z<c h\}=\left\{\lambda(\mathbf{m}, h), \mathbf{m} \in \mathcal{U}^{(0)}\right\}
$$

where $\lambda(\underline{\mathbf{m}}, h)=0$ and for all $\mathbf{m} \neq \underline{\mathbf{m}}$

$$
\begin{aligned}
& \lambda(\mathbf{m}, h)= \\
& h \frac{|\mu(\mathfrak{s}(\mathbf{m}))|}{2 \pi} \frac{\operatorname{det} \operatorname{Hess} \phi(\mathbf{m})^{\frac{1}{2}}}{|\operatorname{det} \operatorname{Hess} \phi(\mathfrak{s}(\mathbf{m}))|^{\frac{1}{2}}} e^{-2 \frac{\phi(\mathbf{s}(\mathbf{m}))-\phi(\mathbf{m})}{h}}\left(1+\mathcal{O}\left(h^{\frac{1}{2}}\right)\right)
\end{aligned}
$$

## Return to equilibrium

## Corollary

Suppose that the above Assumptions and that the generic assumption of Helffer-Klein-Nier holds true. Suppose also that for all $\mathbf{m}, \mathbf{m}^{\prime} \in \mathcal{U}^{(0)}$ one has

$$
\left(\mathbf{m} \neq \mathbf{m}^{\prime} \text { and } S(\mathbf{m})=S\left(\mathbf{m}^{\prime}\right)\right) \Longrightarrow \zeta(\mathbf{m}) \neq \zeta\left(\mathbf{m}^{\prime}\right)
$$

Then, $\operatorname{Spec}\left(P_{\phi, b_{h}}\right) \cap\{\operatorname{Re} z<c h\}$ is made of $n_{0}$ real eigenvalues and there exists $C>0$ and $h_{0}>0$ such that for all $0<h<h_{0}$ and all $s>0$, one has

$$
\left\|e^{-s \mathscr{L}_{\phi, b_{h}}^{t}}-\Pi_{0}\right\|_{\mathscr{L}\left(L^{2}\left(e^{2 \phi / h} d x\right)\right)} \leq C e^{-\lambda(h) s}
$$

where $\lambda(h)=\min \{\lambda(\mathbf{m}, h), \mathbf{m} \neq \underline{\mathbf{m}}\}$ and $\Pi_{0}$ is the orthogonal projection onto $\mathbb{R} e^{-2 \phi / h}$ in $L^{2}\left(e^{2 \phi / h} d x\right)$.

## Bibliography

- [Bouchet-Reygnier, 2016] obtained similar result for the exit time of a domain. Computation without proof.
- [Landim-Mariani-Seo,2019] rigorous result for the exit time of a domain by capacity approach. Only for double well potential and particular form of drift $b=J \nabla \phi$ with $J$ antisymmetric.
- [Hérau-Hitrik-Sjöstrand, 2011] Results for the Kramers-Fokker-Planck equation. More difficult situation since it is hypoelliptic only. Uses supersymmetry and PT-symmetry in a crucial way.
(1) Introduction
- General framework
- The reversible case
- The non-reversible case
(2) The labelling procedure
- Separating saddle points
- The generic assumption

3 Sketch of proof

- General strategy
- Quasimodal estimates
- Spectrum of non-symmetric matrices


## Separating saddle points

## The labelling procedure I

For any $\mathbf{s} \in \mathcal{U}^{(1)}$ and $r>0$ small enough, the set

$$
B(\mathbf{s}, r) \cap\{x \in X, \phi(x)<\phi(\mathbf{s})\}
$$

has exactly two connected components $C_{j}(\mathbf{s}, r), j=1,2$.

## Definition (Hérau-Hitrik-Sjöstrand, 2011)

- $\mathbf{s} \in \mathcal{U}^{(1)}$ is a separating saddle point (ssp) iff $C_{1}(\mathbf{s}, r)$ and $C_{2}(\mathbf{s}, r)$ are contained in two different connected components of $\{x \in X, \phi(x)<\phi(\mathbf{s})\}$. We denote by $\mathcal{V}^{(1)}$ the set of ssp.
- $\sigma \in \mathbb{R}$ is a separating saddle value (ssv) if it is of the form $\sigma=\phi(\mathbf{s})$ with $\mathbf{s} \in \mathcal{V}^{\left({ }^{(1)}\right)}$. We denote
$\underline{\Sigma}=\phi\left(\mathcal{V}^{(1)}\right)=\left\{\sigma_{2}>\sigma_{3}>\ldots>\sigma_{N}\right\}$.


## Separating saddle points

## Example of SSP |



Level set of a potential with 2 minima, 2 saddle points and 1 maximum

## Separating saddle points

## Example of SSP II



## Separating saddle points

## Example of SSP II


$\mathbf{s}_{1}$ is not separating

## Separating saddle points

## Example of SSP III



## Separating saddle points

## Example of SSP III


$\mathbf{s}_{2}$ is separating

## The labelling procedure II

Add a fictive infinite saddle value $\sigma_{1}=+\infty$ to $\underline{\Sigma}$ and let

$$
\Sigma=\left\{\sigma_{1}\right\} \cup \underline{\Sigma}=\left\{\sigma_{1}>\sigma_{2}>\ldots>\sigma_{N}\right\}
$$

- To $\sigma_{1}=+\infty$ associate the unique connected component $E_{1,1}=X$ of $\left\{\phi<\sigma_{1}\right\}$. In $E_{1,1}$, pick up $m_{1,1}$ one (non necessarily unique) minimum of $\phi_{\mid E_{1,1}}$.
- The set $\left\{\phi<\sigma_{2}\right\}$ has finitely many connected components. One of them contains $m_{1,1}$. The others are denoted $E_{2,1}, \ldots, E_{2, N_{2}}$. In each of these CC, one choses one absolute minimum $m_{2, j}$ of $\phi_{\mid E_{2, j}}$.
- The set $\left\{\phi<\sigma_{k}\right\}$ has finitely many CC. One denotes by $E_{k, 1}, \ldots, E_{k, N_{k}}$ those of these CC which do not contain any $m_{i, j}, i<k$. In each $E_{k, j}$ one choses one absolute minimum $m_{k, j}$ of $\phi_{\mid E_{k, j}}$.


## Separating saddle points

## The labelling procedure III

Denote $\underline{\mathbf{m}}=\mathbf{m}_{1,1}$ the absolute minimum of $\phi$ that was chosen at the first step of the labelling procedure, and let

$$
\underline{\mathcal{U}}^{(0)}=\mathcal{U}^{(0)} \backslash\{\underline{\mathbf{m}}\} .
$$

Using the preceding labelling one constructs the following applications:

- $\boldsymbol{\sigma}: \mathcal{U}^{(0)} \rightarrow \Sigma$, defined by $\sigma\left(\mathbf{m}_{i, j}\right)=\sigma_{i}$.
- $E(\mathbf{m})$ is the connected component of $\{\phi<\boldsymbol{\sigma}(\mathbf{m})\}$ that contains $\mathbf{m}$.
- $S(\mathbf{m})=\sigma(\mathbf{m})-\phi(\mathbf{m})$


## The Generic Assumption

The following hypothesis introduced by Hérau-Hitrik-Sjöstrand (2011) is a generalization of Helffer-Klein-Nier assumption (2004).

## Generic Assumption (GA):

For all $\mathbf{m} \in \mathcal{U}^{(0)}$, the following hold true:
i) $\phi_{\mid E(\mathbf{m})}$ has a unique point of minimum
ii) if $E$ is any connected component of $\{\phi<\sigma(\mathbf{m})\}$ and $\bar{E} \cap \mathcal{V}^{(1)} \neq \emptyset$, there exists a unique $\mathbf{s} \in \mathcal{V}^{(1)}$ such that $\phi(\mathbf{s})=\sup \phi\left(\bar{E} \cap \mathcal{V}^{(1)}\right)$.

Under this assumption, there exists a bijection

$$
\mathfrak{s}: \mathcal{U}^{(0)} \rightarrow \mathcal{V}^{(1)} \cup\{\infty\}
$$

such that $S(\mathbf{m})=\phi(\mathfrak{s}(\mathbf{m}))-\phi(\mathbf{m})$ with the convention $\phi(\infty)=\infty$.

## The simplified Generic Assumption

## Simplified Generic Assumption:

The map

$$
(\mathbf{m}, \mathbf{s}) \in \mathcal{U}^{(0)} \times \mathcal{V}^{(1)} \mapsto \phi(\mathbf{s})-\phi(\mathbf{m})
$$

is injective.

## Consequence

For any $\mathbf{m} \in \mathcal{U}^{(0)}$, there exists a unique $\mathbf{s} \in \partial E(\mathbf{m}) \cap \mathcal{V}^{(1)}$ and the map

$$
\begin{aligned}
\mathfrak{s}: \mathcal{U}^{(0)} & \rightarrow \mathcal{V}^{(1)} \cup\{\infty\} \\
\mathbf{m} & \mapsto \mathbf{s}
\end{aligned}
$$

is injective. Moreover, one has $S(\mathbf{m})=\phi(\mathfrak{s}(\mathbf{m}))-\phi(\mathbf{m})$ with the convention $\phi(\infty)=\infty$.

## (1) Introduction

- General framework
- The reversible case
- The non-reversible case
(2) The labelling procedure
- Separating saddle points
- The generic assumption
(3) Sketch of proof
- General strategy
- Quasimodal estimates
- Spectrum of non-symmetric matrices

Let

$$
\Pi_{h}=\frac{1}{2 i \pi} \int_{|z|=\epsilon h}\left(P_{\phi}-z\right)^{-1} d z
$$

and $E_{h}=\operatorname{Ran} \Pi_{h}$. Then $\operatorname{dim} E_{h}=n_{0}$ and $P_{\phi}: E_{h} \rightarrow E_{h}$.

## Goal

Compute the spectrum of the restriction of $P_{\phi}$ to $E_{h}$. This is a problem in finite dimension.

The general strategy is the following:

1) Construct suitable approximated eigenfunctions $f_{\mathbf{m}}, \mathbf{m} \in \mathcal{U}^{(0)}$ of the operator $P_{\phi}$
2) Project these eigenfunctions on $E_{h}, e_{m}=\Pi_{h} f_{m}$ and estimate the difference $e_{\mathbf{m}}-f_{m}$.
3) Compute the matrix $M_{\phi}$ of $P_{\phi}$ in the base ( $e_{\mathbf{m}}, \mathbf{m} \in \mathcal{U}^{(0)}$ )
4) Compute the spectrum of $M_{\phi}$

## Some comments

- The better the quasimodes are, the smaller $\left\|e_{\mathbf{m}}-f_{\mathbf{m}}\right\|$ is. Indeed:

$$
\begin{aligned}
e_{\mathbf{m}}-f_{\mathbf{m}} & =\Pi_{h} f_{m}-f_{m}=\frac{1}{2 i \pi} \int_{|z|=\epsilon h}\left(\left(P_{\phi}-z\right)^{-1}-z^{-1}\right) f_{\mathbf{m}} d z \\
& =\frac{-1}{2 i \pi} \int_{|z|=\epsilon h}\left(P_{\phi}-z\right)^{-1} z^{-1} P_{\phi} f_{\mathbf{m}} d z
\end{aligned}
$$

- Standard quasimodes $\tilde{f}_{\mathbf{m}}=\chi_{\mathbf{m}} e^{-(\phi-\phi(\mathbf{m})) / h}$ with $\chi_{\mathbf{m}}$ cut-off function in $E(\mathbf{m})$ yield

$$
P_{\phi} \tilde{f}_{\mathbf{m}}=\mathcal{O}\left(e^{-(S(\mathbf{m})-\epsilon) / h}\right)
$$

- We need to construct accurate quasimodes
- The operator $P_{\phi}$ is non-self-adjoint, hence the matrix $M_{\phi}$ is not symmetric. We have to be careful of Jordan's block.


## Quasimodal estimates

## Construction of quasimodes

- Let $\mathbf{s}=\mathfrak{s}(\mathbf{m})$ the saddle point associated to $\mathbf{m}$ and let $\xi(\mathbf{s})$ be given by the geometric Lemma:
- $\xi(\mathbf{s})$ is a unitary eigenvector associated to the unique negative eigenvalue $\mu(\mathbf{s})$ of $2 \operatorname{Hess}(\phi)(\mathbf{s})+d b(\mathbf{s})$.
- the matrix Hess $\phi(\mathbf{s})+|\mu(s)| \xi \xi^{*}$ is positive definite.
- Define the quasimode

$$
f_{\mathbf{m}}(x)=c_{h}^{-1} \kappa_{h}((x-\mathbf{s}) \cdot \xi(\mathbf{s})) \chi_{\mathbf{m}}(x) e^{-(\phi(x)-\phi(\mathbf{m})) / h}
$$

where $c_{h}$ is a $L^{2}$-normalization constant and $\kappa_{h}: \mathbb{R} \rightarrow \mathbb{R}$ is a cut-off function such that
$-\kappa_{h}(t)=\left\{\begin{array}{c}0 \text { if } t<-1 \\ 1 \text { if } t>1\end{array}\right.$

- $\frac{d \kappa_{h}}{d t}(t)=h^{-\frac{1}{2}} e^{-|\mu(\mathbf{s})| t^{2} / 2 h}$ si $t \in\left[-\frac{1}{2}, \frac{1}{2}\right]$.
$-\operatorname{supp}\left(\kappa_{h}(.) \partial_{\chi} \chi\right) \subset\{\phi>\phi(\mathbf{s})+\epsilon\}$.


## Quasimodal estimates

## The cutoff function $\chi_{\mathrm{m}}$



## Quasimodal estimates

## The cutoff function $\kappa_{h}$



## Quasimodal estimates

## Quasimodal estimates I

## Lemma

Suppose that the generic assumption is satisfied and let $\mathbf{m} \neq \mathbf{m}^{\prime}$ in $\mathcal{U}^{(0)}$. Then, either $\operatorname{supp}\left(f_{m}\right) \cap \operatorname{supp}\left(f_{\mathbf{m}^{\prime}}\right)=\emptyset$ or $f_{\mathbf{m}}=1$ on $\operatorname{supp}\left(f_{\mathbf{m}^{\prime}}\right)$ or $f_{\mathbf{m}^{\prime}}=1$ on $\operatorname{supp}\left(f_{\mathbf{m}}\right)$. In particular, there exists $c>0$ such that

$$
\left\langle f_{\mathbf{m}}, f_{\mathbf{m}^{\prime}}\right\rangle=\delta_{\mathbf{m m}^{\prime}}+\mathcal{O}\left(e^{-c / h}\right)
$$

## Lemma

For all $\mathbf{m} \in \mathcal{U}^{(0)}$, one has

$$
\left\langle P_{\phi} f_{\mathbf{m}}, f_{\mathbf{m}}\right\rangle=h \frac{|\mu(\mathbf{s})|}{2 \pi} \frac{D_{\mathbf{m}}}{D_{\mathbf{s}}} e^{-2 S(\mathbf{m}) / h}(1+\mathcal{O}(h))
$$

where $\mathbf{s}=\mathfrak{s}(\mathbf{m}), S(\mathbf{m})=\phi(\mathbf{s})-\phi(\mathbf{m}), D_{x}=|\operatorname{det} \operatorname{Hess}(\phi)(x)|^{\frac{1}{2}}$.

## Quasimodal estimates

## Quasimodal estimates II

- One has

$$
\left\langle P_{\phi} f_{\mathbf{m}}, f_{\mathbf{m}}\right\rangle=\left\langle\Delta_{\phi} f_{\mathbf{m}}, f_{\mathbf{m}}\right\rangle=\left\langle d_{\phi}^{*} d_{\phi} f_{\mathbf{m}}, f_{\mathbf{m}}\right\rangle=\left\|d_{\phi} f_{\mathbf{m}}\right\|^{2}
$$

with

$$
f_{\mathbf{m}}(x)=c_{h}^{-1} \chi_{\mathbf{m}}(x) \kappa_{h}((x-\mathbf{s}) \xi) e^{-(\phi(x)-\phi(\mathbf{m})) / h}
$$

Hence

$$
d_{\phi} f_{\mathbf{m}}=h c_{h}^{-1} \chi_{\mathbf{m}}(x) \kappa_{h}^{\prime}((x-\mathbf{s}) \xi) \xi e^{-(\phi(x)-\phi(\mathbf{m})) / h}+\mathcal{O}\left(e^{-(S(\mathbf{m})+\epsilon) / h}\right)
$$

- near $\mathbf{s}$, one has

$$
\kappa_{h}^{\prime}((x-\mathbf{s}) \xi) e^{-(\phi(x)-\phi(\mathbf{m})) / h}=e^{-\left\langle\left(\frac{1}{2} \operatorname{Hess} \phi(\mathbf{s})+|\mu| \xi \xi^{*}\right)(x-\mathbf{s}),(x-s)\right\rangle+\mathcal{O}((x-\mathbf{s})}
$$

and $\frac{1}{2} \operatorname{Hess} \phi(\mathbf{s})+|\mu| \xi \xi^{*}$ positive definite.

- Apply Laplace method to complete the computation.


## Quasimodal estimates

## Quasimodal estimates III

## Lemma

For all $\mathbf{m} \in \mathcal{U}^{(0)}$, one has

$$
\begin{aligned}
\left\|P_{\phi} f_{\mathbf{m}}\right\|^{2} & =\left\langle P_{\phi} f_{\mathbf{m}}, f_{\mathbf{m}}\right\rangle \mathcal{O}\left(h^{2}\right) \\
\left\|P_{\phi}^{*} f_{\mathbf{m}}\right\|^{2} & =\left\langle P_{\phi} f_{\mathbf{m}}, f_{\mathbf{m}}\right\rangle \mathcal{O}(h)
\end{aligned}
$$

Proof. One has

$$
\begin{aligned}
P_{\phi}\left(f_{\mathbf{m}}\right)=\left(-h^{2} \Delta+h\left(2 \nabla \phi+b_{h}\right) \nabla\right)\left(\kappa_{h}\right) & c_{h}^{-1} \chi(x) e^{-(\phi(x)-\phi(\mathbf{s})) / h} \\
& +\mathcal{O}\left(e^{-(S(\mathbf{m})+\epsilon) / h}\right)
\end{aligned}
$$

and for $x$ close to $\mathbf{s}$, one has

$$
\begin{aligned}
\left(-h^{2} \Delta+h\left(2 \nabla \phi+b_{h} \nabla\right)\right)\left(\kappa_{h}\right) & =h((2 \nabla \phi+b) \xi+|\mu| \xi(x-\mathbf{s})+\mathcal{O}(h)) e^{-} \\
& =h \mathcal{O}\left((x-\mathbf{s})^{2}+h\right) e^{-\frac{|\mu| \xi(x-s))^{2}}{2 h}}
\end{aligned}
$$

## Graded structure of the interaction matrix

We enumerate the minima $\mathcal{U}^{(0)}=\left\{\mathbf{m}_{1}, \ldots, \mathbf{m}_{n_{0}}\right\}$ in such way that the sequence $\left(S\left(\mathbf{m}_{j}\right)\right)_{j}$ is non-decreasing. We denote

- $\tilde{\lambda}_{j}=\left\langle P_{\phi} f_{\mathbf{m}_{j}}, f_{\mathbf{m}_{j}}\right\rangle$
- $\left(e_{m_{j}}\right)_{1 \leq j \leq n_{0}}$ the basis of $E_{h}$ obtained from $\Pi_{h} f_{m_{j}}$ by Graam-Schmidt procedure.


## Proposition

For all $j, k=1, \ldots, n_{0}$, one has

$$
\left\langle P_{\phi} e_{j}, e_{k}\right\rangle=\delta_{j k} \tilde{\lambda}_{j}+\mathcal{O}\left(\sqrt{h \tilde{\lambda}_{j} \tilde{\lambda}_{k}}\right)
$$

- Let $\mathcal{M}_{\phi}=\left(\left\langle P_{\phi} e_{j}, e_{k}\right\rangle\right)_{j, k}$ be the matrix of $P_{\phi}$ in the basis $\left(e_{j}\right)$.
- Let $\Omega=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{d}}\right)$, then

$$
\mathcal{M}_{\phi}=\Omega(\mathrm{Id}+\mathcal{O}(\sqrt{h})) \Omega
$$

## Spectrum of non-symmetric matrices

## Schur complement method for graded matrices

- Suppose that $\mathcal{M}_{\phi}=\Omega(\operatorname{Id}+\mathcal{O}(h)) \Omega$ with $\Omega$ as above. We can compute the spectrum of $\mathcal{M}_{\phi}$ by Schur complement method.
- Computation for $2 \times 2$ matrices. Suppose

$$
\mathcal{M}_{\phi}=\left(\begin{array}{ll}
\tilde{\lambda}_{1} & B_{h} \\
B_{h}^{*} & \tilde{\lambda}_{2}
\end{array}\right)
$$

with $B_{h}=\mathcal{O}\left(\sqrt{h \tilde{\lambda}_{1} \tilde{\lambda}_{2}}\right)$.

- The spectral values of $\mathcal{M}_{\phi}$ are the poles of

$$
z \mapsto\left(\tilde{\lambda}_{1}-z-B_{h}^{*}\left(\tilde{\lambda}_{2}-z\right)^{-1} B_{h}\right)^{-1}
$$

and

$$
z \mapsto\left(\tilde{\lambda}_{2}-z-B_{h}^{*}\left(\tilde{\lambda}_{1}-z\right)^{-1} B_{h}\right)^{-1}
$$

