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General framework

Brownian Dynamics

Given a vector field U(x) on R9, consider the overdamped
Langevin equation

dXt == U(Xt) + Vv 2tht (1)
where B; is the Brownian motion , h > 0 is proportional to the
temperature of the system. The generator of this process is

L = Ly = h*A + U(x)hdy

Recall that
- for any bounded measurable function f, u(t,x) = EX(f(xt))
solves
horu = ZLu
- the law p(t, x) of the Markov process (x¢)¢>0 is governed by
the Fokker-Planck equation

hoip = L
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General framework

Assumption 1

The vector field decomposes U(x) = Up(x) + hv(x) and there
exists a smooth function ¢ : R — R such that

ZL(e/M) =0

| C
A\

Consequence
Denoting bo(x) = Uy — 2V¢(x), one has U = =2V ¢ + by + hv
with

bO . v¢ = 07

div(v) =0,

div(bg) = 2v - V.

| A

Particular case

A particular case is v = 0, div by = 0 and by L V¢ which can be
obtained by taking by(x) = JV¢(x) for any antisymmetric matrix
J independent of x.
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General framework

@ Throughout, we denote by, = by + hv. We have
Ly = h?A — 2V (x)hdx — by(x)hdy

We sometime denote £y = .7 ,
o Let Qi = e=#/My), then

Qoqu)’thil = _P¢,bh

with
Pg.b, = Dy + bp(x) - Vg
where
- Ay = —h’A+|Vo¢|? — hAg is the Witten Laplacian

associated to the function ¢
- Von= e~ /Mo hV o e?/h,
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The reversible case

Spectral study of the Witten Laplacian

There exists C > 0 and a compact K C R9 such that for all
X € Rd\K, one has

V(x| = % | Hess(é(x))| < CIV6[%, and ¢(x) = Clx|.

Under this assumptions, one has the following properties on A.
e Ay is essentially self-adjoint on C2°(X).
e Ay>0
@ there exists Cp, hg > 0 such that for all 0 < h < hg

Uess(A¢,) C [Co, OO[

@ 0 is an eigenvalue of A, associated to the eigenstate e ¢/h.
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The reversible case

¢ is a Morse function

We denote

@ U the set of critical points of ¢ (since ¢ is a Morse function,
then U is finite).

o UP) the set of critical points of ¢ of index p
° n, = s4(P)

Theorem (Witten 82, Helffer-Sjostrand 84):

There exists €g, hg > 0 such that for all 0 < h < hg, one has
to(Ag) N[0, egh] = no(9).

Moreover, these ng eigenvalues are O(e=</") for some ¢ > 0.
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The reversible case

Sharp asymptotics of small eigenvalues

Let us write A(m, h), m € U(©) the ny small eigenvalues of Ay.

Theorem (Bovier-Gayrard-Klein, Helffer-Klein-Nier 2004)

Under a generic assumption, there exist a injective map
s : U — UM such that the ny small eigenvalues of Ay satisfy

A(m, h) = h¢(m, h)e=25(m)/h
where ¢(m, h) ~ >~>° h"(,(m) and

| det ¢”(m)|

olm) = 7" lu(s(m)Iy | 725 Gt

where S(m) = ¢(s(m)) — ¢(m) and p(s) is the unique negative
eigenvalue of ¢” in s.




Introduction
©00000000

The non-reversible case

Let us go back to the general situation U(x) = —2V¢(x) — bp(x)
with by(x) = bo(x) + hv(x) such that

bo -V =0,
div(r) =0,
div(bg) =2v - V.

In that case
P(f, = P¢7b0 = A¢ + bh(X) . VW,

Assumption 4

3C >0, Vx € RY, |bo(x)| + |v(x)| < C(1+|Va(x)])
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The non-reversible case

One aims to study the spectral properties of the unbounded
operator Py, on L?(dx).

® One has P}, = P _p,, hence our result hold also for Py , .
@ One has %, = QP 5, Q2! with

Q: [2(dx) — L2(e72%/dx)

isometry. Hence, spectral properties of Py ;, yield

o spectral properties of %, 5, on L2(e—2</‘)/hdx)
o spectral properties of .} , on L2(e2¢/h dx)
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The non-reversible case

Accretivity

Theorem (Le Peutrec-Michel)

@ The operator Py := Py p, with domain D(A,) is accretive.

Q It admits a unique maximal accretive extension Py with
domain D(P;) and one has D(A,) C D(P}).

© There exists C,\g > 0 such that o(Py) C I'n, where

no = {z € C, Re(z) >0, |Imz| < Ag(Re(z) + \/Re(2) }

@ One has
" C

1(Ps — 2) M2z < Re(7)
forallze g N {Re(z) > 0}.
© There exists ¢; > 0 and hg > 0 such that for all 0 < h < hg
the map z — (P, — z)~! is meromorphic in {Re(z) < ¢}
with finite rank residues.
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The non-reversible case

First spectral localization

Theorem (Le Peutrec-Michel) continued

There exists €9 > 0 and hg > 0 such that for all h €]0, hg],
o(Py) N {Re(z) < eoh} is finite and

fo(Py) N {Re(z) < eoh} < no
Moreover , one has
a(Py) N {Re(z) < eoh} C B(0,e~ /")
for some C > 0. Eventually, for any 0 < € < ¢g, one has
(Py—2)t = O(h™Y)

uniformly with respect to z such that eh < |z| < egh.
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The non-reversible case

Proof |

@ Use
2 Re<P¢7bhu, u> = <(P¢>,bh + Pd,,,bh)u, U>
= (Dgu,u) = | Vgul® >0

and
| Im(Py p, u, u)

< CIVull® + ullliVeul)

to prove accretivity and first spectral estimates.

@ The spectral localization 'in the small” is obtained by mean of
a Grushin problem associated to the eigenvectors (ex)k=1,....n
associated to small eigenvalues of Ay noticing

o Ay > Chon Span(er,...,ey)"
o b -Vgex = O(h'/2e=5/M).
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The non-reversible case

A geometric Lemma

Lemma [Landim-Seo, 17]

Let s € U be saddle point of ¢. Denote B(s) = db(s).

i) The (in general non symmetric) matrix
2 Hess ¢(s) + B*(s) € M4(R) admits precisely one eigenvalue
with negative real part. This eigenvalue, denoted by u(s), is
real and has geometric multiplicity one.

i) We denote by £ = £(s) one of the two (real) unitary
eigenvectors of 2 Hess ¢(s) + B*(s) associated with p(s). The
real symmetric matrix

My = Hess(s) + |u]£&"
is then positive definite and its determinant satisfies:

det My, = —detHessg(s).
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The non-reversible case

Sharp asymptotics of small spectral values

Theorem [Le Peutrec-Michel]

Suppose that the above Assumptions and that the generic
assumption of Helffer-Klein-Nier hold true and let s : 24(®) — /()
denote the corresponding map. Then, there exists ¢ > 0 such that
the following holds for every h > 0 small enough:

Spec (Pyp,) N {Rez < ch} = {\(m,h), me U@},
where A(m, h) =0 and for all m # m

A(m, h) =
 lu(s(m)| _ det Hess ¢(m)2 2 olsm)stm
27 | det Hess d)(s(m))]%

L1+ 0(h?)).
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The non-reversible case

Return to equilibrium

Corollary

Suppose that the above Assumptions and that the generic
assumption of Helffer-Klein-Nier holds true. Suppose also that for
all m,m’ € U one has

(m #m’ and S(m) = S(m")) = ((m) # ((m')

Then, Spec (Py.p,) N {Rez < ch} is made of ng real eigenvalues
and there exists C > 0 and hg > 0 such that for all 0 < h < hg
and all s > 0, one has

—sZ

le "% — Mol pr2(e20/haxyy < G e

where A(h) = min{A(m, h),m # m} and [y is the orthogonal
projection onto Re 2%/ in [2(e2?/hdx).
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The non-reversible case

Bibliography
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exit time of a domain. Computation without proof.

e [Landim-Mariani-Seo0,2019] rigorous result for the exit time
of a domain by capacity approach. Only for double well
potential and particular form of drift b = JV¢ with J
antisymmetric.

o [Hérau-Hitrik-Sjostrand, 2011] Results for the
Kramers-Fokker-Planck equation. More difficult situation

since it is hypoelliptic only. Uses supersymmetry and
PT-symmetry in a crucial way.



The labelling procedure

© The labelling procedure
@ Separating saddle points
@ The generic assumption



The labelling procedure
©0000000

Separating saddle points

The labelling procedure |

For any s € /M) and r > 0 small enough, the set
B(s,r) N {x € X, ¢(x) < &(s)}

has exactly two connected components Ci(s, r), j = 1,2.

Definition (Hérau-Hitrik-Sjostrand, 2011)

o s € UM is a separating saddle point (ssp) iff Cy(s, r) and
Cy(s, r) are contained in two different connected components
of {x € X, ¢(x) < ¢(s)}. We denote by V(1) the set of ssp.

@ o € R is a separating saddle value (ssv) if it is of the form
o = ¢(s) with s € V(1) We denote
L =o(VW)={0s>03>...>0p}.
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Separating saddle points

Example of SSP |

Level set of a potential with 2 minima, 2 saddle points and 1
maximum



The labelling procedure

Separating saddle points

Example of SSP Il
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Separating saddle points

Example of SSP Il

s1 is not separating
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Separating saddle points

Example of SSP Il

C1(527f) Co(s2, r)
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Separating saddle points

Example of SSP Il

(6 < d(s2)}

C1(52,f) Co(s2, 1)

Sp is separating



The labelling procedure
000000®0

Separating saddle points

The labelling procedure I

Add a fictive infinite saddle value 01 = +00 to X and let
Z:{Ul}UZ:{Ol > 09 > ... >0'N}

@ To 01 = 400 associate the unique connected component
E1,1 =X of {¢ < 0’1}. In E171, piCk up mp i one (non
necessarily unique) minimum of PlEy -

@ The set {¢ < o2} has finitely many connected components.
One of them contains my 1. The others are denoted
Ex1,...,Exn,. In each of these CC, one choses one absolute
minimum my ; of D|E, ;-

@ The set {¢ < o} has finitely many CC. One denotes by
Ex1,...,Exn, those of these CC which do not contain any
m;j, I < k. In each E, j one choses one absolute minimum
mg ; of gb\Ek,j'
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Separating saddle points

The labelling procedure Il

Denote m = my ; the absolute minimum of ¢ that was chosen at
the first step of the labelling procedure, and let

U =y \ {m}.

Using the preceding labelling one constructs the following
applications:

o o: U = %, defined by o(m; ;) = o;.

e E£(m) is the connected component of {¢ < o(m)} that
contains m.

° 5(m) =o(m)—¢(m)
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The generic assumption

The Generic Assumption

The following hypothesis introduced by Hérau-Hitrik-Sjostrand
(2011) is a generalization of Helffer-Klein-Nier assumption (2004).

Generic Assumption (GA):

For all m € U(®, the following hold true:

i) ®|E(m) has a unique point of minimum

ii) if E is any connected component of {¢ < o(m)} and
Eny) £ (Z),ithere exists a unique s € V(1) such that
¢(s) = sup p(E N V).

Under this assumption, there exists a bijection
s:UO - VD U {0}

such that S(m) = ¢(s(m)) — ¢(m) with the convention

¢(00) = 0.
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The generic assumption

The simplified Generic Assumption

Simplified Generic Assumption:

The map
(m,s) e YO x V) — ¢(s) — ¢(m)

is injective.

Consequence

| \

For any m € U(©), there exists a unique s € E(m) N V(1) and the

map
s: U = YO U {o0}
mm— s

is injective. Moreover, one has S(m) = ¢(s(m)) — ¢(m) with the
convention ¢(00) = 00.
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General strategy

Let 1
Ny = — (P, —z)'dz

2im |z|=€h

and E, = RanTll,. Then dim E, = ng and Py : E, — Ep,.

Compute the spectrum of the restriction of Py to Ej,. Thisis a
problem in finite dimension.

The general strategy is the following:

1) Construct suitable approximated eigenfunctions fp,, m € U©
of the operator Py

2) Project these eigenfunctions on Ep, ey, = lNjfy, and estimate
the difference em — fm.

3) Compute the matrix M, of Py in the base (em, m € U(®))
4) Compute the spectrum of M,
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General strategy

Some comments

e The better the quasimodes are, the smaller ||em — fn|| is.

Indeed:
e =M f = L (P —2)™ — 27 V) fndz
2i7T \z\:sh
_]_ *
= Py — z) "tz Pyf,
2im \Z\:sh( o =22 Poludz

e Standard quasimodes fy = Yme (®~2M)/h with ym cut-off
function in E(m) yield

e We need to construct accurate quasimodes

e The operator P, is non-self-adjoint, hence the matrix M, is
not symmetric. We have to be careful of Jordan's block.
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Quasimodal estimates

Construction of quasimodes

e Let s = 5(m) the saddle point associated to m and let £(s) be
given by the geometric Lemma:

- &(s) is a unitary eigenvector associated to the unique negative
eigenvalue p(s) of 2 Hess(¢)(s) + db(s).
- the matrix Hess ¢(s) + |p(s)|£€* is positive definite.

e Define the quasimode
fn(x) = 65 Min((x — 8) - £(8))xm(x)e (0 —oAm/

where ¢, is a L%-normalization constant and x4 : R — R is a
cut-off function such that

Oift< -1
) “h(t)_{ Lift>1
- %(t) = h_%e—‘/"(5)|f2/2h sitc [_%7 %]
- supp(rn(-)0xx) C {¢ > ¢(s) + €}
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Quasimodal estimates

The cutoff function ym

{0 < o(s)}
supp(Xm)
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Quasimodal estimates

The cutoff function &,
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Quasimodal estimates

Quasimodal estimates |

Lemma

Suppose that the generic assumption is satisfied and let m # m’ in
U Then, either supp(fin) Nsupp(f) = 0 or fy = 1 on supp(fu)
or fy =1 on supp(fm). In particular, there exists ¢ > 0 such that

<fma fm’> = dmm’ + O(e_c/h)-

Lemma

| N

For all m € U(O), one has

(Pifons ) = LN P asmyny | o)

2t Ds

where s = s(m), S(m) = ¢(s) — ¢(m), D, = | det Hess(¢)(x)|%.

A
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Quasimodal estimates

Quasimodal estimates |l

e One has
(Pofm, fm) = (B, fn) = (d5dyfin, fin) = | dsfin
with
fin(x) = €, “xm(X)rn((x — s)§)e™ (PLImolmN/
Hence
dyfm = hchflxm(x)%((X_5)5)56—(¢(X)—¢(m))/h+@(e—(S(m)+e)/h)
e near s, one has

1 (x—s)€)e(I=0m/h . o=((} Hess o(s) +]ul€€")(x5).(x)) +O((x—

and 1 Hess ¢(s) + |p|£€* positive definite.
e Apply Laplace method to complete the computation.
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Quasimodal estimates

Quasimodal estimates ||

For all m € U, one has
|| Pgfenl|® = (Pgfem, fon) O(H)

1P5 finll = (Pofan, fin)O(h)

Proof. One has
Py(fm) = (—H*A + h(2V + bp)V)(kn)cy, tx(x)e (PI=2(E)/h
4 (Q(e*(S(mHE)/h).
and for x close to s, one has

(—h?A + h(2V ¢ + bpV)) (k1) = h((2Vh + b)E + |ul&(x — s) + O(h))e™

4 X—S 2
_ h(’)((x—s)2+h)e_“ (€x—s)
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Spectrum of non-symmetric matrices

Graded structure of the interaction matrix

We enumerate the minima 4(©) = {my, ..., mp, } in such way that
the sequence (S5(mj)); is non-decreasing. We denote
o \j = (Pgfm;, fm;)
® (em;)1<j<n, the basis of E, obtained from M,y by
Graam-Schmidt procedure.

Proposition

For all j,k =1,...,ng, one has

<P¢ej, ek> = ij\j -+ O(\/ hj\jj\k)

o Let My = ((Pyej, ex))j k be the matrix of Py in the basis (e;).

o Let Q = diag(v/A1,...,vAq), then
My = Q(Id +O(Vh)Q
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Spectrum of non-symmetric matrices

Schur complement method for graded matrices

e Suppose that M, = Q(Id +O(h))Q with Q as above. We can
compute the spectrum of M, by Schur complement method.

e Computation for 2x2 matrices. Suppose

with By, = O(v/ hA1)2).

@ The spectral values of M are the poles of
z (M —z—Bi(ha—2)71By) 7t

and 3 y
z—= (M —z—Bi(M —2)71B,)7 !
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