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General framework

Brownian Dynamics

Given a vector field U(x) on Rd , consider the overdamped
Langevin equation

dxt = U(xt) +
√

2hdBt (1)

where Bt is the Brownian motion , h > 0 is proportional to the
temperature of the system. The generator of this process is

L = LU := h2∆ + U(x)h∂x

Recall that

- for any bounded measurable function f , u(t, x) = Ex(f (xt))
solves

h∂tu = L u

- the law µ(t, x) of the Markov process (xt)t≥0 is governed by
the Fokker-Planck equation

h∂tµ = L tµ
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General framework

Assumption 1

The vector field decomposes U(x) = U0(x) + hν(x) and there
exists a smooth function φ : Rd → R such that

L t
U(e−2φ/h) = 0

Consequence

Denoting b0(x) = U0 − 2∇φ(x), one has U = −2∇φ+ b0 + hν
with 

b0 · ∇φ = 0,
div(ν) = 0,

div(b0) = 2ν · ∇φ.

Particular case

A particular case is ν = 0, div b0 = 0 and b0⊥∇φ which can be
obtained by taking b0(x) = J∇φ(x) for any antisymmetric matrix
J independent of x .
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General framework

Throughout, we denote bh = b0 + hν. We have

LU = h2∆− 2∇φ(x)h∂x − bh(x)h∂x

We sometime denote LU = Lφ,bh

Let Ωψ = e−φ/hψ, then

ΩLφ,bhΩ−1 = −Pφ,bh

with
Pφ,bh = ∆φ + bh(x) · ∇φ,h

where

- ∆φ = −h2∆ + |∇φ|2 − h∆φ is the Witten Laplacian
associated to the function φ

- ∇φ,h = e−φ/h ◦ h∇ ◦ eφ/h.
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The reversible case

Spectral study of the Witten Laplacian

Assumption 2

There exists C > 0 and a compact K ⊂ Rd such that for all
x ∈ Rd \ K , one has

|∇φ(x)| ≥ 1

C
, |Hess(φ(x))| ≤ C |∇φ|2, and φ(x) ≥ C |x |.

Under this assumptions, one has the following properties on ∆φ.

∆φ is essentially self-adjoint on C∞c (X ).

∆φ ≥ 0

there exists C0, h0 > 0 such that for all 0 < h < h0

σess(∆φ) ⊂ [C0,∞[

0 is an eigenvalue of ∆φ associated to the eigenstate e−φ/h.
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The reversible case

Assumption 3

φ is a Morse function

We denote

U the set of critical points of φ (since φ is a Morse function,
then U is finite).

U (p) the set of critical points of φ of index p

np = ]U (p).

Theorem (Witten 82, Helffer-Sjöstrand 84):

There exists ε0, h0 > 0 such that for all 0 < h < h0, one has

]σ(∆φ) ∩ [0, ε0h] = n0(φ).

Moreover, these n0 eigenvalues are O(e−c/h) for some c > 0.
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The reversible case

Sharp asymptotics of small eigenvalues

Let us write λ(m, h), m ∈ U (0) the n0 small eigenvalues of ∆φ.

Theorem (Bovier-Gayrard-Klein, Helffer-Klein-Nier 2004)

Under a generic assumption, there exist a injective map
s : U (0) → U (1) such that the n0 small eigenvalues of ∆φ satisfy

λ(m, h) = hζ(m, h)e−2S(m)/h

where ζ(m, h) ∼
∑∞

r=0 h
rζr (m) and

ζ0(m) = π−1|µ(s(m))|

√
| detφ′′(m)|
| detφ′′(s(m))|

where S(m) = φ(s(m))− φ(m) and µ(s) is the unique negative
eigenvalue of φ′′ in s.
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The non-reversible case

Let us go back to the general situation U(x) = −2∇φ(x)− bh(x)
with bh(x) = b0(x) + hν(x) such that

b0 · ∇φ = 0,
div(ν) = 0,

div(b0) = 2ν · ∇φ.

In that case
Pφ = Pφ,b0 = ∆φ + bh(x) · ∇φ,h

Assumption 4

∃C > 0, ∀x ∈ Rd , |b0(x)|+ |ν(x)| ≤ C (1 + |∇φ(x)|)
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The non-reversible case

One aims to study the spectral properties of the unbounded
operator Pφ,bh on L2(dx).

One has P∗φ,bh = Pφ,−bh , hence our result hold also for P∗φ,bh .

One has Lφ,bh = ΩPφ,bhΩ−1 with

Ω : L2(dx)→ L2(e−2φ/hdx)

isometry. Hence, spectral properties of Pφ,bh yield

spectral properties of Lφ,bh on L2(e−2φ/hdx)
spectral properties of L t

φ,bh
on L2(e2φ/hdx)
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The non-reversible case

Accretivity

Theorem (Le Peutrec-Michel)

1 The operator Pφ := Pφ,bh with domain D(∆φ) is accretive.

2 It admits a unique maximal accretive extension Pφ with
domain D(Pφ) and one has D(∆φ) ⊂ D(P∗φ).

3 There exists C ,Λ0 > 0 such that σ(Pφ) ⊂ ΓΛ0 where

ΓΛ0 =
{
z ∈ C, Re(z) ≥ 0, | Im z | ≤ Λ0(Re(z) +

√
Re(z)

}
4 One has

‖(Pφ − z)−1‖L2→L2 ≤
C

Re(z)

for all z ∈ Γc
Λ0
∩ {Re(z) ≥ 0}.

5 There exists c1 > 0 and h0 > 0 such that for all 0 < h < h0

the map z 7→ (Pφ − z)−1 is meromorphic in {Re(z) < c1}
with finite rank residues.
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The non-reversible case

First spectral localization

Theorem (Le Peutrec-Michel) continued

There exists ε0 > 0 and h0 > 0 such that for all h ∈]0, h0],
σ(Pφ) ∩ {Re(z) ≤ ε0h} is finite and

]σ(Pφ) ∩ {Re(z) ≤ ε0h} ≤ n0

Moreover , one has

σ(Pφ) ∩ {Re(z) ≤ ε0h} ⊂ B(0, e−C/h)

for some C > 0. Eventually, for any 0 < ε < ε0, one has

(Pφ − z)−1 = O(h−1)

uniformly with respect to z such that εh < |z | < ε0h.
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The non-reversible case

Proof I

Use

2 Re〈Pφ,bhu, u〉 = 〈(Pφ,bh + Pφ,−bh)u, u〉
= 〈∆φu, u〉 = ‖∇φu‖2 ≥ 0

and
| Im〈Pφ,bhu, u〉| ≤ C (‖∇φu‖2 + ‖u‖‖∇φu‖)

to prove accretivity and first spectral estimates.

The spectral localization ’in the small” is obtained by mean of
a Grushin problem associated to the eigenvectors (ek)k=1,...,n0

associated to small eigenvalues of ∆φ noticing

∆φ ≥ Ch on Span(e1, . . . , en0 )⊥

bh · ∇φek = O(h1/2e−S/h).
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The non-reversible case

A geometric Lemma

Lemma [Landim-Seo, 17]

Let s ∈ U (1) be saddle point of φ. Denote B(s) = db(s).

i) The (in general non symmetric) matrix
2 Hessφ(s) + B∗(s) ∈Md(R) admits precisely one eigenvalue
with negative real part. This eigenvalue, denoted by µ(s), is
real and has geometric multiplicity one.

ii) We denote by ξ = ξ(s) one of the two (real) unitary
eigenvectors of 2 Hessφ(s) + B∗(s) associated with µ(s). The
real symmetric matrix

Mφ := Hessφ(s) + |µ| ξ ξ∗

is then positive definite and its determinant satisfies:

detMφ = − det Hessφ(s) .
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The non-reversible case

Sharp asymptotics of small spectral values

Theorem [Le Peutrec-Michel]

Suppose that the above Assumptions and that the generic
assumption of Helffer-Klein-Nier hold true and let s : U (0) → U (1)

denote the corresponding map. Then, there exists c > 0 such that
the following holds for every h > 0 small enough:

Spec (Pφ,bh) ∩ {Re z < ch} = {λ(m, h), m ∈ U (0)},

where λ(m, h) = 0 and for all m 6= m

λ(m, h) =

h
|µ(s(m))|

2π

det Hessφ(m)
1
2

| det Hessφ(s(m))|
1
2

e−2φ(s(m))−φ(m)
h

(
1 +O(h

1
2 )
)
.
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The non-reversible case

Return to equilibrium

Corollary

Suppose that the above Assumptions and that the generic
assumption of Helffer-Klein-Nier holds true. Suppose also that for
all m,m′ ∈ U (0) one has

(m 6= m′ and S(m) = S(m′)) =⇒ ζ(m) 6= ζ(m′)

Then, Spec (Pφ,bh) ∩ {Re z < ch} is made of n0 real eigenvalues
and there exists C > 0 and h0 > 0 such that for all 0 < h < h0

and all s > 0, one has

‖e−sL
t
φ,bh − Π0‖L (L2(e2φ/hdx)) ≤ Ce−λ(h)s

where λ(h) = min{λ(m, h),m 6= m} and Π0 is the orthogonal
projection onto Re−2φ/h in L2(e2φ/hdx).
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The non-reversible case
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Separating saddle points

The labelling procedure I

For any s ∈ U (1) and r > 0 small enough, the set

B(s, r) ∩ {x ∈ X , φ(x) < φ(s)}

has exactly two connected components Cj(s, r), j = 1, 2.

Definition (Hérau-Hitrik-Sjöstrand, 2011)

s ∈ U (1) is a separating saddle point (ssp) iff C1(s, r) and
C2(s, r) are contained in two different connected components
of {x ∈ X , φ(x) < φ(s)}. We denote by V(1) the set of ssp.

σ ∈ R is a separating saddle value (ssv) if it is of the form
σ = φ(s) with s ∈ V(‘1). We denote
Σ = φ(V(1)) = {σ2 > σ3 > . . . > σN}.
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Separating saddle points

Example of SSP I

s1

s2

Level set of a potential with 2 minima, 2 saddle points and 1
maximum
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Separating saddle points

Example of SSP II

s1

C1(s1, r) C2(s1, r)
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Separating saddle points

Example of SSP II

s1

C1(s1, r) C2(s1, r)

{φ < φ(s1)}

s1 is not separating
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Separating saddle points

Example of SSP III

s2

C1(s2, r) C2(s2, r)
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Separating saddle points

Example of SSP III

s2

C1(s2, r) C2(s2, r)

{φ < φ(s2)}

s2 is separating
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Separating saddle points

The labelling procedure II

Add a fictive infinite saddle value σ1 = +∞ to Σ and let

Σ = {σ1} ∪ Σ = {σ1 > σ2 > . . . > σN}

To σ1 = +∞ associate the unique connected component
E1,1 = X of {φ < σ1}. In E1,1, pick up m1,1 one (non
necessarily unique) minimum of φ|E1,1

.

The set {φ < σ2} has finitely many connected components.
One of them contains m1,1. The others are denoted
E2,1, . . . ,E2,N2 . In each of these CC, one choses one absolute
minimum m2,j of φ|E2,j

.

The set {φ < σk} has finitely many CC. One denotes by
Ek,1, . . . ,Ek,Nk

those of these CC which do not contain any
mi ,j , i < k . In each Ek,j one choses one absolute minimum
mk,j of φ|Ek,j

.
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Separating saddle points

The labelling procedure III

Denote m = m1,1 the absolute minimum of φ that was chosen at
the first step of the labelling procedure, and let

U (0) = U (0) \ {m}.

Using the preceding labelling one constructs the following
applications:

σ : U (0) → Σ, defined by σ(mi ,j) = σi .

E (m) is the connected component of {φ < σ(m)} that
contains m.

S(m) = σ(m)− φ(m)
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The generic assumption

The Generic Assumption

The following hypothesis introduced by Hérau-Hitrik-Sjöstrand
(2011) is a generalization of Helffer-Klein-Nier assumption (2004).

Generic Assumption (GA):

For all m ∈ U (0), the following hold true:

i) φ|E(m) has a unique point of minimum

ii) if E is any connected component of {φ < σ(m)} and
E ∩ V(1) 6= ∅, there exists a unique s ∈ V(1) such that
φ(s) = supφ(E ∩ V(1)).

Under this assumption, there exists a bijection

s : U (0) → V(1) ∪ {∞}

such that S(m) = φ(s(m))− φ(m) with the convention
φ(∞) =∞.
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The generic assumption

The simplified Generic Assumption

Simplified Generic Assumption:

The map
(m, s) ∈ U (0) × V(1) 7→ φ(s)− φ(m)

is injective.

Consequence

For any m ∈ U (0), there exists a unique s ∈ ∂E (m) ∩ V(1) and the
map

s : U (0) → V(1) ∪ {∞}
m 7→ s

is injective. Moreover, one has S(m) = φ(s(m))− φ(m) with the
convention φ(∞) =∞.
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General strategy

Let

Πh =
1

2iπ

∫
|z|=εh

(Pφ − z)−1dz

and Eh = Ran Πh. Then dimEh = n0 and Pφ : Eh → Eh.

Goal

Compute the spectrum of the restriction of Pφ to Eh. This is a
problem in finite dimension.

The general strategy is the following:

1) Construct suitable approximated eigenfunctions fm, m ∈ U (0)

of the operator Pφ

2) Project these eigenfunctions on Eh, em = Πhfm and estimate
the difference em − fm.

3) Compute the matrix Mφ of Pφ in the base (em,m ∈ U (0))

4) Compute the spectrum of Mφ
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General strategy

Some comments

• The better the quasimodes are, the smaller ‖em − fm‖ is.
Indeed:

em − fm = Πhfm − fm =
1

2iπ

∫
|z|=εh

((Pφ − z)−1 − z−1)fmdz

=
−1

2iπ

∫
|z|=εh

(Pφ − z)−1z−1Pφfmdz

• Standard quasimodes f̃m = χme−(φ−φ(m))/h with χm cut-off
function in E (m) yield

Pφf̃m = O(e−(S(m)−ε)/h)

• We need to construct accurate quasimodes

• The operator Pφ is non-self-adjoint, hence the matrix Mφ is
not symmetric. We have to be careful of Jordan’s block.
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Quasimodal estimates

Construction of quasimodes

• Let s = s(m) the saddle point associated to m and let ξ(s) be
given by the geometric Lemma:

- ξ(s) is a unitary eigenvector associated to the unique negative
eigenvalue µ(s) of 2 Hess(φ)(s) + db(s).

- the matrix Hessφ(s) + |µ(s)|ξξ∗ is positive definite.

• Define the quasimode

fm(x) = c−1
h κh((x − s) · ξ(s))χm(x)e−(φ(x)−φ(m))/h

where ch is a L2-normalization constant and κh : R→ R is a
cut-off function such that

- κh(t) =

{
0 if t < −1
1 if t > 1

- dκh

dt (t) = h−
1
2 e−|µ(s)|t2/2h si t ∈ [− 1

2 ,
1
2 ].

- supp(κh(.)∂xχ) ⊂ {φ > φ(s) + ε}.
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Quasimodal estimates

The cutoff function χm

supp(χm)

{φ < φ(s)}

x
m

s
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Quasimodal estimates

The cutoff function κh

2
√
h

ξ(s)

s
κh = 1κh = 0

supp(χm)

{φ = φ(s)}
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Quasimodal estimates

Quasimodal estimates I

Lemma

Suppose that the generic assumption is satisfied and let m 6= m′ in
U (0). Then, either supp(fm)∩ supp(fm′) = ∅ or fm = 1 on supp(fm′)
or fm′ = 1 on supp(fm). In particular, there exists c > 0 such that

〈fm, fm′〉 = δmm′ +O(e−c/h).

Lemma

For all m ∈ U (0), one has

〈Pφfm, fm〉 = h
|µ(s)|

2π

Dm

Ds
e−2S(m)/h(1 +O(h))

where s = s(m), S(m) = φ(s)− φ(m), Dx = | det Hess(φ)(x)|
1
2 .
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Quasimodal estimates

Quasimodal estimates II

• One has

〈Pφfm, fm〉 = 〈∆φfm, fm〉 = 〈d∗φdφfm, fm〉 = ‖dφfm‖2

with

fm(x) = c−1
h χm(x)κh((x − s)ξ)e−(φ(x)−φ(m))/h

Hence

dφfm = hc−1
h χm(x)κ′h((x−s)ξ)ξe−(φ(x)−φ(m))/h+O(e−(S(m)+ε)/h)

• near s, one has

κ′h((x−s)ξ)e−(φ(x)−φ(m))/h = e−〈(
1
2

Hessφ(s)+|µ|ξξ∗)(x−s),(x−s)〉+O((x−s)2)

and 1
2 Hessφ(s) + |µ|ξξ∗ positive definite.

• Apply Laplace method to complete the computation.
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Quasimodal estimates

Quasimodal estimates III

Lemma

For all m ∈ U (0), one has

‖Pφfm‖2 = 〈Pφfm, fm〉O(h2)

‖P∗φfm‖2 = 〈Pφfm, fm〉O(h)

Proof. One has

Pφ(fm) = (−h2∆ + h(2∇φ+ bh)∇)(κh)c−1
h χ(x)e−(φ(x)−φ(s))/h

+O(e−(S(m)+ε)/h).

and for x close to s, one has

(−h2∆ + h(2∇φ+ bh∇))(κh) = h((2∇φ+ b)ξ + |µ|ξ(x − s) +O(h))e−
|µ|(ξ(x−s))2

2h

= hO((x − s)2 + h)e−
|µ|(ξ(x−s))2

2h
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Spectrum of non-symmetric matrices

Graded structure of the interaction matrix

We enumerate the minima U (0) = {m1, . . . ,mn0} in such way that
the sequence (S(mj))j is non-decreasing. We denote

• λ̃j = 〈Pφfmj , fmj 〉
• (emj )1≤j≤n0 the basis of Eh obtained from Πhfmj by

Graam-Schmidt procedure.

Proposition

For all j , k = 1, . . . , n0, one has

〈Pφej , ek〉 = δjk λ̃j +O(

√
hλ̃j λ̃k)

• LetMφ = (〈Pφej , ek〉)j ,k be the matrix of Pφ in the basis (ej).

• Let Ω = diag(
√
λ1, . . . ,

√
λd), then

Mφ = Ω(Id +O(
√
h))Ω
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Spectrum of non-symmetric matrices

Schur complement method for graded matrices

• Suppose that Mφ = Ω(Id +O(h))Ω with Ω as above. We can
compute the spectrum of Mφ by Schur complement method.

Computation for 2x2 matrices. Suppose

Mφ =

(
λ̃1 Bh

B∗h λ̃2

)
with Bh = O(

√
hλ̃1λ̃2).

The spectral values of Mφ are the poles of

z 7→ (λ̃1 − z − B∗h(λ̃2 − z)−1Bh)−1

and
z 7→ (λ̃2 − z − B∗h(λ̃1 − z)−1Bh)−1
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