Small eigenvalues of Witten Laplacian:
new

L. Michel

Université de Bordeaux

La Thuile
February 10-16 2019

old and



© Introduction
@ General framework
@ Motivations

@ Sharp Asymptotics of the small eigenvalues
@ The labelling procedure
@ Results in a generic case

© The degenerate Case
@ A simple example
@ Gathering interacting minima
@ Asymptotics without assumption on the Morse function

@ Sketch of proofs
@ General strategy
@ Proof by example



Introduction

@ Introduction
@ General framework
@ Motivations



Introduction
[ 1}

General framework

Semiclassical Witten Laplacian

Let X =R% or a compact manifold and let ¢ : X — R be a
smooth Morse function. Consider the semiclassical Witten
Laplacian associated to ¢:

Ay = —hA+ Vo> — hAg

where h €]0, 1] denotes the semiclassical parameter. Assume there
exists C > 0 and a compact K C R9 such that for all x € R\ K,
one has

Vo0 > 7. | Hess(6(x))| < CIV6P, and 6(x) > Clx].
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General framework

Elementary properties

Under the preceding assumptions, one has the following properties
on Ay.

e Ay is essentially self-adjoint on CZ°(X).

e Ay >0

@ there exists Cp, hg > 0 such that for all 0 < h < hg

Uess(A¢) C [Co, OO[

@ 0 is an eigenvalue of A, associated to the eigenstate e ¢/h.

Study the small eigenvalues of A. l
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Motivations

Brownian Dynamics

Consider a Brownian Particle x; in a force field —V¢(x) in a low
temperature regime. Its movement is driven by the overdamped
Langevin equation

Xe = —2V¢(xt) + V2hB;

where B; is the brownian motion. At a macroscopic level, the
probability p(t, x) of presence of the particle in position x at time t
satisfies the Kramers-Schmoluchovsky equation:

Otp = hdivo(hV + 2V ¢)(p).
Change of unknown j = e®/fp yields
Otp+Dyp =0

The behavior of § when t — oo is driven by the eigenvalues of Ag.
Eigenvalues which are exponentially close to 0 are associated with
the so-called metastable states.



Introduction
0®0000

Motivations

Analytic proof of Morse inequalities

Introduce the Hodge Laplacian on X:
A — d* [e) d + d @] d*

where d : QP(X) — QP*1(X) denotes the exterior derivative from
p-forms into p + 1 forms. The Betti numbers are defined by

bp(X) := dim(Ker(d : QP — QP1)/Ran(d : QP71 — QP))

Hodge Theorem:

Forall p=0,...,d, one has by(X) = dim Ker A(P) with
AP) = A\Q(p)(x)-
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Motivations

The Morse inequalities

Denote
@ U the set of critical points of ¢ (since ¢ is a Morse function,
then U is finite).
o 1P the set of critical points of ¢ of index p
° n,= U P).
Hence U(® is the set of minima and () the set of saddle points
of ¢.

Theorem: Weak Morse Inequalities

Forall p=0,...,d, one has ny(¢) > by(X).
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Motivations

Witten Laplacian on forms

Witten's idea was to introduce the operator

where h > 0 is a parameter and d, : QP(X) — QPT(X) denotes
the twisted exterior derivative

dy = e ?"ohdoe?h = hd + do".

For any p=0,...,d, dimKer AY) = b,(X).

One has Ker(ds) = e%/" Ker(d) and Ran(d,) = e~*/"Ran(d).
Hence

bp(X) = dim Ker d'?)/ Ran d»~Y) = dim Ker d'”) / Ran ¢'# !
= dim Ker A((Dp)
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Motivations

Analytic proof of Morse inequalities

Theorem (Witten 82, Helffer-Sjostrand 84):

There exists €g, hg > 0 such that for all 0 < h < hg and all
p=0,...,d, one has

10(A%P) N [0, eoh] = np()-

Consequence:

dim Ker A((bp) < np(9).

Proof for p = 0:

@ Lower bound: use the quasimodes

£O b () (GmI =60 /b,
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Motivations

Analytic proof of Morse inequalities

e Upper bound: On 0-forms, one has
Ay = —hA+|Vo]2 — hAg

e away from critical points, A is elliptic.
e near critical points of index p, one has

1

6(x) ~ S((x')* = (x")?) with x = (x,x") € R x R?
and
Ay~ A+ X2~ h(d —2p) = N
Since

d
o(—hA+ |x]?) = {hz n;, n; € N*}
i=1
then 0 € o(N) < p =0.
e This permit to find a ny dimensional vector space Ey such that
Ay > ehon EOJ-.
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Some remarks about the small eigenvalues

@ It is easy to see that the ng small eigenvalues of A((;) are

actually O(e~¢/h) for some C > 0.

@ One sees that C is related to the heights ¢(s) — ¢(m),
s E U(l), m e U, Compute the constant C associated to
each eigenvalue is not totally clear.

o First step is to identify which heights are relevant for this
problem.

@ First result in this direction are due to Bovier-Gayrard-Klein
04 (probabilistic approach) and Helffer-Klein-Nier 04 (PDE
approach).

@ The first step is the following labelling procedure.
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The labelling procedure

The labelling procedure |

For any s € /M) and r > 0 small enough, the set
B(s,r)N{x € X, ¢(x) < ¢(s)}

has exactly two connected components Ci(s, r), j = 1,2.

Definition (Hérau-Hitrik-Sjostrand, 2011)

o s € UM is a separating saddle point (ssp) iff Cy(s, r) and
Cy(s, r) are contained in two different connected components
of {x € X, ¢(x) < ¢(s)}. We denote by V(1) the set of ssp.

@ o € R is a separating saddle value (ssv) if it is of the form
o = ¢(s) with s € V(1) We denote
L =o(VW)={0s>03>...>0p}.
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The labelling procedure

Example of SSP |

Level set of a potential with 2 minima, 2 saddle points and 1
maximum
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The labelling procedure

Example of SSP Il
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The labelling procedure

Example of SSP Il

s1 is not separating
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The labelling procedure

Example of SSP Il

C1(527f) Co(s2, r)
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The labelling procedure

Example of SSP Il

(6 < d(s2)}

C1(52,f) Co(s2, 1)

Sp is separating
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The labelling procedure

The labelling procedure I

Add a fictive infinite saddle value 01 = +00 to X and let
Z:{Ul}UZ:{Ol > 09 > ... >0'N}

@ To 01 = 400 associate the unique connected component
E1,1 =X of {¢ < 0’1}. In E171, piCk up mp i one (non
necessarily unique) minimum of PlEy -

@ The set {¢ < o2} has finitely many connected components.
One of them contains my 1. The others are denoted
Ex1,...,Exn,. In each of these CC, one choses one absolute
minimum my ; of D|E, ;-

@ The set {¢ < o} has finitely many CC. One denotes by
Ex1,...,Exn, those of these CC which do not contain any
m;j, I < k. In each E, j one choses one absolute minimum
mg ; of gb\Ek,j'
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The labelling procedure

The labelling procedure Il

Denote m = mj ; the absolute minimum of ¢ that was chosen at
the first step of the labelling procedure, and let

U® =1\ {m}.

Let O(X) denote the connected open subsets of X. Using the
preceding labelling one constructs the following applications:

o o: U 5 ¥ defined by o(m;;) =o;.
o £E:UO — O(X), defined by E(m, ;) = E; ;.
e S=0c—-9¢
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Results in a generic case

The Generic case |

The following hypothesis introduced by Hérau-Hitrik-Sjostrand
(2011) is a generalization of Helffer-Klein-Nier assumption (2004).

Generic Assumption (GA):

For all m € U, the following hold true:

i) @|E(m) has a unique point of minimum

i) if E(m) N VA £ 0, there exists a unique s € V(1) such that
9(s) = sup ¢(E(m) N V).

Under this assumption, there exists a bijection

s:U® - YO U {oo}

such that S(m) = ¢(s(m)) — ¢(m) with the convention
¢(o0) = oo.
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Results in a generic case

The Generic case |l

Let us write A(m, h), m € U(©) the ny small eigenvalues of Ay.

Theorem (Helffer-Klein-Nier 2004, Hérau-Hitrik-Sjostrand

2011)

Suppose the the Generic Assumption is satisfied. Then the ng
small eigenvalues of Ay satisfy

A(m, h) = h¢(m, h)e=25(m)/h
where {(m, h) ~ > h"¢,(m) and

| det ¢'(m)|

_7[-—1 m T N
Co(m) = l(s(m))] | det ¢’ (s(m))]

where u(s) is the unique negative eigenvalue of ¢ in s.




The degenerate Case

© The degenerate Case
@ A simple example
@ Gathering interacting minima
@ Asymptotics without assumption on the Morse function



The degenerate Case
®00

A simple example

A simple example

Suppose that the following hypothesis are verified:
@ The set of minimal values is reduced to one point:
Jcg, Vm e U p(m) = ¢
@ The set of saddle values is reduced to one point:
Je1, Ym e UD | p(m) = ¢

B

Figure 1: The sublevel set {¢ < o} (dashed region) associated to a
potential ¢ satisfying the assumptions. The x’s represent local minima,
the o's, local maxima.
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A simple example

The ng small eigenvalues of Ay satisfy A\; = 0 and for all
k= 2, ... No,
Ak(h) = hCi(h)e=25/h

where S = ¢; — ¢ and
Ch(h) ~ > G
r=0

and (ko are the non zero eigenvalues of the weighted graph ¢
defined by
@ The vertices of the graph are the minima m € Uuo.
@ The edges between two vertices m, m’ are the saddle points
s € UM such that s € E(m) N E(m’).
° T?le) weights explicitly depend on the values of ¢ on ¢4(® and
u'\v.
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S

Figure 2: The sublevel set {¢ < o} (dashed region) associated to a
potential ¢ satisfying the assumptions. The x's represent local minima,
the o's, local maxima.

A simple example

Figure 3: The graph associated to the potential represented in Figure 7?7
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Gathering interacting minima

Gathering interacting minima

For any m € U, let
- G(m) denotes the connected component of {¢ < o(m)} that
contains m.

For any m # m, there exists a unique i1 = m(m) € G(m) NU©)
such that o(m) > o(m)

We denote by £(m) the connected component of {¢ < o(m)}
that contains m(m). This defines two applications

m - U© - U© and E - u© - O(X)
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Gathering interacting minima

Two different types of minima

Observe that by definition, we have
vm e U, g((m)) < ¢(m).

The fact that the above inequality is large or strict plays an
important role in our analysis.

Definition

Let m € U©). We say that m is of type | if ¢(rii(m)) < ¢(m). If
o(m(m)) = ¢(m), we say that m is of type Il. We will denote

U = {m e U, mis of type I}

UM — {m e U m is of type I}

We have clearly the following disjoint union U(® = y¢©)./ yy(©:1

4
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Gathering interacting minima

An equivalence relation on ¢(©

For o € ¥, let €, be defined by

= {E(m),m € o~ (o)} J{E(m), m € o7 }(0) N}

Definition

We define an equivalence relation R on U(®) by mRm’ if and only
if the two following properties hold true

-o(m)=0c(m) =0
- m and m’ belong to the same connected component of
Uweq, w.
We denote by Cl(m) the equivalence class of any m € U© and by
U )aca = U /R.
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Asymptotics without assumption on the Morse function

Main Theorem

For any a € A, denote S, = S(Z/{((IO)) and p(a) = £S,, and
SOé = {51,?, ceey 51/;)3‘(0‘)}
for some integers v{* < v§ < ... < Vo(a):

Theorem

There exist ¢ > 0 and some symmetric positive definite matrices
M, « € A such that counted with multiplicity, on has
o(Ag) N[0, e0h] = Uyeq o(M*)(1 + O(e=</m)) with

p(a) . _
o(M?*) = U he " S"J'QU(MO"J)
j=1

for some symmetric positive definite matrices M®J/ having a
classical expansion with explicit invertible leading term
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Asymptotics without assumption on the Morse function

Comments

@ The way to construct the matrices M, depends on
- the number of equivalence class of R
- the number p(«) of values taken by ¢ on each equivalence
class uéf’).
o If there is only one equivalence class L{C(IOO) and if p(ag) =1
then we are in the case where M, is a graph Laplacian.

o If p(ag) > 2, the situation is more complicated.
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General strategy

Finite dimensional reduction

The general strategy of Helffer-Klein-Nier is the following:
@ Introduce

o F(© = ejgenspace associated to the ng low lying eigenvalues
on 0-forms

o N© = projector on FO) .
o M = restriction of Ay to F©),

We have to compute the eigenvalues of M.

o We compute suitable BKW approximated eigenfunctions frs,o)
indexed by m € U(O), and show that

) fn(10) _ £O)

m _ —+ error

and compute the matrix of M in the base M £
@ Doing that leads to error terms which are too big.

@ In order to overcome this difficulty, they use the
supersymmetric structure.
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General strategy

Using Supersymmetry

The fondamental remarks are the following:

(p+1) 4(P) _ 4(P) A (P) (P)x A (PF+1) _ A (P) 4(P):*
0A¢ do‘ =d, Aé andd¢ A(b _A¢ d¢

o Denote F(1) the eigenspace associated to low lying
eigenvalues on 1 forms, then déo)(F(O)) c F1) and

(0),*
d, (FM) < FO. Hence
M= L*L

where L is the matrix of d(jf’) - FO) _ ),

@ The matrix L is well approximated by
0) £(0) (1
L~ L= (<d<§> M8, &) scutmeno

where fs(l) are BKW approximated eigenfunctions on 1-form.
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General strategy

Form of the quasimodes

e On O-forms, one takes £) = > eCi(m) Om(m")g %) with

6D — b %y (x)e(G0I—0(m N/

and Xm' = ]JE(m’)-
@ On 1-forms, one takes

fs(l) _ h_%Xs(X)bs(X; h)e—(¢>+(x)—¢(5))/h

with xs cut-off function near s, ¢4 phase function solving the
eikonal equation

IVoil? = Vel

and bg(x, h) a 1 form obtained by solving some transport
equations.
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General strategy

Computation of the singular values

e One has £ = LT with T = (Om(M’))m m’ an orthogonal
matrix and

~

L= ({dPeY, )00 mero

@ The computation of the coefficients of Lis performed by
Laplace Method.

e Under the Generic Assumption (GA), the matrix L is diagonal.
Its singular values are then given by its diagonal coefficients.

@ In the general case, Lis only block-diagonal

L = diag(L®, o € A)

where each block £ corresponds to an equiv. class of R.

o If p(a) =1, each block has a typical size e~/

e If p(ar) > 2, we can perform a Schur type argument on each
block.
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Proof by example

Computations in dimension when p(«a) =1

Suppose ¢ is given by

o \ s By 53
S3
S2 \\ S
B(ma3)

@(m2,1) = O(mzz)

B(mu)

mi

Figure 4: A potential satisfying H(1)
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Proof by example

The case p(a) = 1 continued

The interaction matrix is

mp1 Mo my» my3
St 0 e %/h _eg=5/h 0
L= s | 0 0 e—%2/h 0
s3 \ 0 0 0 e—53/h

This block structure implies:

SV(L) = {0} U e_52/h5V< é _11 ) U {e /"
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Proof by example

Computations in dimension one when p(a) = 2

Suppose that ¢ is given by

[ep)

¢(ma3)

¢(ma21) = @('772,2)

my=m

Figure 5: A potential with p(a) =2
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Proof by example

The interaction matrix is

mii my1 m32 my3
s; 0 e (S2=53)/h _o=(S2=S3)/h
L=e%"g | 0 0 e~ (52=53)/h —1
S3 0 0 0

This is not a block-diagonal matrix, but M L has the form:

=
M = e—253/h € )

with ¢ = e (%27%3)/h << 1 So we can use Schur complement
method to compute its eigenvalues. We get

O‘(M) _ 6_253/h((7(-/) + 0(6_2(52_53)/h))
D& (oA~ BUB) + O(e A5 S)M) U (o)
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Proof by example

The general case

@ Block-diagonalize the interaction matrix:
L = diag(L®, o € A) where each block £ corresponds to an
equiv. class of R.

@ Observe that M,, := (L*)*L“ has a nice structure:
My = QM Q. with M, "independent” of h and

Ir, 0 0
0 nl,, 0 ... 0
Q= : 0 ' :
. 0
0 oo 0 mom3...Tply
-S,

where 7; = e>p--2 "1/ for any j=2,...,p and
p = p(«) is the number of values taken by ¢ on uéo).

@ Apply Schur complement’s method and induction on p(a).



