Introduction	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of

proofs

Small eigenvalues of Witten Laplacian: old and new

L. Michel

Université de Bordeaux

La Thuile February 10-16 2019

Introduction	

The degenerate Case

Sketch of proofs

Plan

Introduction

- General framework
- Motivations

2 Sharp Asymptotics of the small eigenvalues

- The labelling procedure
- Results in a generic case

3 The degenerate Case

- A simple example
- Gathering interacting minima
- Asymptotics without assumption on the Morse function

4 Sketch of proofs

- General strategy
- Proof by example

The degenerate Case

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

- General framework
- Motivations
- 2 Sharp Asymptotics of the small eigenvalues
 - The labelling procedure
 - Results in a generic case
- 3 The degenerate Case
 - A simple example
 - Gathering interacting minima
 - Asymptotics without assumption on the Morse function

4 Sketch of proofs

- General strategy
- Proof by example

Sharp Asymptotics of the small eigenvalues

The degenerate Case

Sketch of proofs

General framework

Semiclassical Witten Laplacian

Let $X = \mathbb{R}^d$ or a compact manifold and let $\phi : X \to \mathbb{R}$ be a smooth Morse function. Consider the semiclassical Witten Laplacian associated to ϕ :

$$\Delta_{\phi} = -h^2 \Delta + |\nabla \phi|^2 - h \Delta \phi$$

where $h \in]0, 1]$ denotes the semiclassical parameter. Assume there exists C > 0 and a compact $K \subset \mathbb{R}^d$ such that for all $x \in \mathbb{R}^d \setminus K$, one has

$$|
abla \phi(x)| \geq rac{1}{C}, \; |\operatorname{Hess}(\phi(x))| \leq C |
abla \phi|^2, \; ext{and} \; \phi(x) \geq C |x|.$$

Introduction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
General framework			
Flementar	v properties		

Under the preceding assumptions, one has the following properties on $\Delta_\phi.$

- Δ_{ϕ} is essentially self-adjoint on $\mathcal{C}^{\infty}_{c}(X)$.
- $\Delta_{\phi} \geq 0$
- there exists $C_0, h_0 > 0$ such that for all $0 < h < h_0$

 $\sigma_{ess}(\Delta_{\phi}) \subset [C_0,\infty[$

(日) (日) (日) (日) (日) (日) (日) (日)

• 0 is an eigenvalue of Δ_{ϕ} associated to the eigenstate $e^{-\phi/h}$.

Goal:

Study the small eigenvalues of Δ_{ϕ} .

Introduction	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
000000	000000000	0000000	000000000
Motivations			

Brownian Dynamics

Consider a Brownian Particle x_t in a force field $-\nabla \phi(x)$ in a low temperature regime. Its movement is driven by the overdamped Langevin equation

$$\dot{x}_t = -2
abla\phi(x_t) + \sqrt{2h}\dot{B}_t$$

where B_t is the brownian motion. At a macroscopic level, the probability $\rho(t, x)$ of presence of the particle in position x at time t satisfies the Kramers-Schmoluchovsky equation:

 $\partial_t \rho = h \operatorname{div} \circ (h \nabla + 2 \nabla \phi)(\rho).$

Change of unknown $\tilde{\rho} = e^{\phi/h}\rho$ yields

$$\partial_t \tilde{\rho} + \Delta_\phi \tilde{\rho} = 0$$

The behavior of $\tilde{\rho}$ when $t \to \infty$ is driven by the eigenvalues of Δ_{ϕ} . Eigenvalues which are exponentially close to 0 are associated with the so-called metastable states.

Introduction 00000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
Motivations			

Analytic proof of Morse inequalities

Introduce the Hodge Laplacian on X:

 $\Delta = d^* \circ d + d \circ d^*$

where $d: \Omega^{p}(X) \to \Omega^{p+1}(X)$ denotes the exterior derivative from *p*-forms into p+1 forms. The Betti numbers are defined by

 $b_p(X) := \dim(\operatorname{Ker}(d: \Omega^p \to \Omega^{p+1}) / \operatorname{Ran}(d: \Omega^{(p-1)} \to \Omega^p))$

Hodge Theorem:

For all
$$p = 0, ..., d$$
, one has $b_p(X) = \dim \operatorname{Ker} \Delta^{(p)}$ with $\Delta^{(p)} = \Delta_{|\Omega^{(p)}(X)}$.

Introduction 0000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
Motivations			

The Morse inequalities

Denote

- \mathcal{U} the set of critical points of ϕ (since ϕ is a Morse function, then \mathcal{U} is finite).
- $\mathcal{U}^{(p)}$ the set of critical points of ϕ of index p

•
$$n_p = \sharp \mathcal{U}^{(p)}$$
.

Hence $\mathcal{U}^{(0)}$ is the set of minima and $\mathcal{U}^{(1)}$ the set of saddle points of $\phi.$

(日本本語を本書を本書を、「四本」

Theorem: Weak Morse Inequalities

For all $p = 0, \ldots, d$, one has $n_p(\phi) \ge b_p(X)$.

Introduction 00000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
Motivations			

Witten Laplacian on forms

Witten's idea was to introduce the operator

$$\Delta_\phi = \textit{d}_\phi^* \circ \textit{d}_\phi + \textit{d}_\phi \circ \textit{d}_\phi^*$$

where h > 0 is a parameter and $d_{\phi} : \Omega^{p}(X) \to \Omega^{p+1}(X)$ denotes the twisted exterior derivative

$$d_{\phi}=e^{-\phi/h}\circ h d\circ e^{\phi/h}=h d+d\phi^{\wedge}.$$

Fact:

For any
$$p = 0, \ldots, d$$
, dim Ker $\Delta_{\phi}^{(p)} = b_{\rho}(X)$.

One has $\operatorname{Ker}(d_{\phi}) = e^{-\phi/h} \operatorname{Ker}(d)$ and $\operatorname{Ran}(d_{\phi}) = e^{-\phi/h} \operatorname{Ran}(d)$. Hence

$$b_{p}(X) = \dim \operatorname{Ker} d^{(p)} / \operatorname{Ran} d^{(p-1)} = \dim \operatorname{Ker} d_{\phi}^{(p)} / \operatorname{Ran} d_{\phi}^{(p-1)}$$
$$= \dim \operatorname{Ker} \Delta_{\phi}^{(p)}$$

Introduction 00000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
Motivations			

Analytic proof of Morse inequalities

Theorem (Witten 82, Helffer-Sjöstrand 84):

There exists $\epsilon_0, h_0 > 0$ such that for all $0 < h < h_0$ and all $p = 0, \ldots, d$, one has

$$\sharp \sigma(\Delta_{\phi}^{(p)}) \cap [0, \epsilon_0 h] = n_p(\phi).$$

Consequence:

dim Ker
$$\Delta^{(p)}_{\phi} \leq n_p(\phi)$$
 .

Proof for p = 0:

• Lower bound: use the quasimodes

$$f_{\mathbf{m}}^{(0)} = c_{\mathbf{m}} h^{-\frac{d}{4}} \chi_{\mathbf{m}}(x) e^{(\phi(\mathbf{m}) - \phi(x))/h}$$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Introduction ○○○○○○●	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
Motivations			

Analytic proof of Morse inequalities

• Upper bound: On 0-forms, one has

$$\Delta_{\phi} = -h^2 \Delta + |\nabla \phi|^2 - h \Delta \phi$$

- away from critical points, Δ_{ϕ} is elliptic.
- near critical points of index p, one has

$$\phi(x) \sim \frac{1}{2}((x')^2 - (x'')^2)$$
 with $x = (x', x'') \in \mathbb{R}^{d-p} \times \mathbb{R}^p$

and

$$\Delta_{\phi} \sim -h^2 \Delta + |x|^2 - h(d-2p) := N$$

Since

$$\sigma(-h^2\Delta+|x|^2)=\{h\sum_{i=1}^d n_i,\ n_i\in\mathbb{N}^*\}$$

then $0 \in \sigma(N) \iff p = 0$.

• This permit to find a n_0 dimensional vector space E_0 such that $\Delta_{\phi} \ge \epsilon h$ on E_0^{\perp} .

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Introduction

- General framework
- Motivations

2 Sharp Asymptotics of the small eigenvalues

- The labelling procedure
- Results in a generic case

3 The degenerate Case

- A simple example
- Gathering interacting minima
- Asymptotics without assumption on the Morse function

4 Sketch of proofs

- General strategy
- Proof by example

Sharp Asymptotics of the small eigenvalues

The degenerate Case

Sketch of proofs

(日本本語を本書を本書を、「四本」

Some remarks about the small eigenvalues

- It is easy to see that the n₀ small eigenvalues of Δ⁽⁰⁾_φ are actually O(e^{-C/h}) for some C > 0.
- One sees that C is related to the heights φ(s) − φ(m), s ∈ U⁽¹⁾, m ∈ U⁽⁰⁾. Compute the constant C associated to each eigenvalue is not totally clear.
- First step is to identify which heights are relevant for this problem.
- First result in this direction are due to Bovier-Gayrard-Klein 04 (probabilistic approach) and Helffer-Klein-Nier 04 (PDE approach).
- The first step is the following labelling procedure.

Introduction 00000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
The labelling proc	cedure		
The lab	elling procedure l		

For any $\mathbf{s} \in \mathcal{U}^{(1)}$ and r > 0 small enough, the set

 $B(\mathbf{s},r) \cap \{x \in X, \ \phi(x) < \phi(\mathbf{s})\}$

has exactly two connected components $C_j(\mathbf{s}, r)$, j = 1, 2.

Definition (Hérau-Hitrik-Sjöstrand, 2011)

- s ∈ U⁽¹⁾ is a separating saddle point (ssp) iff C₁(s, r) and C₂(s, r) are contained in two different connected components of {x ∈ X, φ(x) < φ(s)}. We denote by V⁽¹⁾ the set of ssp.
- $\sigma \in \mathbb{R}$ is a separating saddle value (ssv) if it is of the form $\sigma = \phi(\mathbf{s})$ with $\mathbf{s} \in \mathcal{V}^{(1)}$. We denote $\underline{\Sigma} = \phi(\mathcal{V}^{(1)}) = \{\sigma_2 > \sigma_3 > \ldots > \sigma_N\}.$

Introduction	

The degenerate Case

Sketch of proofs

The labelling procedure

Example of SSP I

Level set of a potential with 2 minima, 2 saddle points and 1 maximum

Introduction

The degenerate Case

Sketch of proofs

The labelling procedure

Example of SSP II

(ロ)、

Introduction

The degenerate Case

Sketch of proofs

The labelling procedure

Example of SSP II

 \boldsymbol{s}_1 is not separating

Sharp Asymptotics of the small eigenvalues ${\scriptstyle 000000000}$

The degenerate Case

Sketch of proofs

The labelling procedure

Example of SSP III

The degenerate Case

Sketch of proofs

The labelling procedure

Example of SSP III

Sharp Asymptotics of the small eigenvalues

The degenerate Case

Sketch of proofs

The labelling procedure

The labelling procedure II

Add a fictive infinite saddle value $\sigma_1 = +\infty$ to $\underline{\Sigma}$ and let

 $\Sigma = \{\sigma_1\} \cup \underline{\Sigma} = \{\sigma_1 > \sigma_2 > \ldots > \sigma_N\}$

- To σ₁ = +∞ associate the unique connected component *E*_{1,1} = X of {φ < σ₁}. In *E*_{1,1}, pick up *m*_{1,1} one (non necessarily unique) minimum of φ_{|E_{1,1}}.
- The set {φ < σ₂} has finitely many connected components. One of them contains m_{1,1}. The others are denoted E_{2,1},..., E_{2,N2}. In each of these CC, one choses one absolute minimum m_{2,j} of φ<sub>|E_{2,j}.
 </sub>
- The set {φ < σ_k} has finitely many CC. One denotes by *E*_{k,1},..., *E*_{k,Nk} those of these CC which do not contain any *m*_{i,j}, *i* < *k*. In each *E*_{k,j} one choses one absolute minimum *m*_{k,j} of φ<sub>|E_{k,j}.

 </sub>

The degenerate Case

Sketch of proofs

4日 × 日 × 日 × 日 × 日 × 日 × 1000

The labelling procedure

The labelling procedure III

Denote $\mathbf{m} = \mathbf{m}_{1,1}$ the absolute minimum of ϕ that was chosen at the first step of the labelling procedure, and let

 $\underline{\mathcal{U}}^{(0)} = \mathcal{U}^{(0)} \setminus \{\underline{\mathbf{m}}\}.$

Let $\mathcal{O}(X)$ denote the connected open subsets of X. Using the preceding labelling one constructs the following applications:

- $\sigma : \mathcal{U}^{(0)} \to \Sigma$, defined by $\sigma(\mathbf{m}_{i,j}) = \sigma_i$.
- $E: \mathcal{U}^{(0)} \to \mathcal{O}(X)$, defined by $E(\mathbf{m}_{i,j}) = E_{i,j}$.
- $S = \sigma \phi$

Introduction 00000000	Sharp Asymptotics of the small eigenvalues ○○○○○○○●○	The degenerate Case	Sketch of proofs
Results in a generic case			
The Gener	ic case I		

The following hypothesis introduced by Hérau-Hitrik-Sjöstrand (2011) is a generalization of Helffer-Klein-Nier assumption (2004).

Generic Assumption (GA):

For all $\mathbf{m} \in \mathcal{U}^{(0)}$, the following hold true:

i)
$$\phi_{|E(\mathbf{m})}$$
 has a unique point of minimum

ii) if $\overline{E(\mathbf{m})} \cap \mathcal{V}^{(1)} \neq \emptyset$, there exists a unique $\mathbf{s} \in \mathcal{V}^{(1)}$ such that $\phi(\mathbf{s}) = \sup \phi(\overline{E(\mathbf{m})} \cap \mathcal{V}^{(1)})$.

Under this assumption, there exists a bijection

 $\mathbf{s}:\mathcal{U}^{(0)}
ightarrow\mathcal{V}^{(1)}\cup\{\infty\}$

such that $S(\mathbf{m}) = \phi(\mathbf{s}(\mathbf{m})) - \phi(\mathbf{m})$ with the convention $\phi(\infty) = \infty$.

Introduction

Sharp Asymptotics of the small eigenvalues

The degenerate Case

Sketch of proofs

Results in a generic case

The Generic case II

Let us write $\lambda(\mathbf{m}, h)$, $\mathbf{m} \in \mathcal{U}^{(0)}$ the n_0 small eigenvalues of Δ_{ϕ} .

Theorem (Helffer-Klein-Nier 2004, Hérau-Hitrik-Sjöstrand 2011)

Suppose the the Generic Assumption is satisfied. Then the n_0 small eigenvalues of Δ_ϕ satisfy

$$\lambda(\mathbf{m},h) = h\zeta(\mathbf{m},h)e^{-2S(\mathbf{m})/h}$$

where $\zeta(\mathbf{m}, h) \sim \sum_{r=0}^{\infty} h^r \zeta_r(\mathbf{m})$ and

$$\zeta_0(\mathbf{m}) = \pi^{-1} |\mu(\mathbf{s}(\mathbf{m}))| \sqrt{rac{|\det \phi''(\mathbf{m})|}{|\det \phi''(\mathbf{s}(\mathbf{m}))|}}$$

where $\mu(\mathbf{s})$ is the unique negative eigenvalue of ϕ'' in \mathbf{s} .

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Introduction

- General framework
- Motivations
- 2 Sharp Asymptotics of the small eigenvalues
 - The labelling procedure
 - Results in a generic case

3 The degenerate Case

- A simple example
- Gathering interacting minima
- Asymptotics without assumption on the Morse function

4 Sketch of proofs

- General strategy
- Proof by example

Introduction 00000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case ●0000000	Sketch of proofs
A simple example			
A simple e	xample		

Suppose that the following hypothesis are verified:

- The set of minimal values is reduced to one point: $\exists c_0, \forall \mathbf{m} \in \mathcal{U}^{(0)}, \phi(\mathbf{m}) = c_0$
- The set of saddle values is reduced to one point: $\exists c_1, \forall \mathbf{m} \in \mathcal{U}^{(1)}, \phi(\mathbf{m}) = c_1$

Figure 1: The sublevel set $\{\varphi < \sigma\}$ (dashed region) associated to a potential φ satisfying the assumptions. The x's represent local minima, the o's, local maxima.

Introd	uction
0000	0000

Sharp Asymptotics of the small eigenvalues

The degenerate Case 0000000

Sketch of proofs

A simple example

Theorem

The n_0 small eigenvalues of Δ_{ϕ} satisfy $\lambda_1 = 0$ and for all $k = 2, \dots n_0$,

$$\lambda_k(h) = h\zeta_k(h)e^{-2S}$$

where $S = c_1 - c_0$ and

$$\zeta_k(h) \sim \sum_{r=0}^{\infty} h^r \zeta_{k,r}$$

and $\zeta_{k,0}$ are the non zero eigenvalues of the weighted graph $\mathcal G$ defined by

- The vertices of the graph are the minima $\mathbf{m}\in\widehat{\mathcal{U}}^{(0)}.$
- The edges between two vertices \mathbf{m} , \mathbf{m}' are the saddle points $\mathbf{s} \in \mathcal{U}^{(1)}$ such that $\mathbf{s} \in \overline{E}(\mathbf{m}) \cap \overline{E}(\mathbf{m}')$.
- The weights explicitly depend on the values of ϕ'' on $\mathcal{U}^{(0)}$ and $\mathcal{U}^{(1)}$.

Introduction 00000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case 00●00000	Sketch of proofs
A simple example			

Figure 2: The sublevel set $\{\varphi < \sigma\}$ (dashed region) associated to a potential φ satisfying the assumptions. The x's represent local minima, the o's, local maxima.

Figure 3: The graph associated to the potential represented in Figure ?? $(\Box \rightarrow \langle \Box \rangle \land \langle \Xi \land \langle \Xi$

Sharp Asymptotics of the small eigenvalues 000000000

The degenerate Case

Sketch of proofs

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Gathering interacting minima

Gathering interacting minima

For any $\mathbf{m} \in \underline{\mathcal{U}}^{(0)}$, let

- $G(\mathbf{m})$ denotes the connected component of $\{\phi \leq \sigma(\mathbf{m})\}$ that contains \mathbf{m} .

Fact:

For any $\mathbf{m} \neq \underline{\mathbf{m}}$, there exists a unique $\hat{\mathbf{m}} = \hat{\mathbf{m}}(\mathbf{m}) \in G(\mathbf{m}) \cap \mathcal{U}^{(0)}$ such that $\sigma(\hat{\mathbf{m}}) > \sigma(\mathbf{m})$

We denote by $\widehat{E}(\mathbf{m})$ the connected component of $\{\phi < \sigma(\mathbf{m})\}$ that contains $\widehat{\mathbf{m}}(\mathbf{m})$. This defines two applications

 $\hat{\mathbf{m}}: \underline{\mathcal{U}}^{(0)}
ightarrow \mathcal{U}^{(0)}$ and $\widehat{E}: \underline{\mathcal{U}}^{(0)}
ightarrow \mathcal{O}(X)$

Sharp Asymptotics of the small eigenvalues

The degenerate Case ○○○○●○○○ Sketch of proofs

Gathering interacting minima

Two different types of minima

Observe that by definition, we have

```
\forall \mathbf{m} \in \underline{\mathcal{U}}^{(0)}, \ \phi(\hat{\mathbf{m}}(\mathbf{m})) \leq \phi(\mathbf{m}).
```

The fact that the above inequality is large or strict plays an important role in our analysis.

Definition

Let $\mathbf{m} \in \underline{\mathcal{U}}^{(0)}$. We say that \mathbf{m} is of type I if $\phi(\hat{\mathbf{m}}(\mathbf{m})) < \phi(\mathbf{m})$. If $\phi(\hat{\mathbf{m}}(\mathbf{m})) = \phi(\mathbf{m})$, we say that \mathbf{m} is of type II. We will denote

$$\underline{\mathcal{U}}^{(0),\textit{l}} = \{\mathbf{m} \in \underline{\mathcal{U}}^{(0)}, \, \mathbf{m} \text{ is of type I}\}$$

 $\underline{\mathcal{U}}^{(0), \textit{II}} = \{ \mathbf{m} \in \underline{\mathcal{U}}^{(0)}, \, \mathbf{m} \text{ is of type II} \}$

We have clearly the following disjoint union $\underline{\mathcal{U}}^{(0)} = \underline{\mathcal{U}}^{(0),I} \cup \underline{\mathcal{U}}^{(0),II}$.

Sharp Asymptotics of the small eigenvalues

The degenerate Case ○○○○○●○○ Sketch of proofs

Gathering interacting minima

An equivalence relation on $\mathcal{U}^{(0)}$

For $\sigma \in \Sigma$, let Ω_{σ} be defined by

 $\Omega_{\sigma} = \{ E(\mathbf{m}), \mathbf{m} \in \sigma^{-1}(\sigma) \} \bigcup \{ \widehat{E}(\mathbf{m}), \mathbf{m} \in \sigma^{-1}(\sigma) \cap \underline{\mathcal{U}}^{(0), ll} \}$

Definition:

We define an equivalence relation \mathcal{R} on $\mathcal{U}^{(0)}$ by $\mathbf{m}\mathcal{R}\mathbf{m}'$ if and only if the two following properties hold true

$$- \boldsymbol{\sigma}(\mathbf{m}) = \boldsymbol{\sigma}(\mathbf{m}') = \sigma$$

- **m** and **m**' belong to the same connected component of $\bigcup_{\omega \in \Omega_{\sigma}} \overline{\omega}$.

We denote by Cl(**m**) the equivalence class of any $\mathbf{m} \in \mathcal{U}^{(0)}$ and by $(\mathcal{U}^{(0)}_{\alpha})_{\alpha \in \mathcal{A}} = \mathcal{U}^{(0)}/\mathcal{R}.$

Sharp Asymptotics of the small eigenvalues

The degenerate Case

Sketch of proofs

Asymptotics without assumption on the Morse function

Main Theorem

For any $lpha\in\mathcal{A}$, denote $\mathcal{S}_lpha=\mathcal{S}(\mathcal{U}^{(0)}_lpha)$ and $p(lpha)=\sharp\mathcal{S}_lpha$ and

$$\mathcal{S}_{\alpha} = \{\mathcal{S}_{\nu_{1}^{\alpha}}, \dots, \mathcal{S}_{\nu_{p(\alpha)}^{\alpha}}\}$$

for some integers $\nu_1^{\alpha} < \nu_2^{\alpha} < \ldots < \nu_{p(\alpha)}^{\alpha}$.

Theorem

There exist c > 0 and some symmetric positive definite matrices \mathcal{M}^{α} , $\alpha \in \mathcal{A}$ such that counted with multiplicity, on has $\sigma(\Delta_{\phi}) \cap [0, \epsilon_0 h] = \bigcup_{\alpha \in \mathcal{A}} \sigma(\mathcal{M}^{\alpha})(1 + \mathcal{O}(e^{-c/h}))$ with

$$\sigma(\mathcal{M}^{\alpha}) = \bigcup_{j=1}^{p(\alpha)} h e^{-2h^{-1}S_{\nu_{j}^{\alpha}}} \sigma(M^{\alpha,j})$$

for some symmetric positive definite matrices $M^{\alpha,j}$ having a classical expansion with explicit invertible leading term

Asymptotics witho	ut assumption on the Morse function		
		0000000	
Introduction	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch c

proofs

(日) (日) (日) (日) (日) (日) (日) (日)

Comments

- The way to construct the matrices \mathcal{M}_{lpha} depends on
 - the number of equivalence class of ${\mathcal R}$
 - the number $p(\alpha)$ of values taken by φ on each equivalence class $\mathcal{U}_{\alpha}^{(0)}$.
- If there is only one equivalence class U⁽⁰⁾_{α0} and if p(α₀) = 1 then we are in the case where M_{α0} is a graph Laplacian.
- If $p(\alpha_0) \ge 2$, the situation is more complicated.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Introduction

- General framework
- Motivations
- 2 Sharp Asymptotics of the small eigenvalues
 - The labelling procedure
 - Results in a generic case

3 The degenerate Case

- A simple example
- Gathering interacting minima
- Asymptotics without assumption on the Morse function

4 Sketch of proofs

- General strategy
- Proof by example

Introd	uction
0000	0000

Sharp Asymptotics of the small eigenvalues

The degenerate Case

Sketch of proofs

General strategy

Finite dimensional reduction

The general strategy of Helffer-Klein-Nier is the following:

- Introduce
 - $F^{(0)}$ = eigenspace associated to the n_0 low lying eigenvalues on 0-forms
 - $\Pi^{(0)} = \text{projector on } F^{(0)}$.
 - M = restriction of Δ_{ϕ} to $F^{(0)}$.

We have to compute the eigenvalues of M.

• We compute suitable BKW approximated eigenfunctions $f_m^{(0)}$ indexed by $\mathbf{m} \in \mathcal{U}^{(0)}$, and show that

$$\Pi^{(0)} f_{\mathbf{m}}^{(0)} = f_{\mathbf{m}}^{(0)} + error$$

and compute the matrix of *M* in the base $\Pi^{(0)} f_{\mathbf{m}}^{(0)}$.

- Doing that leads to error terms which are too big.
- In order to overcome this difficulty, they use the supersymmetric structure.

Introduction 00000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs ○●○○○○○○○	
General strategy				
Using Supersymmetry				

The fondamental remarks are the following:

•
$$\Delta_{\phi}^{(p+1)} d_{\phi}^{(p)} = d_{\phi}^{(p)} \Delta_{\phi}^{(p)}$$
 and $d_{\phi}^{(p),*} \Delta_{\phi}^{(p+1)} = \Delta_{\phi}^{(p)} d_{\phi}^{(p),*}$

Denote F⁽¹⁾ the eigenspace associated to low lying eigenvalues on 1 forms, then d⁽⁰⁾_φ(F⁽⁰⁾) ⊂ F⁽¹⁾ and d^{(0),*}_φ(F⁽¹⁾) ⊂ F⁽⁰⁾. Hence

 $M = L^*L$

where L is the matrix of $d_{\phi}^{(0)}: F^{(0)} \to F^{(1)}$.

• The matrix L is well approximated by

$$L \simeq \mathcal{L} := (\langle d_{\phi}^{(0)} f_{\mathbf{m}}^{(0)}, f_{\mathbf{s}}^{(1)} \rangle)_{\mathbf{s} \in \mathcal{U}^{(1)} \mathbf{m} \in \mathcal{U}^{(0)}}$$

where $f_s^{(1)}$ are BKW approximated eigenfunctions on 1-form.

Introduction 00000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
General strategy			
Form of t	the quasimodes		

• On 0-forms, one takes $f_{\mathbf{m}}^{(0)} = \sum_{\mathbf{m}' \in \mathsf{Cl}(\mathbf{m})} \theta_{\mathbf{m}}(\mathbf{m}') g_{\mathbf{m}'}^{(0)}$ with

$$g_{\mathbf{m}'}^{(0)} = h^{-\frac{d}{4}} \chi_{\mathbf{m}'}(x) e^{-(\phi(x) - \phi(\mathbf{m}'))/h}$$

and $\chi_{\mathbf{m}'} \simeq \mathbb{1}_{E(\mathbf{m}')}$.

• On 1-forms, one takes

$$f_{s}^{(1)} = h^{-rac{d}{4}}\chi_{s}(x)b_{s}(x,h)e^{-(\phi_{+}(x)-\phi(s))/h}$$

with $\chi_{\rm s}$ cut-off function near ${\rm s},\,\phi_+$ phase function solving the eikonal equation

$$|\nabla\phi_+|^2 = |\nabla\phi|^2$$

(日) (日) (日) (日) (日) (日) (日) (日)

and $b_s(x, h)$ a 1 form obtained by solving some transport equations.

Sharp Asymptotics of the small eigenvalues

The degenerate Case

Sketch of proofs

General strategy

Computation of the singular values

• One has $\mathcal{L} = \widehat{\mathcal{L}}\mathcal{T}$ with $\mathcal{T} = (\theta_m(m'))_{m,m'}$ an orthogonal matrix and

$$\widehat{\mathcal{L}} = (\langle \boldsymbol{d}_{\phi}^{(0)} \boldsymbol{g}_{\mathbf{m}}^{(0)}, \boldsymbol{f}_{\mathbf{s}}^{(1)} \rangle)_{\mathbf{s} \in \mathcal{U}^{(1)}, \mathbf{m} \in \mathcal{U}^{(0)}}$$

- The computation of the coefficients of $\widehat{\mathcal{L}}$ is performed by Laplace Method.
- Under the Generic Assumption (GA), the matrix L is diagonal.
 Its singular values are then given by its diagonal coefficients.
- In the general case, $\widehat{\mathcal{L}}$ is only block-diagonal

$$\widehat{\mathcal{L}} = diag(\widehat{\mathcal{L}}^{lpha}, \, lpha \in \mathcal{A})$$

where each block \mathcal{L}^{α} corresponds to an equiv. class of \mathcal{R} .

- If $p(\alpha) = 1$, each block has a typical size $e^{-S_{\alpha}/h}$.
- If p(α) ≥ 2, we can perform a Schur type argument on each block.

 Introduction
 Sharp Asymptotics of the small eigenvalues
 The degenerate Case
 Sketch of proofs

 00000000
 00000000
 00000000
 00000000

 Proof by example
 00000000
 00000000

Computations in dimension when $p(\alpha) = 1$

Suppose ϕ is given by

Figure 4: A potential satisfying H(1)

Sharp Asymptotics of the small eigenvalues

The degenerate Case

Sketch of proofs

* ロ ト * 母 ト * ヨ ト * ヨ ト ・ ヨ ・ クタマ

Proof by example

The case $p(\alpha) = 1$ continued

The interaction matrix is

$$\widehat{\mathcal{L}} = \begin{array}{ccc} \mathbf{m}_{1,1} & \mathbf{m}_{2,1} & \mathbf{m}_{2,2} & \mathbf{m}_{2,3} \\ \mathbf{s}_1 & \begin{pmatrix} 0 & e^{-S_2/h} & -e^{-S_2/h} & 0 \\ 0 & 0 & e^{-S_2/h} & 0 \\ 0 & 0 & 0 & e^{-S_3/h} \end{pmatrix}$$

This block structure implies:

$$SV(\widehat{\mathcal{L}}) = \{0\} \cup e^{-S_2/h}SV \left(egin{array}{cc} 1 & -1 \ 0 & 1 \end{array}
ight) \cup \{e^{-S_3/h}\}$$

Introduction 0000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
Proof by example			

Computations in dimension one when $p(\alpha) = 2$

Suppose that ϕ is given by

Figure 5: A potential with $p(\alpha) = 2$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Proof by example			
Introduction 0000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs

The interaction matrix is

$$\widehat{\mathcal{L}} = e^{-S_3/h} \begin{array}{ccc} \mathbf{s}_1 \\ \mathbf{s}_2 \\ \mathbf{s}_3 \end{array} \begin{pmatrix} 0 & e^{-(S_2 - S_3)/h} & -e^{-(S_2 - S_3)/h} & 0 \\ 0 & 0 & e^{-(S_2 - S_3)/h} & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

This is not a block-diagonal matrix, but $\mathcal{M} := \widehat{\mathcal{L}}^* \widehat{\mathcal{L}}$ has the form:

$$\mathcal{M} = e^{-2S_3/h} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \epsilon^2 A & \epsilon B^* \\ 0 & \epsilon B & J \end{array} \right)$$

with $\epsilon = e^{-(S_2-S_3)/h} \ll 1$. So we can use Schur complement method to compute its eigenvalues. We get

$$\sigma(\mathcal{M}) = e^{-2S_3/h}(\sigma(J) + \mathcal{O}(e^{-2(S_2 - S_3)/h}))$$
$$\cup e^{-2S_2/h}(\sigma(A - B^*J^{-1}B) + \mathcal{O}(e^{-2(S_2 - S_3)/h})) \cup \{0\}$$

Introduction 00000000	Sharp Asymptotics of the small eigenvalues	The degenerate Case	Sketch of proofs
Proof by example			
The general case			

- Block-diagonalize the interaction matrix: $\widehat{\mathcal{L}} = diag(\widehat{\mathcal{L}}^{\alpha}, \alpha \in \mathcal{A})$ where each block \mathcal{L}^{α} corresponds to an equiv. class of \mathcal{R} .
- Observe that $\mathcal{M}_{\alpha} := (\mathcal{L}^{\alpha})^* \mathcal{L}^{\alpha}$ has a nice structure: $\mathcal{M}_{\alpha} = \Omega_{\alpha} \tilde{\mathcal{M}}_{\alpha} \Omega_{\alpha}$ with \mathcal{M}_{α} "independent" of *h* and

$$\Omega^{\alpha} = \begin{pmatrix} I_{r_{\rho}} & 0 & \dots & \dots & 0 \\ 0 & \tau_{2}I_{r_{\rho-1}} & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & \tau_{2}\tau_{3}\dots\tau_{p}I_{r_{1}} \end{pmatrix}$$

where $\tau_j = e^{(S_{\nu_{p-(j-2)}} - S_{\nu_{p-(j-1)}})/h}$ for any j = 2, ..., p and $p = p(\alpha)$ is the number of values taken by ϕ on $\mathcal{U}_{\alpha}^{(0)}$. • Apply Schur complement's method and induction on $p(\alpha)$.