Small eigenvalues of Witten Laplacian: old and new

L. Michel

Université de Bordeaux

La Thuile
February 10-16 2019

Plan

(1) Introduction

- General framework
- Motivations
(2) Sharp Asymptotics of the small eigenvalues
- The labelling procedure
- Results in a generic case
(3) The degenerate Case
- A simple example
- Gathering interacting minima
- Asymptotics without assumption on the Morse function
(4) Sketch of proofs
- General strategy
- Proof by example
(1) Introduction
- General framework
- Motivations
(2) Sharp Asymptotics of the small eigenvalues
- The labelling procedure
- Results in a generic case
(3) The degenerate Case
- A simple example
- Gathering interacting minima
- Asymptotics without assumption on the Morse function

4 Sketch of proofs

- General strategy
- Proof by example

Semiclassical Witten Laplacian

Let $X=\mathbb{R}^{d}$ or a compact manifold and let $\phi: X \rightarrow \mathbb{R}$ be a smooth Morse function. Consider the semiclassical Witten Laplacian associated to ϕ :

$$
\Delta_{\phi}=-h^{2} \Delta+|\nabla \phi|^{2}-h \Delta \phi
$$

where $h \in] 0,1]$ denotes the semiclassical parameter. Assume there exists $C>0$ and a compact $K \subset \mathbb{R}^{d}$ such that for all $x \in \mathbb{R}^{d} \backslash K$, one has

$$
|\nabla \phi(x)| \geq \frac{1}{C},|\operatorname{Hess}(\phi(x))| \leq C|\nabla \phi|^{2}, \text { and } \phi(x) \geq C|x|
$$

General framework

Elementary properties

Under the preceding assumptions, one has the following properties on Δ_{ϕ}.

- Δ_{ϕ} is essentially self-adjoint on $\mathcal{C}_{c}^{\infty}(X)$.
- $\Delta_{\phi} \geq 0$
- there exists $C_{0}, h_{0}>0$ such that for all $0<h<h_{0}$

$$
\sigma_{e s s}\left(\Delta_{\phi}\right) \subset\left[C_{0}, \infty[\right.
$$

- 0 is an eigenvalue of Δ_{ϕ} associated to the eigenstate $e^{-\phi / h}$.

Goal:

Study the small eigenvalues of Δ_{ϕ}.

Brownian Dynamics

Consider a Brownian Particle x_{t} in a force field $-\nabla \phi(x)$ in a low temperature regime. Its movement is driven by the overdamped Langevin equation

$$
\dot{x}_{t}=-2 \nabla \phi\left(x_{t}\right)+\sqrt{2 h} \dot{B}_{t}
$$

where B_{t} is the brownian motion. At a macroscopic level, the probability $\rho(t, x)$ of presence of the particle in position x at time t satisfies the Kramers-Schmoluchovsky equation:

$$
\partial_{t} \rho=h \operatorname{div} \circ(h \nabla+2 \nabla \phi)(\rho) .
$$

Change of unknown $\tilde{\rho}=e^{\phi / h} \rho$ yields

$$
\partial_{t} \tilde{\rho}+\Delta_{\phi} \tilde{\rho}=0
$$

The behavior of $\tilde{\rho}$ when $t \rightarrow \infty$ is driven by the eigenvalues of Δ_{ϕ}. Eigenvalues which are exponentially close to 0 are associated with the so-called metastable states.

Motivations

Analytic proof of Morse inequalities

Introduce the Hodge Laplacian on X :

$$
\Delta=d^{*} \circ d+d \circ d^{*}
$$

where $d: \Omega^{p}(X) \rightarrow \Omega^{p+1}(X)$ denotes the exterior derivative from p-forms into $p+1$ forms. The Betti numbers are defined by

$$
b_{p}(X):=\operatorname{dim}\left(\operatorname{Ker}\left(d: \Omega^{p} \rightarrow \Omega^{p+1}\right) / \operatorname{Ran}\left(d: \Omega^{(p-1)} \rightarrow \Omega^{p}\right)\right)
$$

Hodge Theorem:

For all $p=0, \ldots, d$, one has $b_{p}(X)=\operatorname{dim} \operatorname{Ker} \Delta^{(p)}$ with $\Delta^{(p)}=\Delta_{\mid \Omega^{(p)}(X)}$.

The Morse inequalities

Denote

- \mathcal{U} the set of critical points of ϕ (since ϕ is a Morse function, then \mathcal{U} is finite).
- $\mathcal{U}^{(p)}$ the set of critical points of ϕ of index p
- $n_{p}=\sharp \mathcal{U}^{(p)}$.

Hence $\mathcal{U}^{(0)}$ is the set of minima and $\mathcal{U}^{(1)}$ the set of saddle points of ϕ.

Theorem: Weak Morse Inequalities
For all $p=0, \ldots, d$, one has $n_{p}(\phi) \geq b_{p}(X)$.

Witten Laplacian on forms

Witten's idea was to introduce the operator

$$
\Delta_{\phi}=d_{\phi}^{*} \circ d_{\phi}+d_{\phi} \circ d_{\phi}^{*}
$$

where $h>0$ is a parameter and $d_{\phi}: \Omega^{p}(X) \rightarrow \Omega^{p+1}(X)$ denotes the twisted exterior derivative

$$
d_{\phi}=e^{-\phi / h} \circ h d \circ e^{\phi / h}=h d+d \phi^{\wedge} .
$$

Fact:

For any $p=0, \ldots, d$, $\operatorname{dim} \operatorname{Ker} \Delta_{\phi}^{(p)}=b_{p}(X)$.
One has $\operatorname{Ker}\left(d_{\phi}\right)=e^{-\phi / h} \operatorname{Ker}(d)$ and $\operatorname{Ran}\left(d_{\phi}\right)=e^{-\phi / h} \operatorname{Ran}(d)$. Hence

$$
\begin{aligned}
b_{p}(X) & =\operatorname{dim} \operatorname{Ker} d^{(p)} / \operatorname{Ran} d^{(p-1)}=\operatorname{dim} \operatorname{Ker} d_{\phi}^{(p)} / \operatorname{Ran} d_{\phi}^{(p-1)} \\
& =\operatorname{dim} \operatorname{Ker} \Delta_{\phi}^{(p)}
\end{aligned}
$$

Analytic proof of Morse inequalities

Theorem (Witten 82, Helffer-Sjöstrand 84):

There exists $\epsilon_{0}, h_{0}>0$ such that for all $0<h<h_{0}$ and all $p=0, \ldots, d$, one has

$$
\sharp \sigma\left(\Delta_{\phi}^{(p)}\right) \cap\left[0, \epsilon_{0} h\right]=n_{p}(\phi) .
$$

Consequence:

$\operatorname{dim} \operatorname{Ker} \Delta_{\phi}^{(p)} \leq n_{p}(\phi)$.
Proof for $p=0$:

- Lower bound: use the quasimodes

$$
f_{\mathbf{m}}^{(0)}=c_{\mathbf{m}} h^{-\frac{d}{4}} \chi_{\mathbf{m}}(x) e^{(\phi(\mathbf{m})-\phi(x)) / h} .
$$

Motivations

Analytic proof of Morse inequalities

- Upper bound: On 0-forms, one has

$$
\Delta_{\phi}=-h^{2} \Delta+|\nabla \phi|^{2}-h \Delta \phi
$$

- away from critical points, Δ_{ϕ} is elliptic.
- near critical points of index p, one has

$$
\phi(x) \sim \frac{1}{2}\left(\left(x^{\prime}\right)^{2}-\left(x^{\prime \prime}\right)^{2}\right) \text { with } x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{d-p} \times \mathbb{R}^{p}
$$

and

$$
\Delta_{\phi} \sim-h^{2} \Delta+|x|^{2}-h(d-2 p):=N
$$

Since

$$
\sigma\left(-h^{2} \Delta+|x|^{2}\right)=\left\{h \sum_{i=1}^{d} n_{i}, n_{i} \in \mathbb{N}^{*}\right\}
$$

then $0 \in \sigma(N) \Longleftrightarrow p=0$.

- This permit to find a n_{0} dimensional vector space E_{0} such that $\Delta_{\phi} \geq \epsilon h$ on E_{0}^{\perp}.
(1) Introduction
- General framework
- Motivations
(2) Sharp Asymptotics of the small eigenvalues
- The labelling procedure
- Results in a generic case
(3) The degenerate Case
- A simple example
- Gathering interacting minima
- Asymptotics without assumption on the Morse function
(4) Sketch of proofs
- General strategy
- Proof by example

Some remarks about the small eigenvalues

- It is easy to see that the n_{0} small eigenvalues of $\Delta_{\phi}^{(0)}$ are actually $\mathcal{O}\left(e^{-C / h}\right)$ for some $C>0$.
- One sees that C is related to the heights $\phi(\mathbf{s})-\phi(\mathbf{m})$, $\mathbf{s} \in \mathcal{U}^{(1)}, \mathbf{m} \in \mathcal{U}^{(0)}$. Compute the constant C associated to each eigenvalue is not totally clear.
- First step is to identify which heights are relevant for this problem.
- First result in this direction are due to Bovier-Gayrard-Klein 04 (probabilistic approach) and Helffer-Klein-Nier 04 (PDE approach).
- The first step is the following labelling procedure.

The labelling procedure I

For any $\mathbf{s} \in \mathcal{U}^{(1)}$ and $r>0$ small enough, the set

$$
B(\mathbf{s}, r) \cap\{x \in X, \phi(x)<\phi(\mathbf{s})\}
$$

has exactly two connected components $C_{j}(\mathbf{s}, r), j=1,2$.

Definition (Hérau-Hitrik-Sjöstrand, 2011)

- $\mathbf{s} \in \mathcal{U}^{(1)}$ is a separating saddle point (ssp) iff $C_{1}(\mathbf{s}, r)$ and $C_{2}(\mathbf{s}, r)$ are contained in two different connected components of $\{x \in X, \phi(x)<\phi(\mathbf{s})\}$. We denote by $\mathcal{V}^{(1)}$ the set of ssp.
- $\sigma \in \mathbb{R}$ is a separating saddle value (ssv) if it is of the form $\sigma=\phi(\mathbf{s})$ with $\mathbf{s} \in \mathcal{V}^{\left({ }^{(1)}\right)}$. We denote
$\underline{\Sigma}=\phi\left(\mathcal{V}^{(1)}\right)=\left\{\sigma_{2}>\sigma_{3}>\ldots>\sigma_{N}\right\}$.

Example of SSP I

Level set of a potential with 2 minima, 2 saddle points and 1 maximum

The labelling procedure

Example of SSP II

The labelling procedure

Example of SSP II

\mathbf{s}_{1} is not separating

The labelling procedure

Example of SSP III

The labelling procedure

Example of SSP III

\mathbf{s}_{2} is separating

The labelling procedure II

Add a fictive infinite saddle value $\sigma_{1}=+\infty$ to $\underline{\Sigma}$ and let

$$
\Sigma=\left\{\sigma_{1}\right\} \cup \underline{\Sigma}=\left\{\sigma_{1}>\sigma_{2}>\ldots>\sigma_{N}\right\}
$$

- To $\sigma_{1}=+\infty$ associate the unique connected component $E_{1,1}=X$ of $\left\{\phi<\sigma_{1}\right\}$. In $E_{1,1}$, pick up $m_{1,1}$ one (non necessarily unique) minimum of $\phi_{\mid E_{1,1}}$.
- The set $\left\{\phi<\sigma_{2}\right\}$ has finitely many connected components. One of them contains $m_{1,1}$. The others are denoted $E_{2,1}, \ldots, E_{2, N_{2}}$. In each of these CC, one choses one absolute minimum $m_{2, j}$ of $\phi_{\mid E_{2, j}}$.
- The set $\left\{\phi<\sigma_{k}\right\}$ has finitely many CC. One denotes by $E_{k, 1}, \ldots, E_{k, N_{k}}$ those of these CC which do not contain any $m_{i, j}, i<k$. In each $E_{k, j}$ one choses one absolute minimum $m_{k, j}$ of $\phi_{\mid E_{k, j}}$.

The labelling procedure III

Denote $\underline{\mathbf{m}}=\mathbf{m}_{1,1}$ the absolute minimum of ϕ that was chosen at the first step of the labelling procedure, and let

$$
\underline{\mathcal{U}}^{(0)}=\mathcal{U}^{(0)} \backslash\{\underline{\mathbf{m}}\} .
$$

Let $\mathcal{O}(X)$ denote the connected open subsets of X. Using the preceding labelling one constructs the following applications:

- $\sigma: \mathcal{U}^{(0)} \rightarrow \Sigma$, defined by $\sigma\left(\mathbf{m}_{i, j}\right)=\sigma_{i}$.
- $E: \mathcal{U}^{(0)} \rightarrow \mathcal{O}(X)$, defined by $E\left(\mathbf{m}_{i, j}\right)=E_{i, j}$.
- $S=\sigma-\phi$

The Generic case I

The following hypothesis introduced by Hérau-Hitrik-Sjöstrand (2011) is a generalization of Helffer-Klein-Nier assumption (2004).

Generic Assumption (GA):

For all $\mathbf{m} \in \mathcal{U}^{(0)}$, the following hold true:
i) $\phi_{\mid E(\mathbf{m})}$ has a unique point of minimum
ii) if $\overline{E(\mathbf{m})} \cap \mathcal{V}^{(1)} \neq \emptyset$, there exists a unique $\mathbf{s} \in \mathcal{V}^{(1)}$ such that $\phi(\mathbf{s})=\sup \phi\left(\overline{E(\mathbf{m})} \cap \mathcal{V}^{(1)}\right)$.

Under this assumption, there exists a bijection

$$
\mathbf{s}: \mathcal{U}^{(0)} \rightarrow \mathcal{V}^{(1)} \cup\{\infty\}
$$

such that $S(\mathbf{m})=\phi(\mathbf{s}(\mathbf{m}))-\phi(\mathbf{m})$ with the convention $\phi(\infty)=\infty$.

The Generic case II

Let us write $\lambda(\mathbf{m}, h), \mathbf{m} \in \mathcal{U}^{(0)}$ the n_{0} small eigenvalues of Δ_{ϕ}.

Theorem (Helffer-Klein-Nier 2004, Hérau-Hitrik-Sjöstrand 2011)

Suppose the the Generic Assumption is satisfied. Then the n_{0} small eigenvalues of Δ_{ϕ} satisfy

$$
\lambda(\mathbf{m}, h)=h \zeta(\mathbf{m}, h) e^{-2 S(\mathbf{m}) / h}
$$

where $\zeta(\mathbf{m}, h) \sim \sum_{r=0}^{\infty} h^{r} \zeta_{r}(\mathbf{m})$ and

$$
\zeta_{0}(\mathbf{m})=\pi^{-1}|\mu(\mathbf{s}(\mathbf{m}))| \sqrt{\frac{\left|\operatorname{det} \phi^{\prime \prime}(\mathbf{m})\right|}{\left|\operatorname{det} \phi^{\prime \prime}(\mathbf{s}(\mathbf{m}))\right|}}
$$

where $\mu(\mathbf{s})$ is the unique negative eigenvalue of $\phi^{\prime \prime}$ in \mathbf{s}.
(1) Introduction

- General framework
- Motivations
(2) Sharp Asymptotics of the small eigenvalues
- The labelling procedure
- Results in a generic case
(3) The degenerate Case
- A simple example
- Gathering interacting minima
- Asymptotics without assumption on the Morse function
(4) Sketch of proofs
- General strategy
- Proof by example

A simple example

Suppose that the following hypothesis are verified:

- The set of minimal values is reduced to one point: $\exists c_{0}, \forall \mathbf{m} \in \mathcal{U}^{(0)}, \phi(\mathbf{m})=c_{0}$
- The set of saddle values is reduced to one point: $\exists c_{1}, \forall \mathbf{m} \in \mathcal{U}^{(1)}, \phi(\mathbf{m})=c_{1}$

Figure 1: The sublevel set $\{\varphi<\sigma\}$ (dashed region) associated to a potential φ satisfying the assumptions. The x's represent local minima, the o's, local maxima.

Theorem

The n_{0} small eigenvalues of Δ_{ϕ} satisfy $\lambda_{1}=0$ and for all $k=2, \ldots n_{0}$,

$$
\lambda_{k}(h)=h \zeta_{k}(h) e^{-2 S / h}
$$

where $S=c_{1}-c_{0}$ and

$$
\zeta_{k}(h) \sim \sum_{r=0}^{\infty} h^{r} \zeta_{k, r}
$$

and $\zeta_{k, 0}$ are the non zero eigenvalues of the weighted graph \mathcal{G} defined by

- The vertices of the graph are the minima $\mathbf{m} \in \widehat{\mathcal{U}}^{(0)}$.
- The edges between two vertices $\mathbf{m}, \mathbf{m}^{\prime}$ are the saddle points $\mathbf{s} \in \mathcal{U}^{(1)}$ such that $\mathbf{s} \in \bar{E}(\mathbf{m}) \cap \bar{E}\left(\mathbf{m}^{\prime}\right)$.
- The weights explicitly depend on the values of $\phi^{\prime \prime}$ on $\mathcal{U}^{(0)}$ and $\mathcal{U}^{(1)}$.

Figure 2: The sublevel set $\{\varphi<\sigma\}$ (dashed region) associated to a potential φ satisfying the assumptions. The x's represent local minima, the o's, local maxima.

Figure 3: The graph associated to the potential represented in Figure ??

Gathering interacting minima

Gathering interacting minima

For any $\mathbf{m} \in \underline{\mathcal{U}}^{(0)}$, let

- $G(\mathbf{m})$ denotes the connected component of $\{\phi \leq \sigma(\mathbf{m})\}$ that contains \mathbf{m}.

Fact:

For any $\mathbf{m} \neq \underline{\mathbf{m}}$, there exists a unique $\hat{\mathbf{m}}=\hat{\mathbf{m}}(\mathbf{m}) \in G(\mathbf{m}) \cap \mathcal{U}^{(0)}$ such that $\sigma(\hat{\mathbf{m}})>\sigma(\mathbf{m})$

We denote by $\widehat{E}(\mathbf{m})$ the connected component of $\{\phi<\sigma(\mathbf{m})\}$ that contains $\hat{\mathbf{m}}(\mathbf{m})$. This defines two applications

$$
\hat{\mathbf{m}}: \underline{\mathcal{U}}^{(0)} \rightarrow \mathcal{U}^{(0)} \text { and } \hat{E}: \underline{\mathcal{U}}^{(0)} \rightarrow \mathcal{O}(X)
$$

Gathering interacting minima

Two different types of minima

Observe that by definition, we have

$$
\forall \mathbf{m} \in \underline{\mathcal{U}}^{(0)}, \phi(\hat{\mathbf{m}}(\mathbf{m})) \leq \phi(\mathbf{m})
$$

The fact that the above inequality is large or strict plays an important role in our analysis.

Definition

Let $\mathbf{m} \in \underline{\mathcal{U}}^{(0)}$. We say that \mathbf{m} is of type I if $\phi(\hat{\mathbf{m}}(\mathbf{m}))<\phi(\mathbf{m})$. If $\phi(\hat{\mathbf{m}}(\mathbf{m}))=\phi(\mathbf{m})$, we say that \mathbf{m} is of type II. We will denote

$$
\begin{aligned}
\underline{\mathcal{U}}^{(0), I} & =\left\{\mathbf{m} \in \underline{\mathcal{U}}^{(0)}, \mathbf{m} \text { is of type I }\right\} \\
\underline{\mathcal{U}}^{(0), I I} & =\left\{\mathbf{m} \in \underline{\mathcal{U}}^{(0)}, \mathbf{m} \text { is of type II }\right\}
\end{aligned}
$$

We have clearly the following disjoint union $\underline{\mathcal{U}}^{(0)}=\underline{\mathcal{U}}^{(0), I} \cup \underline{\mathcal{U}}^{(0), I I}$.

Gathering interacting minima

An equivalence relation on $\mathcal{U}^{(0)}$

For $\sigma \in \Sigma$, let Ω_{σ} be defined by

$$
\Omega_{\sigma}=\left\{E(\mathbf{m}), \mathbf{m} \in \sigma^{-1}(\sigma)\right\} \bigcup\left\{\widehat{E}(\mathbf{m}), \mathbf{m} \in \sigma^{-1}(\sigma) \cap \underline{\mathcal{U}}^{(0), I I}\right\}
$$

Definition:

We define an equivalence relation \mathcal{R} on $\mathcal{U}^{(0)}$ by $\mathbf{m} \mathcal{R} \mathbf{m}^{\prime}$ if and only if the two following properties hold true

- $\boldsymbol{\sigma}(\mathbf{m})=\boldsymbol{\sigma}\left(\mathbf{m}^{\prime}\right)=\sigma$
- \mathbf{m} and \mathbf{m}^{\prime} belong to the same connected component of $\cup_{\omega \in \Omega_{\sigma}} \bar{\omega}$.
We denote by $\mathrm{Cl}(\mathbf{m})$ the equivalence class of any $\mathbf{m} \in \mathcal{U}^{(0)}$ and by $\left(\mathcal{U}_{\alpha}^{(0)}\right)_{\alpha \in \mathcal{A}}=\mathcal{U}^{(0)} / \mathcal{R}$.

Main Theorem

For any $\alpha \in \mathcal{A}$, denote $\mathcal{S}_{\alpha}=S\left(\mathcal{U}_{\alpha}^{(0)}\right)$ and $p(\alpha)=\sharp \mathcal{S}_{\alpha}$ and

$$
\mathcal{S}_{\alpha}=\left\{S_{\nu_{1}^{\alpha}}, \ldots, S_{\nu_{p(\alpha)}^{\alpha}}^{\alpha}\right\}
$$

for some integers $\nu_{1}^{\alpha}<\nu_{2}^{\alpha}<\ldots<\nu_{p(\alpha)}^{\alpha}$.

Theorem

There exist $c>0$ and some symmetric positive definite matrices $\mathcal{M}^{\alpha}, \alpha \in \mathcal{A}$ such that counted with multiplicity, on has $\sigma\left(\Delta_{\phi}\right) \cap\left[0, \epsilon_{0} h\right]=\bigcup_{\alpha \in \mathcal{A}} \sigma\left(\mathcal{M}^{\alpha}\right)\left(1+\mathcal{O}\left(e^{-c / h}\right)\right)$ with

$$
\sigma\left(\mathcal{M}^{\alpha}\right)=\bigcup_{j=1}^{p(\alpha)} h e^{-2 h^{-1} S_{\nu_{j}^{\alpha}}} \sigma\left(M^{\alpha, j}\right)
$$

for some symmetric positive definite matrices $M^{\alpha, j}$ having a classical expansion with explicit invertible leading term

Comments

- The way to construct the matrices \mathcal{M}_{α} depends on
- the number of equivalence class of \mathcal{R}
- the number $p(\alpha)$ of values taken by φ on each equivalence class $\mathcal{U}_{\alpha}^{(0)}$.
- If there is only one equivalence class $\mathcal{U}_{\alpha_{0}}^{(0)}$ and if $p\left(\alpha_{0}\right)=1$ then we are in the case where $\mathcal{M}_{\alpha_{0}}$ is a graph Laplacian.
- If $p\left(\alpha_{0}\right) \geq 2$, the situation is more complicated.
(1) Introduction
- General framework
- Motivations
(2) Sharp Asymptotics of the small eigenvalues
- The labelling procedure
- Results in a generic case
(3) The degenerate Case
- A simple example
- Gathering interacting minima
- Asymptotics without assumption on the Morse function

4. Sketch of proofs

- General strategy
- Proof by example

Finite dimensional reduction

The general strategy of Helffer-Klein-Nier is the following:

- Introduce
- $F^{(0)}=$ eigenspace associated to the n_{0} low lying eigenvalues on 0-forms
- $\Pi^{(0)}=$ projector on $F^{(0)}$.
- $M=$ restriction of Δ_{ϕ} to $F^{(0)}$.

We have to compute the eigenvalues of M.

- We compute suitable BKW approximated eigenfunctions $f_{m}^{(0)}$ indexed by $\mathbf{m} \in \mathcal{U}^{(0)}$, and show that

$$
\Pi^{(0)} f_{\mathbf{m}}^{(0)}=f_{\mathbf{m}}^{(0)}+\text { error }
$$

and compute the matrix of M in the base $\Pi^{(0)} f_{m}^{(0)}$.

- Doing that leads to error terms which are too big.
- In order to overcome this difficulty, they use the supersymmetric structure.

General strategy

Using Supersymmetry

The fondamental remarks are the following:

- $\Delta_{\phi}^{(p+1)} d_{\phi}^{(p)}=d_{\phi}^{(p)} \Delta_{\phi}^{(p)}$ and $d_{\phi}^{(p), *} \Delta_{\phi}^{(p+1)}=\Delta_{\phi}^{(p)} d_{\phi}^{(p), *}$
- Denote $F^{(1)}$ the eigenspace associated to low lying eigenvalues on 1 forms, then $d_{\phi}^{(0)}\left(F^{(0)}\right) \subset F^{(1)}$ and $d_{\phi}^{(0), *}\left(F^{(1)}\right) \subset F^{(0)}$. Hence

$$
M=L^{*} L
$$

where L is the matrix of $d_{\phi}^{(0)}: F^{(0)} \rightarrow F^{(1)}$.

- The matrix L is well approximated by

$$
L \simeq \mathcal{L}:=\left(\left\langle d_{\phi}^{(0)} f_{\mathrm{m}}^{(0)}, f_{\mathrm{s}}^{(1)}\right\rangle\right)_{, \mathbf{s} \in \mathcal{U}^{(1)} \mathbf{m} \in \mathcal{U}^{(0)}}
$$

where $f_{\mathrm{s}}^{(1)}$ are BKW approximated eigenfunctions on 1-form.

General strategy

Form of the quasimodes

- On 0-forms, one takes $f_{\mathbf{m}}^{(0)}=\sum_{\mathbf{m}^{\prime} \in \mathrm{CI}(\mathbf{m})} \theta_{\mathbf{m}}\left(\mathbf{m}^{\prime}\right) g_{\mathbf{m}^{\prime}}^{(0)}$ with

$$
g_{\boldsymbol{m}^{\prime}}^{(0)}=h^{-\frac{d}{4}} \chi_{\mathbf{m}^{\prime}}(x) e^{-\left(\phi(x)-\phi\left(\mathbf{m}^{\prime}\right)\right) / h}
$$

and $\chi_{\mathbf{m}^{\prime}} \simeq \mathbb{1}_{E\left(\mathbf{m}^{\prime}\right)}$.

- On 1-forms, one takes

$$
f_{\mathbf{s}}^{(1)}=h^{-\frac{d}{4}} \chi_{\mathbf{s}}(x) b_{s}(x, h) e^{-\left(\phi_{+}(x)-\phi(\mathbf{s})\right) / h}
$$

with $\chi_{\mathbf{s}}$ cut-off function near \mathbf{s}, ϕ_{+}phase function solving the eikonal equation

$$
\left|\nabla \phi_{+}\right|^{2}=|\nabla \phi|^{2}
$$

and $b_{s}(x, h)$ a 1 form obtained by solving some transport equations.

Computation of the singular values

- One has $\mathcal{L}=\widehat{\mathcal{L}} \mathcal{T}$ with $\mathcal{T}=\left(\theta_{\mathbf{m}}\left(\mathbf{m}^{\prime}\right)\right)_{\mathbf{m}, \mathbf{m}^{\prime}}$ an orthogonal matrix and

$$
\widehat{\mathcal{L}}=\left(\left\langle d_{\phi}^{(0)} g_{\mathbf{m}}^{(0)}, f_{\mathbf{s}}^{(1)}\right\rangle\right)_{\mathbf{s} \in \mathcal{U}^{(1)}, \mathbf{m} \in \mathcal{U}^{(0)}}
$$

- The computation of the coefficients of $\widehat{\mathcal{L}}$ is performed by Laplace Method.
- Under the Generic Assumption (GA), the matrix $\widehat{\mathcal{L}}$ is diagonal. Its singular values are then given by its diagonal coefficients.
- In the general case, $\widehat{\mathcal{L}}$ is only block-diagonal

$$
\widehat{\mathcal{L}}=\operatorname{diag}\left(\widehat{\mathcal{L}}^{\alpha}, \alpha \in \mathcal{A}\right)
$$

where each block \mathcal{L}^{α} corresponds to an equiv. class of \mathcal{R}.

- If $p(\alpha)=1$, each block has a typical size $e^{-S_{\alpha} / h}$.
- If $p(\alpha) \geq 2$, we can perform a Schur type argument on each block.

Proof by example

Computations in dimension when $p(\alpha)=1$

Suppose ϕ is given by

Figure 4: A potential satisfying $\mathrm{H}(1)$

Proof by example

The case $p(\alpha)=1$ continued

The interaction matrix is

$$
\begin{array}{r}
\mathbf{m}_{1,1} \\
\mathbf{m}_{2,1} \\
\mathbf{m}_{2,2}
\end{array} \mathbf{m}_{2,3} \mathbf{s}^{\mathbf{s}_{1}} \begin{aligned}
& \mathbf{s}_{2} \\
& \mathbf{s}_{3}
\end{aligned}\left(\begin{array}{cccc}
0 & e^{-S_{2} / h} & -e^{-S_{2} / h} & 0 \\
0 & 0 & e^{-S_{2} / h} & 0 \\
0 & 0 & 0 & e^{-S_{3} / h}
\end{array}\right)
$$

This block structure implies:

$$
S V(\widehat{\mathcal{L}})=\{0\} \cup e^{-S_{2} / h} S V\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \cup\left\{e^{-S_{3} / h}\right\}
$$

Proof by example

Computations in dimension one when $p(\alpha)=2$

Suppose that ϕ is given by

Figure 5: A potential with $p(\alpha)=2$

Proof by example

The interaction matrix is

$$
\left.\begin{array}{c}
\\
\\
\\
\begin{array}{c}
\mathcal{L}
\end{array}=e^{-S_{3} / h} \\
\mathbf{s}_{1} \\
\mathbf{s}_{2} \\
\mathbf{s}_{3}
\end{array} \begin{array}{cccc}
\mathbf{m}_{2,1} & \mathbf{m}_{2,2} & \mathbf{m}_{2,3} \\
0 & e^{-\left(S_{2}-S_{3}\right) / h} & -e^{-\left(S_{2}-S_{3}\right) / h} & 0 \\
0 & 0 & e^{-\left(S_{2}-S_{3}\right) / h} & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This is not a block-diagonal matrix, but $\mathcal{M}:=\widehat{\mathcal{L}}^{*} \widehat{\mathcal{L}}$ has the form:

$$
\mathcal{M}=e^{-2 S_{3} / h}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \epsilon^{2} A & \epsilon B^{*} \\
0 & \epsilon B & J
\end{array}\right)
$$

with $\epsilon=e^{-\left(S_{2}-S_{3}\right) / h} \ll 1$. So we can use Schur complement method to compute its eigenvalues. We get

$$
\begin{aligned}
\sigma(\mathcal{M}) & =e^{-2 S_{3} / h}\left(\sigma(J)+\mathcal{O}\left(e^{-2\left(S_{2}-S_{3}\right) / h}\right)\right) \\
& \cup e^{-2 S_{2} / h}\left(\sigma\left(A-B^{*} J^{-1} B\right)+\mathcal{O}\left(e^{-2\left(S_{2}-S_{3}\right) / h}\right)\right) \cup\{0\}
\end{aligned}
$$

The general case

- Block-diagonalize the interaction matrix: $\widehat{\mathcal{L}}=\operatorname{diag}\left(\widehat{\mathcal{L}}^{\alpha}, \alpha \in \mathcal{A}\right)$ where each block \mathcal{L}^{α} corresponds to an equiv. class of \mathcal{R}.
- Observe that $\mathcal{M}_{\alpha}:=\left(\mathcal{L}^{\alpha}\right)^{*} \mathcal{L}^{\alpha}$ has a nice structure: $\mathcal{M}_{\alpha}=\Omega_{\alpha} \tilde{\mathcal{M}}_{\alpha} \Omega_{\alpha}$ with \mathcal{M}_{α} "independent" of h and

$$
\Omega^{\alpha}=\left(\begin{array}{ccccc}
I_{r_{p}} & 0 & \ldots & \ldots & 0 \\
0 & \tau_{2} I_{r_{p-1}} & 0 & \ldots & 0 \\
\vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & 0 & \tau_{2} \tau_{3} \ldots \tau_{p} I_{r_{1}}
\end{array}\right)
$$

where $\tau_{j}=e^{\left(S_{\nu_{p-(j-2)}}-S_{\left.\nu_{p-(j-1)}\right)}\right) / h}$ for any $j=2, \ldots, p$ and $p=p(\alpha)$ is the number of values taken by ϕ on $\mathcal{U}_{\alpha}^{(0)}$.

- Apply Schur complement's method and induction on $p(\alpha)$.

