Scattering amplitude for the Schrödinger equation with strong magnetic field

Forges-les-eaux, June 6-10, 2005

Laurent Michel

I Introduction

I. 1 Framework

We consider the Schrödinger operator with constant magnetic field

$$
\mathrm{H}(b)=\mathrm{H}_{0}(b)+b^{\gamma} V(x, y, z)
$$

where

$$
\mathrm{H}_{0}(b)=\left(i \frac{\partial}{\partial x}+\frac{b}{2} y\right)^{2}+\left(i \frac{\partial}{\partial y}-\frac{b}{2} x\right)^{2}-\Delta_{z} .
$$

Here $x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}^{n-2}, b>0$ is a parameter and $\gamma \in[0,1]$ is fixed.

In all this talk, we will assume that V satisfies the following hypothesis

Assumption 1

$$
V(x, y, z)=V^{\infty}(z)+W(x, y, z)
$$

with $V^{\infty} \in C_{0}^{\infty}\left(\mathbb{R}^{n-2}\right)$, $W \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $V, V^{\infty} \geq 0$.

Consequence: The scattering operator $S(b): L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ associate to the pair $\left(\mathrm{H}_{0}(b), \mathrm{H}(b)\right)$ is well-defined, [Avron-Herbst-Simon 78'].

Recall that the scattering operator admits the following definition. For $\psi_{1} \in L^{2}\left(\mathbb{R}^{n}\right)$ there exists a unique function $\psi \in L^{\infty}\left(\mathbb{R}_{t}, L^{2}\left(\mathbb{R}^{n}\right)\right)$ solution of

$$
\left\{\begin{array}{l}
i \partial_{t} \psi=H(b) \psi \\
\lim _{t \rightarrow-\infty}\left\|\psi(t, .)-e^{-i t H_{0}(b)} \psi_{1}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=0
\end{array}\right.
$$

where $e^{-i t H_{0}(b)} \psi_{1}$ denotes the solution of the free Schrödinger equation ($V=0$) with initial condition ψ_{0} in $t=0$. Moreover, there exists a unique $\psi_{2} \in L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\lim _{t \rightarrow+\infty}\left\|\psi(t, .)-e^{-i t H_{0}(b)} \psi_{2}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=0
$$

The scattering operator $S(b): L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\psi_{2}=S(b) \psi_{1}
$$

I. 2 Scattering matrix

Let us denote $\widehat{\mathrm{H}}_{0}(b)=\left(i \frac{\partial}{\partial x}+\frac{b}{2} y\right)^{2}+\left(i \frac{\partial}{\partial y}-\frac{b}{2} x\right)^{2}$ acting on $L^{2}\left(\mathbb{R}^{2}\right)$. Then, there exists U unitary on $L^{2}\left(\mathbb{R}^{2}\right)$ such that

$$
U \widehat{\mathrm{H}}_{0}(b) U^{*}=b N_{x} \otimes I_{y}
$$

where $N_{x}=-\frac{d^{2}}{d x^{2}}+x^{2}$ is the harmonic oscillator. Therefore

$$
\sigma\left(\widehat{\mathrm{H}}_{0}(b)\right)=\sigma_{p p}\left(\widehat{\mathrm{H}}_{0}(b)\right)=b\left(2 \mathbb{N}^{*}-1\right) .
$$

These eigenvalues are called the Landau levels. We denote by

$$
\Pi_{q}: L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)
$$

the projector onto $\operatorname{ker}\left(\widehat{\mathrm{H}}_{0}(b)-b(2 q-1)\right), q \in \mathbb{N}^{*}$ and we define

$$
\mathcal{F}_{0}: L^{2}\left(\mathbb{R}^{n-2}\right) \rightarrow L^{2}\left(\mathbb{R}_{+}^{*}, L^{2}\left(S^{n-3}\right), d E\right)
$$

by

$$
\mathcal{F}_{0} \varphi(E)=E^{\frac{n-4}{4}} \hat{\varphi}(\sqrt{E} .)
$$

where $\hat{\varphi}$ denotes the Fourier transfor of φ. Next, we define

$$
\mathcal{F}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}_{+}^{*}, L^{2}\left(\mathbb{R}^{2} \times S^{n-3}\right), d E\right)
$$

by

$$
\mathcal{F} \varphi(E)=\sum_{1 \leq q<\frac{1+E / b}{2}} \Pi_{q} \otimes \mathcal{F}_{0} \varphi(E-b(2 q-1)) .
$$

Then \mathcal{F} is a unitary isomorphism and

- $\mathcal{F} \mathrm{H}_{0} \mathcal{F}^{*}$ is the multiplication by E on $L^{2}\left(\mathbb{R}_{+}^{*}, L^{2}\left(\mathbb{R}^{2} \times S^{n-3}\right), d E\right)$
- For all $t>0, \mathcal{F} S(b) \mathcal{F}^{*}$ and $e^{i t \mathcal{F} H_{0} \mathcal{F}^{*}}$ commute.

Hence (cf. [Reed-Simon, T4]), there exists a function $E \mapsto S(E, b)$ in $L^{\infty}\left(\mathbb{R}_{+}^{*}, \mathcal{L}\left(L^{2}\left(\mathbb{R}^{2} \times S^{n-3}\right)\right)\right)$ such that

$$
\forall \varphi \in L^{2}\left(\mathbb{R}^{n}\right), S(b) \varphi=\mathcal{F}^{*} S(E, b) \mathcal{F} \varphi
$$

For $E>0, S(E, b)$ is called the scattering matrix (it is a matrix only in the case $n=3$).

II Main results

II. 1 Representation formula

For $\alpha \in \mathbb{R}$ we use the L^{2}-weighted space $L_{\alpha}^{2}=L^{2}\left(\mathbb{R}^{n},\langle z\rangle^{\alpha} d x d y d z\right)$ where $\langle z\rangle=\left(1+|z|^{2}\right)^{1 / 2}$ and for $E>0, \alpha>1 / 2$ we define

$$
\mathcal{F}(E): L_{\alpha}^{2} \rightarrow L^{2}\left(\mathbb{R}^{2} \times S^{n-3}\right)
$$

by $\mathcal{F}(E) \varphi=\mathcal{F} \varphi(E)$.
Theorem 1 Suppose that the potential V satisfies Assumption 1 and denote by $\sigma_{p p}(\mathrm{H})$ the point spectrum of $\mathrm{H}(b)$. Then, for all $E \in] b,+\infty\left[\backslash\left(b\left(2 \mathbb{N}^{*}-1\right) \cup \sigma_{p p}(\mathrm{H})\right)\right.$, one has

$$
\begin{aligned}
S(E, b)-I d= & -2 i \pi b^{\gamma} \mathcal{F}(E) V \mathcal{F}(E)^{*} \\
& +2 i \pi b^{2 \gamma} \mathcal{F}(E) V R(E+i 0) V \mathcal{F}(E)^{*},
\end{aligned}
$$

where

$$
R(E+i 0)=\lim _{\mu \rightarrow 0^{+}}(\mathrm{H}(b)-E-i \mu)^{-1}
$$

exists in the space $\mathcal{L}\left(L_{\alpha}^{2}, L_{-\alpha}^{2}\right)$ for $\alpha>1 / 2$.

Corollary 1 For $E \in] b,+\infty\left[\backslash\left(b\left(2 \mathbb{N}^{*}-1\right) \cup \sigma_{p p}(H)\right)\right.$,
$T(E, b):=S(E, b)-I d$ has a kernel

$$
\left(\omega, \omega^{\prime}\right) \in S^{n-3} \times S^{n-3} \rightarrow T\left(\omega, \omega^{\prime}, E, b\right) \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{2}\right)\right)
$$

which is smooth on $S^{n-3} \times S^{n-3}$. The map $\left(\omega, \omega^{\prime}\right) \mapsto T\left(\omega, \omega^{\prime}, E, b\right)$ is called the scattering amplitude.

Goal: Study $T\left(\omega, \omega^{\prime}, E, b\right)$ when $b \rightarrow \infty$. We work with energies far from the Landau levels; $E=\lambda b$ with $\lambda \notin 2 \mathbb{N}^{*}-1$.

Two different regimes according to γ :

- $\gamma \in[0,1 / 2[$: High energy behavior.
- $\gamma \in[1 / 2,1]$: Semiclassical behavior.

II. 2 Very short bibliography

II.2.1 Representation formula for the Schrödinger equation (without magnetic field)

- S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151-218.

II.2.2 Scattering amplitude for the semiclassical Schrödinger equation in the non-trapping case

- B. R. Vainberg, Quasiclassical approximation in stationnary scattering problems, Funct. Anal. Appl., 11, no 4, 247-257.
- D. Robert and H. Tamura, Asymptotic behavior of the scattering amplitudes in semiclassical and low energy limit, Ann. Inst. Fourier, 39 (1989), no. 1, 155-192.

II.2.3 Spectral Shift Function for Schrödinger equation with strong magnetic field

- V. Bruneau and M. Dimassi, Weak asymptotics of the spectral shift function in strong constant magnetic field, Math. Nachr., to appear.
- V. Bruneau, A. Pushnitski and G. Raikov, Spectral shift function in strong magnetic fields, Algebra i Analiz, 16 (2004), no. 1, 207-238.

II. 3 Asymptotics in the case $\gamma=0$

Theorem 2 Suppose that Assumption 1 is satisfied and let $\lambda \in] 2 q_{0}-1,2 q_{0}+1\left[\right.$ for some $q_{0} \in \mathbb{N}^{*}$. When b tends to infinity, $\lambda b \notin \sigma_{p p}(H(b))$ and

$$
\begin{gathered}
T\left(\omega, \omega^{\prime}, \lambda b, b\right)=\frac{i b^{\frac{n-4}{2}}}{2(2 \pi)^{n-1}} \sum_{q=1}^{q_{0}} \lambda_{q}^{\frac{n-4}{2}} \widehat{V}^{z}\left(x, y,, b^{1 / 2} \lambda_{q}^{1 / 2}\left(\omega-\omega^{\prime}\right)\right) \Pi_{q} \\
+\mathcal{O}\left(b^{\frac{n-5}{2}}\right)
\end{gathered}
$$

in $\mathcal{L}\left(L^{2}\left(\mathbb{R}^{2}\right)\right)$, where $\lambda_{q}=\lambda-2 q+1$.
From this theorem we deduce the following inverse scattering result.
Corollary 2 Suppose that V_{1}, V_{2} satisfy Assumption 1. Assume that the associate scattering operators S_{1} and S_{2} are equal. Then $V_{1}=V_{2}$.

II. 4 Asymptotics in the case $\gamma=1$

From now, we assume that $\lambda \in] 2 q_{0}-1,2 q_{0}+1\left[, q_{0} \in \mathbb{N}^{*}\right.$ and for $q \in\left\{1, \ldots, q_{0}\right\}$ we set $\lambda_{q}=\lambda-2 q+1$. For $(x, y) \in \mathbb{R}^{2}$, let us denote

$$
\begin{gathered}
p_{x, y}\left(z, z^{*}\right)=\left|z^{*}\right|^{2}+V(x, y, z), \forall\left(z, z^{*}\right) \in T^{*} \mathbb{R}^{n-2}, \\
H_{p_{x, y}}=\partial_{z^{*}} p_{x, y} \partial_{z}-\partial_{z} p_{x, y} \partial_{z^{*}}
\end{gathered}
$$

the associated Hamiltonian vector field and $t \mapsto \exp \left(t H_{p_{x, y}}\right)\left(z, z^{*}\right)$ the solution of the Hamiltonian system

$$
\begin{equation*}
\dot{Z}=2 Z^{*}, \dot{Z}^{*}=-\nabla_{z} V(x, y, Z) \tag{1}
\end{equation*}
$$

with initial condition $\left(Z, Z^{*}\right)_{\mid t=0}=\left(z, z^{*}\right)$.
We introduce the following non-trapping condition.
Assumption 2 For all $q=1, \ldots, q_{0}$ and all $(x, y) \in \mathbb{R}^{2}$,

$$
\lim _{|t| \rightarrow \infty}\left|\exp \left(t H_{p_{x, y}}\right)\left(z, z^{*}\right)\right|=+\infty
$$

for all $\left(z, z^{*}\right) \in T^{*} \mathbb{R}^{n-2}$ such that $\left|z^{*}\right|^{2}+V(x, y, z)=\lambda_{q}$.

II.4.1 Asymptotics in dimension 3

In dimension $n=3$, the structure of the classical scattered trajectories is rather simple and the preceding assumption is sufficient to state a theorem. Let us denote

$$
S(E, b)=\left(\begin{array}{cc}
S_{11}(E, b) & S_{12}(E, b) \\
S_{21}(E, b) & S_{22}(E, b)
\end{array}\right)
$$

the scattering matrix in dimension 3 , with $S_{i j}(E, b) \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{2}\right)\right)$. From Assumption 2, we deduce easily that there exists $q_{1} \in\left\{1, \ldots, q_{0}+1\right\}$ such that:

- for all $q \in\left\{1, \ldots, q_{1}-1\right\}$ and all $(x, y) \in \mathbb{R}^{2}, \lambda_{q}>\sup _{z \in \mathbb{R}} V(x, y, z)$
- for all $q \in\left\{q_{1}, \ldots, q_{0}\right\}$ and all $(x, y) \in \mathbb{R}^{2}$, the equation in z
$V(x, y, z)=\lambda_{q}$ has exactly two solutions $\alpha_{q}(x, y)<\beta_{q}(x, y)$ and these solutions are non-critical points of $z \mapsto V(x, y, z)$.

Figure 1: A potential satisfying Assumption 2.

Class of symbols:

Let $m: \mathbb{R}^{d} \rightarrow[0,+\infty[$ be an order function, that is:

$$
\exists C, N>0, \forall x, y \in \mathbb{R}^{d}, m(x) \leq C\langle x-y\rangle^{N} m(y) .
$$

For $\delta \in[0,1]$, we say that a function $\left.\left.a(x, h) \in C^{\infty}\left(\mathbb{R}^{d} \times\right] 0,1\right]\right)$ belongs to the class $S^{\delta}\left(\mathbb{R}^{d}, m, h\right)$ if

$$
\forall \alpha \in \mathbb{N}^{d}, \exists C_{\alpha}>0,\left|\partial_{x}^{\alpha} a(x, h)\right| \leq C_{\alpha} h^{-\delta|\alpha|} m(x) .
$$

For a in a suitable class of symbol, we will denote by $a^{w}\left(x, h D_{x}\right)$ the standard Weyl-quantization of a.

Theorem 3 Suppose that $n=3$ and that Assumption 1 and 2 are fulfilled, then we have the following asymptotics.

Diagonal coefficients

$$
\begin{aligned}
S_{11}(\lambda b, b)=\sum_{q=1}^{q_{1}-1} s_{d, q}^{w}\left(\lambda, y / 2-b^{-1} D_{x}, x / 2-b^{-1} D_{y}\right) \Pi_{q} & +\sum_{q=q_{0}+1}^{+\infty} \Pi_{q} \\
& +\mathcal{O}\left(b^{-\infty}\right)
\end{aligned}
$$

in $\mathcal{L}\left(L^{2}\left(\mathbb{R}^{2}\right)\right.$, with $s_{d, q} \in S^{1 / 2}\left(\mathbb{R}^{2}, b^{-1}\right)$ and
$s_{d, q}(\lambda, y, \xi)=\exp \left(i b^{1 / 2} \int_{-\infty}^{+\infty} \sqrt{\lambda_{q}-V(\xi, y, z)}-\sqrt{\lambda_{q}} d z\right)+\mathcal{O}\left(b^{-1 / 2}\right)$.

Off-diagonal coefficients

$$
S_{21}(\lambda b, b)=\sum_{q=q_{1}}^{q_{0}} s_{a, q}^{w}\left(\lambda, y / 2-b^{-1} D_{x}, x / 2-b^{-1} D_{y}\right) \Pi_{q}+\mathcal{O}\left(b^{-\infty}\right)
$$

in $\mathcal{L}\left(L^{2}\left(\mathbb{R}^{2}\right)\right)$, with $s_{a, q} \in S^{1 / 2}\left(\mathbb{R}^{2}, b^{-1}\right)$ and

$$
\begin{aligned}
& s_{a, q}(\lambda, y, \xi)= \\
& i \exp \left(2 i b^{1 / 2}\left(\sqrt{\lambda_{q}} \alpha_{q}(\xi, y)+\int_{-\infty}^{\alpha_{q}(\xi, y)} \sqrt{\lambda_{q}-V(\xi, y, z)}-\sqrt{\lambda_{q}} d z\right)\right) \\
& +\mathcal{O}\left(b^{-1 / 2}\right)
\end{aligned}
$$

II.4.2 Asymptotics in dimension $n \geq 4$

From now, we fix a couple of directions $\left(\omega, \omega^{\prime}\right) \in S^{n-3} \times S^{n-3}$. As V is compactly supported in the variable z, out of a compact set the solutions of (1) are straight lines and it is easy to see that for all $(x, y) \in \mathbb{R}^{2}$, $q=1, \ldots, q_{0}$ and $\tilde{z} \in \omega^{\perp}$, there exists a unique solution
$\left(Z_{q, \infty}, Z_{q, \infty}^{*}\right)(t, x, y, \tilde{z}, \omega)$ of (1) such that for $-t>0$ large enough

$$
Z_{q, \infty}(t, x, y, \tilde{z}, \omega)=2 \sqrt{\lambda_{q}} \omega t+\tilde{z}
$$

Under Assumption 2, we can precise the behavior of these particles when t goes to $+\infty$. There exists $\theta_{q, \infty}(x, y, \tilde{z}, \omega) \in S^{n-3}$ and $r_{q, \infty}(x, y, \tilde{z}, \omega) \in \mathbb{R}^{n-2}$ such that for $t>0$ large enough

$$
\begin{aligned}
Z_{q, \infty}(t, x, y, \tilde{z}, \omega) & =2 \sqrt{\lambda_{q}} \theta_{q, \infty}(x, y, \tilde{z}, \omega) t+r_{q, \infty}(x, y, \tilde{z}, \omega) \\
Z_{q, \infty}^{*}(t, x, y, \tilde{z}, \omega) & =\sqrt{\lambda_{q}} \theta_{q, \infty}(x, y, \tilde{z}, \omega) .
\end{aligned}
$$

For $\tilde{z} \in \omega^{\perp} \simeq \mathbb{R}^{n-3}$, we define the angular densities by

$$
\widehat{\sigma}_{q}(x, y, \tilde{z})=\left|\operatorname{det}\left(\theta_{q, \infty}, \partial_{\tilde{z}_{1}} \theta_{q, \infty}, \ldots, \partial_{\tilde{z}_{n-3}} \theta_{q, \infty}\right)\right|
$$

Assumption 3 We suppose that for all $q \in\left\{1, \ldots, q_{0}\right\},(x, y) \in \mathbb{R}^{2}$ and all $\tilde{z} \in \omega^{\perp}$ with $\theta_{q, \infty}(x, y, \tilde{z})=\omega^{\prime}$, we have $\widehat{\sigma}_{q}(x, y, \tilde{z}) \neq 0$.

Consequence: It follows from this assumption and implicit function theorem that for all $q \in\left\{1, \ldots, q_{0}\right\}$ and all $(x, y) \in \mathbb{R}^{2}$, the equation

$$
\theta_{q, \infty}(x, y, \tilde{z}, \omega)=\omega^{\prime}
$$

has a finite number of solutions $\tilde{z}_{q, 1}(x, y), \ldots, \tilde{z}_{q, l_{q}}(x, y)$ smooth with respect to (x, y). Moreover, the number l_{q} does not depend on (x, y).

Theorem 4 Suppose that $n \geq 4$ and that Assumptions 1, 2 and 3 are satisfied. Then $\lambda b \notin \sigma_{p p}(\mathrm{H}(b))$ and

$$
\begin{aligned}
& T\left(\omega, \omega^{\prime}, \lambda b, b\right)= \\
& b^{\frac{n-3}{4}} \sum_{q=1}^{q_{0}} \lambda^{\frac{n-3}{4}} T_{q}^{w}\left(\omega, \omega^{\prime}, y / 2-b^{-1} D_{x}, x / 2+b^{-1} D_{y}\right) \Pi_{q}+\mathcal{O}\left(b^{\frac{n-5}{4}}\right)
\end{aligned}
$$

in $\mathcal{L}\left(L^{2}\left(\mathbb{R}^{2}\right)\right)$, where

$$
T_{q}\left(\omega, \omega^{\prime}, y, \xi\right)=c(n) \sum_{l=1}^{l_{q}} \widehat{\sigma}_{q}\left(\xi, y, \tilde{z}_{q, l}(\xi, y)\right)^{-1 / 2} e^{i b^{1 / 2} \mathbf{S}_{\mathbf{q}, 1}(y, \xi)-i \mu_{q, l} \pi / 2}
$$

is a symbol of class $S^{1 / 2}\left(\mathbb{R}^{2}, b^{-1}\right)$. Here

$$
\begin{aligned}
\mathbf{S}_{\mathbf{q}, 1}(y, \xi)= & \int_{-\infty}^{+\infty}\left(\left|Z_{q, \infty}^{*}\left(t, \xi, y, \tilde{z}_{q, l}(\xi, y), \omega\right)\right|^{2}\right. \\
& \left.\quad-V\left(\xi, y, Z_{q, \infty}\left(t, \xi, y, \tilde{z}_{q, l}(\xi, y), \omega\right)\right)-\lambda_{q}\right) d t \\
- & r_{q, \infty}\left(\xi, y, \tilde{z}_{q, l}(\xi, y), \omega\right),
\end{aligned}
$$

$\mu_{q, l}$ is the Maslov index of $\left(Z_{q, \infty}, Z_{q, \infty}^{*}\right)\left(t, \xi, y, \tilde{z}_{q, l}(\xi, y), \omega\right)$ on the Lagrangian manifold

$$
\begin{aligned}
& \left\{\left(z, z^{*}\right) \in T^{*} \mathbb{R}^{n-2} \mid\right. \\
& \left.\left.\quad z=Z_{q, \infty}(t, \xi, y, \tilde{z}, \omega), z^{*}=Z_{q, \infty}^{*}(t, \xi, y, \tilde{z}, \omega)\right), \tilde{z} \in \omega^{\perp}, t \in \mathbb{R}\right\}
\end{aligned}
$$

and $\mu_{q, l}$ is independent on (y, ξ).

III Sketch of the proof

III. 1 Case $\gamma=0$

Proposition 1 Suppose that Assumption 1 is satisfied and let $\lambda \in] 1,+\infty\left[\backslash\left(2 \mathbb{N}^{*}-1\right)\right.$. Then

$$
\left\|\langle z\rangle^{-\alpha} R(\lambda b+i 0)\langle z\rangle^{-\alpha}\right\|_{L^{2}, L^{2}}=\mathcal{O}\left(b^{-1 / 2}\right) .
$$

Proof: in the case where $V=V^{\infty}(z)$. Then

$$
\begin{aligned}
R(\lambda b+i 0) & =\left(-\Delta_{z}+V(z)+b\left(\sum_{q}(2 q-1) \Pi_{q}-\lambda\right)-i 0\right)^{-1} \\
& =\sum_{q}\left(-\Delta_{z}+V(z)-b \lambda_{q}-i 0\right)^{-1} \Pi_{q}
\end{aligned}
$$

To conclude, we use the well-known high energy estimate for the Schrödinger equation when $E \rightarrow+\infty$

$$
\left\|\langle z\rangle^{-\alpha}\left(-\Delta_{z}+V(z)-E-i 0\right)^{-1}\langle z\rangle^{-\alpha}\right\|_{L^{2}, L^{2}}=\mathcal{O}\left(E^{-1 / 2}\right)
$$

for all $\alpha>1 / 2$.
Theorem 2 is proved by combining Theorem 1 and Proposition 1.

III. 2 Case $\gamma=1$

Starting point: For $q=1, \ldots, q_{0}$, denote $\lambda_{q}=\lambda-2 q+1$ and let $\chi_{1}, \chi_{2} \in C_{0}^{\infty}\left(\mathbb{R}_{z}^{n-2}\right)$ such that $V \prec \chi_{1} \prec \chi_{2}$. Then

$$
T\left(\omega, \omega^{\prime}, \lambda b, b\right)=\sum_{p, q=1}^{q_{0}} \Pi_{p} f_{p, q}\left(\omega, \omega^{\prime}, \lambda, b\right) \Pi_{q}
$$

with

$$
\begin{aligned}
& f_{p, q}\left(\omega, \omega^{\prime}, \lambda, b\right)=\int_{\mathbb{R}^{n-2}} e^{-i b^{1 / 2} \sqrt{\lambda_{p}}\left\langle z, \omega^{\prime}\right\rangle}\left[\Delta_{z}, \chi_{2}\right] \\
& R(\lambda b+i 0)\left[\Delta_{z}, \chi_{1}\right] e^{i b^{1 / 2} \sqrt{\lambda_{q}}\langle z, \omega\rangle} d z
\end{aligned}
$$

Ouline of the proof:

1. Effective Hamiltonian
2. Non-trapping Resolvent estimate
3. Microlocal Resolvent estimate and Egorov Lemma
4. Approximation of the evolution
5. Stationnary phase method

III.2.1 Effective Hamiltonian

Projection on the Landau levels

Lemma 1 ([Dimassi-Raikov 01'], [Dimassi 01'],...) There exists a symplectic change of coordinates involving a unitary operator
$U: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
U H(b) U^{*}=h^{-2} \widetilde{P}(h)
$$

with $h=b^{-1 / 2}$ and

$$
\widetilde{P}(h)=-h^{2} \Delta_{z}+N_{x}+V^{w}\left(h^{2} D_{y}+h D_{x}, y-h x, z\right)
$$

where $N_{x}=-\frac{d^{2}}{d x^{2}}+x^{2}$.
Remark 1 Let us notice that the pseudo-differential operators we are dealing with have two scales: h for the variable z and h^{2} for the variable y.

For $q=1, \ldots, q_{0}$, let us set

$$
\widetilde{\Pi}_{q}=U \Pi_{q} U^{*}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)
$$

Denoting $\Phi_{q} \in L^{2}\left(\mathbb{R}_{x}\right)$ the eigenfunction of N_{x} associated to the eigenvalue $2 q-1$ we have

$$
\widetilde{\Pi}_{q} \varphi=\left\langle\varphi, \Phi_{q}\right\rangle_{L^{2}\left(\mathbb{R}_{x}\right)} \Phi_{q}
$$

Let us denote $\widetilde{\Pi}=\sum_{q=1}^{q_{0}} \widetilde{\Pi}_{q}$ and identify $\operatorname{Ran} \widetilde{\Pi}$ with $L^{2}\left(\mathbb{R}_{y, z}^{n-1}\right)^{q_{0}}$. Then we have to analyze the operator

$$
\widetilde{\Pi}(\widetilde{P}(h)-\lambda-i \mu)^{-1} \widetilde{\Pi}: L^{2}\left(\mathbb{R}_{y, z}^{n-1}\right)^{q_{0}} \rightarrow L^{2}\left(\mathbb{R}_{y, z}^{n-1}\right)^{q_{0}}
$$

Proposition 2 For all $\mu>0$,

$$
\widetilde{\Pi}(\widetilde{P}(h)-\lambda-i \mu)^{-1} \widetilde{\Pi}=E(h, \lambda+i \mu)^{-1}
$$

where $E(h, \lambda+i \mu)$ has the following properties:
i) There exists a sequence of matrix valued symbols
$\left(E_{j}\left(y, \xi, z, z^{*}, \lambda+i \mu\right)\right)_{j \in \mathbb{N}}$ such that
$E_{0} \in S^{0}\left(\mathbb{R}^{2 n-2},\left\langle z^{*}\right\rangle^{2}, \mathcal{L}\left(\mathbb{R}^{q_{0}}\right)\right)$,
$E_{j} \in S^{0}\left(\mathbb{R}^{2 n-2}, 1, \mathcal{L}\left(\mathbb{R}^{q_{0}}\right)\right), \forall j \geq 1$ and for all $N \in \mathbb{N}^{*}$,

$$
E(h, \lambda+i \mu)=\sum_{j=0}^{N} h^{j} E_{j}^{w}\left(y, h^{2} D_{y}, z, h D_{z}, \lambda+i \mu\right)+\mathcal{O}\left(h^{N}\right) .
$$

ii)

$$
E_{0}\left(y, \xi, z, z^{*}, \lambda+i \mu\right)=\operatorname{diag}\left(\left(\left|z^{*}\right|^{2}+V(\xi, y, z)-\lambda_{q}-i \mu\right)_{q=1, \ldots, q_{0}}\right),
$$

iii) E_{1} is off-diagonal and for all $j \geq 1$ the seminorms of E_{j} are bounded uniformly with respect to $\mu>0$.

Proof: Let us denote $\widehat{\Pi}=1-\widetilde{\Pi}$ and $\widehat{P}=\widehat{\Pi} P \widehat{\Pi}$. Solving a suitable Grushin problem, we get

$$
\widetilde{\Pi}(\widetilde{P}(h)-\lambda-i \mu)^{-1} \widetilde{\Pi}=E(h, \lambda+i \mu)^{-1}
$$

with

$$
\begin{aligned}
E(h, \lambda+i \mu)= & \widetilde{\Pi}(\widetilde{P}(h)-\lambda-i \mu) \widetilde{\Pi} \\
& \quad-\widetilde{\Pi} V^{w}(\ldots) \widehat{\Pi}(\widehat{P}(h)-\lambda-i \mu)^{-1} \widehat{\Pi} V^{w}(\ldots) \widetilde{\Pi} \\
= & E_{D}(h)+E_{A}(h)
\end{aligned}
$$

We have

$$
E_{D}(h)=\left(a_{p q}\left(y, z, h^{2} D_{y}, h D_{z}\right)\right)_{p, q \in\left\{1, \ldots, q_{0}\right\}}
$$

with

$$
a_{p q}\left(y, z, \xi, z^{*}\right)=\left\langle\left(\left|z^{*}\right|^{2}+V^{w}\left(\xi+h D_{x}, y-h x, z\right)-\lambda-i \mu\right) \phi_{p}, \phi_{q}\right\rangle .
$$

By Taylor expansion, we get

$$
\begin{aligned}
a_{p q}\left(y, z, \xi, z^{*}\right) & =\delta_{p q}\left(\left|z^{*}\right|^{2}+V(\xi, y, z)+h^{2} p_{2}+h^{3} p_{3}+\ldots\right) \\
& +\left(1-\delta_{p q}\right) h b_{p q}
\end{aligned}
$$

with $b_{p q} \in S^{0}\left(\mathbb{R}^{2 n-2}\right)$. Therefore, $E_{D}(h)$ has the required properties.
To analyze the term $E_{A}(h)$ it suffices to remark that

- $\widehat{\Pi} V^{w}(\ldots) \widehat{\Pi}=\mathcal{O}(h)$
- As $V \geq 0, \tilde{P}(h)-\lambda$ is elliptic and we can construct a parametrix.

Diagonalization of the Hamiltonian

Proposition 3 For all $N_{0} \in \mathbb{N}^{*}$, there exists a unitary transformation $U_{N_{0}}$ on $L^{2}\left(\mathbb{R}_{y, z}^{n-1}\right)$ such that

$$
U_{N_{0}} E(h, \lambda+i \mu) U_{N_{0}}^{*}=\mathcal{P}_{N_{0}}(\lambda+i \mu)+\mathcal{O}\left(h^{N_{0}}\right)
$$

with
$\mathcal{P}_{N_{0}}(\lambda+i \mu)=\operatorname{diag}\left(\left(p_{q}^{w}\left(y, z, h^{2} D_{y}, h D_{z}, N_{0}\right)-\lambda_{q}-i \mu\right), q=1, \ldots, q_{0}\right)$ and $p_{q}\left(., N_{0}\right) \in S^{0}\left(\mathbb{R}^{2 n-2},\left\langle z^{*}\right\rangle^{2}\right)$. Moreover,

$$
p_{q}\left(y, z, \xi, z^{*}, N_{0}\right)=\sum_{m=0}^{N_{0}} h^{m} p_{q, m}\left(y, z, \xi, z^{*}\right)
$$

with $p_{q, 0}=\left|z^{*}\right|^{2}+V(\xi, y, z), p_{q, m} \in S^{0}\left(T^{*} \mathbb{R}^{n-1}\right)$ for $m \geq 1$.
Proof: Look for U_{1} under the form

$$
U_{1}=\exp \left(h u_{1}^{w}\left(y, z, h^{2} D_{y}, h D_{z}\right)\right)
$$

Then

$$
\begin{aligned}
& U_{1} E(h, \lambda+i \mu) U_{1}^{*}=E_{0}^{w}\left(y, z, h^{2} D_{y}, h D_{z}\right) \\
& \quad+h\left(E_{1}^{w}(\ldots)+u_{1}^{w}(\ldots) E_{0}^{w}(\ldots)+E_{0}^{w}(\ldots) u_{1}^{w}(\ldots)^{*}\right)+\ldots
\end{aligned}
$$

We remark that E_{0} has the required form and we can chose u_{1} so that the term in h in the preceding expansion vanishes. We conclude by induction. \square

III.2.2 Resolvent estimate

Proposition 4 Supspose that Assumptions 1 and 2 are satisfied, then λb is not an eigenvalue of $H(b)$ and

$$
\left\|\langle z\rangle^{-\alpha} \mathcal{P}_{N_{0}}(\lambda+i 0)^{-1}\langle z\rangle^{-\alpha}\right\|_{L^{2}\left(\mathbb{R}_{y, z}^{n-1}\right)^{q_{0}}, L^{2}\left(\mathbb{R}_{y, z}^{n-1}\right)^{q_{0}}}=\mathcal{O}\left(h^{-1}\right)
$$

for all $\alpha>1 / 2$.
Proof: Apply Mourre theory and search a conjugate operator for $\mathcal{P}_{N_{0}}(\lambda)$. It suffices to build a conjugate operator for each $p_{q, 0}^{w}\left(y, z, h^{2} D_{y}, h D_{z}\right)$ at the energy λ_{q}.

Assumption $2 \Longleftrightarrow$
$\forall(y, \xi) \in \mathbb{R}^{2}, \lambda_{q}$ is non-trapping for the symbol $p_{\xi, y}\left(z, z^{*}\right)=\left|z^{*}\right|^{2}+V(\xi, y, z)$

For all (y, ξ) one can find an escape function
\qquad

$$
\left(z, z^{*}\right) \mapsto G\left(y, \xi, z, z^{*}\right)
$$

More precisely, using [Gerard-Martinez 88'], for all $(y, \xi) \in \mathbb{R}^{2}$ one can find a bounded function $\left(z, z^{*}\right) \mapsto G\left(y, \xi, z, z^{*}\right)$ such that:

$$
\begin{gathered}
\forall\left(z, z^{*}\right) \in T^{*} \mathbb{R}^{n-2}, H_{p_{\xi, y}} G\left(y, \xi, z, z^{*}\right) \geq 0 \\
\forall\left(z, z^{*}\right) \in p_{\xi, y}^{-1}\left(\left[\lambda_{q}-\epsilon, \lambda_{q}+\epsilon\right]\right), H_{p_{\xi, y}} G\left(y, \xi, z, z^{*}\right) \geq 1 .
\end{gathered}
$$

Therefore, for $\chi \in C_{0}^{\infty}(\mathbb{R})$ localizing near $\left\{\lambda_{q}\right\}$ and all (y, ξ)

$$
\begin{aligned}
i \chi\left(p_{\xi, y}^{w}\left(z, h D_{z}\right)\right)\left[p_{\xi, y}^{w}\left(z, h D_{z}\right), G^{w}\left(y, \xi, z, h D_{z}\right)\right] & \chi\left(p_{\xi, y}^{w}\left(z, h D_{z}\right)\right) \\
& \geq h \chi^{2}\left(p_{\xi, y}\left(z, h D_{z}\right)\right)
\end{aligned}
$$

From the symbolic calculus (in the variable y) with operator-valued symbols, we have

$$
\begin{aligned}
& {\left[p_{q, 0}^{w}\left(y, z, h^{2} D_{y}, h D_{z}\right), G^{w}\left(y, h^{2} D_{y}, z, h D_{z}\right)\right]} \\
& \quad=\left[p_{\xi, y}^{w}\left(z, h D_{z}\right), G^{w}\left(y, \xi, z, h D_{z}\right)\right]\left(y, h^{2} D_{y}\right)+\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

Combining the two last equations, we obtain the Mourre estimate.

III.2.3 Egorov Lemma

For $t>0$, let $\phi_{t}: T^{*} \mathbb{R}^{n-1} \rightarrow T^{*} \mathbb{R}^{n-1}$ be defined by

$$
\phi_{t}\left(y, z, \xi, z^{*}\right)=\exp \left(t H_{p_{\xi, y}}\right)\left(z, z^{*}\right) .
$$

Lemma 2 Let $\omega_{1}, \omega_{2} \in S^{0}\left(T^{*} \mathbb{R}_{y, z}^{n-1}\right)$ such that
$\operatorname{supp} \omega_{2} \cap \phi_{t}\left(\operatorname{supp}\left(\omega_{1}\right)\right)=\emptyset$ and ω_{1} is compactly supported, then

$$
\left\|\omega_{2}^{w}\left(y, z, h^{2} D_{y}, h D_{z}\right) e^{-i h^{-1} t \mathcal{P}_{N_{0}}(\lambda)} \omega_{1}^{w}\left(y, z, h^{2} D_{y}, h D_{z}\right)\right\|=\mathcal{O}\left(h^{\infty}\right),
$$

for all $\alpha>1 / 2$.
Proof: Use the fact that the dynamics is governed by the variable z, whereas the variable y produces terms of order $\mathcal{O}\left(h^{2}\right)$.

Consequences: Using this lemma, microlocal resolvent estimates and the following formula

$$
\begin{aligned}
\mathcal{P}_{N_{0}}(\lambda+i 0)^{-1}=i h^{-1} \int_{0}^{T} & e^{-i h^{-1} t \mathcal{P}_{N_{0}}(\lambda+i 0)} d t \\
& +\mathcal{P}_{N_{0}}(\lambda)^{-1} e^{-i h^{-1} T \mathcal{P}_{N_{0}}(\lambda+i 0)}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
f_{p, q}\left(\omega, \omega^{\prime}, \lambda, h\right)= & \int_{0}^{T_{0}} \int_{\mathbb{R}^{n-2}} e^{-i h^{-1} \sqrt{\lambda_{p}}\left\langle z, \omega^{\prime}\right\rangle}\left[\Delta_{z}, \chi_{2}\right] \\
& e^{i h^{-1} t\left(\lambda_{q}-P_{q}(h)\right)}\left[\Delta_{z}, \chi_{1}\right] e^{i h^{-1}} \sqrt{\lambda_{q}}\langle z, \omega\rangle \\
& +\mathcal{O}(h)
\end{aligned}
$$

with $P_{q}(h)=p_{q}^{w}\left(y, z, h^{2} D_{y}, h D_{z}\right)$.

III.2.4 Approximation of the evolution

Our aim is to approximate the operator $\Omega(t): L^{2}\left(\mathbb{R}_{y}\right) \rightarrow L^{2}\left(\mathbb{R}_{y, z}^{2}\right)$ defined by

$$
(\Omega(t) \varphi)(y, z)=e^{-i h^{-1} t P_{q}(h)}\left[h^{2} \Delta_{z}, \chi_{1}\right] e^{i h^{-1} \sqrt{\lambda_{q}}\langle z,\rangle \omega} \varphi(y)
$$

for all $\varphi \in L^{2}\left(\mathbb{R}_{y}\right)$. We look for $\Omega(t) \varphi$ under the form $\tau^{w}\left(t, y, z, h^{2} D_{y}, h\right) \varphi$. We have to solve

$$
\left\{\begin{array}{c}
i h \partial_{t} \tau^{w}\left(t, y, z, h^{2} D_{y}, h\right)-P_{q}(h) \tau^{w}\left(t, y, z, h^{2} D_{y}, h\right)=0 \\
\tau\left(t=0, y, z, h^{2} D_{y}, h\right)^{w} \varphi=\left[h^{2} \Delta_{z}, \chi_{1}\right] e^{i h^{-1}} \sqrt{\lambda_{q}}\langle z, \omega\rangle
\end{array}(y)\right.
$$

From the symbolic calculus, it follows that τ must be solution of

$$
\left\{\begin{array}{l}
\left(i h \partial_{t}-L^{w}\left(y, z, \xi, h D_{y}, h D_{z}, h D_{\xi}, h\right)\right) \tau(t, y, z, \xi, h)=0 \\
\tau(0, y, z, \xi, h)=\left[h^{2} \Delta_{z}, \chi_{1}\right] e^{i h^{-1}} \sqrt{\lambda_{q}}\langle z, \omega\rangle
\end{array}\right.
$$

where formally,

$$
\begin{aligned}
& L\left(y, z, \xi, y^{*}, z^{*}, \xi^{*}\right)= \\
& \quad \sum_{\alpha, \beta, m \in \mathbb{N}} \frac{h^{\alpha+\beta+m}(-1)^{\alpha}}{2^{\alpha+\beta} \alpha!\beta!} \partial_{y}^{\alpha} \partial_{\xi}^{\beta} p_{q, m}\left(y, z, \xi, z^{*}\right)\left(\xi^{*}\right)^{\alpha}\left(y^{*}\right)^{\beta} .
\end{aligned}
$$

In fact, for $N \in \mathbb{N}^{*}$ to be chosen large enough, we look for τ_{N} solution of

$$
\left\{\begin{array}{l}
\left(i h \partial_{t}-L_{N}^{w}\left(y, z, \xi, h D_{y}, h D_{z}, h D_{\xi}, h\right)\right) \tau_{N}(t, y, z, \xi, h)=\mathcal{O}\left(h^{N}\right) \\
\tau_{N}(0, y, z, \xi, h)=\left[\Delta_{z}, \chi_{1}\right] e^{i h^{-1}} \sqrt{\lambda_{q}}\langle z, \omega\rangle \tag{2}
\end{array}\right.
$$

with

$$
\begin{aligned}
& L_{N}\left(y, z, \xi, y^{*}, z^{*}, \xi^{*}\right)= \\
& \quad \sum_{|\alpha+\beta+m| \leq N} \frac{h^{\alpha+\beta+m}(-1)^{\alpha}}{2^{\alpha+\beta} \alpha!\beta!} \partial_{y}^{\alpha} \partial_{\xi}^{\beta} p_{q, m}\left(y, z, \xi, z^{*}\right)\left(\xi^{*}\right)^{\alpha}\left(y^{*}\right)^{\beta}
\end{aligned}
$$

Remark that the principal symbol of $L_{N}\left(y, z, \xi, y^{*}, z^{*}, \xi^{*}\right)$ is given by

$$
l_{0}\left(y, z, \xi, y^{*}, z^{*}, \xi^{*}\right)=\left|z^{*}\right|^{2}+V(\xi, y, z)
$$

so that the corresponding Hamiltonian system is

$$
\left\{\begin{array}{c}
\dot{Z}=2 Z^{*}, \quad \dot{Z}^{*}=-\nabla_{z} V(\Xi, Y, Z) \\
\dot{Y}=0, \quad \dot{Y}^{*}=-\nabla_{y} V(\Xi, Y, Z) \\
\dot{\Xi}=0, \quad \dot{\Xi}^{*}=-\nabla_{x} V(\Xi, Y, Z)
\end{array}\right.
$$

In particular, Y and Ξ are constant, say $(Y, \Xi)=(y, \xi)$ so that the solution of the two first lines with initial condition $\left(z, z^{*}\right)$ is given by

$$
\left(Z, Z^{*}\right)\left(t, y, z, \xi, z^{*}\right)=\exp \left(t H_{p_{\xi, y}}\right)\left(z, z^{*}\right)
$$

From Assumption 3, we deduce that for $T>0$ large enough and (y, ξ, z) in a suitable compact set, the point $(Y, Z, \Xi)\left(t, y, z, \xi, \sqrt{\lambda_{q}} \omega\right)$ is non-focal in the Maslov sense:

$$
D_{q}(t, y,, \xi):=\operatorname{det} \frac{\partial(Y, Z, \Xi)}{\partial(y, z, \xi)}\left(y, z, \xi, \sqrt{\lambda_{q}} \omega\right) \neq 0
$$

From Maslov's work, we deduce
Proposition 5 There exists some functions $\tau_{N, j} \in C^{\infty}\left(\mathbb{R}_{t} \times \mathbb{R}_{y, z, \xi}^{n}\right)$, $j \in \mathbb{N}$ such that

$$
\begin{aligned}
\tau_{N}(y, z, \xi, h)= & e^{i h^{-1} S_{q}(t, y, \tilde{z}, \xi)-i \mu_{q} \pi / 2} \\
& \left|D_{q}(t, y, \tilde{z}, \xi)\right|^{-1 / 2} \sum_{j=1}^{N} h^{j} \tau_{N, j}(t, y, \tilde{z}, \xi)
\end{aligned}
$$

solves (2). Here, $z=Z\left(t, \xi, y, \tilde{z}, \sqrt{\lambda_{q}} \omega\right), S_{q}$ is the action along the trajectory joining \tilde{z} and z

$$
\begin{aligned}
S_{q}(t, y, \tilde{z}, \xi)= & \int_{0}^{t}\left(\left|Z^{*}\left(s, \xi, y, \tilde{z}, \sqrt{\lambda_{q}} \omega\right)\right|^{2}\right. \\
& -V\left(\xi, y, Z\left(s, \xi, y, \tilde{z}, \sqrt{\lambda_{q}} \omega\right)\right) d s \\
& +\sqrt{\lambda_{q}}\langle\tilde{z}, \omega\rangle
\end{aligned}
$$

and μ_{q} is the path index of this trajectory. Moreover,
$\tau_{N, 0}(t, y, \tilde{z}, \xi)=c_{l}(y, \tilde{z}, \xi)$ and μ_{q} is independent on (y, ξ).
Remark 2 The symbol τ_{N} is in the class $S^{1 / 2}\left(\mathbb{R}^{n}, h^{2}\right)$. In particular there is a symbolic calculus for the product of $\tau_{N}\left(y, z, h^{2} D_{y}\right)$ with pseudo whose symbol is in S^{0} (cf. [Dimassi-Sjostrand]). This permits to justify our approximation.

III.2.5 Stationnary phase method

The end of the proof follows [Robert-Tamura, 8^{\prime} '].

- We replace $\Omega(t)$ by τ_{N} in the representation formula.
- In the integral giving the scattering amplitude do the changes of variable

$$
(t, \tilde{z}) \in \mathbb{R} \times \omega^{\perp} \mapsto z=Z_{q, \infty}(t, x, y, \tilde{z}, \omega) \in \mathbb{R}^{n-2}
$$

- Conclude by stationnary phase method. The stationary points are given by the classical trajectories starting with initial momentum $\sqrt{\lambda_{q}} \omega$ in $t=-\infty$ and with asymptotic momentum $\sqrt{\lambda_{q}} \omega^{\prime}$ in $t=+\infty$.

