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I Introduction

I.1 Framework

We consider the Schrodinger operator with constant magnetic field

H(b) = Ho(b) + 0"V (x,y, 2)

a9 b\ (.9 b\

Herex € R,y € R, z € R"2, b > 0is a parameter and v € [0, 1] is
fixed.

where

In all this talk, we will assume that V' satisfies the following hypothesis

Assumption 1
Viz,y,z) =V>=(2) + W(z,y,2)

with Voo € C°(R"=2), W € C°(R™) and V, V> > 0.
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Consequence: The scattering operator S(b) : L*(R") — L?(R")
associate to the pair (Hy(b), H(D)) is well-defined,

Recall that the scattering operator admits the following definition. For
Y € L?(R™) there exists a unique function ¢ € L>(R;, L?(R"))
solution of

iéw - H(b)¢

Jimgp(t,) = e O | pazny =0,

where e ~**Ho(%)q); denotes the solution of the free Schrodinger equation
(V' = 0) with initial condition 1) in t = 0. Moreover, there exists a
unique v € L?(R™) such that

lim [|4(t,.) — e oy || 12 gny = 0.

t——4o0

The scattering operator S(b) : L?(R") — L*(R") is defined by

2 = S(b)¢r.
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I.2 Scattering matrix

. 2

Let us denote Ho(b) = (i-2 + gy)2 + <7;a% — %x) acting on L?(IR?).
Then, there exists U unitary on L?(R?) such that
UH,(b)U* = bN, ® I,

2 . . .
where N, = — dd? + 22 is the harmonic oscillator. Therefore

o (Ho(b)) = app(Ho (b)) = b(2N* —1).
These eigenvalues are called the Landau levels. We denote by
I, : L*(R?) — L?*(R?)
the projector onto ker(Ho(b) — b(2¢ — 1)), ¢ € N* and we define
Fo: L*(R"?) — L*(R* ,L*(S"?),dE),
by

Fop(E) = BT 3(VE.)

where ¢ denotes the Fourier transfor of . Next, we define

F: L*(R™) — L*(R%, L*(R* x §"7%),dE)

Fe(B)= Y M, Fop(E—b(2q—1)).

1q< HEEL




Then F is a unitary isomorphism and
e F Hy F* is the multiplication by E on L?(R* , L*(R* x S" %), dE)
e Forallt > 0, FS(b)F* and e Ho 7" commute.

Hence (cf. [Reed-Simon, T4]), there exists a function ¥ — S(FE,b) in
L>(R%, L(L?*(R? x S™))) such that

Vo € LQ(R”), S(b)p = F*S(E,b)Fe.

For £ > 0, S(F, b) is called the scattering matrix (it is a matrix only in
the case n = 3).




II Main results

II.1 Representation formula

For o € R we use the L?-weighted space L? = L?(R", (2)*dxdydz)
where (z) = (1 + |2|?)*/2 and for E > 0, o > 1/2 we define

F(E): L3 — L*(R? x §"73)

(e

by F(E)e = Fo(E).
Theorem 1 Suppose that the potential V' satisfies Assumption 1 and
denote by o,,(H) the point spectrum of H(b). Then, for all
E €]b, +00o[\(b(2N* — 1) U 0,,,(H)), one has
S(E,b) — Id =—2inb" F(E)VF(E)*
+ 2inb* Y F(E)VR(E + i0)V F(E)*,
where

R(E +i0) = lim (H(b) — E —iu)~!

p—0+

exists in the space L(L?,L? ) for a > 1/2.

N




Corollary 1 For E €]b, +oo[\(b(2N* — 1) U 0,,,,(H)),
T(E,b) .= S(E,b) — Id has a kernel

(w,w') € S8 x S 3 = T(w,w', E,b) € L(L*(R?))

which is smooth on S™3 x S"73. The map (w,w’) — T(w,w’, E,b) is

called the scattering amplitude.

Goal: Study T'(w,w’, E,b) when b — oo. We work with energies far
from the Landau levels; E = \b with A ¢ 2N* — 1.

Two different regimes according to v:
e ~ € [0,1/2[: High energy behavior.

e v € [1/2,1]: Semiclassical behavior.
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I1.3 Asymptotics in the case v = (

Theorem 2 Suppose that Assumption 1 is satisfied and let
A €]2q0 — 1,2q0 + 1] for some qy € N*. When b tends to infinity,
Ab & o,,(H(b)) and

. n—4 qO

b=z n—4
: S AT Ay, 0N 2w — W),

T(w,w' Ab,b) = ——
2(2m)n—1 g

n—>5

+ O 2 )
in L(L*(R?)), where Ay = X\ — 2q + 1.
From this theorem we deduce the following inverse scattering result.

Corollary 2 Suppose that Vi, V5 satisfy Assumption 1. Assume that the

associate scattering operators S1 and So are equal. Then Vi = V5.




II1.4 Asymptotics in the case v = 1

From now, we assume that A €]2qg — 1, 2qo + 1[, g0 € N* and for
qe{l,...,q0} weset \;, = X — 2¢q + 1. For (z,y) € R?, let us denote

Pay(2,27) = \z*]Q + V(x,y,2), V(z,2%) € T*R"2,

pr,y - az*px,yaz - azpa:,yaz*

the associated Hamiltonian vector field and ¢ +— exp(tH), ,)(z, z*) the

solution of the Hamiltonian system
Z =27% 7*=-V,V(z,y,2) (1)

with initial condition (Z, Z*) ;= = (2, 2¥).
We introduce the following non-trapping condition.

Assumption 2 Forallg=1,...,qo and all (z,y) € R?,

lim |exp(tH,,  )(z,2")| = +o0

ades

forall (z,2*) € T*R" ™2 such that |z*|*> + V(z,y,2) = A\,

o J
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I1.4.1 Asymptotics in dimension 3

In dimension n = 3, the structure of the classical scattered trajectories is
rather simple and the preceding assumption is sufficient to state a
theorem. Let us denote

S11(E,b) Si2(E,b)

oUE0 = So1(E,b)  S2a(E,b)

the scattering matrix in dimension 3, with S;;(E,b) € L(L?(R?)). From
Assumption 2, we deduce easily that there exists ¢; € {1,...,q0 + 1}
such that:

oforallg e {1,...,q1 — 1} and all (z,y) € R?, \; > sup, g V(z,¥, 2)

eforall ¢ € {q1,...,q0} and all (z,y) € R?, the equation in 2
V(z,y, z) = A, has exactly two solutions o, (x,y) < B,(x,y) and these
solutions are non-critical points of z — V' (z,y, z).

. /
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Figure 1: A potential satisfying Assumption 2.
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Class of symbols:

Let m : R? — [0, +o00[ be an order function, that is:

JC, N > 0,Vz,y € RY, m(x) < Clz —y)Vm(y).

For § € [0, 1], we say that a function a(z, h) € C*°(R%x]0, 1]) belongs
to the class S°(RY, m, h) if

Yo e N4, 3C, > 0, |0%a(z, h)| < Coh™01m(x).

For a in a suitable class of symbol, we will denote by a”(x, hD,) the

standard Weyl-quantization of a.

13
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Theorem 3 Suppose that n = 3 and that Assumption 1 and 2 are
fulfilled, then we have the following asymptotics.

Diagonal coefficients

q1—1 +o00
S11(Ab,b) = > s (A y/2— b Dy, x/2 -0 'D) + Y T,
q=1 q=qo+1

+ O™ )

in L(L?(R?), with sq4,, € SY?(R%,b~1) and

+o0
sa.q(My, &) = exp(ib'/? / VA = VI y,2)—/Agdz) +O(b~Y/2),

Off-diagonal coefficients

qo
So1(Ab,b) = > s (A y/2—b "Dy /2= b D), + O(b™)

gd=4q1

in L(L?(R?)), with 54, € SY2(R2,b~1) and

Sa,q()\ayag) —

aq(§,y)
(@b (VAagl€n) + [ = Vg ) - Vagdz)
+0(b™?)

. /
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I11.4.2 Asymptotics in dimension n > 4

From now, we fix a couple of directions (w,w’) € S"73 x S"73. As V is
compactly supported in the variable z, out of a compact set the solutions
of (1) are straight lines and it is easy to see that for all (z,y) € R?,
g=1,...,q0and Z € w™, there exists a unique solution

(Zg.00, 25 )(t,x,y,Z,w) of (1) such that for —¢ > 0 large enough

G500
Zgoo(t,x,y,Z,w) = 24/ Aqwt + Z.

Under Assumption 2, we can precise the behavior of these particles when
t goes to +o00. There exists 0, o (7, ¥y, Z,w) € S"=3 and
Tq.00(Z,Y,Z,w) € R™~2 such that for t > 0 large enough

Zgoot,x,y, Z,w) = 24/ Ag0q.00(T,y, Z,w)t + 74 00 (T, Yy, Z,w)
2y ooty y,2,0) = /Ay 00(T, Y, Z,W0).

For Z € wt ~ R"~3, we define the angular densities by

oq(z,y,2) = | det(0y.00,02,04.00, - -+ 02, _364.00)|

Assumption 3 We suppose that forall q € {1,...,qo}, (z,y) € R? and
all z € wt with 0, o (x,y, 2) = W', we have G,(x,y, Z) # 0.

Consequence: It follows from this assumption and implicit function
theorem that for all ¢ € {1,...,qo} and all (z,y) € R?, the equation

0y.00(x,y,Z,w) = W'

has a finite number of solutions Z, 1(x,y), ..., Z4,, (z,y) smooth with

\respect to (z,y). Moreover, the number [, does not depend on (z, y). j

15
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Theorem 4 Suppose that n > 4 and that Assumptions 1, 2 and 3 are
satisfied. Then \b ¢ o,,(H(b)) and

T(w,w', Ab,b) =

4 qo n-3 s
DT Y At TY(w,w' y/2— b Dy, a/2 4+ b7 D), + O(b"F)

q=1

in L(L?(R?)), where

ly
Tq(w w Y S o C Za\ 5 yaqu 5 y))_1/2€ib1/2sq,1(yaf)_iﬂq,lﬂ/2
is a symbol of class S'/?(R?,b~"). Here

+o0
Sei(y. €) = /_ (122 o (6.6 Zga (60 ) 0

- V(f? Y, Zq,oo(ta 57 Y, 2q,l(£7 y)v W)) o )‘q)dt
o rq,oo(f, Y, 2q,l(€7 y)a w)a

fiq,1 is the Maslov index of (Zq 00, Zy 50 ) (1,654, 24,1(§,Y), w) on the

Lagrangian manifold
{(z,2*) € T*R" |
2= Zgoo(t, &y, Z,w), 2" = Zp (t,€,y,%,w)),Z€wr, t €R}

and (14 is independent on (y, £).

. /
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III Sketch of the proof

III.1 Casey =0

Proposition 1 Suppose that Assumption 1 is satisfied and let
A €]1, +00[\(2N* — 1). Then

1{z) " *R(Ab +i0){2) % p2.2 = O /?).

Proof: in the case where V = V°°(z). Then

R(Ab+i0) = (=A, + V(2) +b() _(2¢ — DI, — A) —i0) !

q

=Y " (~AL + V(2) —bA, —i0) " I,

To conclude, we use the well-known high energy estimate for the
Schrodinger equation when £ — +o0

[(2) " (=A. + V(2) = BE—i0) " (2) " r2,12 = O(E™?)

forall « > 1/2.

Theorem 2 is proved by combining Theorem 1 and Proposition 1.

N
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III.2 Casey =1

Starting point: Forg¢ =1, ..., qo, denote A\; = A — 2¢ + 1 and let
X1, X2 € C§° (]RQ_2) such that V' < y1 < x2. Then

q0
T(w,w', Ab,b) = Y T fpq(w,w’, X, D),

p,q=1
with
fp,q(wv wlv A, b) - / e_ibl/Q\/E<Z,w/> [Aza X2]
Rn—Q
ROD +i0)[A,, xa]e® " VAalzw) g,
Ouline of the proof:
1. Effective Hamiltonian

2. Non-trapping Resolvent estimate
3. Microlocal Resolvent estimate and Egorov Lemma
4. Approximation of the evolution

5. Stationnary phase method

18



4 )

I11.2.1 Effective Hamiltonian

Projection on the Landau levels

Lemma 1 There exists a

symplectic change of coordinates involving a unitary operator
U : L?*(R") — L*(R"™) such that

UH(b)U* = h™2P(h)
with h = b=Y/2 and

~

P(h) = —h*A, + N, + V¥(h*D, + hD,,y — hz, 2),
where N, = —% + 22

Remark 1 Let us notice that the pseudo-differential operators we are
dealing with have two scales: h for the variable z and h? for the variable
Y.

Forg=1,...,qo, letus set

I, = UIL,U* : L*(R") — L?(R").

Denoting ®, € L?(R,,) the eigenfunction of N, associated to the
eigenvalue 2qg — 1 we have

~

g0 = (e, (I)q>L2(Rx)(I)q-

Let us denote IT = P I1, and identify Ran IT with L2 (R7—*)%. Then
we have to analyze the operator

~ o~

I(P(h) — A —ip) ' : LA(RIZH® — L3RI,

. /
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Proposition 2 For all i1 > 0,

~ o~

T(P(h) — A —ip) "' = E(h,\ + ip) ™!
where E(h, A + i) has the following properties:

i) There exists a sequence of matrix valued symbols
(Ei(y,&, 2,25, A+ i) jen such that
Eq € SO(R?772 (%)% L(R®)),
E; € SO(R*2 1, L(R%)),Vj > 1 and for all N € N*,
N

E(h,A+ip) =Y WE(y,h’Dy, z,hD. X +ip) + O(h").
=0

ii)

EO(y7 ga 2, Z*a )‘—i_?’:u) — dlag((]z*\2+V(€, Y, Z) _)\q_i/’L>q:1 ----- CIO)7

ii) Eh is off-diagonal and for all j > 1 the seminorms of E; are
bounded uniformly with respect to . > 0.

20
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Proof: Let us denote II = 1 — IT and P = IIPII. Solving a suitable
Grushin problem, we get

~ o~

II(P(h) — A —ip) L= E(h, A+ ip)""
with
E(h, X+ ip) = IL(P(h) — A — ip)II
— TV (L OI(P(R) = A —ip) IV (.. )
= Ep(h) + Ea(h)

We have
Ep(h) = (apq(y, 2,h° Dy, hD.))p qe1,....q0}
with
apq(y,2,6,27) = (|22 + V(€ + hDa,y — hat, 2) = X = ift)bp, ¢g)-

By Taylor expansion, we get

apq(ya z,f,z*) — 5pq(’2*‘2 + V(f,y, Z) + h2p2 + h3p3 + .. )
—l_ (1 T 5PQ)hbpq7

with b,, € S°(R*"~2). Therefore, Ep(h) has the required properties.

To analyze the term E 4 (h) it suffices to remark that
o IIV¥(..)II=0O(h)

e AsV >0, P(h) — \is elliptic and we can construct a parametrix.

[l

. /
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Diagonalization of the Hamiltonian

Proposition 3 For all Ny € N*, there exists a unitary transformation
Un, on L*(R} ") such that

Uy B(h, A+ ip)UR, = P (A +ip) + O(h™)
with
7)No ()\—+—Z,LL) - dlag((p;L)(ya 25 h2Dy7 th NO)_)\q_i,u)a q = 17 SRR QO)

and py(., No) € S°(R*"~2,(2*)?). Moreover,

No
pQ(y727£7z*7N0) - Z hmp%m(y7z7€7z*)
m=0

with pgo = |2*1° + V(&,9, 2), pg.m € S (T*R™1) form > 1.
Proof: Look for UU; under the form
Uy = exp(hu¥’(y, z,h*D,, hD.)).
Then
UrE(h, A\ +iu)U; = EY(y,z,h*D,, hD.,)
+h(EY( ) +ul (OB EY)uf (L)) +

We remark that Fy has the required form and we can chose u so that the

term in A in the preceding expansion vanishes. We conclude by induction.
]

. /
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I11.2.2 Resolvent estimate

Proposition 4 Supspose that Assumptions 1 and 2 are satisfied, then \b is

not an eigenvalue of H(b) and

1(2) 7 Prvg (A +40) 7 2) ™ | L2yt yo0 z2mnstye0 = ORTY)

Y,z

foralla > 1/2.

Proof: Apply Mourre theory and search a conjugate operator for Py, ().
It suffices to build a conjugate operator for each p¢’o (v, 2, h?D,,hD.) at
the energy \,.

V(y, &) € R?, )\, is non-trapping for
Assumption 2 <= &) ! pping
the symbol p¢ (2, 2*) = [2*]> + V (€, y, 2)

For all (y, &) one can find an escape function

(2,2%) = G(y,§, 2,27)

More precisely, using [Gerard-Martinez 88], for all (y, &) € R? one can
find a bounded function (z, z*) — G(y, &, z, z*) such that:

V(z,2*) € T*R"?, Hy, G(y,§,2,2°) >0

V(z,2%) € pg,glj(P‘q —€,Aq +€), Hpg,yG(yafaZ=Z*) > 1.

. /
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Therefore, for xy € C§°(R) localizing near {\,} and all (y, &)
> hx* (pey (2, hD2))

From the symbolic calculus (in the variable y) with operator-valued
symbols, we have

Py oy, 2,h* Dy, hD.),G"(y, h* Dy, z, hD.)]
= [pt, (2, hD.),G"(y,&, 2, hD.)|(y, K*Dy) + O(h?)

Combining the two last equations, we obtain the Mourre estimate.

24
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I11.2.3 Egorov Lemma

Fort > 0, let ¢y : T*R*~! — T*R"~! be defined by
¢t(y7 2 57 Z*) — eXp(thg,y)(Z7 Z*)

Lemma 2 Let wy,wy € S°(T*R} 1Y) such that
supp we N ¢y (supp(wy)) = 0 and wy is compactly supported, then

|lw? (y, z, K2 Dy, hD,)e~ ™ PxoN @ (y 2 2D, hD.)|| = O(h>),
forall o > 1/2.

Proof: Use the fact that the dynamics is governed by the variable z,
whereas the variable y produces terms of order O(h?). [

Consequences: Using this lemma, microlocal resolvent estimates and the
following formula

T

Pro(A+i0)"" = in! / eI P Fi0) gy

0
+ Pn, ()\)—16—¢h—1T73N0 (A+i0)
we obtain
TO .7 —1 /
fp,q(w, wla >\7 h) — / / G_Zh ﬁ(z,w ) [Az, XQ]
0 Rn—Q

pih ™ t(Ag—Py(h)) A, Xl]eih_l\/mzwdzdt
+0(h),

ith P,(h) = p¥(y, z, h* Dy, hD.).

%
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I11.2.4 Approximation of the evolution

Our aim is to approximate the operator () : L*(R,) — L*(R? )
defined by

(D)) (y, ) = =M PMRIA eV (y)
for all ¢ € L*(RR,). We look for () under the form
T(t,y, 2z, h*D,, h)p. We have to solve
ihoy T (t,y, 2, h®> Dy, h) — Py(h)T(t,y, 2, h? Dy, h) =0
7(t=0,y,2,h2Dy, )P = [h2A., xale™ VIl o(y)

From the symbolic calculus, it follows that 7 must be solution of

(ih0y — LY (y,2,&,hDy, hD,, hD¢, h))7(t,y, z,&,h) =0
T(O, Yy, z, g, h) — [hQAZ’ Xl]@ih_l\/rq<z7w>

where formally,
L(y,2,&§,y",2%,§") =
Z hoz—l—ﬁ—i—m(_l)oz

a+B 13!
. DmeN 2 a!f!

09 0; Pg.m (y, 2, €, 2°)(€)* (y™)”.
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/In fact, for V € N* to be chosen large enough, we look for 7 solution of\

(Zhgt - L%(ya Z7€7 hDy; th7 hD£7 h))TN(t,y,Z,£7 h,) — O(hN)
TN(O,y,Z,f,h) = [AZ’Xl]eih—l\/Tq@,w)

(2)
with
LN(y,Z,g,y*,Z*,f*) —
ha—l—ﬁ—i—m(_l)a N . e
Do aerrargr %0 Pam(y,262)E) ()
la+B+m|<N e

Remark that the principal symbol of Ly (y, 2, &, y*, 2%, £¥) is given by

lo(y, 2, &y, 2%, &%) = 2P + V(& 9, 2),

so that the corresponding Hamiltonian system is

(

7z =27*% 7*=-V,V(EY,2)
¢ Y=0, Y"=-V,V(EY,2)
0, =% = -V,V(E,Y, 2)

(1]

\

In particular, Y and = are constant, say (Y, =) = (y, &) so that the
solution of the two first lines with initial condition (z, z*) is given by

(Z,27)(t,y,2,§,2") = exp(tHy,  )(2,2")

From Assumption 3, we deduce that for 7" > 0 large enough and (y, £, 2)
in a suitable compact set, the point (Y, Z, Z)(¢, y, 2, £, \/Aqw) is
non-focal in the Maslov sense:

oY, Z, =)
a(y) 2, 5) (y7 2 57 \/qu) 7& 0.

. /
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From work, we deduce

Proposition 5 There exists some functions Ty,; € C(Ry x RY ;)
j € N such that

TN (y7 Zy ga h) :eih_lsq(t,y,é,g)—iuqﬂ'/2

N
[Dy(t,y, 2,72 Wy i(t,y,2,€)

=1

solves (2). Here, z = Z(t,£,y, Z, \/A\qw), Sy is the action along the

trajectory joining z and z

t
sq<t,y,z,5>=/0<|z* £y 3 )

- V(gvya g ya \/7(")
+ VA (2 w)

and [1, is the path index of this trajectory. Moreover,
™0t Yy, 2, &) = c(y, 2,€) and p, is independent on (y, §).

Remark 2 The symbol Ty is in the class S*/2(R™, h?). In particular
there is a symbolic calculus for the product of TN (y, 2, thy) with
pseudo whose symbol is in S° (cf. ). This permits to

justify our approximation.

N
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II1.2.5 Stationnary phase method

The end of the proof follows

e We replace €)(t) by 7 in the representation formula.

e In the integral giving the scattering amplitude do the changes of
variable

(t,2) ER X wh — 2z = Zgoo(t,,y,Z,w) € R"2,

e Conclude by stationnary phase method. The stationary points are
given by the classical trajectories starting with initial momentum
\/Aqw in t = —oo and with asymptotic momentum /\,w’ in
t = +o00.
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