
'

&

$

%

Scattering amplitude for the Schrödinger
equation with strong magnetic field
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I Introduction

I.1 Framework

We consider the Schrödinger operator with constant magnetic field

H(b) = H0(b) + bγV (x, y, z)

where

H0(b) =

(
i
∂

∂x
+
b

2
y

)2

+

(
i
∂

∂y
− b

2
x

)2

−∆z.

Here x ∈ R, y ∈ R, z ∈ Rn−2, b > 0 is a parameter and γ ∈ [0, 1] is
fixed.

In all this talk, we will assume that V satisfies the following hypothesis

Assumption 1

V (x, y, z) = V∞(z) +W (x, y, z)

with V∞ ∈ C∞0 (Rn−2), W ∈ C∞0 (Rn) and V, V∞ ≥ 0.
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Consequence: The scattering operator S(b) : L2(Rn)→ L2(Rn)

associate to the pair (H0(b),H(b)) is well-defined, [Avron-Herbst-Simon
78’].

Recall that the scattering operator admits the following definition. For
ψ1 ∈ L2(Rn) there exists a unique function ψ ∈ L∞(Rt, L2(Rn))

solution of




i∂tψ = H(b)ψ

lim
t→−∞

‖ψ(t, .)− e−itH0(b)ψ1‖L2(Rn) = 0,

where e−itH0(b)ψ1 denotes the solution of the free Schrödinger equation
(V = 0) with initial condition ψ0 in t = 0. Moreover, there exists a
unique ψ2 ∈ L2(Rn) such that

lim
t→+∞

‖ψ(t, .)− e−itH0(b)ψ2‖L2(Rn) = 0.

The scattering operator S(b) : L2(Rn)→ L2(Rn) is defined by

ψ2 = S(b)ψ1.
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I.2 Scattering matrix

Let us denote Ĥ0(b) =
(
i ∂∂x + b

2y
)2

+
(
i ∂∂y − b

2x
)2

acting on L2(R2).
Then, there exists U unitary on L2(R2) such that

UĤ0(b)U∗ = bNx ⊗ Iy

where Nx = − d2

dx2 + x2 is the harmonic oscillator. Therefore

σ(Ĥ0(b)) = σpp(Ĥ0(b)) = b(2N∗ − 1).

These eigenvalues are called the Landau levels. We denote by

Πq : L2(R2)→ L2(R2)

the projector onto ker(Ĥ0(b)− b(2q − 1)), q ∈ N∗ and we define

F0 : L2(Rn−2)→ L2(R∗+, L2(Sn−3), dE),

by

F0ϕ(E) = E
n−4

4 ϕ̂(
√
E . )

where ϕ̂ denotes the Fourier transfor of ϕ. Next, we define

F : L2(Rn)→ L2(R∗+, L2(R2 × Sn−3), dE)

by
Fϕ(E) =

∑

1≤q< 1+E/b
2

Πq ⊗F0ϕ(E − b(2q − 1)).
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Then F is a unitary isomorphism and

• F H0 F∗ is the multiplication by E on L2(R∗+, L2(R2 × Sn−3), dE)

• For all t > 0, FS(b)F∗ and eitF H0 F∗ commute.

Hence (cf. [Reed-Simon, T4]), there exists a function E 7→ S(E, b) in
L∞(R∗+,L(L2(R2 × Sn−3))) such that

∀ϕ ∈ L2(Rn), S(b)ϕ = F∗S(E, b)Fϕ.

For E > 0, S(E, b) is called the scattering matrix (it is a matrix only in
the case n = 3).
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II Main results

II.1 Representation formula

For α ∈ R we use the L2-weighted space L2
α = L2(Rn, 〈z〉αdxdydz)

where 〈z〉 = (1 + |z|2)1/2 and for E > 0, α > 1/2 we define

F(E) : L2
α → L2(R2 × Sn−3)

by F(E)ϕ = Fϕ(E).

Theorem 1 Suppose that the potential V satisfies Assumption 1 and
denote by σpp(H) the point spectrum of H(b). Then, for all
E ∈]b,+∞[\(b(2N∗ − 1) ∪ σpp(H)), one has

S(E, b)− Id =− 2iπbγF(E)V F(E)∗

+ 2iπb2γF(E)V R(E + i0)V F(E)∗,

where
R(E + i0) = lim

µ→0+
(H(b)− E − iµ)−1

exists in the space L(L2
α, L

2
−α) for α > 1/2.
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Corollary 1 For E ∈]b,+∞[\(b(2N∗ − 1) ∪ σpp(H)),
T (E, b) := S(E, b)− Id has a kernel

(ω, ω′) ∈ Sn−3 × Sn−3 → T (ω, ω′, E, b) ∈ L(L2(R2))

which is smooth on Sn−3 × Sn−3. The map (ω, ω′) 7→ T (ω, ω′, E, b) is
called the scattering amplitude.

Goal: Study T (ω, ω′, E, b) when b→∞. We work with energies far
from the Landau levels; E = λb with λ /∈ 2N∗ − 1.

Two different regimes according to γ:

• γ ∈ [0, 1/2[: High energy behavior.

• γ ∈ [1/2, 1]: Semiclassical behavior.
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II.3 Asymptotics in the case γ = 0

Theorem 2 Suppose that Assumption 1 is satisfied and let
λ ∈]2q0 − 1, 2q0 + 1[ for some q0 ∈ N∗. When b tends to infinity,
λb /∈ σpp(H(b)) and

T (ω, ω′, λb, b) =
ib
n−4

2

2(2π)n−1

q0∑

q=1

λ
n−4

2
q V̂ z(x, y, , b1/2λ1/2

q (ω − ω′))Πq

+O(b
n−5

2 )

in L(L2(R2)), where λq = λ− 2q + 1.

From this theorem we deduce the following inverse scattering result.

Corollary 2 Suppose that V1, V2 satisfy Assumption 1. Assume that the
associate scattering operators S1 and S2 are equal. Then V1 = V2.
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II.4 Asymptotics in the case γ = 1

From now, we assume that λ ∈]2q0 − 1, 2q0 + 1[, q0 ∈ N∗ and for
q ∈ {1, . . . , q0} we set λq = λ− 2q + 1. For (x, y) ∈ R2, let us denote

px,y(z, z∗) = |z∗|2 + V (x, y, z), ∀(z, z∗) ∈ T ∗Rn−2,

Hpx,y = ∂z∗px,y∂z − ∂zpx,y∂z∗
the associated Hamiltonian vector field and t 7→ exp(tHpx,y )(z, z∗) the

solution of the Hamiltonian system

Ż = 2Z∗, Ż∗ = −∇zV (x, y, Z) (1)

with initial condition (Z,Z∗)|t=0 = (z, z∗).

We introduce the following non-trapping condition.

Assumption 2 For all q = 1, . . . , q0 and all (x, y) ∈ R2,

lim
|t|→∞

| exp(tHpx,y )(z, z∗)| = +∞

for all (z, z∗) ∈ T ∗Rn−2 such that |z∗|2 + V (x, y, z) = λq .
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II.4.1 Asymptotics in dimension 3

In dimension n = 3, the structure of the classical scattered trajectories is
rather simple and the preceding assumption is sufficient to state a
theorem. Let us denote

S(E, b) =


 S11(E, b) S12(E, b)

S21(E, b) S22(E, b)




the scattering matrix in dimension 3, with Sij(E, b) ∈ L(L2(R2)). From
Assumption 2, we deduce easily that there exists q1 ∈ {1, . . . , q0 + 1}
such that:

• for all q ∈ {1, . . . , q1 − 1} and all (x, y) ∈ R2, λq > supz∈R V (x, y, z)

• for all q ∈ {q1, . . . , q0} and all (x, y) ∈ R2, the equation in z
V (x, y, z) = λq has exactly two solutions αq(x, y) < βq(x, y) and these
solutions are non-critical points of z 7→ V (x, y, z).
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Figure 1: A potential satisfying Assumption 2.
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Class of symbols:
Let m : Rd → [0,+∞[ be an order function, that is:

∃C,N > 0, ∀x, y ∈ Rd, m(x) ≤ C〈x− y〉Nm(y).

For δ ∈ [0, 1], we say that a function a(x, h) ∈ C∞(Rd×]0, 1]) belongs
to the class Sδ(Rd,m, h) if

∀α ∈ Nd, ∃Cα > 0, |∂αx a(x, h)| ≤ Cαh−δ|α|m(x).

For a in a suitable class of symbol, we will denote by aw(x, hDx) the
standard Weyl-quantization of a.
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Theorem 3 Suppose that n = 3 and that Assumption 1 and 2 are
fulfilled, then we have the following asymptotics.

Diagonal coefficients

S11(λb, b) =

q1−1∑

q=1

swd,q(λ, y/2− b−1Dx, x/2− b−1Dy)Πq +
+∞∑

q=q0+1

Πq

+O(b−∞)

in L(L2(R2), with sd,q ∈ S1/2(R2, b−1) and

sd,q(λ, y, ξ) = exp(ib1/2
∫ +∞

−∞

√
λq − V (ξ, y, z)−

√
λqdz)+O(b−1/2).

Off-diagonal coefficients

S21(λb, b) =

q0∑

q=q1

swa,q(λ, y/2− b−1Dx, x/2− b−1Dy)Πq +O(b−∞)

in L(L2(R2)), with sa,q ∈ S1/2(R2, b−1) and

sa,q(λ, y, ξ) =

i exp(2ib1/2(
√
λqαq(ξ, y) +

∫ αq(ξ,y)

−∞

√
λq − V (ξ, y, z)−

√
λqdz))

+O(b−1/2)
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II.4.2 Asymptotics in dimension n ≥ 4

From now, we fix a couple of directions (ω, ω′) ∈ Sn−3 × Sn−3. As V is
compactly supported in the variable z, out of a compact set the solutions
of (1) are straight lines and it is easy to see that for all (x, y) ∈ R2,
q = 1, . . . , q0 and z̃ ∈ ω⊥, there exists a unique solution
(Zq,∞, Z∗q,∞)(t, x, y, z̃, ω) of (1) such that for −t > 0 large enough

Zq,∞(t, x, y, z̃, ω) = 2
√
λqωt+ z̃.

Under Assumption 2, we can precise the behavior of these particles when
t goes to +∞. There exists θq,∞(x, y, z̃, ω) ∈ Sn−3 and
rq,∞(x, y, z̃, ω) ∈ Rn−2 such that for t > 0 large enough

Zq,∞(t, x, y, z̃, ω) = 2
√
λqθq,∞(x, y, z̃, ω)t+ rq,∞(x, y, z̃, ω)

Z∗q,∞(t, x, y, z̃, ω) =
√
λqθq,∞(x, y, z̃, ω).

For z̃ ∈ ω⊥ ' Rn−3, we define the angular densities by

σ̂q(x, y, z̃) = | det(θq,∞, ∂z̃1θq,∞, . . . , ∂z̃n−3
θq,∞)|

Assumption 3 We suppose that for all q ∈ {1, . . . , q0}, (x, y) ∈ R2 and
all z̃ ∈ ω⊥ with θq,∞(x, y, z̃) = ω′, we have σ̂q(x, y, z̃) 6= 0.

Consequence: It follows from this assumption and implicit function
theorem that for all q ∈ {1, . . . , q0} and all (x, y) ∈ R2, the equation

θq,∞(x, y, z̃, ω) = ω′

has a finite number of solutions z̃q,1(x, y), . . . , z̃q,lq (x, y) smooth with
respect to (x, y). Moreover, the number lq does not depend on (x, y).
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Theorem 4 Suppose that n ≥ 4 and that Assumptions 1, 2 and 3 are
satisfied. Then λb /∈ σpp(H(b)) and

T (ω, ω′, λb, b) =

b
n−3

4

q0∑

q=1

λ
n−3

4
q Twq (ω, ω′, y/2− b−1Dx, x/2 + b−1Dy)Πq +O(b

n−5
4 )

in L(L2(R2)), where

Tq(ω, ω
′, y, ξ) = c(n)

lq∑

l=1

σ̂q(ξ, y, z̃q,l(ξ, y))−1/2eib
1/2Sq,l(y,ξ)−iµq,lπ/2

is a symbol of class S1/2(R2, b−1). Here

Sq,l(y, ξ) =

∫ +∞

−∞
(|Z∗q,∞(t, ξ, y, z̃q,l(ξ, y), ω)|2

− V (ξ, y, Zq,∞(t, ξ, y, z̃q,l(ξ, y), ω))− λq)dt
− rq,∞(ξ, y, z̃q,l(ξ, y), ω),

µq,l is the Maslov index of (Zq,∞, Z∗q,∞)(t, ξ, y, z̃q,l(ξ, y), ω) on the
Lagrangian manifold

{(z, z∗) ∈ T ∗Rn−2 |
z = Zq,∞(t, ξ, y, z̃, ω), z∗ = Z∗q,∞(t, ξ, y, z̃, ω)), z̃ ∈ ω⊥, t ∈ R}

and µq,l is independent on (y, ξ).
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III Sketch of the proof

III.1 Case γ = 0

Proposition 1 Suppose that Assumption 1 is satisfied and let
λ ∈]1,+∞[\(2N∗ − 1). Then

‖〈z〉−αR(λb+ i0)〈z〉−α‖L2,L2 = O(b−1/2).

Proof: in the case where V = V∞(z). Then

R(λb+ i0) = (−∆z + V (z) + b(
∑

q

(2q − 1)Πq − λ)− i0)−1

=
∑

q

(−∆z + V (z)− bλq − i0)
−1

Πq

To conclude, we use the well-known high energy estimate for the
Schrödinger equation when E → +∞

‖〈z〉−α(−∆z + V (z)− E − i0)−1〈z〉−α‖L2,L2 = O(E−1/2)

for all α > 1/2. �

Theorem 2 is proved by combining Theorem 1 and Proposition 1.
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III.2 Case γ = 1

Starting point: For q = 1, . . . , q0, denote λq = λ− 2q + 1 and let
χ1, χ2 ∈ C∞0 (Rn−2

z ) such that V ≺ χ1 ≺ χ2. Then

T (ω, ω′, λb, b) =

q0∑

p,q=1

Πpfp,q(ω, ω
′, λ, b)Πq

with

fp,q(ω, ω
′, λ, b) =

∫

Rn−2

e−ib
1/2
√
λp〈z,ω′〉[∆z, χ2]

R(λb+ i0)[∆z, χ1]eib
1/2
√
λq〈z,ω〉dz

Ouline of the proof:
1. Effective Hamiltonian

2. Non-trapping Resolvent estimate

3. Microlocal Resolvent estimate and Egorov Lemma

4. Approximation of the evolution

5. Stationnary phase method
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III.2.1 Effective Hamiltonian

Projection on the Landau levels
Lemma 1 ([Dimassi-Raikov 01’], [Dimassi 01’],...) There exists a
symplectic change of coordinates involving a unitary operator
U : L2(Rn)→ L2(Rn) such that

UH(b)U∗ = h−2P̃ (h)

with h = b−1/2 and

P̃ (h) = −h2∆z +Nx + V w(h2Dy + hDx, y − hx, z),

where Nx = − d2

dx2 + x2.

Remark 1 Let us notice that the pseudo-differential operators we are
dealing with have two scales: h for the variable z and h2 for the variable
y.

For q = 1, . . . , q0, let us set

Π̃q = UΠqU
∗ : L2(Rn)→ L2(Rn).

Denoting Φq ∈ L2(Rx) the eigenfunction of Nx associated to the
eigenvalue 2q − 1 we have

Π̃qϕ = 〈ϕ,Φq〉L2(Rx)Φq.

Let us denote Π̃ =
∑q0
q=1 Π̃q and identify Ran Π̃ with L2(Rn−1

y,z )q0 . Then
we have to analyze the operator

Π̃(P̃ (h)− λ− iµ)−1Π̃ : L2(Rn−1
y,z )q0 → L2(Rn−1

y,z )q0 .
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Proposition 2 For all µ > 0,

Π̃(P̃ (h)− λ− iµ)−1Π̃ = E(h, λ+ iµ)−1

where E(h, λ+ iµ) has the following properties:

i) There exists a sequence of matrix valued symbols
(Ej(y, ξ, z, z

∗, λ+ iµ))j∈N such that
E0 ∈ S0(R2n−2, 〈z∗〉2,L(Rq0)),
Ej ∈ S0(R2n−2, 1,L(Rq0)), ∀j ≥ 1 and for all N ∈ N∗,

E(h, λ+ iµ) =

N∑

j=0

hjEwj (y, h2Dy, z, hDz, λ+ iµ) +O(hN ).

ii)

E0(y, ξ, z, z∗, λ+iµ) = diag((|z∗|2 +V (ξ, y, z)−λq−iµ)q=1,...,q0),

iii) E1 is off-diagonal and for all j ≥ 1 the seminorms of Ej are
bounded uniformly with respect to µ > 0.
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Proof: Let us denote Π̂ = 1− Π̃ and P̂ = Π̂P Π̂. Solving a suitable
Grushin problem, we get

Π̃(P̃ (h)− λ− iµ)−1Π̃ = E(h, λ+ iµ)−1

with

E(h, λ+ iµ) = Π̃(P̃ (h)− λ− iµ)Π̃

− Π̃V w(. . .)Π̂(P̂ (h)− λ− iµ)−1Π̂V w(. . .)Π̃

= ED(h) + EA(h)

We have

ED(h) = (apq(y, z, h
2Dy, hDz))p,q∈{1,...,q0}

with

apq(y, z, ξ, z
∗) = 〈(|z∗|2 + V w(ξ + hDx, y − hx, z)− λ− iµ)φp, φq〉.

By Taylor expansion, we get

apq(y, z, ξ, z
∗) = δpq(|z∗|2 + V (ξ, y, z) + h2p2 + h3p3 + . . .)

+ (1− δpq)hbpq,

with bpq ∈ S0(R2n−2). Therefore, ED(h) has the required properties.

To analyze the term EA(h) it suffices to remark that

• Π̂V w(. . .)Π̂ = O(h)

• As V ≥ 0, P̃ (h)− λ is elliptic and we can construct a parametrix.

�
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Diagonalization of the Hamiltonian

Proposition 3 For all N0 ∈ N∗, there exists a unitary transformation
UN0

on L2(Rn−1
y,z ) such that

UN0
E(h, λ+ iµ)U∗N0

= PN0
(λ+ iµ) +O(hN0)

with

PN0
(λ+iµ) = diag((pwq (y, z, h2Dy, hDz, N0)−λq−iµ), q = 1, . . . , q0)

and pq(., N0) ∈ S0(R2n−2, 〈z∗〉2). Moreover,

pq(y, z, ξ, z
∗, N0) =

N0∑

m=0

hmpq,m(y, z, ξ, z∗)

with pq,0 = |z∗|2 + V (ξ, y, z), pq,m ∈ S0(T ∗Rn−1) for m ≥ 1.

Proof: Look for U1 under the form

U1 = exp(huw1 (y, z, h2Dy, hDz)).

Then

U1E(h, λ+ iµ)U∗1 = Ew0 (y, z, h2Dy, hDz)

+ h(Ew1 (. . .) + uw1 (. . .)Ew0 (. . .) + Ew0 (. . .)uw1 (. . .)∗) + . . .

We remark that E0 has the required form and we can chose u1 so that the
term in h in the preceding expansion vanishes. We conclude by induction.
�
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III.2.2 Resolvent estimate

Proposition 4 Supspose that Assumptions 1 and 2 are satisfied, then λb is
not an eigenvalue of H(b) and

‖〈z〉−αPN0
(λ+ i0)−1〈z〉−α‖L2(Rn−1

y,z )q0 ,L2(Rn−1
y,z )q0 = O(h−1)

for all α > 1/2.

Proof: Apply Mourre theory and search a conjugate operator for PN0
(λ).

It suffices to build a conjugate operator for each pwq,0(y, z, h2Dy, hDz) at
the energy λq .

Assumption 2 ⇐⇒ ∀(y, ξ) ∈ R2, λq is non-trapping for
the symbol pξ,y(z, z∗) = |z∗|2 + V (ξ, y, z)

=⇒ For all (y, ξ) one can find an escape function
(z, z∗) 7→ G(y, ξ, z, z∗)

More precisely, using [Gerard-Martinez 88’], for all (y, ξ) ∈ R2 one can
find a bounded function (z, z∗) 7→ G(y, ξ, z, z∗) such that:

∀(z, z∗) ∈ T ∗Rn−2, Hpξ,yG(y, ξ, z, z∗) ≥ 0

∀(z, z∗) ∈ p−1
ξ,y([λq − ε, λq + ε]), Hpξ,yG(y, ξ, z, z∗) ≥ 1.
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Therefore, for χ ∈ C∞0 (R) localizing near {λq} and all (y, ξ)

iχ(pwξ,y(z, hDz))[p
w
ξ,y(z, hDz), G

w(y, ξ, z, hDz)]χ(pwξ,y(z, hDz))

≥ hχ2(pξ,y(z, hDz))

From the symbolic calculus (in the variable y) with operator-valued
symbols, we have

[pwq,0(y, z,h2Dy, hDz), G
w(y, h2Dy, z, hDz)]

= [pwξ,y(z, hDz), G
w(y, ξ, z, hDz)](y, h

2Dy) +O(h2)

Combining the two last equations, we obtain the Mourre estimate.

�
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III.2.3 Egorov Lemma

For t > 0, let φt : T ∗Rn−1 → T ∗Rn−1 be defined by

φt(y, z, ξ, z
∗) = exp(tHpξ,y )(z, z∗).

Lemma 2 Let ω1, ω2 ∈ S0(T ∗Rn−1
y,z ) such that

suppω2 ∩ φt(supp(ω1)) = ∅ and ω1 is compactly supported, then

‖ωw2 (y, z, h2Dy, hDz)e
−ih−1tPN0

(λ)ωw1 (y, z, h2Dy, hDz)‖ = O(h∞),

for all α > 1/2.

Proof: Use the fact that the dynamics is governed by the variable z,
whereas the variable y produces terms of order O(h2). �

Consequences: Using this lemma, microlocal resolvent estimates and the
following formula

PN0
(λ+ i0)−1 = ih−1

∫ T

0

e−ih
−1tPN0

(λ+i0)dt

+ PN0
(λ)−1e−ih

−1TPN0
(λ+i0),

we obtain

fp,q(ω, ω
′, λ, h) =

∫ T0

0

∫

Rn−2

e−ih
−1
√
λp〈z,ω′〉[∆z, χ2]

eih
−1t(λq−Pq(h))[∆z, χ1]eih

−1
√
λq〈z,ω〉dzdt

+O(h),

with Pq(h) = pwq (y, z, h2Dy, hDz).
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III.2.4 Approximation of the evolution

Our aim is to approximate the operator Ω(t) : L2(Ry)→ L2(R2
y,z)

defined by

(Ω(t)ϕ)(y, z) = e−ih
−1tPq(h)[h2∆z, χ1]eih

−1
√
λq〈z,〉ωϕ(y)

for all ϕ ∈ L2(Ry). We look for Ω(t)ϕ under the form
τw(t, y, z, h2Dy, h)ϕ. We have to solve




ih∂tτ
w(t, y, z, h2Dy, h)− Pq(h)τw(t, y, z, h2Dy, h) = 0

τ(t = 0, y, z, h2Dy, h)wϕ = [h2∆z, χ1]eih
−1
√
λq〈z,ω〉ϕ(y)

From the symbolic calculus, it follows that τ must be solution of




(ih∂t − Lw(y, z, ξ, hDy, hDz, hDξ, h))τ(t, y, z, ξ, h) = 0

τ(0, y, z, ξ, h) = [h2∆z, χ1]eih
−1
√
λq〈z,ω〉

where formally,

L(y, z, ξ, y∗, z∗, ξ∗) =

∑

α,β,m∈N

hα+β+m(−1)α

2α+βα!β!
∂αy ∂

β
ξ pq,m(y, z, ξ, z∗)(ξ∗)α(y∗)β .
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In fact, for N ∈ N∗ to be chosen large enough, we look for τN solution of




(ih∂t − LwN (y, z, ξ, hDy, hDz, hDξ, h))τN (t, y, z, ξ, h) = O(hN )

τN (0, y, z, ξ, h) = [∆z, χ1]eih
−1
√
λq〈z,ω〉

(2)
with

LN (y, z, ξ, y∗, z∗, ξ∗) =

∑

|α+β+m|≤N

hα+β+m(−1)α

2α+βα!β!
∂αy ∂

β
ξ pq,m(y, z, ξ, z∗)(ξ∗)α(y∗)β .

Remark that the principal symbol of LN (y, z, ξ, y∗, z∗, ξ∗) is given by

l0(y, z, ξ, y∗, z∗, ξ∗) = |z∗|2 + V (ξ, y, z),

so that the corresponding Hamiltonian system is




Ż = 2Z∗, Ż∗ = −∇zV (Ξ, Y, Z)

Ẏ = 0, Ẏ ∗ = −∇yV (Ξ, Y, Z)

Ξ̇ = 0, Ξ̇∗ = −∇xV (Ξ, Y, Z)

In particular, Y and Ξ are constant, say (Y,Ξ) = (y, ξ) so that the
solution of the two first lines with initial condition (z, z∗) is given by

(Z,Z∗)(t, y, z, ξ, z∗) = exp(tHpξ,y )(z, z∗)

From Assumption 3, we deduce that for T > 0 large enough and (y, ξ, z)

in a suitable compact set, the point (Y,Z,Ξ)(t, y, z, ξ,
√
λqω) is

non-focal in the Maslov sense:

Dq(t, y, , ξ) := det
∂(Y,Z,Ξ)

∂(y, z, ξ)
(y, z, ξ,

√
λqω) 6= 0.
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From Maslov’s work, we deduce

Proposition 5 There exists some functions τN,j ∈ C∞(Rt × Rny,z,ξ),
j ∈ N such that

τN (y, z, ξ, h) =eih
−1Sq(t,y,z̃,ξ)−iµqπ/2

|Dq(t, y, z̃, ξ)|−1/2
N∑

j=1

hjτN,j(t, y, z̃, ξ)

solves (2). Here, z = Z(t, ξ, y, z̃,
√
λqω), Sq is the action along the

trajectory joining z̃ and z

Sq(t, y, z̃, ξ) =

∫ t

0

(|Z∗(s, ξ, y, z̃,
√
λqω)|2

− V (ξ, y, Z(s, ξ, y, z̃,
√
λqω))ds

+
√
λq〈z̃, ω〉

and µq is the path index of this trajectory. Moreover,
τN,0(t, y, z̃, ξ) = cl(y, z̃, ξ) and µq is independent on (y, ξ).

Remark 2 The symbol τN is in the class S1/2(Rn, h2). In particular
there is a symbolic calculus for the product of τN (y, z, h2Dy) with
pseudo whose symbol is in S0 (cf. [Dimassi-Sjostrand]). This permits to
justify our approximation.
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III.2.5 Stationnary phase method

The end of the proof follows [Robert-Tamura,89’].

• We replace Ω(t) by τN in the representation formula.

• In the integral giving the scattering amplitude do the changes of
variable

(t, z̃) ∈ R× ω⊥ 7→ z = Zq,∞(t, x, y, z̃, ω) ∈ Rn−2.

• Conclude by stationnary phase method. The stationary points are
given by the classical trajectories starting with initial momentum√
λqω in t = −∞ and with asymptotic momentum

√
λqω

′ in
t = +∞.
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