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A SEMICLASSICAL APPROACH TO THE
KRAMERS–SMOLUCHOWSKI EQUATION⇤
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AND MACIEJ ZWORSKI‡

Abstract. We consider the Kramers–Smoluchowski equation at a low temperature regime and
show how semiclassical techniques developed for the study of the Witten Laplacian and Fokker–
Planck equation provide quantitative results. This equation comes from molecular dynamics and
temperature plays the role of a semiclassical paramater. The presentation is self-contained in the
one dimensional case, with pointers to the recent paper [L. Michel, About small eigenvalues of Witten
Laplacian, preprint, https://arxiv.org/abs/1702.01837, 2018] for results needed in higher dimensions.
One purpose of this note is to provide a simple introduction to semiclassical methods in this context.

Key words. Kramers–Smoluchowski equation, Witten Laplacian, semiclassical analysis

AMS subject classification. 35Q84

DOI. 10.1137/17M1124826

1. Introduction. The Kramers–Smoluchowski equation describes the time evo-
lution of the probability density of a particle undergoing a Brownian motion under
the influence of a chemical potential; see [1] for the background and references. Math-
ematical treatments in the low temperature regime have been provided by Peletier,
Savaré, and Veneroni [16] using �-convergence, by Herrmann and Niethammer [11]
using Wasserstein gradient flows, and by Evans and Tabrizian [5].

The purpose of this note is to explain how precise quantitative results can be
obtained using semiclassical methods developed by, among others, Bovier, Gayrard,
Hel↵er, Hérau, Hitrik, Klein, Nier, and Sjöstrand [2, 7, 8, 9, 10] for the study of
spectral asymptotics for Witten Laplacians [17] and for Fokker–Planck operators.
The semiclassical parameter h is the (low) temperature. This approach is much closer
in spirit to the heuristic arguments in the physics literature [6, 13] and the main
point is that the Kramers–Smoluchowski equation is the heat equation for the Witten
Laplacian acting on functions. Here we give a self-contained presentation of the one
dimensional case and explain how the recent paper by the first author [15] can be
used to obtain results in higher dimensions.

Let ' : Rd ! R be a smooth function. Consider the corresponding Kramers–
Smoluchowski equation:

(1.1)

⇢
@
t

⇢ = @
x

· (@
x

⇢+ ✏�2⇢@
x

'),
⇢|t=0

= ⇢
0

,

where ✏ 2 (0, 1] denotes the temperature of the system and will be the small asymp-
totic parameter. Assume that there exists C > 0 and a compact K ⇢ Rd such that
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for all x 2 Rd \K, we have

(1.2) |@'(x)| � 1

C
, |@2

xixj
'|  C|@'|2, '(x) � C|x|.

Suppose additionally that ' is a Morse function, that is, ' has isolated and non-
degenerate critical points. Then, thanks to the above assumptions the set U of critical
points of ' is finite. For p = 0, . . . , d, we denote by U (p) the set of critical points of
index p. Denote

(1.3) '
0

:= inf
x2Rd

'(x) = inf
m2U(0)

'(m) and �
1

:= sup
s2U(1)

'(s).

Thanks to (1.2), the sublevel set of �
1

is decomposed in finitely many connected
components E

1

, . . . , E
N

:

(1.4) {x 2 Rd, '(x) < �
1

} =
NG

n=1

E
n

.

We assume that

(1.5) inf
x2En

'(x) = '
0

8n = 1, . . . , N, and '(s) = �
1

8s 2 U (1),

which corresponds to the situation where ' admits N wells of the same height. In
order to avoid heavy notation, we also assume that for n = 1, . . . , N the minimum of
' on E

n

is attained in a single point that we denote by m
n

.
The associated Arrhenius number, S = �

1

� '
0

, governs the long time dynamics
of (1.1), which is made quantitative in Theorem 1. More general assumptions can be
made as will be clear from the proofs. We restrict ourselves to the case in which the
asymptotics are cleanest.

To state the simplest result let us assume that d = 1 and that the second derivative
of ' is constant on the sets U (0) and U (1):

(1.6) '00(m) = µ 8m 2 U (0) and '00(s) = �⌫ 8s 2 U (1)

for some µ, ⌫ > 0. The potential then looks like the one shown in Figure 1. We
introduce the matrix

(1.7) A
0

=


⇡

0

BBBBBBBBBBBBBB@

1 �1 0 0 . . . . . . . . . 0
�1 2 �1 0 . . . . . . . . . 0
0 �1 2 �1 0 . . . . . . 0
... 0 �1 2

. . .
. . . . . . 0

...
...

. . .
. . .

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . . �1 0

0
...

. . .
. . .

. . . �1 2 �1
0 0 . . . . . . . . . 0 �1 1

1

CCCCCCCCCCCCCCA

with  =
p
µ⌫. This matrix is positive semidefinite with a simple eigenvalue at 0.
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Fig. 1. A one dimensional potential with interesting Kramers–Smoluchowski dynamics.

Theorem 1. Suppose that d = 1 and ' satisfies (1.2), (1.5), and (1.6). Suppose

that

(1.8) ⇢
0

=
⇣ µ

2⇡✏2

⌘ 1
2

 
NX

n=1

�
n

1l
En + r

✏

!
e�'/✏

2

, lim
✏!0

kr
✏

k
L

1 = 0, � 2 RN ,

then the solution to (1.1) satisfies, uniformly for ⌧ � 0,

(1.9) ⇢(2✏2eS/✏
2

⌧, x) !
NX

n=1

↵
n

(⌧)�mn(x), ✏! 0,

in the sense of distributions in x, where S = �
1

�'
0

and where ↵(⌧) = (↵
1

, . . . ,↵
n

)(⌧)
solves

(1.10) @
⌧

↵ = �A
0

↵, ↵(0) = �,

with A
0

given by (1.7).

The above result is a generalization of Theorem 2.5 in [5] where the case of a
double-well is considered and estimates are uniform on compact time intervals only.
We remark that the equation considered in [5] also has an additional transverse vari-
able (varying slowly). A development of the methods presented in this note would
also allow having such variables. Since our goal is to explain general ideas in a simple
setting we do not address this issue here.

A higher dimensional version of Theorem 1 is given in Theorem 3 in section 3.
In this higher dimensional setting, the matrix A

0

becomes a graph Laplacian for a
graph obtained by taking minima as vertices and saddle points as edges. The same
graph Laplacian was used by Landim, Misturini, and Tsunoda [14] in the context of
a discrete model of the Kramers–Smoluchowski equation.

Using the methods of [5] and [2], Theorem 3 was also proved by Seo–Tabrizian
[12], but as the other previous papers, without uniformity in time (that is, with
convergence uniform for t 2 [0, T ]).

Here, Theorem 1 is a consequence of a more precise asymptotic formula given in
Theorem 2 formulated using the Witten Laplacian. Provided that certain topological
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assumptions are satisfied (see [15, sections 1.1 and 1.2]) an analogue of Theorem 1 in
higher dimensions is immediate; see section 3 for geometrically interesting examples.

The need for the new results of [15] comes from the fact that in the papers
on the low-lying eigenvalues of the Witten Laplacian [2, 7, 8, 9, 10], the authors
make assumptions on the relative positions of minima and of saddle points. These
assumptions mean that the Arrhenius numbers are distinct and hence potentials for
which the Kramers–Smoluchowski dynamics (1.9) is interesting are excluded. With
this motivation the general case was studied in [15], and to explain how the results of
that paper can be used in higher dimensions, we give a self-contained presentation in
dimension one.

We remark that we need specially prepared initial data (1.8) to obtain results
valid for all times. Also, E

n

’s in the statement can be replaced by any interval in E
n

containing the minimum. Theorem 2 also shows that a weaker result is valid for any
L2 data: suppose that ⇢

0

2 L2

'

:= L2(e'(x)/✏

2

dx) and that

�
n

:=
⇣ µ

2⇡✏2

⌘ 1
4

Z

En

⇢
0

(x)dx.

Then, uniformly for ⌧ � 0,

(1.11)
⇢(t, x) =

⇣ µ

2⇡✏2

⌘ 1
4

NX

n=1

↵
n

((2✏2)�1e�S/✏

2

t) 1l
En(x)e

�'/✏

2

+ r
✏

(t, x),

kr
✏

(t)k
L

1
(dx)

 C(✏
5
2 + ✏

1
2 e�t✏

2

)k⇢
0

k
L

2
'
, L2

'

:= L2(R, e'(x)/✏

2

dx),

where ↵ solves (1.10). The proof of (1.11) is given at the end of section 2.6.

2. Dimension one. In this section we assume that the dimension is equal to
d = 1, which allows us to present self-contained proofs which indicate the strategy for
higher dimension.

Ordering the sets E
n

such that m
1

< m
2

< · · · < m
N

, it follows that for all
n = 1, . . . , N � 1, Ē

n

\ Ē
n+1

= {s
n

} is a maximum, and we assume additionally that
there exists µ

n

, ⌫
k

> 0 such that for n = 1, . . . , N and k = 1, . . . , N � 1,

(2.1) '00(m
n

) = µ
n

and '00(s
k

) = �⌫
k

.

Using this notation we define a symmetric N ⇥N matrix: A
0

= (a
ij

)
1i,jN

, where
(with the convention that ⌫

0

= ⌫
N

= 0)

a
ii

= ⇡�1µ
1
2
j

(⌫
1
2
j�1

+ ⌫
1
2
j

), a
i,i+1

= �⇡�1⌫
1
2
i

µ
1
4
i

µ
1
4
i+1

, 1  i  N � 1,(2.2)

and a
i,i+k

= 0 , for k > 1, a
ij

= a
ji

. The matrix A
0

is symmetric positive and the
eigenvalue 0 has multiplicity 1. When µ

j

’s and ⌫
j

’s are all equal, our matrix takes
the particularly simple form (1.7).

First, observe that we can assume without loss of generality that '
0

= 0. Define
the operator appearing on the right-hand side of (1.1) by

P := @
x

· (@
x

+ ✏�2@
x

')

and denote
h = 2✏2.
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Then, considering e±'/h as a multiplication operator,

P = @
x

� (@
x

+ 2h�1@
x

') = @
x

� e�2'/h � @
x

� e2'/h

and
e'/h � P � e�'/h = �h�2�

'

, �
'

:= �h2�+ |@
x

'|2 � h�'.

Hence, ⇢ is a solution of (1.1) if u(t, x) := e'(x)/h⇢(h2t, x) is a solution of

(2.3) @
t

u = ��
'

u, u|t=0

= u
0

:= ⇢
0

e'/h.

In order to state our result for this equation, we denote

(2.4)  
n

(x) := c
n

(h)h� 1
4 1l

En(x)e
�('�'0)(x)/h 8n = 1, . . . , N,

where c
n

(h) is a normalization constant such that k 
n

k
L

2 = 1. The method of steepest
descent shows that

(2.5) c
n

(h) ⇠
1X

k=0

c
n,k

hk, c
n,0

= (µ
n

/⇡)
1
4 8n = 1, . . . , N.

We then define a map  : RN ! L2 by

(2.6)  (�) :=
NX

n=1

�
n

 
n

8� = (�
1

, . . . ,�
N

) 2 RN .

The following theorem describes the dynamic of the above equation when h ! 0.

Theorem 2. There exists C > 0 and h
0

> 0 such that for all � 2 RN

and all

0 < h < h
0

, we have

(2.7) ke�t�' (�)� (e�t⌫hA�)k
L

2  Ce�
1

Ch |�| 8t � 0,

where ⌫
h

= he�2S/h

, S = �
1

� '
0

, and A = A(h) is a real symmetric positive matrix

having a classical expansion A ⇠P1
k=0

hkA
k

with A
0

given by (2.2). In addition,

(2.8) ke�t�' (�)� (e�t⌫hA0�)k
L

2  Ch|�|
uniformly with respect to t � 0.

We first present the following.

Theorem 2 implies Theorem 1. First, recall that we assume here µ
n

= µ for all
n = 1, . . . , N and ⌫

k

= ⌫ for all k = 1, . . . , N � 1. Suppose that ⇢ is the solution to
(1.1) with ⇢

0

as in Theorem 1. Then u(t, x) := e'(x)/h⇢(h2t, x) is a solution of (2.3),
that is u(t) = e�t�'u

0

with

u
0

= ⇢
0

e'/2✏

2

=
⇣ µ

2⇡✏2

⌘ 1
2

 
NX

n=1

�
n

1l
En +r

✏

!
e�'/2✏

2

=
⇣ µ

⇡h

⌘ 1
2

 
NX

n=1

�
n

1l
En +r

h

!
e�'/h.

(2.9)

Since, c
n

(h) = (µ/⇡)
1
4 +O(h), it follows that

u
0

= (µ/⇡h)
1
4 (�) + r̃

h

, r̃
h

=
⇣
O(h

1
2 ) + h� 1

2 r
h

⌘
e�'/h.
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Since h� 1
2 e�'/h = O

L

1(1), we have r̃
h

! 0 in L1 when h ! 0. Hence, it follows from
(2.8) that

⇢(h2t, x) = e�'(x)/hu(t, x) = e�'(x)/he�t�'

⇣
(µ/⇡h)

1
4 (�) + r̃

h

⌘

= e�'(x)/h

⇣
(µ/⇡h)

1
4 (e�t⌫hA0�) + e�t�' r̃

h

+O
L

2(h)
⌘
.

With the new time variable s = t⌫
h

, we obtain

(2.10) ⇢(she2S/h, x) = e�'(x)/h

⇣
(µ/⇡h)

1
4 (e�sA0�) + e�t�' r̃

h

+O
L

2(h)
⌘

and denoting ↵(s) = e�sA0�, we get

e�'(x)/h(µ/⇡h)
1
4 (e�sA0�) = (µ/⇡)

1
4

NX

n=1

↵
n

(t)h� 1
2 c

n

(h)�
n

(x)e�2'(x)/h.

On the other hand, h� 1
2�

n

(x)e�2'(x)/h �! (⇡/µ)
1
2 �

x=mn , as h ! 0, in the sense of
distributions. Since, c

n

(h) = (µ/⇡)
1
4 +O(h), it follows that

(2.11) e�'/h(µ/⇡h)
1
4 (e�sA0�) �!

NX

n=1

↵
n

(t)�
x=mn

when h ! 0. Moreover, since e�t�' is bounded by 1 on L2, then

kh� 1
2 e�'/he�t�'(r

h

e�'/h)k
L

1  kr
h

k
L

1kh� 1
4 e�'/hk2

L

2  Ckr
h

k
L

1

and recalling that r
h

! 0 in L1, we see that

(2.12) e�'(x)/h(e�t�' r̃
h

+O
L

2(h)) �! 0

in the sense of distributions. Inserting (2.11) and (2.12) into (2.10) and recalling that
h = 2✏2, we obtain (1.9).

2.1. Witten Laplacian in dimension one. The Witten Laplacian is partic-
ularly simple in dimension one but one can already observe features which play a
crucial role in general study. For more information, we refer to [4, section 11.1] and
[7].

We first consider �
'

acting on C1
c

(R) and recall a supersymmetric structure
which is the starting point of our analysis:

(2.13) �
'

= d⇤
'

� d
'

with d
'

= e�'/h � h@
x

� e'/h = h@
x

+ @
x

' and d⇤
'

= �h@
x

+ @
x

' = �d�'

. From this
square structure, it is clear that �

'

is nonnegative and that we can use the Friedrichs
extension to define a self-adjoint operator�

'

with domain denotedD(�
'

). Moreover,
it follows from (1.2) that there exists c

0

, h
0

> 0 such that for 0 < h < h
0

,

(2.14) �
ess

(�
'

) ⇢ [c
0

,+1).

Therefore, �(�
'

) \ [0, c
0

) consists of eigenvalues of finite multiplicity and with no
accumulation points except possibly c

0

.
The following proposition gives a preliminary description of the low-lying eigen-

values.
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Proposition 1. There exist "
0

, h
0

> 0 such that for any h 2 (0, h
0

], �±'

has

exactly N eigenvalues 0  �±
1

 �±
2

· · ·  �±
N

in the interval [0, ✏
0

h]. Moreover, for

any ✏ > 0 there exists C such that

(2.15) �±
n

(h)  Ce�(S�✏)/h,

where S = �
1

� '
0

.

Remark. The proof applies to any ' which satisfies the first two inequalities in
(1.2). If one assumes additionally that '(x) � C|x| for |x| large, then e�'/h 2 D(�

'

).
Since d

'

(e�'/h) = 0, it follows that �+
0

= 0.

Proof. This is proved in [4, Theorem 11.1] with h
3
2 in place of ✏

0

h. The proof
applies in any dimension and we present it in that greater generality for ' satisfying

|@'(x)| � 1

C
, |@2

xixj
'|  C|@'|2.

The fact that there exists at least N eigenvalues in the interval [0, Ce�(S�✏)/h]
is a direct consequence of the existence of N linearly independent quasi-modes; see
Lemma 2 and (2.31).

To show that N is the exact number of eigenvalues in [0, ✏
0

h), it su�ces to find
a N dimensional vector space V and "

0

> 0 such that the operator �
'

is bounded
from below by "

0

h on V ?; see, for instance, [18, Theorem C.15].
To find V we introduce a family of harmonic oscillators associated to minima

m 2 U (0) and obtained by replacing ' by its harmonic approximation in the expression
for �

'

:

Hm := �h2�+ |'00(m)(x�m)|2 � h�'(m), m 2 U (0).

The spectrum of this operator is known explicitly (see [7, sect 2.1]) with the simple
eigenvalue 0 at the bottom. We denote by em the normalized eigenfunction, Hmem =
0. The other eigenvalues of Hm are bounded from below by c

0

h for some c
0

> 0.
Let � 2 C1

c

(Rd; [0, 1]) be equal to 1 near 0 and satisfy (1� �2)
1
2 2 C1(Rd). We

define �m(x) = �((x � m)/
p
Mh), where M > 0 will be chosen later. For h small

enough, the functions �m have disjoint supports and hence the function �1 defined
by 1� �2

1 =
P

m2U(0) �2

m is smooth. We define the N dimensional vector space

V = span {�mem, m 2 U (0)}.

The proof is completed if we show that there exist "
0

, h
0

> 0 such that

(2.16) h�
'

u, ui � "
0

hkuk2 8u 2 V ? \D(�
'

), 8h 2]0, h
0

].

To establish (2.16) we use the following localization formula, the verification of which
is left to the reader (see [4, Theorem 3.2]):

�
'

=
X

m2U(0)[{1}
�m ��

'

� �m � h2

X

m2U(0)[{1}
|r�m|2.

Since, r�m = O((Mh)�
1
2 ), this implies, for u 2 D(�

'

), that

(2.17) h�
'

u, ui = h�
'

�1u,�1ui+
X

m2U(0)

h�
'

�mu,�mui+O(hM�1kuk2).
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On the support of �1 we have |r'|2 � h�' � (1 � O(h))|r'|2 � c
1

Mh for some
c
1

> 0, and hence

(2.18) h�
'

�1u,�1ui � Mc
1

hk�1uk2.
On the other hand, near any m 2 U (0), |r'(x)|2 = |'00(m)(x�m)|2+O(|x�m|3) and
'00(x) = '00(m) +O(|x�m|). Since on the support of �m we have |x�m|  p

Mh,
it follows that

(2.19) h�
'

�mu,�mui = hHm�mu,�mui+O((Mh)
3
2 ).

We now assume that u 2 D(�
'

) is orthogonal to �mem for all m. Then �mu is
orthogonal to em. Since the spectral gap of Hm is bounded from below by c

0

h, (2.19)
shows that

(2.20) h�
'

�mu,�mui � c
0

hk�muk2 +O((Mh)
3
2 kuk2) 8m 2 U (0).

Combining this with (2.17), (2.18), and (2.20) gives

h�
'

u, ui � c
0

h
X

m2U(0)[{1}
k�muk2 +O(hM�1kuk2) +O((Mh)

3
2 kuk2)

� c
0

hkuk2 +O(hM�1kuk2) +O((Mh)
3
2 kuk2).

Taking M large enough completes the proof of (2.16).

We denote by E(0) the subspace spanned by eigenfunctions of these low-lying
eigenvalues and by

(2.21) ⇧(0) := 1l
[0,"0h]

(�
'

)

the spectral projection onto E(0). This projector is expressed by the standard contour
integral

(2.22) ⇧(0) =
1

2⇡i

Z

@B(0,�"0h)

(z ��
'

)�1dz.

In our analysis, we will also need the operator ��'

, noting that in dimension one
��'

is the Witten Laplacian on 1-forms. Since �' has exactly N � 1 minima (given
by the N�1 maxima of '), it follows from Proposition 1 that there exists "

1

> 0 such
that ��'

has N � 1 eigenvalues in [0, "
1

h] and that these eigenvalues are actually
exponentially small. Observe that because of the condition '(x) � C|x| at infinity,
the function e'/h is not square integrable. Consequently, unlike in the case of �

'

, we
cannot conclude that the lowest eigenvalue is equal to 0.

We denote by E(1) the subspace spanned by eigenfunctions of these low-lying
eigenfunctions of ��'

and by ⇧(1) the corresponding projector onto E(1),

(2.23) ⇧(1) = 1l
[0,"1h]

(��'

).

Similarly to (2.22), we have

(2.24) ⇧(1) =
1

2⇡i

Z

@B(0,�"1h)

(z ���'

)�1dz,

for any 0 < � < 1.
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2.2. Supersymmetry. The key point in the analysis is the following intertwin-
ing relations which follows directly from (2.13):

(2.25) ��'

� d
'

= d
'

��
'

and its adjoint relation

(2.26) d⇤
'

���'

= �
'

� d⇤
'

.

From these relations we deduce that d
'

(E(0)) ⇢ E(1) and d⇤
'

(E(1)) ⇢ E(0). Indeed,
suppose that �

'

u = �u, with u 6= 0 and � 2 [0, "
0

h]. Then, we see from (2.25) that

��'

(d
'

u) = d
'

(�
'

u) = �d
'

u.

Therefore, either d
'

u is null and obviously belongs to E(1) or d
'

u 6= 0 and hence d
'

u
is an eigenvector of ��'

associated with � 2 [0, "
0

h]. This proves the first statement.
The inclusion d⇤

'

(E(1)) ⇢ E(0) is obtained by similar arguments.

By definition, the operator �
'

maps E(0) into itself and we can consider its
restriction to E(0). From the above discussion we also know that d

'

(E(0)) ⇢ E(1)

and d⇤
'

(E(1)) ⇢ E(0). Hence we consider L = (d
'

)|E(0)!E

(1) and L⇤ = (d⇤
'

)|E(1)!E

(0) .

When restricted to E(0), the structure equation (2.13) becomes

(2.27) M = L⇤L with M := �
'

|
E

(0) , L := (d
'

)|
E

(0)!E

(1) .

2.3. Quasi-modes for �'. Let �
0

= inf{diam(E
n

), n = 1, . . . , N} and let
✏ > 0 be small with respect to �

0

. For all n = 1, . . . , N , let �
n

be smooth cut-o↵
functions such that

(2.28)

8
<

:

0  �
n

 1,
supp(�

n

) ⇢ {x 2 E
n

, '(x)  �
1

� ✏},
�
n

= 1 on {x 2 E
n

, '(x)  �
1

� 2✏},
where ✏ > 0 will be chosen small (in particular, much smaller than �

0

in (2.32)).
Consider now the family of approximated eigenfunctions defined by

(2.29) f (0)

n

(x) = h� 1
4 c

n

(h)�
n

(x)e�'(x)/h, kf (0)

n

k
L

2 = 1,

where c
n

(h) = '00(m
n

)
1
4⇡� 1

4+O(h). We introduce the projection of these quasi-modes
onto the eigenspace space E(0):

(2.30) g(0)
n

:= ⇧(0)f (0)

n

.

Lemma 2. The approximate eigenfunctions defined by (2.29) satisfy

hf (0)

n

, f (0)

m

i = �
n,m

8n,m = 1, . . . , N

and

d
'

f (0)

n

= O
L

2(e�(S�✏)/h), g(0)
n

� f (0)

n

= O
L

2(e�(S�✏

0
)/h)

for any ✏0 > ✏.

Proof. The first statement is a direct consequence of the support properties of
the cut-o↵ functions �

n

and the choice of the normalizing constant. To see the second
estimate, recall that d

'

e�'/h = 0. Hence

d
'

f (0)

n

(x) = h
3
4 c

n

(h)�0
n

(x)e�'(x)/h.
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Moreover, thanks to (2.28), there exists c > 0 such that for ✏ > 0 small enough we
have '(x) � S � ✏ for x 2 supp(�0

n

). Combining these two facts gives estimates on

d
'

f
(0)

n

.

We now prove the estimate on g
(0)

n

� f
(0)

n

. We first observe that

�
'

f (0)

n

= d⇤
'

d
'

f (0)

n

= h
3
4 c

n

(h)d⇤
'

(�0
n

e�'/h) = h
3
4 c

n

(h)(�h�00
n

+ 2@
x

'�0
n

)e�'/h

and the same argument as before shows that

(2.31) �
'

f (0)

n

= O
L

2(e�(S�✏)/h).

From (2.22) and Cauchy formula, it follows that

g(0)
n

� f (0)

n

= ⇧(0)f (0)

n

� f (0)

n

=
1

2⇡i

Z

�

(z ��
'

)�1f (0)

n

dz � 1

2⇡i

Z

�

z�1f (0)

n

dz

=
1

2⇡i

Z

�

(z ��
'

)�1z�1�
'

f (0)

n

dz,

with � = @B(0, �✏
0

h), 0 < � < 1. Since �
'

is selfadjoint and �(�
'

) \ [0, ✏
0

h] ⇢
[0, e�1/Ch], we have for ↵ > 0 small enough that

��(z ��
'

)�1

�� = O(h�1),

uniformly for z 2 �. Using (2.31), we get
��(z��

'

)�1z�1�
'

f
(0)

k

�� = O�h�2e�(S�✏)/h

�
,

and, after integration, kg(0)
k

� f
(0)

k

k = O(h�1e�(S�✏)/h) = O(e�(S�✏

0
)/h), for any

✏0 > ✏.

2.4. Quasi-modes for ��'. Since, ' and �' share similar properties, the
construction of the preceding section produces quasi-modes for ��'

. Eventually, we
will need only quasi-modes localized near the maxima s

k

. Hence, let ✓
k

2 C1
c

(R; [0, 1])
satisfy

(2.32) supp ✓
k

⇢ {|x� s
k

|  �
0

}, ✓
k

= 1 on

⇢
|x� s

k

|  �
0

2

�
.

We take ✏ in the definition (2.28) small enough then for all k = 1, . . . , N � 1, we have

(2.33) ✓
k

�0
k

= �0
k,+

and ✓
k

�0
k+1

= �0
k+1,�,

where �
k,± are the smooth functions defined by

�
k,+

(x) =

⇢
�
k

(x) if x � m
k

,
1 if x < m

k

,
�
k,�(x) =

⇢
�
k

(x) if x  m
k

,
1 if x > m

k

.

Moreover, we also have ✓
k

✓
l

= 0 for all k 6= l. The family of quasi-modes associated
to these cut-o↵ functions is given by

(2.34) f
(1)

k

(x) := h� 1
4 d

k

(h)✓
k

(x)e('(x)�S)/h, kf (1)

k

k
L

2 = 1,

where d
k

(h) = |'00(s
k

)| 14⇡� 1
4 +O(h) is the normalizing constant. Again, we introduce

the projection of these quasi-modes onto the eigenspace E(1):

(2.35) g
(1)

k

(x) := ⇧(1)f
(1)

k

.
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Lemma 3. There exists ↵ > 0 independent of ✏ such that the following hold true:

hf (1)

k

, f
(1)

l

i = �
k,l

8k, l = 1, . . . , N � 1,

d⇤
'

f
(1)

k

= O
L

2(e�↵/h), g
(1)

k

� f
(1)

k

= O
L

2(e�↵/h).

Proof. The proof follows the same lines as the proof of Lemma 2.

2.5. Computation of the operator L. In this section we represent L in a

suitable basis. For that we first observe that the bases (g(0)
n

) and (g(1)
k

) are quasi-
orthonormal. Indeed, thanks to Lemmas 2 and 3, we have

hg(0)
n

, g(0)
m

i = �
n,m

+O(e�↵/h) 8n,m = 1, . . . , N

and
hg(1)

k

, g
(1)

l

i = �
k,l

+O(e�↵/h) 8k, l = 1, . . . , N � 1

for some ↵ > 0. We then obtain orthonormal bases of E(0) and E(1):

(g(0)
n

)
1nN

Gram–Schmidt process��������������! (e(0)
n

)
1nN

,

(g(1)
k

)
1kN�1

Gram–Schmidt process��������������! (e(1)
k

)
1nN�1

.
(2.36)

It follows from the approximate orthonormality above that the change of basis matrix

P
j

from (g(j)
n

) to (e(j)
n

) satisfies

(2.37) P
j

= I +O(e�↵/h)

for j = 0, 1. To describe the matrix of L in the bases (e(0)
n

) and (e(1)
k

), we introduce

a N � 1⇥N matrix L̂ = (ˆ̀
ij

) defined by

(2.38) ˆ̀
ij

= hf (1)

i

, d
'

f
(0)

j

i.

We claim that the matrices L and L̂ are very close. To see that we give a precise
expansion of L̂.

Lemma 4. The matrix L̂ defined by (2.38) is given by L̂ = (h/⇡)
1
2 e�S/hL̄, where

L̄ admits a classical expansion L̄ ⇠ ⌃1
k=0

hkL
k

with

(2.39) L
0

=

0

BBBBBBBB@

�⌫ 1
4
1

µ
1
4
1

⌫
1
4
1

µ
1
4
2

0 0 . . . 0

0 �⌫ 1
4
2

µ
1
4
2

⌫
1
4
2

µ
1
4
3

0 . . . 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0

0 0 . . . 0 �⌫ 1
4
n�1

µ
1
4
n�1

⌫
1
4
n�1

µ
1
4
n

1

CCCCCCCCA

.

Proof. From (2.29) and (2.34), we have

ˆ̀
ij

= hf (1)

i

, d
'

f
(0)

j

i = h� 1
2 d

i

(h)c
j

(h)

Z

R
✓
i

(x)e('(x)�S)/hd
'

(�
j

(x)e�'(x)/h)dx

= h
1
2 d

i

(h)c
j

(h)e�S/h

Z

R
✓
i

(x)�0
j

(x)dx.
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Moreover, since supp ✓
i

\ supp�
j

= ; except for j = i or j = i + 1, it follows from
(2.33) that

(2.40)

Z

R
✓
i

(x)�0
j

(x)dx = �
i,j

Z

R
�0
i,+

(x)dx+ �
i+1,j

Z

R
�0
i,�(x)dx = ��

i,j

+ �
i+1,j

.

On the other hand, we recall that d
i

(h) and c
j

(h) both have a classical expansion.

Together with the above equality, this shows that L̂ has the required form and it
remains to prove the formula giving L

0

. To that end we observe that

d
i

(h)c
j

(h) = ⇡� 1
2 ((|'00(s

i

)|'00(m
j

))
1
4 +O(h)) = µ

1
4
j

⌫
1
4
i

⇡� 1
2 +O(h)

in the notation of (2.1). Combining this with (2.40) we obtain

ˆ̀
ij

= h
1
2⇡� 1

2 e�S/hµ
1
4
j

⌫
1
4
i

(��
i,j

+ �
i+1,j

+O(h))

which gives (2.39).

Lemma 5. Let L be the matrix of L in the basis obtained in (2.36). There exists

↵0 > 0 such that L = L̂+O(e�(S+↵

0
)/h), where L̂ is defined by (2.38) and is described

in Lemma 4.

Proof. It follows from (2.37) that

(2.41) L = (I +O(e�↵/h))L̃(I +O(e�↵/h)),

where L̃ = (˜̀
i,j

) with ˜̀
i,j

= hg(1)
i

, d
'

g
(0)

j

i. Moreover, (2.25) implies that ⇧(1)d
'

=

d
'

⇧(0). Using this identity and the fact that ⇧(0),⇧(1) are orthogonal projections, we
have

hg(1)
i

, d
'

g
(0)

j

i = hg(1)
i

, d
'

⇧(0)f
(0)

j

i = hg(1)
i

,⇧(1)d
'

f
(0)

j

i = hg(1)
i

, d
'

f
(0)

j

i
= hf (1)

i

, d
'

f
(0)

j

i+ hg(1)
i

� f
(1)

i

, d
'

f
(0)

j

i.
But from Lemmas 2 and 3 and the Cauchy–Schwarz inequality, we get

|hg(1)
i

� f
(1)

i

, d
'

f
(0)

j

i|  Ce�(↵+S�✏

0
)/h.

Since ↵ is independent of ✏0, which can be chosen as small as we want, it follows that
there exists ↵0 > 0 such that ˜̀

i,j

= ˆ̀
i,j

+ O(e�(S+↵

0
)/h). Combining this estimate,

(2.41), and the fact that ˆ̀
i,j

= O(e�S/h), we get the announced result.

It is now easy to describe M as a matrix.

Lemma 6. Let M be the matrix representation of M in the basis (e(0)
n

). Then

M = he�2S/hA,

where A is symmetric positive with a classical expansion A ⇠ P1
k=0

hkA
k

with A
0

given by (2.2).

Proof. By definition, M = L⇤L and it follows from Lemmas 4 and 5 that

L⇤L = (L̂+O(e�(S+↵

0
)/h))⇤(L̂+O(e�(S+↵

0
)/h)) = he�2S/h(L̄⇤L̄+O(e�↵

0
/h)).

Then, A := h�1e2S/hL⇤L is clearly positive and admits a classical expansion since L̄
does. Moreover, the leading term of this expansion is L̄⇤

0

L̄
0

and a simple computation
shows that L̄⇤

0

L̄
0

= A
0

, where A
0

is given by (2.2).
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Remark. Innocent as this lemma might seem, the supersymmetric structure—that
is writing ��

'

|
E

(0) using d
'

, is very useful here.

Lemma 7. Denote by µ
1

(h)  · · ·  µ
k

(h) the eigenvalues of A(h). Then,

µ
0

(h) = 0 and µ
k

(h) = µ0

k

+O(h) 8k � 2,

where 0 = µ0

1

< µ0

2

 µ0

3

 · · ·  µ0

N

denote the eigenvalues of A
0

. Moreover,

a normalized eigenvector associated to µ0

1

is ⇠0 = N� 1
2 (1, . . . , 1) and there exists a

normalized vector ⇠(h) 2 ker(A(h)), such that

(2.42) ⇠(h) = ⇠
0

+O(h).

Proof. Many of the statements of this lemma are immediate consequences of
Lemma 6. We emphasize the fact that 0 belongs to �(A) since 0 2 �(�

'

). The
fact that ⇠0 is in the kernel of A

0

is a simple computation. Eventually, for any
⇠ 2 ker(A(h)), we have

⇠ � h⇠, ⇠
0

i⇠
0

=
1

2i⇡

⇣Z

�

z�1⇠dz �
Z

�

(A
0

� z)�1⇠dz
⌘
=

1

2i⇡

Z

�

(A
0

� z)�1z�1A
0

⇠dz

where � is a small path around 0 in C. Since A
0

⇠ = O(h) we obtain (2.42).

2.6. Proof of Theorem 2. Let u be a solution of (2.3) with u
0

=  (�), |�|  1

(see (2.4), (2.6), and (2.29) for definitions of  
n

,  , and f
(0)

n

, respectively). Then,

u = e�t�'⇧(0)u
0

+ e�t�' b⇧(0)u
0

= e�tM⇧(0)u
0

+ e�t�' b⇧(0)u
0

, b⇧(0) := I �⇧(0).
(2.43)

Since 1l
En ��

n

is supported near {s
n�1

, s
n

}, then  
n

� f
(0)

n

= O
L

2(e�↵/h) for all
n = 1, . . . , N , and it follows that

u
0

= ū
0

+O
L

2(e�↵/h), ū
0

:=
NX

n=1

�
n

f (0)

n

.

Then, using Lemma 2 and (2.37), we get u
0

= ũ
0

+O
L

2(e�↵/h) with ũ
0

:=
P

N

n=1

�
n

e
(0)

n

,

where e
(0)

n

is the orthonormal basis of E(0) given by (2.36). Since ⇧(0)e
(0)

n

= e
(0)

n

and
b⇧(0)e

(0)

n

= 0, we have
u(t) = e�tMũ

0

+O
L

2(e�↵/h).

If M is the matrix of the operator M in the basis (e(0)
n

), then

u(t) =
NX

n=1

(e�tM�)
n

e(0)
n

+O
L

2(e�↵/h).

Going back from e
(0)

n

to  
n

as above, we see that

(2.44) u(t) =
NX

n=1

(e�tM�)
n

 
n

+O
L

2(e�↵/h) =  (e�tM�) +O
L

2(e�↵/h),

and the proof of (2.7) (main statement in Theorem 2) is complete. We now prove
(2.8). Since the linear map  : CN ! L2(dx) is bounded uniformly with respect to
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h, and thanks to (2.7), the proof reduces to showing (after time rescaling) that there
exists C > 0 such that for all � 2 RN ,

(2.45) |e�⌧A � e�⌧A0 |  Ch 8⌧ � 0.

Since, by Lemma 7, A and A
0

both have 0 as a simple eigenvalue with the approximate
eigenvector given by (1, . . . , 1), we see that for any norm on CN ,

|e�⌧A � e�⌧A0 |  |e�⌧A0 |{(1,...,1)}? |I � e�⌧O(h)|
`

2!`

2 + Ch

 Ce�c⌧ ⌧h+ Ch = O(h),

which is exactly (2.45).
We now prove one of the consequences of Theorem 2.

Proof of (1.11). We have seen in the preceding proof that e(0)
n

� 
n

= O
L

2(e�C/✏

2

),
and since

k 
n

� (µ/2⇡✏2)
1
4 1l

En e�'/2✏

2k
L

2 = O(✏2),

it follows that ⇧(0)u
0

=  (�) +O(✏2ku
0

k
L

2) with � 2 CN given by

�
n

= ( µ

2⇡✏

2 )
1
4

Z

En

u
0

(x)e�'(x)/2✏

2

dx = ( µ

2⇡✏

2 )
1
4

Z

En

⇢
0

(x)dx.

Applying 2 (second part of Theorem 2) with h = 2✏2 gives

(2.46) e�t�'⇧(0)u
0

=
NX

n=1

(e�t⌫hA0�)
n

( µ

2⇡✏

2 )
1
4 1l

En e�'/2✏

2

+O
L

2(✏2)ku
0

k
L

2 .

On the other hand, Proposition 1 shows that

(2.47) e�t�'(I �⇧(0))u
0

= O
L

2(e�t✏

2
/C)ku

0

k
L

2 .

Since ⇢(h2t) = e�'/hu(t), (2.46) and (2.47) yield

(2.48) ⇢(2✏2eS/✏
2

⌧) =
NX

n=1

(e�⌧A0�)
n

( µ

2⇡✏

2 )
1
4 1l

En e�'/✏

2

+ r
✏

(⌧)

with

r
✏

(⌧) = e�'/2✏

2
⇣
O

L

2(e�c⌧e

S/✏2

) +O
L

2(✏2)
⌘
k⇢

0

k
L

2
'
.

By Cauchy–Schwarz it follows that kr
✏

(⌧)k
L

1  C(✏
5
2 + e�c⌧e

S/✏2

)k⇢
0

k
L

2
'
.

3. A higher dimensional example. The same principles apply when the wells
may have di↵erent heights and in higher dimensions. In both cases there are inter-
esting combinatorial and topological (when d > 1) complications, and we refer to [15,
sections 1.1 and 1.2] for a presentation and references. To illustrate this we give a
higher dimensional result in a simplified setting.

Suppose that ' : Rd ! R is a smooth Morse function satisfying (1.2) and denote
by U (j) the finite sets of critical points of index j, n

j

:= |U (j)|. We assume that
(1.5) holds and write S := �

1

� '
0

. In the notation of (1.4) we have n
0

= N and
we also assume that each E

n

contains exactly one minimum. Hence we can label the
components by the minima:

8n = 1, . . . , N, 9 !m 2 E
n

, min
x2En

'(x) = '(m),
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O

O

OX

X

X X

X

X

X

Fig. 2. Left: The sublevel set {' < �
1

} (dashed region) associated to a potential ' (1.5). The
x’s represent local minima, the o’s, local maxima. Right: The graph associated to the potential on
the left.

and we denote E(m) := E
n

. Since ' is a Morse function,

(3.1)
8m,m0 2 U (0), m 6= m0 =) Ē(m) \ Ē(m0) ⇢ U (1),

8 s 2 U (1), 9 !m,m0 2 U (0), s 2 Ē(m) \ Ē(m0).

To simplify the presentation we make an additional assumption:

(3.2) 8m,m0 2 U (0), m 6= m0 =) |Ē(m) \ Ē(m0)|  1.

Under these assumptions, the set U (0) ⇥U (1) defines a graph G. The elements of U (0)

are the vertices of G and elements of U (1) are the edges of G: s 2 U (1) is an edge
between m and m0 in U (0) if s 2 Ē(m) \ E(m0); see Figure 2 for an example.

The same graph has been constructed in [14] for a certain discrete model of the
Kramers–Smoluchowski equation.

We now introduce the discrete Laplace operator on G, MG ; see [3] for the back-
ground and results about MG . If the degree d(m) is defined as the number of edges
at the vertex m, MG is given by the matrix (am,m0)m,m02U(0) :

(3.3) am,m0 =

8
<

:

d(m), m = m0,
�1, m 6= m0, Ē(m) \ Ē(m0) 6= ;,
0 otherwise.

Among basic properties of the matrix MG , we recall the following:
• It has a square structure MG = L⇤L, where L is the transpose of the incidence
matrix of any oriented version of the graph G. In particular, MG is symmetric
positive.

• Thanks to (1.5) and [15, Proposition B.1], the graph G is connected.
• 0 is a simple eigenvalue of MG .

We make one more assumption, which is a higher dimensional analogue of the
hypothesis in Theorem 1: there exist µ, ⌫ > 0 such that

det'00(m) = µ 8m 2 U (0),

�
1

(s)2

det'00(s)
= �⌫ 8s 2 U (1),

(3.4)

where �
1

(s) is the unique negative eigenvalue of '00(s). Assumptions (3.2) and (3.4)
can be easily removed. Without (3.4) the graph G is replaced by a weighted graph
with a weight function depending explicitly of the values of '00 at critical points.
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Removing (3.2) leads to multigraphs in which there may be several edges between
two vertices. This can also be handled easily.

Assumption (1.5), however, is more fundamental and removing it results in major
complications. We refer to [15] for results in that situation. Here we restrict ourselves
to making the following remark.

Remark. Under the assumption (1.5) the proof presented in the one dimensional
case applies with relatively simple modifications. The serious di↵erence lies in the
description of E(1), the eigenspace of �

'

on one-forms, in terms of exponentially
accurate quasi-modes (in one dimension it was easily done using Lemma 3). That
description is, however, provided by Hel↵er–Sjöstrand in the selfcontained section 2.2
of [9]; see Theorem 2.5 there. The computation of (2.38) becomes more involved
and is based on the method of stationary phase;- see Hel↵er–Klein–Nier [8, Proof of
Proposition 6.4].

The analogue of Theorem 1 is as follows.

Theorem 3. Suppose that ' satisfies (1.2), (1.5), (3.2), and (3.4). If

(3.5) ⇢
0

=
⇣ µ

2⇡✏2

⌘ 1
2

 
NX

n=1

�
n

1l
En + r

✏

!
e�'/✏

2

, lim
✏!0

kr
✏

k
L

1 = 0, � 2 RN ,

then the solution to (1.1) satisfies, uniformly for ⌧ � 0,

(3.6) ⇢(2✏2eS/✏
2

⌧, x) !
NX

n=1

↵
n

(⌧)�
mn(x), ✏! 0,

in the sense of distributions in x, where ↵(t) = (↵
1

, . . . ,↵
n

)(⌧) solves

(3.7) @
⌧

↵ = �MG↵, ↵(0) = �,

with MG is given by (3.3) and  = ⇡�1µ
1
2 ⌫

1
2
with µ and ⌫ in (3.4).

We also have the analogue of (1.11) for any initial data.
As in the one dimensional case this theorem is a consequence of a more precise

theorem formulated using the localized states

(3.8)  
n

(x) = c
n

(h)h� d
4 1l

En(x)e
�('�'0)(x)/h,

where c
n

(h) is a normalization constant such that k 
n

k
L

2 = 1. We then define a map
 : RN ! L2(Rd) by

(3.9)  (�) =
NX

n=1

�
n

 
n

8� = (�
1

, . . . ,�
N

) 2 RN .

We have the following analogue of Theorem 2.

Theorem 4. Suppose ' satisfies (1.2), (1.5), (3.2), and (3.4). There exists C > 0
and h

0

> 0 such that for all � 2 RN

and all 0 < h < h
0

, we have

ke�t�' (�)� (e�t⌫hA�)k
L

2  Ce�1/Ch, t � 0,

where ⌫
h

= he�2S/h

,  = ⇡�1µ
1
2 ⌫

1
2
, and A = A(h) is a real symmetric positive

matrix having a classical expansion A ⇠ P1
k=0

hkA
k

and A
0

= MG with MG the

Laplace matrix defined by (3.3).
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+
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+
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1
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N�1
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N�1
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O

Fig. 3. A two dimensional potential which is a cyclic analogue of the potential shown in Figure
1: the corresponding matrix describing the Kramer–Smoluchowski evolution is given by (3.10). It
should be compared to the matrix (1.7) for the potential in Figure 1. The corresponding cyclic graph
is shown on the right.

We conclude by one example [15, section 6.3] for which the graph G is elementary.
We assume that d = 2, ' has a maximum at x = 0, there are N minima, m

n

, N saddle
points, s

n

, and that (1.5) holds; see Figure 3. We assume also that

det'00(m
n

) = µ > 0,
�
1

(s
n

)

�
2

(s
n

)
= �⌫ < 0,

where for s 2 U (1), �
1

(s) > 0 > �
2

(s) denote the two eigenvalues of '00(s).
Then assumptions of Theorem 4 are satisfied. The graph G associated to ' is the

cyclic graph with N vertices and the corresponding Laplacian is given by

(3.10) AG =

0

BBBBBBBBBBBBBB@

2 �1 0 0 . . . . . . . . . �1
�1 2 �1 0 . . . . . . . . . 0
0 �1 2 �1 0 . . . . . . 0
... 0 �1 2

. . .
. . . . . . 0

...
...

. . .
. . .

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . . �1 0

0
...

. . .
. . .

. . . �1 2 �1
�1 0 . . . . . . . . . 0 �1 2

1

CCCCCCCCCCCCCCA

.
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