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Abstract. We study the Metropolis algorithm on a bounded connected
domain Ω of the euclidean space with proposal kernel localized at a small
scale h > 0. We consider the case of a domain Ω that may have cusp
singularities. For small values of the parameter h we prove the existence
of a spectral gap g(h) and study the behavior of g(h) when h goes to zero.
As a consequence, we obtain exponentially fast return to equilibrium in
total variation distance.
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1. Introduction

Let Ω be a bounded connected open subset of Rd and let ρ(x) be a positive
measurable function on Ω̄ such that

(1.1) ∀x ∈ Ω, m ≤ ρ(x) ≤M
for some constants m,M > 0. We denote µρ = ρ(x)dx the associated
measure on Ω and we assume that µρ(Ω) =

∫
Ω ρ(x)dx = 1. We consider the

Metropolis algorithm associated to the density ρ defined as follows. For all
h ∈]0, 1], we define the distribution kernel

(1.2) kh,ρ(x, y) = h−dφ(
x− y
h

) min(
ρ(y)

ρ(x)
, 1)

where φ(z) = 1
Vd
1B(0,1)(z), B(0, 1) denotes the open unit ball in Rd and Vd

is the volume of B(0, 1). The Metropolis kernel, is then given by

(1.3) th,ρ(x, dy) = mh,ρ(x)δy=x + kh,ρ(x, y)dy
1
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where mh,ρ(x) = 1 −
∫

Ω kh,ρ(x, y)dy. The kernel th,ρ(x, dy) is clearly a
Markov kernel on the state space Ω and the associated operator

(1.4) Th,ρ(u)(x) = mh,ρ(x)u(x) +

∫
Ω
kh,ρ(x, y)u(y)dy

is a Markov operator. Throughout the paper, we sometimes omit the de-
pendance of this operator with respect to ρ and write Th instead of Th,ρ
when there is no ambiguity. A straightforward computation shows that Th,ρ
is self-adjoint on L2(Ω, ρ(x)dx) which implies in particular that the measure
µρ is stationary for the kernel th,ρ(x, dy). As a consequence, the iterated
kernel tnh,ρ(x, dy) converges to the measure µρ as n→∞, which explains the
use of this kernel to sample the measure µρ.

Introduced in [8] to compute thermodynamical functionals by Monte-
Carlo method, this algorithm has shown an impressive efficiency and is now
used as a routine in many domains of science. From a theoretical point of
view, the computation of the speed of convergence of the algorithm aroused
many works in the setting of discrete state spaces (see [1], [4] for introduction
to this topic and references). In [2], we obtained first results on a continuous
state space in the limit h → 0. More precisely, given a bounded domain Ω
of Rd with Lipschitz boundary we proved that the operator Th admits a
spectral gap g(h) of order h2 and for smooth densities ρ, we did compute
the limit of h−2g(h). Eventually, we obtained some total variation estimates

(1.5) sup
x∈Ω
‖tnh,ρ(x, dy)− dµρ(y)‖TV ≤ Ce−ng(h)

for some constant C > 0 independent of h. In this approach the fact that ∂Ω
has Lipschitz regularity plays a fundamental role at several stages. A natural
question is then to explore situations where this regularity assumption on
∂Ω fails to be true. In the present paper, we consider the case where ∂Ω
may have cuspidal singularities. More precisely we introduce the following
assumption:

Assumption 1. There exist a finite collection of open subsets of Rd, (ωi)i∈Ir∪Ic
such that ∂Ω ⊂ (∪i∈Ir∪Icωi) and

i) for all i ∈ Ir, ∂Ω ∩ ωi has Lipschitz regularity,
ii) for all i ∈ Ic, there exists a closed submanifold Si of Rd with di-

mension d′′i , and there exist αi > 1, ri > 0, εi > 0 and a coordinate

system (x1, x
′, x′′) ∈ Rd = R× Rd′i × Rd′′i , such that

(1.6) Ω ∩ ωi = {(x1, x
′, x′′), 0 < x1 < εi, |x′|d′i< xαi1 , |x

′′|d′′i < ri}

where |·|k stands for the euclidean norm on Rk.

Throughout the paper we will denote

(1.7) γ = max
i∈Ic

(αi − 1)d′i.

In our main results we need the cusp singularities to be not too sharp. We
then introduce the following

Assumption 2. The constant γ defined by (1.7) satisfies 0 < γ < 2.
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Observe that as soon as Ic is non empty (that is there exists some cusps
on the boundary), one has γ > 0. Under the above assumption one has the
following rough localization of the spectrum σ(Th) of Th. The proof of this
result will be given in the next section.

Proposition 1.1. Assume that Assumption 1 holds true. Then there exist
δ1, δ2 > 0 and h0 > 0 such that for all h ∈]0, h0], σ(Th) ⊂ [−1 + δ1h

γ , 1] and
the essential spectrum satisfies σess(Th) ⊂ [−1 + δ1h

γ , 1 − δ2h
γ ] where γ is

defined by (1.7).

From the above result, it is clear that the spectrum of Th in the interval
[1 − Chγ , 1] is made of eigenvalues of finite multiplicity. Our first main
result will provide precise informations on the spectrum of Th in a box
[1−Ch2, 1] under smoothness assumptions on the density ρ. For ρ ∈ C1(Ω),
we introduce the associated diffusion operator Lρ defined in a weak sense as
follows. Given u ∈ H1(Ω), let `u : H1(Ω)→ C be defined by

`u(v) =

∫
Ω
∇ū∇v dµρ +

∫
Ω
ūv dµρ

where we recall that dµρ = ρ(x)dx. We define the domain of Lρ as the set
of functions u ∈ H1 such that `u is continuous for the L2 topology:

D(Lρ) = {u ∈ H1(Ω), ∃Cu > 0, ∀v ∈ H1(Ω), |`u(v)| ≤ Cu‖v‖L2}
Observe that D(Lρ) is not empty since it contains C∞c (Ω) (here we use the
fact that ρ is C1). Since H1(Ω) is dense in L2(Ω) then for any u ∈ D(Lρ), `u
can be extended as a continuous linear form on L2(Ω) and by Riesz Theorem,
there exists a unique f ∈ L2(Ω) such that

`u(v) = 〈f, v〉L2(ρ), ∀v ∈ H1(Ω).

We then set Lρu = −u+f . From Theorem 3.6 in [5], we know that D(Lρ) is
dense in H1(Ω) and that Id +Lρ : D(Lρ)→ L2(Ω) is bijective with bounded
inverse. Now, it follows from Assumption 1 and the Theorem of section 8.3 in
[7] that the embedding H1(Ω) ↪→ L2(Ω) is compact and hence the resolvent
(Id +Lρ)

−1 is compact. We introduce the sequence ν0 < ν1 < ν2 < ... of
the distinct eigenvalues of Lρ with associated multiplicities mj . Since, Lρ
is clearly non-negative and 0 is a simple eigenvalue, it follows ν0 = 0 and
m0 = 1.

Theorem 1.2. Suppose that ρ ∈ C1(Ω̄) satisfies (1.1). Suppose that As-
sumptions 1 and 2 are verified. Let R > 0, ε > 0 and J > 0 such that for all
j ≤ J , νj < R and for all j < J , νj+1 − νj > 2ε. Then there exists h0 > 0
such that for all h ∈]0, h0],

(1.8) σ(
1− Th
h2

)∩]0, R] ⊂ ∪j≥1[νj − ε, νj + ε],

and the number of eigenvalues of 1−Th
h2

counted with multiplicities, in the
interval [νj − ε, νj + ε], is equal to mj.

Observe that this theorem is the analogous of Theorem 1.2 in [2]. Here
we assume Assumption 2 to insure that there is no essential spectrum in
the interval [1− Ch2, 1]. The case where γ ≥ 2 seems more difficult to deal
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with since in this case the eigenvalues would be embedded in the essential
spectrum.

If we drop the smoothness assumption on the density ρ we get the follow-
ing results.

Theorem 1.3. Assume that ρ is a measurable function satisfying (1.1).
Suppose that Assumptions 1 and 2 are verified. Let δ1, δ2 > 0 be as in Prop.
1.1. There exists C, h0 > 0 such that for any h ∈]0, h0], the following hold
true:

i) The spectrum σ(Th) of Th is contained in [−1+δ1h
γ , 1], 1 is a simple

eigenvalue of Th, and σ(Th) ∩ [1− δ2h
γ , 1] is discrete.

ii) The spectral gap g(h) := dist(1, σ(Th) \ {1}) satisfies

(1.9)
1

C
h2 ≤ g(h) ≤ Ch2.

As we shall see later, using (1.1) and comparaison of Dirichlet forms, this
theorem is essentially a consequence of Theorem 1.2. From this spectral
result we deduce estimates on the speed of convergence of the iterated kernel
(tnh,ρ(x, dy)) towards the stationary measure µρ. We recall that the total
variation distance between two probability measures µ and ν is defined by
‖µ − ν‖TV = supA∈B |µ(A) − ν(A)| where B denotes the set of Borel set.
Moreover, one has

(1.10) ‖µ− ν‖TV =
1

2
sup

f∈L∞,|f |≤1
|
∫
fdµ−

∫
fdν|.

Theorem 1.4. Assume that ρ is a measurable function satisfying (1.1).
Suppose that Assumptions 1 and 2 are is verified. There exists C, h0 > 0
such that for any h ∈]0, h0] one has

(1.11) supx∈Ω‖tnh,ρ(x, dy)− µρ‖TV ≤ Ch−γ−
d
2 e−ng(h)(1+O(h2−γ)).

for all n ∈ N.

Compare to Theorem 1.1 in [2], the estimate (1.10) above suffers a loss

of h−
d
2
−γ in front of the exponential. This loss is the natural loss when

you go from convergence in L2 sense (which follows from the spectral gap)
to convergence in total variation. In [2], we used sophisticated tools (Nash
estimates, Weyl asymptotics) to absorb this loss. In the present case, this
strategy fails because of the cusp where nice estimates of eigenfunctions of
Th can not be obtained from (see Lemma 3.1). However, let us emphasize
that this prefactor implies only a logarithmic loss in the time needed to
reach equilibrium (h−2 log(h) instead of h−2).

The proof of the above theorems follows the general strategy of [2]. In
section 1, we prove Proposition 1.1. In order to prove Theorem 1.2 one uses
minimax principle and quasimodes built from the eigenfunctions of Lρ to
prove that h−2(1− Th) has at least mj eigenvalue near νj . The proof of the
converse inequality is more difficult and requires to prove some regularity
property of eigenfunctions of 1 − Th. This is done by mean of a dyadic
decomposition of the cusp in section 3. Using these constructions we prove
the main theorems in section 4. In a separate appendix we prove a gluing
lemma of H1 functions which is crucially used in the proof of the main result.
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We conclude this introduction with some notations used in the sequel.
On Rd, we will denote by |x|d the euclidean norm of a vector x. When there
is no ambiguity we will drop the index d and simply write |x|. Given a

function f : x = (x1, x
′, x′′) ∈ R1+d′+d′′ 7→ f(x1, x

′, x′′) ∈ R we will denote

by ∇′f(x) ∈ Rd′ (resp. ∇′′f(x) ∈ Rd′′) the gradient of f in the x′ variable
(resp. x′′ variable). Given two quantities ut, vt depending on a parameter t,
we denote u � v if there exists C > 0 such that 1

Cut ≤ vt ≤ Cvt for all t.

Acknowledgment: The author would like to thank warmly G. Lebeau for
numerous fruitful discussions on this work. The author is supported by the
ANR project QuAMProcs 19-CE40-0010-01.

2. Rough localization of the spectrum

In this section, we give a proof of Proposition 1.1. We first show that the
operator Kh,ρ : f 7→

∫
Ω kh,ρ(x, y)f(y)ρ(y)dy is compact on L2(Ω, ρ(y)dy).

Let (φn) be a sequence of continuous functions such that φ ≤ φn ≤ 1 and
(φn) converges to φ in L2(ρ(x)dx) when n → ∞. Consider the sequence

of kernels kn,h,ρ = h−dφn(x−yh ) min( ρ(y)
ρ(x) , 1) and let Kn,h,ρ be the associated

operators. Then (Kn,h,ρ) converges to Kh,ρ in L(L2, L2) when n → ∞. On
the other hand, since the kernels kn,h,ρ are continuous, the operators (Kn,h,ρ)
are compact and hence Kh,ρ is compact.

Let us prove that σess(Th) ⊂ [−1, 1−Chγ ]. Thanks to Weyl criterium and
compactness of Kh,ρ it is sufficient to prove that supx∈Ωmh,ρ(x) ≤ 1−Chγ .
Since

1−mh,ρ(x) ≥ mh−d

MVd

∫
Ω
1|x−y|<hdy,

with m,M given by (1.1) the proof reduces to show that there exists C, h0 >
0 such that

(2.1) ∀h ∈]0, h0], ∀x ∈ Ω, θh(x) ≥ Chd+γ

where θh(x) :=
∫

Ω 1|x−y|<hdy. Consider the family of subsets ωi of Assump-
tion 1 and let Oi = Ω∩ωi. By a compactness argument, we can assume that
there exists a family of open sets (ω̃′i), such that ω̄′i ⊂ ωi for all i ∈ Ir ∪ Ic
and Assumption 1 holds true with the ω′i. It follows that Ω = ∪mi∈JO′i with
O′i = ω′i ∩ Ω where J = Ir ∪ Ic ∪ {0}, and ω′0 is an open subset of Ω such
that d(ω̄′0, ∂Ω) > 0. Let us now estimate the function θh on each O′i.

We first observe that for 0 < h0 < d(ω̄′0, ∂Ω) and h ∈]0, h0], one has
B(x, h) ⊂ Ω for any x ∈ O′0 and hence θh(x) = hdVd which establishes
the bound (2.1) on O′0. Let us now study θh on O′i, i ∈ Ir ∪ Ic. Taking
h0 > 0 sufficiently small, we can assume that for all h ∈]0, h0] one has
ω′i +B(0, h) ⊂ ωi for all i ∈ Ir ∪ Ic. Hence, if ϕ : Ui → ωi is a smooth local
change of coordinates then for any x ∈ O′i, one has

θh(x) =

∫
Ω
1|x−y|<hdy ≥

∫
Oi
1|ϕ(ϕ−1(x))−y|<hdy

=

∫
U+
i

Jϕ(y)1|ϕ(ϕ−1(x))−ϕ(y)|<hdy
(2.2)
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where Jϕ(y) denotes the Jacobian of ϕ and U+
i = ϕ−1(Oi). On the other

hand, since ϕ is a smooth function, there exists C > 0 such that for all
u, v ∈ Ui, |ϕ(u)− ϕ(v)| ≤ C|u− v|. Combined with (2.2), this implies

(2.3) θh(x) ≥
∫
U+
i

Jϕ(y)1|ϕ−1(x)−y|<h/Cdy ≥ C̃
∫
U+
i

1|ϕ−1(x)−y|<h/Cdy

for some positive constant C̃ such that |Jϕ| ≥ C̃ on Ui. This minoration
shows that in order to get some lower bound on θh, we can suppose that we
are in any suitable system of coordinates.

Suppose that i ∈ Ir. By a Lipschitz change of coordinates it is shown in
[2] that there exists some constants c1, c2 > 0 such that

(2.4) θh(x) ≥ c1

∫
x1≥0

1|x−y|<hdy ≥ c2h
d

for all x ∈ O′i. Combined with the definition of θh, this shows that (1 −
mh(x)) ≥ c3 for some c3 > 0 independent of h.

Suppose now that i ∈ Ic and that ωi is like in ii) of Assumption 1. Using
a suitable change of coordinates, we can assume that there exist α > 1, r >
0, ε > 0 such that

Oi = Ω ∩ ωi = {(x1, x
′, x′′), 0 < x1 < ε, |x′|d′< xα1 , |x′′|d′′< r},

where d′, d′′ are the local dimension appearing in Assumption 1 whose de-
pendance with respect to the index i is omitted. Moreover, we can also
assume that O′i = Oi ∩ {0 < x1 < ε/2} ∩ {|x′′| < r/2}. Endowing Oi with
the equivalent norm

(2.5) |(x1, x
′, x′′)|∞= max{|x1|, |x′|d′ , |x′′|d′′},

it is sufficient to find a lower bound for
∫

Ω 1|x−y|∞<hdx when x varies in O′i.
For such x, one has∫

Ω
1|x−y|∞<hdy =

∫
Ω
1|(x1,x′,x′′)−(y1,y′,y′′)|∞<hdy1dy

′dy′′

=

∫
|y′′|d′′<r,|y′|d′<yα1 ,0<y1<ε

1|x′′−y′′|d′′<h

1|x′−y′|d′<h1|x1−y1|<hdy1dy
′dy′′

≥ chd′′Wh(x, x′)

(2.6)

where c is a positive constant and

(2.7) Wh(x, x′) :=

∫
|y′|d′<yα1 ,0<y1<ε

1|y′−x′|d′<h1|x1−y1|<hdy
′dy1.

Denoting

C = {(y1, y
′) ∈ R× Rd

′
, |y′|d′ < yα1 , 0 < y1 < ε}

and

Dh(x1, x
′) = {y ∈ C, |y′ − x′|d′< h and |x1 − y1|< h},

we have Wh(x1, x
′) = vol(Dh(x1, x

′)) and thanks to (2.6), one has to prove

that Wh(x1, x
′) ≥ chαd′+1 for some uniform constant c > 0. We first observe
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that it holds true for (x1, x
′) = (0, 0), since one has (using α > 1)

Wh(0, 0) =

∫ h

0

∫
Rd′

1Bd′ (0,y
α
1 )(y

′)dy′dy1 = Vd′

∫ h

0
yαd

′
1 dy1 = chαd

′+1.(2.8)

We now decompose the cusp into three zones that we treat differently: {0 <
x1 ≤ h/2}, {h/2 < x1 < (δh)

1
α } and {(δh)

1
α < x1 < ε}, where δ > 0 will be

chosen sufficiently small.

• Suppose first that x1 <
h
2 , then since α > 1, one has for h small

enough Dh(x1, x
′) ⊃ {(y1, y

′), |y1| < h/2}∩C. Combined with (2.8),
this yields

Wh(x1, x
′) ≥

∫
|y′|d′<yα1

1|y1|<h/2dy1dy
′ = Wh

2
(0, 0) = chαd

′+1

which is the required lower bound on Wh.

• Suppose now that h/2 ≤ x1 < (δh)
1
α , then

Dh(x1, x
′) ⊃ {x1 < y1 < x1 + h, |y′| < xα1 }.

Indeed, if |y′| < xα1 and y1 > x1 one gets immediately (y1, y
′) ∈ C

and since |x′| < xα1 < δh then |x′ − y′| ≤ |x′| + |y′| ≤ 2δh < h for
0 < δ < 1

2 . From the above inclusion, it follows

Wh(x1, x
′) ≥ Vd′x

αd′
1 h ≥ 2−αd

′
Vd′h

αd′+1.

• Eventually, suppose that (δh)
1
α ≤ x1 < ε. We observe that the appli-

cation x′ 7→ Wh(x1, x
′) is radial. Hence, it suffices to estimate from

below the application t ∈ [0, xα1 ] 7→Wh(x1, x
′
t) with x′t = (t, 0, . . . , 0).

- If |t| < δh/2 then the inclusion

Dh(x1, x
′
t) ⊃ {x1 < y1 < x1 + h, |x′t − y′| < δh/2}

implies Wh(x1, x
′
t) ≥ h(δh/2)d

′
= chd

′+1.
- If δh/2 ≤ |t| < xα1 then

{|y′ − x′th | < δh/4} ⊂ {|y′| < |t|} ⊂ {|y′| < xα1 }

where th = t− δh/4 and x′th = (th, 0, . . . , 0). Hence

Dh(x1, x
′
t) ⊃ {x1 < y1 < x1 + h, |x′th − y

′| < δh/4}

which implies again that Wh(x1, x
′
t) ≥ chd

′+1.
Summing up the above discussion, we have proved that for any i ∈ Ic,
Wh(x1, x

′) ≥ chαid
′+1 uniformly on O′i. Combined with (2.6), this

proves that θh(x) ≥ ch(αi−1)d′ uniformly on O′i.
Since the boundary of Ω is compact, it follows from the above computations
that there exists c > 0 such that for all x ∈ Ω and all h < h0, mh(x) ≤
1− Chγ with γ given by (1.7). This proves that σess(Th) ⊂ [−1, 1− Chγ ].

We now prove that σ(Th) ⊂ [−1 + Chγ , 1] which is equivalent to show
that

〈u+ Thu, u〉L2(ρ) ≥ Chγ ||u||2L2(ρ)
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for all u ∈ L2(Ω). For this purpose, we observe that thanks to [2], eq. (2.7),
one has

〈u+ Thu, u〉L2(ρ) ≥
1

2

∫
Ω×Ω

kh,ρ(x, y)|u(x) + u(y)|2ρ(x)dxdy.

Hence, it is sufficient to prove that there exist C0, h0 > 0 such that the
following inequality holds true for all h ∈]0, h0] and all u ∈ L2(Ω):∫

Ω×Ω
kh,ρ(x, y)|u(x) + u(y)|2ρ(x)dxdy ≥ Chγ‖u‖2L2(ρ).

Since ρ is bounded from below, we can assume without loss of generality
that ρ = 1. Following [2], we introduce a covering (νj)j of Ω with νj ⊂ Ω
such that diam(νj) < h and for some C1 > 0 independent of h, the number
of indices k such that νj ∩ νk 6= ∅ is less than C1. Moreover, since infΩ θh ≥
Chd+γ , we can also assume that there exists a constant C2 > 0 such that
Vol(νj) ≥ C2h

d+γ for any j. Working as in section 2 of [2], we get

C1

∫
Ω×Ω

h−dφ(
x− y
h

)|u(x) + u(y)|2dxdy

≥
∑
j

∫
νj×νj

h−dφ(
x− y
h

)|u(x) + u(y)|2dxdy

≥
∑
j

h−d
1

Vd

∫
νj×νj

|u(x) + u(y)|2dxdy

≥
∑
j

2h−d
1

Vd
Vol(νj)||u||2L2(νj)

≥ 2C2h
γ

Vd
||u||2L2(Ω).

This implies, 〈u + Thu, u〉 ≥ C̃hγ ||u||2 and finally σ(Th) ⊂ [−1 + Chγ , 1].
The proof of Proposition 1.1 is complete.

3. Regularity of eigenfunctions

The aim of this section is to prove regularity properties on families of
eigenfunctions of Th associated to eigenvalues in [1− Chγ , 1]. Let us intro-
duce the Dirichlet form of Th

(3.1) Bh,ρ(f, g) := 〈(1− Th)f, g〉L2(ρ)

and Eh,ρ(f) = Bh,ρ(f, f). One has

Bh,ρ(f, g) =
1

2

∫
Ω×Ω

kh,ρ(x, y)(f(x)− f(y))(g(x)− g(y))ρ(x)dxdy

and denoting dµ2
ρ = min(ρ(x), ρ(y))dxdy we get

Bh,ρ(f, g) =
1

2hdVd

∫
Ω×Ω

1|x−y|<h(f(x)− f(y))(g(x)− g(y))dµ2
ρ(x, y).

In particular, one has

(3.2) Eh,ρ(f) =
1

2hdVd

∫
Ω×Ω

1|x−y|<h|f(x)− f(y)|2dµ2
ρ(x, y).
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As mentioned before, we will sometimes drop index ρ in the notations when
it is unambiguous. The following decomposition lemma is the key point in
our analysis.

Lemma 3.1. Let (fh)h∈]0,1] be a family of function in L2(Ω) such that

‖fh‖L2 ≤ 1 and Eh(fh) ≤ h2. Then, there exists C,C0, h0 > 0 such that
for all h ∈]0, h0], one has a decomposition fh = fh,C + fh,L + fh,H with

- supp(fh,C) ⊂ Γ2h with Γh = ∪i∈Ic{x ∈ ωi, d(x, Si) < Ch
1
α i},

ωi, αi, Si given by Assumption 1
- fh,L and fh,H are supported in Ω \ Γh and

||∇fh,L||L2 ≤ C0 and ||fh,H ||L2 ≤ C0h

This lemma is inspired from Lemma 2.2 in [2]. However, due to the
presence of cusps there is an additional term in the decomposition of fh for
which we do not have nice estimates. Moreover, we have to face important
complications in the proof. The next section is devoted to the proof of this
lemma in the particular case where Ω is a model cusp.

3.1. A model case. In this section we consider the case where the domain
Ω is an exact cusp

(3.3) Ω = {(x1, x
′, x′′), 0 < x1 < 1, |x′|d′< xα1 , |x′′|d′′< 1}.

Since there is no ambiguity, Ω denotes the above domain in this section and
a general domain in the rest of the paper. Since ρ is bounded from below and
above by positive constant, we can assume that ρ = 1 without modifying
the assumption Eh(fh) = O(h2). One defines a dyadic partition (Ωk)k≥0 of
Ω in the following way:

Ωk := Ω ∩ { 1

2k+1
< x1 <

1

2k
}, k ∈ N.

For every k ≥ 0, we define a change of variables

(3.4)
τk : Ωk → Ω0

(x1, x
′, x′′) 7→ (2kx1, 2

kαx′, x′′)

whose jacobian is jk := det dτk = 2k(αd′+1). We also introduce the change of
variable

(3.5)
τ̂k : Ωk → Ω1

(x1, x
′, x′′) 7→ (2k−1x1, 2

(k−1)αx′, x′′)

and we observe that τk = τ1 ◦ τ̂k.

3.1.1. Sobolev space and dyadic decomposition of cusps. Throughout the pa-
per we will use the following notation. Given a set B a function f ∈ H1(B),

and some parameters h, h̃, h̄ > 0, we denote

(3.6) Nh̄,h̃,h(f,B) =
(
‖h̄∂1f‖2L2(B) + ‖h̃∇′f‖2L2(B) + ‖h∇′′f‖2L2(B)

) 1
2
.

In order to lighten the notation we introduce the parameter h = (h̄, h̃, h)
and we will often write

Nh(f,B) = Nh̄,h̃,h(f,B).
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The following lemma gives an expression of Sobolev norms for dyadic de-
composition of the domain Ω.

Lemma 3.2. Let f ∈ L2(Ω), then

‖f‖2L2(Ω) =
∑
k∈N

2−k(αd′+1)‖f ◦ τ−1
k ‖

2
L2(Ω0)

If one assume additionally that f ∈ H1(Ω), then

‖∇f‖2L2(Ω) =
∑
k∈N

2−k(αd′+1)
(
‖2k∂1(f ◦ τ−1

k )‖2L2(Ω0)

+ ‖2kα∇′(f ◦ τ−1
k )‖2L2(Ω0) + ‖∇′′(f ◦ τ−1

k )‖2L2(Ω0)

)
=
∑
k∈N

2−k(αd′+1)N2k,2kα,1(f ◦ τ−1
k ,Ω0)2

Proof. Use the partition Ω = ∪k∈NΩk, the change of variable τk and the
chain rule. �
Let

θ : R∗+ × Rd
′ × Rd

′′ → R∗+ × Rd
′ × Rd

′′

(x1, x
′, x′′) 7→ (x1, x

−α
1 x′, x′′)

(3.7)

and consider the open sets Bj := { 1
2j+1 < x1 < 1

2j
, |x′| < 1, |x′′| < 1}.

Observe that θ is a C1 diffeomorphism from Ωj onto Bj . Hence, the maps

(3.8) σk = θ ◦ τk : Ωk → B0

and

(3.9) σ̂k = θ ◦ τ̂k : Ωk → B1

are also C1 diffeomorphisms. Moreover, one has σk = σ̌1 ◦ σ̂k where

(3.10) σ̌1 = B1 → B0, σ̌1 = σ1 ◦ θ−1 = θ ◦ τ1 ◦ θ−1.

The following lemma express L2 and H1 norm in terms of the dyadic de-
composition.

Lemma 3.3. One has the following estimates

(3.11) ‖f‖2L2(Ω) �
∑
k∈N

2−k(αd′+1)‖f ◦ σ−1
k ‖

2
L2(B0)

for any f ∈ L2(Ω̃) and

(3.12) ‖∇f‖2L2(Ω) �
∑
k∈N

2−k(αd′+1)N2k,2kα,1(f ◦ σ−1
k , B0)2

for any f ∈ H1(Ω). Conversely, assume that (fk)k∈N is a sequence of func-
tions of H1(B0) such that

(3.13)
∑
k∈N

2−k(αd′+1)(‖fk‖2L2(B0) +N2k,2kα,1(fk, B0)2) <∞
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and (fk)|x1= 1
2

= (fk+1)|x1=1, where (fk)|x1=a denotes the trace of the H1

function fk on {x1 = a}. Then the function f :=
∑∞

k=0 1Ωkfk ◦ σk belongs
to H1(Ω). Moreover, for such functions, one has

‖f‖2H1(Ω) �
∑
k∈N

2−k(αd′+1)(‖fk‖2L2(B0) +N2k,2kα,1(fk, B0)2).

Proof. For any j ≥ 0, θ defines a change of variable from Ωj onto Bj . A
standard computation shows that there exists C > 1 such that

1

C
‖f ◦ θ−1‖L2(B0) ≤ ‖f‖L2(Ω0) ≤ C‖f ◦ θ−1‖L2(B0),

and

1

C
‖∇′(f ◦ θ−1)‖L2(B0) ≤ ‖∇′f‖L2(Ω0) ≤ C‖∇′(f ◦ θ−1)‖L2(B0)

1

C
‖∇′′(f ◦ θ−1)‖L2(B0) ≤ ‖∇′′f‖L2(Ω0) ≤ C‖∇′′(f ◦ θ−1)‖L2(B0)

1

C
‖∂1(f ◦ θ−1)‖L2(B0) ≤ ‖∂1f‖L2(Ω0) + ‖∇′f‖L2(Ω0)

1

C
‖∂1f‖L2(Ω0) ≤ ‖∂1(f ◦ θ−1)‖L2(B0) + ‖∇′(f ◦ θ−1)‖L2(B0)

Combining these estimates with Lemma 3.2, we obtain (3.11) and (3.12).
Conversely, assume that f ∈ L2(Ω) is such that (3.13) holds true. In order
to prove that f ∈ H1(Ω), it suffices to show that f has no jump at x1 = 2−k.
This exactly the condition (fk)|x1= 1

2
= (fk+1)|x1=1. �

Remark 3.4. If one splits the sums in the above lemma into even and odd
terms, one gets

‖f‖2
L2(Ω̃)

�
∑
k∈N

4−k(αd′+1)‖f ◦ σ−1
2k ‖

2
L2(B0)

+
∑
k∈N

4−k(αd′+1)‖f ◦ σ−1
2k+1‖

2
L2(B0)

Using the identity σ2k+1 = σ1 ◦θ−1 ◦ σ̂2k+1 with σ̂2k+1 defined by (3.9), (3.5)
and the fact that θ ◦ σ−1

1 is a diffeomorphism from B0 onto B1, we get

‖f‖2
L2(Ω̃)

�
∑
k∈N

4−k(αd′+1)‖f ◦ σ−1
2k ‖

2
L2(B0)

+
∑
k∈N

4−k(αd′+1)‖f ◦ σ̂−1
2k+1‖

2
L2(B1)

Similarly, we get the following identity for the norm of the gradient

‖∇f‖2
L2(Ω̃)

�
∑
k∈N

4−k(αd′+1)N4k,4kα,1(f ◦ σ−1
2k , B0)2

+
∑
k∈N

4−k(αd′+1)N4k,4kα,1(f ◦ σ̂−1
2k+1, B1)2.
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3.1.2. Extension of the operator and comparison of Dirichlet forms. Let f ∈
L2(Ω) be such that ‖f‖L2 = 1 and Eh(f) = O(h2). Recall that |.| denotes
the euclidean norm on Rd and that |.|∞ is defined by (2.5). Since the norms
|.| and |.|∞ are equivalent, there exists a constant C > 0 such that

(3.14) E∞, h
C

(f) ≤ Eh(f) ≤ E∞,Ch(f)

where

(3.15) E∞,h(f) :=
1

2hdVd

∫
Ω×Ω

1|x−y|∞<h|f(x)− f(y)|2dxdy.

Thanks to (3.14), one has

ECh(f) ≥ E∞,h(f) =
1

2Vdhd

∫
Ω×Ω

1|x−y|∞<h|f(x)− f(y)|2dxdy

≥
∑
k≥0

1

2Vdhd

∫
Ωk×Ωk

1|x−y|∞<h|f(x)− f(y)|2dxdy

=
∑
k≥0

1

2Vdhd

∫
Ω0×Ω0

1|x1−y1|<2kh,|x′−y′|<2kαh,|x′′−y′′|<h

|f ◦ τ−1
k (x)− f ◦ τ−1

k (y)|2j−1
k (x)j−1

k (y)dxdy

=
∑
k≥0

2−k(1+αd′)

2Vdhd
′′ h̃d

′
k h̄k

∫
Ω0×Ω0

1|x1−y1|<h̄k,|x′−y′|<h̃k,|x′′−y′′|<h

|f ◦ τ−1
k (x)− f ◦ τ−1

k (y)|2dxdy

(3.16)

where h̄k = 2kh, h̃k = 2kαh. Given any domain A ⊂ Rd, one then introduces
the Dirichlet form defined on L2(A) by

EA
h̄,h̃,h

(g) =
1

2Vdhd
′′ h̃d′ h̄

∫
A×A

1|x1−y1|<h̄,|x′−y′|<h̃,|x′′−y′′|<h|g(x)−g(y)|2dxdy.

Then the last inequality in (3.16) reads

(3.17) ECh(f) ≥
∑
k≥0

2−k(1+αd′)EΩ0

h̄k,h̃k,h
(f ◦ τ−1

k ).

The next step in the computation is to compare the Dirichlet form EΩ0

h̄k,h̃k,h

and EB0

h̄k,h̃k,h
associated respectively to the domains Ω0 and B0. As a prelim-

inary step, we need the following result.

Lemma 3.5. Let A be any open subset of Rd with Lipschitz boundary. For
all a, b, c > 1, there exists C0, h0 > 0 such that for any f ∈ L2(A)

EA
ah̄,bh̃,ch

(f) ≤ C0 EAh̄,h̃,h(f)

for all h ∈]0, h0].

Proof. This is similar to the proof of Lemma 2.1 in [2]. We leave it to the
reader. �

As for the Sobolev norm, we introduce the vectorial parameter h =
(h̄, h̃, h) and we denote by h · x := (h̄x1, h̃x

′, hx′′) the inhomogenous action
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of h on x ∈ Rd. We will also denote h−1 = (h̄−1, h̃−1, h−1), hd = h̄h̃d
′
hd
′′

and EAh (g) = EA
h̄,h̃,h

(g). With these notations, one has

EAh (g) =
1

2Vdhd

∫
A×A

1|x1−y1|<h̄,|x′−y′|<h̃,|x′′−y′′|<h|g(x)− g(y)|2dxdy

=
1

2Vdhd

∫
A×A

1|h−1·(x−y)|∞<1|g(x)− g(y)|2dxdy

Lemma 3.6. There exists some constants C > 1 and h0 > 0 such that for
any f ∈ L2(Ω0), one has

1

C
EΩ0
h (f) ≤ EB0

h (f ◦ θ−1) ≤ CEΩ0
h (f)

for all h = (h̄, h̃, h) such that 0 < h, h̃ < h0 and 0 < h̄ ≤ h̃.

Proof. Since the jacobian of θ−1 is bounded one has

EΩ0
h (f) =

1

2Vdhd

∫
Ω0×Ω0

1|x1−y1|<h̄,|x′−y′|<h̃,|x′′−y′′|<h|f(x)− f(y)|2dxdy

≤ 1

2Vdhd

∫
B0×B0

1|x1−y1|<h̄,|xα1 x′−yα1 y′|<h̃,|x′′−y′′|<h

|f ◦ θ−1(x)− f ◦ θ−1(y)|2dxdy.

On the other hand, since α ≥ 1 then for x, y ∈ B0 such that |x1−y1|< h̄ ≤ h̃,
one has

|xα1x′ − yα1 y′|≥ |x1|α|x′ − y′| − |xα1 − yα1 ||y′| ≥ 2−α|x′ − y′| − Cαh̃

for some constant Cα > 0. This implies that

EΩ0
h (f) ≤ 1

2Vdhd

∫
B0×B0

1|x1−y1|<h̄,|x′−y′|<Mαh̃,|x′′−y′′|<h

|f ◦ θ−1(x)− f ◦ θ−1(y)|2dxdy

with Mα = 2α(1 + Cα). Since ∂B0 is Lipschitz, it follows from Lemma 3.5

that EΩ0
h (f) ≤ C̃αEB0

h (f ◦ θ−1), which proves the left inequality. The right
inequality is proved similarly. �

Since for any k ≥ 0, one has h̄k = 2kh ≤ 2kαh = h̃k, it follows from
Lemma 3.6 and (3.17), that

(3.18) O(h2) = Eh(f) ≥ 1

C

∑
k≥0

2−k(1+αd′)EB0

h̄k,h̃k,h
(f ◦ σ−1

k ).

Let Q :=]0, 1[d and define the change of variable

(3.19) β : B0 → Q

given by β(x1, x
′, x′′) = (2x1−1, x′, x′′). Working as in Lemma 3.6, we show

that there exists a constant C > 1 such that

(3.20)
1

C
EQh (g ◦ β−1) ≤ EB0

h (g) ≤ CEQh (g ◦ β−1).
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Combined with (3.18) this implies that there exists C0, h0 > 0 such that for
0 < h < h0

(3.21) O(h2) = Eh(f) ≥ 1

C0

∑
k≥0

2−k(1+αd′)EQ
h̄k,h̃k,h

(f ◦ σ−1
k ◦ β

−1).

Let us now study the Dirichlet form on the cube Q. For any i = 1, . . . , d
let si denote the symmetry with respect to the hyperplane {xi = 1} and let
G be the abelian group generated by the si. The group G acts on ]0, 2[d

and for every function f ∈ L2(Q), one can then define g ∈ L2(]0, 2]d) by
g|]0,1[d = f and for all s ∈ G, g ◦ s = g (we do not specify the value of

g on the hyperplanes {xi = 1} since they are negligible sets). Eventually,
this permits to extend the function g (by means of translations) to a (2Z)d-
periodic function on Rd. We then denote

E : L2(Q)→ L2(Td)
f 7→ g

where Td = (R/2Z)d. From the preceding discussion, E is continuous from
L2(]0, 1[d) into L2(Td) and from H1(]0, 1[d) into H1(Td). Given 0 ≤ a < b ≤
1, we denote

Πd−1
]a,b[ =]a, b[×Πd−1.

We can perform a partial periodization by using only symmetries with re-
spect to hyperplanes {xi = 1} with i ≥ 2. We obtain an extension map

Ẽ]a,b[ : L2(]a, b[×]0, 1[d−1)→ L2(Πd−1
]a,b[).

We also introduce the following restriction operators

R : L2(Πd)→ L2(]0, 1[d)

R]a,b[ : L2(Πd)→ L2(]a, b[×]0, 1[d−1),

R1
]a,b[ : L2(Πd)→ L2(Πd−1

]a,b[),

R̃]a,b[ : L2(Πd−1
]a,b[)→ L2(]a, b[×]0, 1[d−1),

(3.22)

which satisfy the following relations:

(3.23) RE = Id, R̃]a,b[Ẽ]a,b[ = Id, R]a,b[ = R̃]a,b[R
1
]a,b[, R

1
]a,b[E = Ẽ]a,b[.

Eventually, we observe that all these operators are continuous on H1 and
L2 spaces. In order to get rid of boundary problems, the general idea is now

to compare the Dirichlet form EQ
h̄,h̃,h

with a suitable Dirichlet form on the

torus. We first introduce the Metropolis operator on Πd, defined by

(3.24) T̄h(g)(x) =
1

V∞,dhd

∫
Td
1|x1−y1|<h̄,|x′−y′|<h̃,|x′′−y′′|<hg(y)dy

for any g ∈ L2(Td), where V∞,d =
∫
Td 1|y|∞<1dy. The associated Dirichlet

form is

Ēh(g) := 〈(1− T̄h)(g), g〉L2(Td)

=
1

2V∞,dhd

∫
Td×Td

1|h−1·(x−y)|∞<1|g(x)− g(y)|2dxdy.
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Lemma 3.7. There exists C, h0 > 0 such that for all 0 < h, h̄, h̃ < h0 and
all f ∈ L2(Q)

EQh (f) ≤ Ēh(E(f)) ≤ CEQh (f).

Proof. For any f ∈ L2(Q), one has

Ēh(E(f)) =
1

2V∞,dhd

∫
Td×Td

1|h−1·(x−y)|∞<1|g(x)− g(y)|2dxdy

=
1

2V∞,dhd

∑
s,s̃∈G

∫
s(Q)×s̃(Q)

1|h−1·(x−y)|∞<1|g(x)− g(y)|2dxdy

=
1

2V∞,dhd

∑
s,s̃∈G

∫
Q×Q

1|h−1·(s(x)−s̃(y))|∞<1|g ◦ s(x)− g ◦ s̃(y)|2dxdy

and by definition of g it follows

Ēh(E(f)) =
1

2V∞,dhd

∑
s,s̃∈G

∫
Q×Q

1|h−1·(s(x)−s̃(y))|∞<1

|f(x)− f(y)|2dxdy.
(3.25)

Moreover, for all s, s̃ ∈ G and any x, y ∈ Q, one has

(3.26) |h−1 · (s(x)− s̃(y))|∞ < 1 =⇒ |h−1 · (x− y)|∞ < 2.

Indeed, since the elements of G are isometries of Rd for the norm | · |∞, it
suffices to prove (3.26) with s = Id. If s̃ = Id, there is nothing to prove. Let

us assume that s̃ 6= Id. Then, there exists a ∈ {0, 1}d such that s̃ =
∏d
i=1 s

ai
i .

Let us denote I = {i, ai = 1} and let D = ∩i∈I{xi = 1}. Since x ∈]0, 1[d,
s̃(y) /∈]0, 1[d and |h−1 · (x − s̃(y))|∞ < 1 then there exists z ∈ D such that
|h−1 · (x − z)|∞ < 1 and |h−1 · (z − s̃(y))|∞ < 1. Since s̃(z) = z, this last
inequality implies that |h−1 · (z − y)|∞ < 1 and hence

|h−1 · (x− y)|∞ ≤ |h−1 · (x− z)|∞ + |h−1 · (z − y)|∞ < 2

which proves (3.26). Now, using (3.25) and (3.26), we obtain

Ēh(E(f)) ≤ 1

2V∞,dhd

∑
s,s̃∈G

∫
Q×Q

1|h−1·(x−y)|∞<2|f(x)− f(y)|2dxdy

and thanks to Lemma 3.5, there exists C, h0 > 0 such that for all 0 < h < h0,
one has

Ēh(E(f)) ≤ CEQh (f).

This proves the right inequality. The left one is immediate. �

Remark 3.8. The above proof can be easily adapted to show that given
0 ≤ a < b ≤ 1, there exists C > 0 such that for all 0 < h, h̄, h̃ < h0 and all
f ∈ L2(Q)

Ē ]a,b[
h (Ẽ]a,b[(f)) ≤ CEQh (f)

where

Ē ]a,b[
h (g) =

1

2V∞,dhd

∫
Πd−1

]a,b[
×Πd−1

]a,b[

1|x1−y1|<h̄,|x′−y′|<h̃,|x′′−y′′|<h

|g(x)− g(y)|2dxdy.



16 L. MICHEL

3.1.3. Fourier analysis of the Metropolis operator on the torus. The follow-
ing lemma gives an expression of the operator T̄h as a Fourier multiplier.

Lemma 3.9. For 0 < h̄, h̃, h < 1, one has

T̄h = Γ1(h̄2∂2
1)Γd′(h̃

2∆x′)Γd′′(h
2∆x′′)

with

Γn(|ξ|2) := Gn(ξ) :=
1

Vn

∫
Rn
1|z|<1e

iπz·ξdz

Proof. First, observe that since V∞,d = V1Vd′Vd′′ , one has T̄h̄,h̃,h =

M1,h̄Md′,h̃Md′′,h where for any ~ > 0 we set

Mn,~g(x) =
1

Vn~n

∫
Tn
1|x−y|<~g(y)dy.

On the other hand, if one denotes ek := 1
2n/2

eiπz·k for all k ∈ Zn, then (ek)

is an orthonormal basis of L2((R/2Z)n). Moreover, for 0 < ~ < 1, the map
y 7→ x+ ~y is a change of variable from B(0, 1) onto B(x, h) in Πn and we
get

Mn,~(ek) = ek(x)
1

Vn~n

∫
Tn
1|x−y|<~e

iπk·(y−x)dy = Gn(~k)ek.

Since the function Gn is radial, this proves the announced result. �

From the discussion below (1.6) in [6] one knows that Gn is a smooth
functions on Rn such that |Gn| ≤ 1, |Gn(ξ)| = 1 iff ξ = 0 and

(3.27) Gn(ξ) = 1− 1

2(n+ 2)
|ξ|2 +O(|ξ|4).

With the notation (3.6), we have the following

Lemma 3.10. There exists C > 0 such that for all 0 < h, h̄, h̃ < 1 and all
g ∈ L2(Πd) such that ‖g‖L2 ≤ 1 and Ēh(g) ≤ h2, there exists a decomposition
g = gL + gH such that

‖gL‖2L2(Πd) + h−2Nh(gL,Π
d)2 ≤ C

and

||gH ||2L2(Πd) ≤ Ch
2.

Remark 3.11. Let λ1 = h̄/h, λ2 = h̃/h. One has

‖gL‖2L2(Πd) + h−2Nh(gL,Π
d)2 = ‖gL‖2H1

λ1,λ2,1
(Πd)

where the semiclassical Sobolev spaces H1
λ1,λ2,1

are defined in appendix.

Proof. Denote αn = 1
2(n+2) and let 1/Υ1 = 1

4 min(α1, αd′ , αd′′) > 0. Let

g ∈ L2(Πd) be such that Ēh̄,h̃,h(g) ≤ h2. From Lemma 3.9, one knows that

for any 0 < h, h̄, h̃ < 1, one has

h2 ≥ 〈(1− T̄h)g, g〉L2(Πd)

≥ 〈(1−G1(h̄∂1)Gd′(h̃∇′)Gd′′(h∇′′))g, g〉L2(Πd)

(3.28)
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On the other hand, it follows from (3.27) that for all n ∈ N, there exists
δn > 0 such that for all |ξ| < δn, one has

0 < Gn(ξ) ≤ 1− αn
2
|ξ|2.

Hence, for all ξ = (ξ1, ξ
′, ξ′′) ∈ Rd such that |ξ| < δ := min(δ1, δd′ , δd′′), one

has

1−G1(ξ1)Gd′(ξ
′)Gd′′(ξ

′′) ≥ α1

2
|ξ1|2 +

αd′

2
|ξ′|2 +

αd′′

2
|ξ′′|2 +O(|ξ|4)

≥ 2

Υ1
|ξ|2 +O(|ξ|4).

Decreasing δ as much as necessary, we obtain

(3.29) 1−G1(ξ1)Gd′(ξ
′)Gd′′(ξ

′′) ≥ 1

Υ1
|ξ|2

for any |ξ| < δ. On the other hand, since Gn is bounded by 1 and goes to
zero at infinity and 1−Gn vanishes only at the origin, there exists Υ2 > 0
such that for all |ξ| ≥ δ,

(3.30) 1−G1(ξ1)Gd′(ξ
′)Gd′′(ξ

′′) ≥ 1

Υ2
.

Let us decompose g in the Fourier basis (ek), g =
∑

k∈Zd ĝ(k)ek and let

gL :=
∑

|(h̄k1,h̃k′,hk′′)|<δ

ĝ(k)ek, gH := 1− gL =
∑

|(h̄k1,h̃k′,hk′′)|≥δ

ĝ(k)ek.

From (3.28), (3.29) and (3.30), one deduces

h2 ≥
∑
k∈Zd

(1−G1(h̄k1)Gd′(h̃k
′)Gd′′(hk

′′))|ĝ(k)|2

=
∑

|(h̄k1,h̃k′,hk′′)|<δ

(1−G1(h̄k1)Gd′(h̃k
′)Gd′′(hk

′′))|ĝ(k)|2

+
∑

|(h̄k1,h̃k′,hk′′)|≥δ

(1−G1(h̄k1)Gd′(h̃k
′)Gd′′(hk

′′))|ĝ(k)|2

≥ 1

Υ1

∑
|(h̄k1,h̃k′,hk′′)|<δ

(|h̄k1|2 + |h̃k′|2 + |hk′′|2)|ĝ(k)|2

+
1

Υ2

∑
|(h̄k1,h̃k′,hk′′)|≥δ

|ĝ(k)|2.

From standard Fourier analysis, we deduce

h2 ≥ 1

Υ1

(
‖h̄∂1gL‖2 + ‖h̃∇′gL‖2 + ‖h∇gL‖2

)
+

1

Υ2
‖gH‖2

Taking C = max(Υ1,Υ2) we get the announced result. �
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3.1.4. Decomposition Lemma in the cusp. The main result of this section is
the following

Lemma 3.12. Assume that Ω has the particular form (3.3), then the con-
clusion of Lemma 3.1 holds true.

Proof. Throughout C denotes a positive constant independent of f and
h that may change from line to line and h ∈]0, h0[ where h0 > 0 is supposed
sufficiently small in order that the conclusions of the preceding lemmas hold
true. Let f ∈ L2(Ω) be such that Eh(f) ≤ h2 and ||f ||L2 ≤ 1. It follows from
(3.21) that ∑

k≥0

2−k(1+αd′)EQ
h̄k,h̃k,h

(f ◦ σ−1
k ◦ β

−1) = O(h2)

where β is defined by (3.19). Denoting

(3.31) ḡk = E(f ◦ σ−1
k ◦ β

−1),

it follows from Lemma 3.7 that

(3.32) Ēh̄k,h̃k,h(ḡk) ≤ CEQh̄k,h̃k,h(f ◦ σ−1
k ◦ β

−1)

and hence

(3.33)
∑
k≥0

2−k(1+αd′)Ēh̄k,h̃k,h(ḡk) = O(h2).

From now, given D ⊂ Rp × Πq, p, q ∈ N∗, g ∈ L2(D) and h = (h̄, h̃, h) we
denote

(3.34) VDh (g) = VD
h̄,h̃,h

(g) := ‖g‖2L2(D) + h−2EDh (g)

and for shortness we denote Vk(f, h) = VB0

h̄k,h̃k,h
(f ◦ σ−1

k ). We also denote

hk = (h̄k, h̃k, h). Thanks to (3.11) and (3.33), one has

(3.35)
∞∑
k=0

2−k(1+αd′)Vk(f, h) = O(1),

and (3.20) and (3.32) implies

‖ḡk‖2L2(Πd) + h−2Ēhk(ḡk) ≤ CVk(f, h).

This estimate combined with Lemma 3.10 shows that there exists a new
constant C > 0 such that for any k ∈ N and h > 0 such that h̃k < h0, there
exists ḡk,L ∈ H1(Πd) and ḡk,H ∈ L2(Πd) such that ḡk = ḡk,L + ḡk,H with

‖ḡk,L‖2L2(Πd) + h−2Nhk(ḡk,L,Π
d)2 ≤ CVk(f, h)

and
‖ḡk,H‖2L2 ≤ Ch2Vk(f, h).

Since the restriction operator R1
]0,1[ (defined in (3.22)) is continuous, it fol-

lows from the above estimates that

(3.36) ‖R1
]0,1[(ḡk,L)‖2

L2(Πd−1
]0,1[

)
+ h−2Nhk(R1

]0,1[(ḡk,L),Πd−1
]0,1[)

2 ≤ CVk(f, h)

and

(3.37) ||R1
]0,1[(ḡk,H)||2

L2(Πd−1
]0,1[

)
≤ Ch2Vk(f, h)
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Combined with (3.35), this implies

(3.38)
∑
k≥0

2−k(1+αd′)‖R1
]0,1[(ḡk,H)‖2

L2(Πd−1
]0,1[

)
≤ Ch2

and∑
k≥0

2−k(1+αd′)
(
‖R1

]0,1[(ḡk,L)‖2
L2(Πd−1

]0,1[
)

+ h−2Nhk(R1
]0,1[(ḡk,L),Πd−1

]0,1[)
2
)
≤ C.

Since Nhk(., .) = hN2k,2kα,1(., .), this later equation implies∑
k≥0

2−k(1+αd′)
(
‖R1

]0,1[(ḡk,L)‖2
L2(Πd−1

]0,1[
)

+N2k,2kα,1(R1
]0,1[(ḡk,L),Πd−1

]0,1[)
2
)

= O(1).

(3.39)

In view of Lemma 3.3, estimates (3.38) and (3.39) almost imply the conclu-
sion by considering the restriction of R1(ḡk) to B0. The main issue to get the
conclusion is that nothing insures that the no-jump condition of the lemma
R1

]0,1[(ḡk,L)|x1= 1
2

= R1
]0,1[(ḡk+1,L)|x1=1 holds true (observe here that the in-

terface x1 = 2−k−1 in the orginial variable corresponds to x1 = 1
2 for ḡk,L

and to x1 = 1 for ḡk+1,L). The end of the proof consists to modify slightly
the above decomposition in order to satisfy the assumptions of Lemma 3.3.

Let us explain briefly the idea of this modification before entering into
technical details. As already said, it follows from the above estimates that
we can decompose the functions f|Ω2k

and f|Ω2k+1
as the sum of a H1 function

and a small function in L2. The idea is that we can do an analogous decom-
position with quadriadic decomposition so that the function f restricted to
Ω2k ∪ Ω2k+1 admits also such a decomposition. Then we can apply Lemma
5.2 of the appendix to glue smoothly fL|Ω2k

and fL|Ω2k+1
up to a small error

in L2. In order to get a global estimate, we need to prove estimates uniform
with respect to the dyadic parameter k which makes the computation a bit
more heavy.

Let us now enter into the details. We first observe that thanks to (3.23),
one has

(3.40) f =
∑
k≥0

1Ωkfk ◦ σk =
∑
k≥0

1ΩkR(ḡk) ◦ β ◦ σk

with fk = f ◦ σ−1
k = R(ḡk) ◦ β (ḡk given by (3.31), β given by (3.19) and R

given by (3.22)). We introduce the following functions defined on Πd−1
] 1
2
,1[

:

(3.41) ǧk = R1
]0,1[(ḡk) ◦ β, ǧk,L = R1

]0,1[(ḡk,L) ◦ β, ǧk,H = R1
]0,1[(ḡk,H) ◦ β

which of course verify

(3.42) ǧK = ǧk,L + ǧk,H

thanks to the above construction. First observe that thanks to (3.23), one

has for any k ∈ N, fk = R(ḡk)◦β = R̃]0,1[(R
1
]0,1[(ḡk))◦β = R̃] 1

2
,1[(R

1
]0,1[(ḡk)◦β)

and hence

(3.43) fk = R̃] 1
2
,1[(ǧk)
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where we recall that R̃]a,b[ : L2(Πd−1
]a,b[) → L2(]a, b[×]0, 1[d−1) denotes the

restriction operator in the (x′, x′′) variable. Splitting (3.40) into even and
odd terms and using (3.43), we get

f =
∑
k≥0

1Ω2k
R̃] 1

2
,1[(ǧ2k) ◦ σ2k

+
∑
k≥0

1Ω2k+1
R̃] 1

2
,1[(ǧ2k+1) ◦ σ̌1 ◦ σ̌−1

1 ◦ σ2k+1

(3.44)

with σ̌1 given by (3.10). Since this change of variable is simply given by
σ̌1(x) = (2x1, x

′, x′′) we have for any ψ

R̃] 1
2
,1[(ψ) ◦ σ̌1 = R̃] 1

4
, 1
2

[(ψ ◦ σ̌1)

where with a slight abuse of notation we use the symbol σ̌1 to denote the
above dilation defined from Πd−1

] 1
4
, 1
2

[
into Πd−1

] 1
2
,1[

. Combined with (3.44) and

the identity σ̌−1
1 ◦ σ2k+1 = σ̂2k+1 (see (3.5), (3.9) for the definition of σ̂k),

this implies

f =
∑
k≥0

1Ω2k
R̃] 1

2
,1[(ǧ2k) ◦ σ2k

+
∑
k≥0

1Ω2k+1
R̃] 1

4
, 1
2

[(ǧ2k+1 ◦ σ̌1) ◦ σ̂2k+1.
(3.45)

DenoteDk = Ω2k∪Ω2k+1 for any k ∈ N and let νk : Dk → B0∪B1 be defined
by νk(x) = θ(4kx1, 4

αkx′, x′′). Since (νk)|Ω2k
= σ2k and (νk)|Ω2k+1

= σ̂2k+1,
equation (3.45) becomes

f =
∑
k≥0

1Ω2k
R̃] 1

2
,1[(ǧ2k) ◦ νk

+
∑
k≥0

1Ω2k+1
R̃] 1

4
, 1
2

[(ǧ2k+1 ◦ σ̌1) ◦ νk.
(3.46)

We now relate the quadriadic decomposition of the function f to the dyadic
decomposition.

Sub-lemma 3.13. Let f̌k := Ẽ] 1
4
,1[(f ◦ ν

−1
k ) and denote

(3.47) Ṽk(f, h) = VB0∪B1

h̄2kh̃2k,h
(f ◦ ν−1

k )

where the functional V is defined by (3.34). One has

f̌k = 1 1
4
<x1<

1
2
ǧ2k+1 ◦ σ̌1 + 1 1

2
<x1<1ǧ2k(3.48)

and

(3.49)

∞∑
k=0

4−k(1+αd′)Ṽk(f, h) = O(1).
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Moreover, one has the decompositions ǧ• = ǧ•,L + ǧ•,H and f̌k = f̌k,L + f̌k,H
with

‖ǧ2k+1,L ◦ σ̌1‖2L2(Πd−1

] 14 ,
1
2 [

)
+ h−2Nh2k

(ǧ2k+1,L ◦ σ̌1,Π
d−1
] 1
4
, 1
2

[
)2

≤ CṼk(f, h)

‖ǧ2k,L‖2L2(Πd−1

] 12 ,1[
)

+ h−2Nh2k
(ǧ2k,L,Π

d−1
] 1
2
,1[

)2 ≤ CṼk(f, h)

(3.50)

and

(3.51) ‖ǧ2k+1,H ◦ σ̌1‖2L2(Πd−1

] 14 ,
1
2 [

)
+ ‖ǧ2k,H‖2L2(Πd−1

] 12 ,1[
)
≤ Ch2Ṽk(f, h)

and

(3.52) ‖f̌k,L‖2L2(Πd−1

] 14 ,1[
)

+ h−2Nh2k
(f̌k,L,Π

d−1
] 1
4
,1[

)2 ≤ CṼk(f, h)

and

(3.53) ‖f̌k,H‖2L2(Πd−1

] 14 ,1[
)
≤ Ch2Ṽk(f, h).

where C is a positive constant independent of h.

Proof. By definition, one has f =
∑

k≥0 1Dkf ◦ ν
−1
k ◦ νk, which combined

to (3.46) proves that

(3.54) f ◦ ν−1
k = 1B0R̃] 1

2
,1[(ǧ2k) + 1B1R̃] 1

4
, 1
2

[(ǧ2k+1 ◦ σ̌1).

Applying Ẽ[ 1
4
,1] on both sides of this identity, we get (3.48).

We now observe that the analysis of Lemma 3.7,3.9, 3.10 can be performed
with the ”quadriadic” decomposition of the cusp induced by the change of
variable νk. This yields

(3.55) h2 ≥ Eh(f) ≥ 1

C

∑
k≥0

4−k(1+αd′)EB0∪B1

4kh,4kαh,h
(f ◦ ν−1

k ).

Dividing by h2 and adding the L2 norm, this implies
∞∑
k=0

4−k(1+αd′)Ṽk(f, h) = O(1)

which is exactly (3.49). Moreover, it follows from Remark 3.8, (3.43), (3.54)

and the inclusion B0 ×B0 ∪B1 ×B1 ⊂ (̌B0 ∪B1)2 that

EB0∪B1

4kh,4kαh,h
(f ◦ ν−1

k ) ≥ EB0

h̄2k,h̃2k,h
(f ◦ σ−1

2k ) + EB1

h̄2k,h̃2k,h
(f ◦ σ̂−1

2k+1)

≥ 1

C

(
Ē ] 1

2
,1[

h̄2k,h̃2k,h
(ǧ2k) + Ē ] 1

4
, 1
2

[

h̄2k,h̃2k,h
(ǧ2k+1 ◦ σ̌1)

)(3.56)

for some constant C > 0. Observe that h̄2k+1 = 2h̄2k, h̃2k+1 = 2αh̃2k. Hence
(3.56) proves that there exists C > 0 such that

(3.57) V2k(f, h) + V2k+1(f, h) ≤ CṼk(f, h).

Combined with (3.36), (3.37), (3.41), this proves (3.50) and (3.51). On the
other hand, using Lemma 3.10 and (3.55) we have also a decomposition

E(f ◦ ν−1
k ) = E(f ◦ ν−1

k )L + E(f ◦ ν−1
k )H
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with suitable bounds on the right hand side. Restricting this decomposition
to 1

4 ≤ x1 ≤ 1, we get f̌k = f̌k,L + f̌k,H with f̌k,L, f̌k,H which satisfy (3.52)
and (3.53). This completes the proof of the sub-lemma. �

Let us now apply Lemma 5.2 with A0 = Πd−1
] 1
4
, 1
2

[
, A1 = Πd−1

] 1
2
,1[

, A2 = Πd−1
] 1
4
,1[

,

φ0 = ǧ2k+1,L ◦ σ̌1 and φ1 = ǧ2k,L. Let wk := 1A0φ0 + 1A1φ1 and denote
r0 = 1A0 ǧ2k+1,H ◦ σ̌1, r1 = 1A1 ǧ2k,H . Thanks to (3.42) and (3.48), wk
satisfies

wk = 1A0 ǧ2k+1 ◦ σ̌1 + 1A1 ǧ2k − r0 − r1 = 1A2 f̌k − r0 − r1.(3.58)

Hence, wk = φ2 + r2 with

(3.59) φ2 = 1A2 f̌k,L and r2 = 1A2 f̌k,H − r0 − r1.

Moreover, thanks to (3.51), (3.52) and (3.53), one has

(3.60) ||r2||2L2(A2) ≤ Ch
2Ṽk

and
N4k,4kα,1(φ2, A2) ≤ CṼk.

where we write for shortness Ṽk = Ṽk(f, h). From Lemma 5.2 with λ1 = 22k,
λ′ = 22kα and λ′′ = 1, there exists Υ1 > 0 and h1 > 0 such that for any k such
that h̄2k ≤ h1 (that is 2−2k > h/h1), there exists a function ψ2k supported

in Πd−1
] 1
4
, 1
2

[
∩{1

2 ≤ x1 ≤ 1
2 + h̄2k} such that (ψ2k)|x1= 1

2
= (φ0)|x1= 1

2
− (φ1)|x1= 1

2

and
N4k,4kα,1(ψ2k, A1)2 ≤ Υ1Ṽk

and
‖ψ2k‖2L2(A1) ≤ Υ1h

2Ṽk.

From now, we suppose that h̃2k < h2 := min(h0, h1) with h0 given by
Lemmas 3.6 and 3.7 and h1 by Lemma 5.2. We then rewrite ǧ2k as ǧ2k =
ǧmod2k,L+ ǧmod2k,H with ǧmod2k,L = ǧ2k,L+ψ2k and ǧmod2k,H = ǧ2k,H −ψ2k. By construc-
tion, we have 

N4k,4kα,1(ǧmod2k,L,Π
d−1
] 1
2
,1[

)2 ≤ CṼk and

‖ǧmod2k,H‖2L2(Πd−1

] 12 ,1[
)
≤ Ch2Ṽk

(ǧmod2k,L)x1= 1
2

= (ǧ2k+1,L ◦ σ̌1)x1= 1
2
.

(3.61)

Let K(h) ∈ N be the largest integer such that 4αK(h) ≤ h2/h. Then for
k ≤ K(h) the functions ǧmod2k,L and ǧmod2k,H are well-defined and we can introduce
the decomposition f := fL + fH + fC with

fL =

K(h)∑
k=0

(
1Ω2k

R̃] 1
2
,1[(ǧ

mod
2k,L) ◦ σ2k + 1Ω2k+1

R̃] 1
2
,1[(ǧ2k+1,L) ◦ σ2k+1

)
,

fH =

K(h)∑
k=0

(
1Ω2k

R̃] 1
2
,1[(ǧ

mod
2k,H) ◦ σ2k + 1Ω2k+1

R̃] 1
2
,1[(ǧ2k+1,H) ◦ σ2k+1

)
,

and
fC = f − fL − fH .
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It follows from (3.46) and the definition of K(h) that fC is supported in

{0 < x1 < (h/h2)1/α} which is the required property on fC . On the other
hand, we deduce from (3.50) and (3.61) that

∞∑
k=0

2−k(αd′+1)N2k,2kα,1(fL ◦ σ−1
k ◦ θ

−1, B0)2

≤ C
K(h)∑
k=0

4−k(αd′+1)N4k,4kα,1(ǧmod2k,L,Π
d−1
] 1
2
,1[

)2

+ C

K(h)∑
k=0

4−k(αd′+1)N4k,4kα,1(ǧ2k+1,L ◦ σ̌1,Π
d−1
] 1
4
, 1
2

[
)2

≤ C
∞∑
k=0

4−k(αd′+1)Ṽk ≤ C ′

where the last inequality follows from (3.49) and C ′ is a positive constant.
Hence, fL satisfies

(3.62)
∞∑
k=0

2−k(αd′+1)N2k,2kα,1(fL ◦ σ−1
k ,Ω0)2 = O(1)

and thanks to (3.61) the functions 1Ω2k+1
fL and 1Ω2k

fL have the same trace

on x1 = 2−2k−1. Working similarly near x1 = 2−2k, we can modify (fL)Ω2k

in order that 1Ω2k
fL and 1Ω2k−1

fL have the same trace on x1 = 2−2k. More-

over, this new modification is supported in 2−2k[1−h2, 1]. Hence, for h2 > 0
small enough, it doesn’t intersect the support of the modification ψ2k which
is contained in 2−2k[1

2 ,
1
2 + h2]. Eventually, we modify also the function

ǧ2K(h)+1 in order that (fL)|x1=4−K(h)−1 = 0. Consequently, the fonction fL
that we obtain satisfies the assumptions of Lemma 3.3 and it follows that
fL ∈ H1(Ω) and ‖fL‖H1(Ω) = O(1). The fact that ‖fH‖L2(Ω) = O(h) follows
immediately from (3.49), (3.51), (3.61) and Lemma 3.3. �

3.2. The general case. Suppose that (fh)h∈]0,1] is a family of functions in

L2(Ω) such that ‖fh‖L2 = 1 and Eh(fh) = O(h2). Let J = Ic ∪ Ir ∪ {0}
and for all j ∈ J , let Oj = ωj ∩ Ω where the ωj , j ∈ Ic ∪ Ir are defined
in Assumption 1 and ω0 is a relatively compact open subset of Ω such that
Ω ⊂ ∪j∈JOj . Since J is finite (independent of h), there exists C > 0 such
that for any f ∈ L2 one has

Eh(f) ≥ 1

C

∑
i∈J
EOih (f)(3.63)

with

EOih (f) :=
1

2hd

∫∫
Oi×Oi

1|x−y|<h|f(x)− f(y)|2dµ2
ρ(x, y).

Let (χi)i∈J be a family of non negative smooth functions such that supp(χi) ⊂
ωi for all i ∈ J and

∑
i∈J χi = 1 near Ω. For all i ∈ J , denote fi,h = (fh)|Oi
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and observe that

fh =
∑
i∈J

χifi,h.

Moreover, since Eh(fh) = O(h2) it follows from (3.63) that for all i ∈ J ,

EOih (fi,h) = O(h2). Suppose first that i ∈ Ic. In a suitable coordinate
system, Oi has the form (1.6) and we can apply Lemma 3.12 to get the
decomposition

(3.64) fi,h = ϕi,h + gi,h + ri,h

with ‖gi,h‖L2(Oi) = O(h), supp(ri,h) ⊂ Γh (where Γh is defined in Lemma

3.1) and (ϕi,h)h∈]0,1] bounded in H1(Oi). On the other hand, it follows from
Lemma 2.2 in [2] that for any i ∈ Ir ∪ {0}, (3.64) holds true with ri,h = 0.
As a consequence, we get a global decomposition fh = ϕh + gh + rh with

ϕh =
∑
i∈J

χiϕi,h, gh =
∑
i∈J

χigi,h, rh =
∑
i∈Ic

χiri,h.

The functions gh and rh satisfy trivially the required properties. Since χi is
supported in Oi, one has the identity

∇(χiϕi,h) = ϕi,h∇χi + χi∇ϕi,h

which permits easily to show that (ϕh) is bounded in H1.

4. Spectral analysis.

4.1. Weak convergence of Dirichlet forms. We start this section with
a lemma giving estimates of the Dirichlet form Eh on H1 fonctions. Given
a subset U of Ω, we use the notation

EUh (u) :=
1

2hd

∫∫
U×U

1|x−y|<h|u(x)− u(y)|2dµ2
ρ(x, y).

Lemma 4.1. Suppose that the domain Ω satisfies Assumption 1. There
exists C > 0 and h0 > 0 such that for any subset U ⊂ Ω and any u ∈ H1(Ω),
one has for all h ∈]0, h0]

EUh (u) ≤ Ch2‖∇u‖2L2(U+B(0,Ch)).

Proof. From Theorem 2, p 27 in [7], we know that C∞(Ω) ∩ H1(Ω) is
dense in H1(Ω) for any open set Ω. Hence, we can assume that u ∈ C∞(Ω).
Let (ωi)i∈J , J = Ic ∪ Ir ∪ {0} be a covering of Ω as in section 3.2. For any
i ∈ J , we denote ωhi = ωi +B(0, h). We have

EUh (u) :=
∑
j∈J

1

2hd

∫∫
U∩ωj×U

1|x−y|<h|u(x)− u(y)|2dµ2
ρ(x, y)

=
∑
j∈J

1

2hd

∫∫
U∩ωj×U∩ωhj

1|x−y|<h|u(x)− u(y)|2dµ2
ρ(x, y)

≤
∑
j∈J
E
U∩ωhj
h (u)

(4.1)
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For any j ∈ J , since ρ is bounded, one has

E
U∩ωhj
h (u) ≤ Ch−d

∫∫
x,y∈U∩ωhj

1|x−y|<h|u(x)− u(y)|2dxdy.

and using the change of variable y = x+ hz this implies

E
U∩ωhj
h (u) ≤ C

∫
x∈U∩ωhj

∫
z∈Dh

|u(x)− u(x+ hz)|2dxdz

where Dh = {z ∈ B(0, 1), x+ hz ∈ U ∩ ωhj }. Using local coordinates in ωhj
one sees that there exists a piecewise smooth path γx,z,h : [0, 1]→ Ω joining

x to x + hz in ωhj such that in local coordinates γx,z,h is the union of two

straight lines from x = (x1, x
′) to (x1 + hz1, x

′) and from (x1 + hz1, x
′) to

(x1 + hz1, x
′ + hz′). In particular there exist C > 0 independent of x, z, h

such that |γ̇x,z,h(t)| ≤ Ch for all t ∈ [0, 1] and dxγx,z,h(t) = Id + O(h)
uniformly with respect to z and t. Hence, for any t ∈ [0, 1], z ∈ B(0, 1) and
h > 0 small enough, the map κt,z,h : x 7→ γx,z,h(t) is a change of variable

from {x ∈ U ∩ωhj , x+ thz ∈ U ∩ωhj } onto a subset V h
j of U ∩ωhj +B(0, h).

By the fundamental theorem of analysis, it follows that

E
U∩ωhj
h (u) ≤ C

∫
x∈U∩ωhj

∫
z∈Dh

|
∫ 1

0
γ̇x,z,h(t) · ∇u(γx,z,h(t)dt|2dxdz

and thanks to the bound |γ̇x,z,h(t)| ≤ Ch we get

E
U∩ωhj
h (u) ≤ Ch2

∫
x∈U∩ωhj

∫
z∈Dh

∫ 1

0
|∇u(γx,z,h(t))|2dtdzdx

and using the change of variable y = κt,z,h(x) it follows that

E
U∩ωhj
h (u) ≤ Ch2

∫ 1

0

∫
z∈B(0,1)

∫
y∈V hj

|∇u(y)|2dydzdt

≤ Ch2

∫
y∈U∩ωhj +B(0,h)

|∇u(y)|2dy.

Plugging this inequality in the last inequality of (4.1) and since J is finite,
we get the result. �
From now, given r > 0, we denote

(4.2) Ωr = {x ∈ Ω, d(x, ∂Ω) ≤ r}.

Since we do not use in this section the notation Ωk related to the dyadic
decomposition of the cusp, there is no ambiguity.

Corollary 4.2. Suppose that (uh) is a family of functions which is bounded
in H1(Ω). Then Eh(uh) = O(h2). Moreover, if u ∈ H1(Ω) is a fixed function
independent of h, one has

Eh(u) = EΩ\Ωh
h (u) + o(h2).

Proof. The first estimate is a direct consequence of the preceding lemma
with U = Ω. To get the second estimate observe that

Eh(u) = EΩ\Ωh
h (u) + EΩh

h (u) +Rh
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with

Rh =
1

hd

∫∫
Ωh×Ω\Ωh

1|x−y|<h|u(x)− u(y)|2dµ2
ρ(x, y) ≤ 2EΩ2h

h (u).

From the preceding lemma with U = Ω2h, it follows that

h−2EΩ2h
h (u) ≤ C

∫
1Ω3h

(x)|∇u(x)|2dx

which goes to 0 as h → 0 by the dominated convergence theorem (since u
doesn’t depend on h). �

Recall that Bh and B denote the Dirichlet forms associated to 1−Th and
Lρ respectively. One has the following

Lemma 4.3. Let Ω be an open set satisfying Assumption 1. Suppose that
(uh)h∈]0,1] is a bounded family of functions in L2(Ω) and assume there exists
a decomposition uh = ϕh + vh + rh such that the following assumptions hold
true

- (ϕh) converges weakly in H1(Ω) towards a limit ϕ when h→ 0.
- ‖vh‖L2 = O(h) when h→ 0.
- supp(rh) ⊂ Ωc0h for some c0 > 0
- there exists C > 0 such that Eh(rh) ≤ Ch2 for all h ∈]0, 1].

Then for all θ ∈ H1(Ω), one has

lim
h→0

h−2Bh(uh, θ) = B(ϕ, θ).

Proof. Let us denote B̃h = h−2Bh and let θ ∈ H1(Ω). We have to prove
that

i) limh→0 B̃h(rh, θ) = 0

ii) limh→0 B̃h(ϕh, θ) = B(ϕ, θ)

iii) limh→0 B̃h(vh, θ) = 0.

Let M ≥ 1 denote a parameter to be fixed later and let Ωc
Mh = Ω \ ΩMh

with ΩMh defined by (4.2). Given two subset A,B of Ω we denote

B̃A,Bh (u, v) =
1

2hd+2Vd

∫∫
x∈A,y∈B

1|x−y|<h(u(x)−u(y))(v(x)− v(y))dµ2
ρ(x, y)

and when A = B we denote B̃A,Bh (u, v) = B̃Ah (u, v). By Cauchy-Schwarz
inequality, one has

(4.3) B̃A,Bh (u, v) ≤ h−2
√
EAh (u)EBh (v).

Since (ϕh) is bounded in H1, it follows from Corollary 4.2 that Eh(ϕh) =
O(h2). On the other hand, ‖vh‖L2 = O(h) implies Eh(vh) = O(h2) and
hence Eh(uh) = O(h2). Suppose now that uh, θ are as above. We claim that

(4.4) B̃h(uh, θ) = B̃ΩcMh
h (uh, θ) + o(1).

Indeed, one has

B̃h(uh, θ) = B̃ΩMh,ΩMh
h (uh, θ) + B̃ΩcMh,ΩMh

h (uh, θ) + B̃ΩMh,Ω
c
Mh

h (uh, θ)

+ B̃ΩcMh,Ω
c
Mh

h (uh, θ),
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and it follows from (4.3) that

|B̃h(uh, θ)−B̃
ΩcMh,Ω

c
Mh

h (uh, θ)| ≤ h−2
√
EΩMh
h (uh)EΩMh

h (θ)

+ h−2

√
EΩcMh
h (uh)EΩMh

h (θ) + |B̃ΩMh,Ω
c
Mh

h (uh, θ)|

≤ 2h−2
√
Eh(uh)EΩMh

h (θ) + |B̃ΩMh,Ω
c
Mh

h (uh, θ)|.

(4.5)

Since the operator Th localizes at scale h one has

|B̃ΩMh,Ω
c
Mh

h (uh, θ)| = |B̃
ΩMh,Ω

c
Mh∩Ω(M+1)h

h (uh, θ)| ≤ h−2

√
Eh(uh)EΩ(M+1)h

h (θ).

Combining this estimate with (4.5) and using the bound Eh(uh) = O(h2),
we obtain

|B̃h(uh, θ)− B̃
ΩcMh,Ω

c
Mh

h (uh, θ)| ≤ Ch−1

√
EΩ(M+1)h

h (θ).

By Corollary 4.2, one knows that EΩ(M+1)h

h (θ) = o(h2) which proves (4.4).

Since Eh(rh) = O(h2), (4.4) implies B̃h(rh, θ) = B̃ΩcMh
h (rh, θ) + o(1) and

since for M > c0, rh = 0 on Ωc
Mh, we get directly i).

Let us now prove ii). Using a partition of unity, we can write θ =
∑

j∈J θj
with θj supported in ωj for all j ∈ J . Since both side of the equality in ii)
are linear with respect to θ we can assume from now that θ is supported in
a small chart ωj . Using the change of variable y = x+ hz, one has

B̃ΩcMh
h (ϕh, θ) =

1

2h2Vd

∫
ΩcMh

∫
z∈Dx,h

(ϕh(x)− ϕh(x+ hz))

(θ(x)− θ(x+ hz))wh(x, z)dzdx

where Dx,h = {z ∈ Rd, |z| < 1 and x + hz ∈ Ω}. Since M ≥ 1, for any
x ∈ Ωc

Mh, one has Dh = D = {|z| < 1} and for any t ∈ [0, 1] we get
x+ thz ∈ Ω. Using this path and the argument of Lemma 4.1, we can write

B̃ΩcMh
h (ϕh, θ) =

1

2Vd

∫
ΩcMh

∫
|z|<1

(∫ 1

0
z · ∇ϕh(x+ shz))ds

)
(∫ 1

0
z · ∇θ(x+ thz)dt

)
wh(x, z)dzdx.

Since ρ is C1, then wh(x, z) = ρ(x) +O(h) and hence

B̃ΩcMh
h (ϕh, θ) =

1

2Vd

∫
|z|<1

∫
ΩcMh

(∫ 1

0
z · ∇ϕh(x+ shz))ds

)
(∫ 1

0
z · ∇θ(x+ thz)dt

)
ρ(x)dxdz +O(h).

Using the change of variable κs,h,z : x 7→ x− shz, this implies

B̃ΩcMh
h (ϕh, θ) =

1

2Vd

∫ 1

0

∫ 1

0

∫
|z|<1

∫
x∈Vs,h,z

(
z · ∇ϕh(x))

)
(
z · ∇θ(x+ (t− s)hz)

)
ρ(y)dxdzdsdt+O(h)

(4.6)
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where Vs,h,z = κ−1
s,h,z(Ω

c
Mh). We claim that

(4.7)

∫ 1

0

∫ 1

0

∫
|z|<1

∫
Vs,h,z

|∇θ(x+ (t− s)hz)−∇θ(x)|2dxdzdtds = o(1).

Indeed by density of C∞(Ω) ∩ H1(Ω) in H1(Ω) we can assume that θ ∈
C∞(Ω). Let us fix ε > 0. Since θ ∈ H1(Ω), there exists r > 0 such∫

Ωr
|∇θ(x)|2dx ≤ ε2. Moreover, since ∇θ is uniformly continuous on Ω

c
r,

there exists h0 > 0 such that for all h ∈]0, h0]∫ 1

0

∫ 1

0

∫
|z|<1

∫
Ωcr∩Vs,h,z

|∇θ(x+ (t− s)hz)−∇θ(x)|2dxdzdtds < ε2.

Combining these two estimates, we obtain (4.7). Combined to (4.6), it
implies

B̃ΩcMh
h (ϕh, θ) =

1

2Vd

∫ 1

0

∫
|z|<1

∫
y∈Ω

(
z · ∇ϕh(y))

)
(
1Vs,h,z(y)z · ∇θ(y)

)
ρ(y)dydzds+ o(1)

Moreover, since ϕh is bounded in H1, θ ∈ H1 and 1Ω\Vs,h,z → 0 point-
wise, it follows from Cauchy-Schwarz inequality and dominated convergence
theorem that

B̃ΩcMh
h (ϕh, θ) =

1

2Vd

∫
|z|<1

∫
y∈Ω

(
z · ∇ϕh(y))

)(
z · ∇θ(y)

)
ρ(y)dydz + o(1)

and since ϕh converges weakly to ϕ in H1, we obtain

lim
h→0
B̃ΩcMh
h (ϕh, θ) =

1

2Vd

∫
Ω

∫
|z|<1

(z · ∇ϕ(x))(z · ∇θ(x))dzρ(x)dx

=
1

2Vd

d∑
i,j=1

∫
Ω

∫
|z|<1

zi∂iϕ(x)zj∂jθ(x)dzρ(x)dx.

For parity reason the terms associated to i 6= j vanish and using (4.4), we
get

lim
h→0
B̃h(ϕh, θ) = lim

h→0
B̃ΩcMh
h (ϕh, θ) =

d∑
i=1

aj

∫
Ω
∂iϕ(x)∂iθ(x)ρ(x)dx

with

aj =
1

2Vd

∫
|z|<1

z2
i dz =

1

2(d+ 2)
.

This proves ii).

It remains to prove iii). As before we can work with the functional B̃ΩcMh
h

instead of B̃h. One has

B̃ΩcMh
h (vh, θ) =

1

2h2Vd

∫
Ω

∫
|z|<1

(vh(x)− vh(x+ hz))

(θ(x)− θ(x+ hz)wh(x, z)dzdx
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Splitting the difference (vh(x) − vh(x + hz)) in two different integrals and
making the change of variable x 7→ x − hz in the term corresponding to
vh(x+ hz) we get

B̃ΩcMh
h (vh, θ) = B̃+

h (vh, θ) + B̃−h (vh, θ)

with

B±h (vh, θ) =
1

2h2Vd

∫
ΩcMh

∫
|z|<1

vh(x)(θ(x)− θ(x± hz))wh(x, z)dzdx,

where the integration domain in the variable z is the unit disc for the same

reason as before. We show how to estimate B̃+
h , the case of B̃−h is similar.

The same computation as above shows that

B̃+
h (vh, θ) =

1

2hVd

∫
|z|<1

∫
ΩcMh

vh(x)

(∫ 1

0
z · ∇θ(x+ thz)dt

)
ρ(x)dxdz +O(h)

where we used again wh(x, z) = ρ(x) +O(h). Since θ ∈ H1, ‖vh‖L2 = O(h)
and 1Ω\ΩcMh

→ 0 pointwise, we get as in the proof of ii) that

B̃+
h (vh, θ) =

1

2hVd

∫
Ω

∫
|z|<1

vh(x)
(
z · ∇θ(x)

)
ρ(x)dzdx+ o(1),

and since
∫
|z|<1(z · ∇θ(x))dz = 0, we obtain B̃+

h (vh, θ) = o(1) which proves

iii). �

4.2. Case of smooth densities. In this section we prove Theorem 1.2.
We follow the proof of Theorem 1.2 in [3]. Let |4h| be the rescaled (non
negative) Laplacien associated to the Markov kernel Th

(4.8) |4h| =
1− Th
h2

.

Let R > 0 be fixed. If νh ∈ [0, R] and uh ∈ L2(Ω) satisfy |4h|uh = νhuh
and ‖uh‖L2 = 1, then thanks to Lemma 3.1, uh can be decomposed as uh =
ϕh + vh + rh with ‖vh‖L2 = O(h), ϕh bounded in H1(Ω) and rh supported
in Γh ⊂ Ωc0h for some c0 > 0. Moreover, we claim that Eh(rh) = O(h2).
Indeed, since rh = uh − ϕh − vh and Eh(uh) = h2νh with νh bounded, it
suffices to show that Eh(vh) and Eh(ϕh) are O(h2). The bound on Eh(vh)
follows directly from the fact that ‖rh‖L2 = O(h) and that 1−Th is bounded
on L2. The bound on Eh(ϕh) is obtained from the fact that ϕh is bounded in
H1 and Corollary 4.2. Consequently, (extracting a subsequence if necessary)
we can assume that (ϕh) weakly converges in H1(Ω) to a limit ϕ and that
(νh) converges to a limit ν. Hence (uh) converge strongly in L2 to ϕ, and it
now follows from Lemma 4.3 that for any θ ∈ H1(Ω),

ν〈ϕ, θ〉 = lim
h→0

νh〈uh, θ〉 = lim
h→0

h−2Bh(uh, θ) = B(ϕ, θ).(4.9)

Since θ is arbitrary in H1 this shows that ϕ ∈ D(Lρ) and that (Lρ−ν)ϕ = 0.
Hence ν is an eigenvalue of Lρ. Moreover, the dimension of an orthonormal
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basis is preserved by strong limit. So the above argument proves that for
any ε > 0 small, there exists hε > 0 such that for h ∈]0, hε], one has

(4.10) σ(|∆h|) ∩ [0, R] ⊂ ∪j [νj − ε, νj + ε]

and

(4.11) ]σ(|∆h|) ∩ [νj − ε, νj + ε] ≤ mj .

In order to show that one has equality in (4.11) for ε small enough, observe
that for any ψ ∈ H1(Ω) independent of h, one has

lim
h→0

h−2Eh(ψ) = B(ψ,ψ)

thanks to Lemma 4.3. In particular, if ψ ∈ D(Lρ) satisfies Lρψ = νψ for
some ν > 0, then limh→0 h

−2Eh(ψ) = ν‖Ψ‖2. Hence, we can mimic the proof
of Theorem 2 iii) in [3] to get the result.

4.3. Case of measurable densities. In this section we assume that ρ is
a measurable function satisfying (1.1) and we prove Theorem 1.3. We first
apply Theorem 1.2 with ρ0 = 1. It follows that 1 is a simple eigenvalue of
Th,ρ0 . Moreover, denoting (µk,ρ0(h))k∈N the decaying sequence of positive
eigenvalues of Th,ρ0 , one has 1 = µ0,ρ0 > µ1,ρ0(h) and µ1,ρ0(h) = h2ν1 +o(h2)
where we recall that ν1 > 0 is the lowest positive eigenvalue of the Neumann
Laplacian on Ω. Moreover, one has ker(Th,ρ0 − 1) = Span(1). Combined to

the spectral theorem, this implies that for all u ∈ Span(1)⊥, we have

(4.12) 〈(1− Th,ρ0)u, u〉L2(ρ0) ≥ Ch2‖u‖2L2(ρ0).

On the other hand, from (3.2) one has

〈(1− Th,ρ0)u, u〉L2(ρ0) =
1

2hdVd

∫
Ω×Ω

1|x−y|<h(f(x)− f(y))2dµ2
ρ0(x, y),

and since m ≤ ρ ≤M , then

〈(1− Th,ρ0)u, u〉L2(ρ0) ≤
1

m
〈(1− Th,ρ)u, u〉L2(ρ)

and ‖u‖2L2(ρ0) ≥
1
M ‖u‖

2
L2(ρ). Combined with (4.12), this implies that there

exists a new positive constant C such that for all u ∈ Span(1)⊥, we have

〈(1− Th,ρ)u, u〉L2(ρ) ≥ Ch2‖u‖2L2(ρ).

This proves i) and the lower bound on g(h). The upper bound is proved in
the same way, using the equivalence of Dirichlet forms.

4.4. Total variation estimates. This section is devoted to the proof of
Theorem 1.4. Thanks to (1.10), we have

sup
x∈Ω
‖tnh,ρ(x, dy)− µρ‖TV =

1

2
‖Tnh,ρ −Π0‖L∞→L∞

where Π0 denotes the orthogonal projection on Span(1) in L2(ρ). Through-
out this section, we drop the dependance with respect to ρ in the notations.
For any p ∈ N, one has T ph = Ap +Bp with A1 = mh, B1 = Kh and for any
p ≥ 1 Ap+1 = mhAp, Bp+1 = mhBp +KhT

p
h . Since ‖mh‖L∞→L∞ ≤ 1−Chγ
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and ‖Kh‖L2→L∞ ≤ Ch−
d
2 , it follows from (2.49) and (2.50) in [2] that for

any p ∈ N

‖Ap‖L∞→L∞ ≤ (1− Chγ)p

‖Bp‖L2→L∞ ≤ Ch−γ−
d
2 .

(4.13)

Suppose now that p, n ∈ N. Since ThΠ0 = Π0 we get

‖T p+n+1
h −Π0‖L∞→L∞ ≤ ‖Ap‖L∞→L∞‖Tn+1

h −Π0‖L∞→L∞

+ ‖Bp(Tn+1
h −Π0)‖L∞→L∞ .

Taking p = bMnh2−γc with M > 0 to be chosen large enough (here we
denote bnc the integer part of n ∈ N), we deduce from (4.13) that

‖Ap‖L∞→L∞ ≤ e−nMCh2

where C is a positive constant independent of h and M . Since Th is mar-
kovian, Th and Π0 are bounded by 1 on L∞ and conseqently

(4.14) ‖T p+n+1
h −Π0‖L∞→L∞ ≤ Ce−nMCh2 + ‖Bp(Tn+1

h −Π0)‖L∞→L∞ .

We shall now estimate the second term in the above right hand side. One
has

‖Bp(Tn+1
h −Π0)‖L∞→L∞ ≤ ‖Bp‖L2→L∞‖Tnh −Π0‖L2→L2‖Th‖L∞→L2

and from Proposition 1.1 and Theorem 1.3, we know that σ(Th) \ {1} ⊂
[−1 + Chγ , 1 − g(h)] with h2/C ≤ g(h) ≤ Ch2 and γ < 2. Hence it follows
from the spectral theorem, that for h small enough

‖Tnh −Π0‖L2→L2 ≤ (1− g(h))n.

Combined with (4.13) and the estimate ‖Th‖L∞→L2 ≤ ‖Th‖L∞→L∞ = 1, it
follows that

‖Bp(Tn+1
h −Π0)‖L∞→L∞ ≤ Ch−γ−

d
2 (1− g(h))n ≤ Ch−γ−

d
2 e−ng(h).

Together with (4.14), this implies

‖T p+n+1
h −Π0‖L∞→L∞ ≤ Ce−nMCh2 + Ch−γ−

d
2 e−ng(h).

Since h2/C ≤ g(h) ≤ Ch2, it follows that for M > 0 large enough one has

‖T p+n+1
h −Π0‖L∞→L∞ ≤ Ch−γ−

d
2 e−ng(h).

Taking advantage of p = bMnh2−γc, this can be written

‖Tnh −Π0‖L∞→L∞ ≤ Ch−γ−
d
2 e−ng(h)(1+O(h2−γ))

which proves (1.11).
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5. Appendix

Let Πd = (R/2Z)d, d = 1 + d′ + d′′. For f ∈ L2(Πd) and for any k =

(k1, k
′, k′′) ∈ Z× Zd′ × Zd′′ , we denote by

f̂(k) = Ff(k) :=
1

2d/2

∫
Πd
e−iπ〈x,k〉f(x)dx.(5.1)

the Fourier coefficients of the function f . The map F is an isometry from
L2(Πd) onto `2(Zd) and we denote by F̄ its adjoint:

(5.2) F̄(a) =
1

2d/2

∑
k∈Zd

ake
iπ〈x,k〉

for any a = (ak)k∈Zd . Let also λ1, λ
′, λ′′ > 0 be some parameters and denote

λ = (λ1, λ
′, λ′′). We recall that for any ξ = (ξ1, ξ

′, ξ′′) ∈ R1+d′+d′′ we denote
λ · ξ = (λ1ξ1, λ

′ξ′, λ′′ξ′′). For any s ∈ R, we define the λ-Sobolev space as
the space of functions φ such that ‖φ‖Hs

λ
<∞ where

(5.3) ‖φ‖Hs
λ

= ‖(〈λ · k〉sFf(k))k‖`2(Zd).

We define similarly the partial Fourier coefficients Fx′,x′′ : L2(Π1+d′+d′′) →
`2(Zd′+d′′ , L2(Π)), Fx1 : L2(Π1+d′+d′′)→ `2(Z, L2(Πd′+d′′)) and their adjoint
F̄x′,x′′ , Fx1 . Consider the hypersurface Σa = {x1 = a} × Πd−1 ⊂ Πd. We

define the trace operator γΠ
a : H1

λ(Πd)→ H
1/2
λ (Σa) by

γΠ
a φ(x′, x′′) =

1√
2
F̄x′,x′′

( ∑
k1∈Z

eiπk1aFφ(k1, k
′, k′′)

)
(x′, x′′)

=
1√
2

∑
k1∈Z

eiπk1aFx1φ(k1, x
′, x′′).

(5.4)

Lemma 5.1. Let s > 1
2 . There exists C > 0 such that for any λ1, λ

′, λ′′ > 0

and any φ ∈ Hs
λ(Πd) such that Fx1φ(0, x′, x′′) = 0, one has

(5.5) ‖γΠ
a φ‖

H
s− 1

2
λ′,λ′′ (Σa)

≤ Cλ−
1
2

1 ‖φ‖Hs
λ(Πd).

Proof. We may assume without loss of generality that a = 0. By a
density argument, it is sufficient to prove (5.5) for φ ∈ C∞(Πd) such that
Fx1φ(0, x′, x′′) = 0. For such functions, the sum in (5.4) is over k1 ∈ Z∗ and
it follows from Cauchy-Schwarz inequality that

|Fx′,x′′(γaφ)(k′, k′′)| = 1√
2
|
∑
k1∈Z∗

eiπk1aFφ(k)|

≤ 1√
2

( ∑
k1∈Z∗

〈λ · k〉−2s
) 1

2
( ∑
k1∈Z∗

〈λ · k〉2s|Fφ(k)|2
) 1

2
.

(5.6)

We claim that there exists a constant C > 0 such that for any (k′, k′′) ∈
Zd′+d′′ and any λ′, λ′′ > 0, one has

(5.7)
∑
k1∈Z∗

〈λ · k〉−2s ≤ Cλ−1
1 〈(λ

′k′, λ′′k′′)〉1−2s.
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Indeed, since the function m : t 7→ (1 + |λ1t|2 + |λ′k′|2 + |λ′′k′′|2)−s is
decreasing and integrable on R, one has∑

k1∈Z∗
〈λ · k〉−2s =

∑
k1∈Z∗

m(k1) ≤
∫
R
m(t)dt.(5.8)

Using the change of variable t 7→ 〈(λ′k′,λ′′k′′)〉
λ1

t one gets
∫
Rm(t)dt = C1λ

−1
1 〈(λ′k′, λ′′k′′)〉1−2s

for some universal constant C1. Combined with (5.8), this proves (5.7).
Now, using (5.7) and (5.6), we get

|Fx′,x′′(γaφ)(k′, k′′)|2 ≤ Cλ−1
1 〈(λ

′k′, λ′′k′′)〉1−2s
∑
k1∈Z∗

〈λ · k〉2s|Fφ(k)|2

and hence

‖γΠ
a φ‖2

H
s− 1

2
λ′,λ′′

=
∑
k′,k′′

〈(λ′k′, λ′′k′′)〉2s−1|Fx′,x′′(γaφ)(k′, k′′)|2

≤ Cλ−1
1

∑
k′,k′′

∑
k1 6=0

〈λ · k〉2s|Fφ(k)|2 = Cλ−1
1 ‖φ‖

2
Hs
λ(Πd)

which proves the result. �

Given 0 < a < b < 2, the restriction operator defined by (3.22) acts on
H1 functions R]a,b[ : H1(Πd) → H1(]a, b[×Πd−1) and one defines the trace
operator

(5.9) γa : H1(]a, b[×Πd−1)→ H
1
2 (Σa)

by γaf = γΠ
a f̃ for any f̃ ∈ H1(Πd) such that R]a,b[f̃ = f . Throughout we

write γaf = f|x1=a

Suppose now that a < b < c are some fixed real numbers and letA0, A1, A2 ⊂
R×Πd−1 be defined by A0 =]a, b[×Πd−1, A1 =]b, c[×Πd−1, A2 =]a, c[×Πd−1.

Lemma 5.2. Let (φj)j=0,1,2 ∈ H1
λ(Aj) and r2 ∈ L2(A2) be some functions

depending one some parameters λ = (λ1, λ
′, λ′′) ∈]0,+∞[3 and h > 0. Let

f ∈ L2(A2) given by f = 1A0φ0 + 1A1φ1 and assume that f = φ2 + r2 with

‖φj‖H1
λ(Aj)

≤ 1 and ‖r2‖L2(A2) ≤ h

for all j = 0, 1, 2. Then there exists h1 > 0 and Υ > 0 such that for
0 < λ1h < h1, there exists ψ ∈ H1

λ(A1) supported in b ≤ x1 < b + hλ1 and
such that ψ|x1=b = (φ0)|x1=b − (φ1)|x1=b and

(5.10) ‖ψ‖H1
λ(A1) ≤ Υ and ||ψ||L2(A1) ≤ Υh

Proof. Throughout C denotes a positive constant independent of h and
λ that may change from line to line. First observe that the statement of
the lemma is invariant by translation and dilation in the variable x1. Hence
we can assume without loss of generality that a = −1, b = 0 and c = 1.
We denote Σ = {x1 = 0} × Πd−1 ⊂]a, c[×Πd−1 and we let σ :]a, c[×Πd−1 →
]a, c[×Πd−1 denote the symmetry with respect to Σ. We define g0 = 1A0φ0+
1A1φ0 ◦ σ and g1 = 1A0φ1 ◦ σ + 1A1φ1. We denote

(5.11) θ = (φ0)|Σ − (φ1)|Σ := γ0(g0 − g1)
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with γ0 defined by (5.9). We claim that there exists C0 > 0 independent of
the φi such that

(5.12) ‖θ‖L2(Σ) ≤ C0

√
h

λ1

and

(5.13) ‖θ‖
H

1/2

λ′,λ′′ (Σ)
≤ C0√

λ1
.

In order to prove (5.12), let ε > 0 a constant to be fixed later and let

(5.14) Iε = Iε(x
′) :=

∫ 0

−ε
f(x1, x

′)dx1 −
∫ ε

0
f(x1, x

′)dx1

wich is well defined for |ε| < h1 := min(b − a, c − b). By Taylor expansion,
one has φi(x) = φi(0, x

′) +
∫ x1

0 ∂1φi(t, x
′)dt and hence

Iε(x
′) =

∫ 0

−ε
φ0(x1, x

′)dx1 −
∫ ε

0
φ1(x1, x

′)dx1

= εθ(x′) +

∫ 0

−ε

∫ x1

0
∂1φ0(t, x′)dtdx1

−
∫ ε

0

∫ x1

0
∂1φ1(t, x′)dtdx1.

(5.15)

Moreover, one has∥∥∥∫ 0

−ε

∫ x1

0
∂1φ0(t, x′)dtdx1

∥∥∥
L2(Πd−1)

≤
∥∥∥∫ 0

−ε

√
|x1|λ−1

1 ‖λ1∂1φ0‖L2(]a,b[)dx1

∥∥∥
L2(Πd−1)

≤ λ−1
1

∫ 0

−ε

√
|x1|‖λ1∂1φ0‖L2(A0)dx1

≤ 2

3
ε
3
2λ−1

1 ‖φ0‖H1
λ(A0) ≤ Cε

3
2λ−1

1 ,

(5.16)

and of course an estimate similar to (5.16) holds true for φ1. On the other
hand, since f = φ2 + r2, then

Iε(x
′) =

∫ 0

−ε
r2(x1, x

′)dx1 −
∫ ε

0
r2(x1, x

′)dx1 +

∫ 0

−ε
φ2(0, x′)dx′ −

∫ ε

0
φ2(0, x′)dx′

+

∫ 0

−ε

∫ x1

0
∂1φ2(t, x′)dtdx1 −

∫ ε

0

∫ x1

0
∂1φ2(t, x′)dtdx1

=

∫ 0

−ε
r2(x1, x

′)dx1 −
∫ ε

0
r2(x1, x

′)dx1

+

∫ 0

−ε

∫ x1

0
∂1φ2(t, x′)dtdx1 −

∫ ε

0

∫ x1

0
∂1φ2(t, x′)dtdx1.

The two last terms of the above identity are estimated as above. It follows
that

‖Iε(x′)‖L2(Πd−1) ≤
∫ ε

−ε

∥∥∥r2(x1, x
′)
∥∥∥
L2(Πd−1)

dx1 + Cε
3
2λ−1

1 .
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Using Cauchy-Schwarz and the assumption on r2, we get

‖Iε(x′)‖L2(Πd−1) ≤ C(h
√
ε+ ε

3
2λ−1

1 ).

Combining this estimate, (5.15) and (5.16), we get

‖θ‖L2(Σ) ≤ C(

√
ε

λ1
+

h√
ε
).

Minimizing the right hand side by taking ε = hλ1we get ||θ||L2(Σ)= O(
√
h/λ1)

which proves (5.12).
Next we want to prove (5.13). We recall that θ is defined by (5.11) and

we decompose g0 − g1 = δ + ḡ with

(5.17) ḡ(x) =

∫ 1

−1
(g0 − g1)(t, x′, x′′)dt.

The function ḡ is independant of x1, hence it is defined as a function on A2

and as a function on Σ

Sub-lemma 5.3. One has ḡ ∈ H1
λ(A2) and ḡ ∈ H

1
2
λ′,λ′′(Σ). Moreover

(5.18) ‖ḡ‖H1
λ(A2) ≤ ‖φ0‖H1

λ(A0) + ‖φ1‖H1
λ(A1)

and there exists a constant C > 0 such that

(5.19) ‖ḡ‖
H

1
2
λ′,λ′′ (Σ)

≤ C√
λ1

Proof. By Cauchy-Schwarz inequality, one has ‖ḡ‖L2(A2) ≤ C(‖φ0‖L2 +

‖φ1‖L2), ‖λ′∂x′ ḡ‖L2(A2) ≤ C(‖λ′∂x′φ0‖L2 + ‖λ′∂x′φ1‖L2) and a similar esti-

mate for derivative in the variable x′′. Moreover, λ1∂x1 ḡ = 0. Hence we
have ḡ ∈ H1

λ(A2) and (5.18) holds true. By a classical trace theorem, it

follows that ḡ ∈ H
1
2
λ′,λ′′(Σ) and it remains to prove (5.19). We can assume

λ1 ≥ 1. One has

‖ḡ‖2
H

1
2
λ′,λ′′ (Σ)

=
∑

k̃∈Zd′+d′′
〈λ̃ · k̃〉|Fx′,x′′ ḡ(k̃)|2

where we denote λ̃ = (λ′, λ′′) and k̃ = (k′, k′′). Splitting the sum in two
parts we get ‖ḡ‖2

H
1
2
λ′,λ′′ (Σ)

= S≤(λ1) + S>(λ1) where

S>(λ1) =
∑

〈λ̃·k̃〉>λ1

〈λ̃ · k̃〉|Fx′,x′′ ḡ(k̃)|2.

One has

(5.20) S>(λ1) ≤ 1

λ1

∑
〈λ̃·k̃〉>λ1

〈λ̃ · k̃〉2|Fx′,x′′ ḡ(k̃)|2 ≤ 1

λ1
‖ḡ‖2H1

λ(A2) ≤
C

λ1

thanks to (5.18). In order to estimate the low frequencies, we observe that

(5.21) S≤(λ1) ≤ λ1

∑
〈λ̃·k̃〉≤λ1

|Fx′,x′′ ḡ(k̃)|2 ≤ λ1‖ḡ‖2L2(Σ).
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We claim that

(5.22) ‖ḡ‖2L2(Σ) ≤ (h2 +
1

λ2
1

)

Indeed, by Cauchy-Schwarz inequality and thanks to the symetric form of
g0 and g1, one has

‖ḡ‖L2(Σ) ≤ C‖φ0 − φ1 ◦ σ‖L2(A0) = C‖f − f ◦ σ‖L2(A2)

≤ C‖φ2 − φ2 ◦ σ‖L2(A2) + C‖rh‖L2(A2)

Moreover, since φ2(x)− φ2 ◦ σ(x) =
∫ x1
−x1 ∂1φ2(t, x′, x′′)dt, we get

‖ḡ‖L2(Σ) ≤
C

λ1
‖φ2‖H1

λ
+ C‖rh‖L2(A2) ≤

C

λ1
+ Ch(5.23)

which proves (5.22). Now combining (5.21) and (5.22) we get S≤(λ1) ≤
C
λ1

+Ch which combined with (5.20) proves the result since hλ1 is bounded.
�
We are now in position to estimate θ in H

1
2 . One has θ = ḡ + γ0(δ) with

δ = g0 − g1 − ḡ and from Sub-lemma 5.3 we know that

(5.24) ‖ḡ‖
H

1/2

λ′,λ′′ (Σ)
≤ C/

√
λ1.

Moreover, by construction, one has ‖gj‖H1
λ(A2) ≤ C for j = 0, 1 and by

Sub-lemma 5.3 one has also ‖ḡ‖H1
λ(A2) ≤ C. Hence ‖δ‖H1

λ(A2) ≤ C and

since
∫
A2
δ(x1, x

′, x′′)dx1 = 0, Lemma 5.1 implies ‖δ‖
H

1/2

λ′,λ′′ (Σ)
≤ C/

√
λ1.

Combined with (5.24), this proves (5.13).
We are now in position to define the function ψ. Let ρ ∈ C∞(R+) be

such that ρ(0) = 1 and supp(ρ) ⊂ [0, 1
2 ]. We define ψ via its partial Fourier

coefficients in the variables (x′, x′′). For x1 ∈]0, 1[ and k̃ = (k′, k′′) ∈ Zd′+d′′ ,
let

ψ̂(x1, k̃) =

 ρ
(
x1
hλ1

)
θ̂(k̃) if 〈k̃〉 ≤ h−1

ρ
(
x1〈k̃〉
λ1

)
θ̂(k̃) if 〈k̃〉 ≥ h−1

where for sake of shortness we denote û = Fλ′,λ′′(u). Of course, ψ|Σ = θ

since one has ψ̂(0, k̃) = θ̂(k̃). Moreover, since ρ is supported in [0, 1
2 ], then

ψ is supported in 0 < x1 ≤ hλ1. Let us now estimate its L2 and H1 norms.
Denoting ‖u‖2

L2(]0,1[×Zd−1)
=
∑

k∈Zd−1 ‖u(., k)‖2L2(]0,1[), we have

||ψ||2L2(A1) = ‖ψ̂(x1, k̃)‖2L2(]0,1[×Zd−1)

=
∑
〈k̃〉≤h−1

|θ̂(k̃)|2
∫ ∞

0
|ρ(

x1

hλ1
)|2dx1 +

∑
〈k̃〉≥h−1

|θ̂(k̃)|2
∫ ∞

0
|ρ(
x1〈k̃〉
λ1

)|2dx1

≤ ‖ρ‖2L2

( ∑
〈k̃〉≤h−1

hλ1|θ̂(k̃)|2 +
∑
〈k̃〉≥h−1

λ1

〈k̃〉
|θ̂(k̃)|2

)
≤ hλ1‖ρ‖2L2(R+)‖θ‖

2
L2(Σ) ≤ Ch

2
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thanks to (5.12). This proves the second part of (5.10). To prove the H1

estimate, we observe that

(5.25) ‖ψ‖2H1
λ(A1) = ‖ψ‖2L2(A1) +‖λ1∂1ψ̂‖2L2(]0,1[×Zd−1) +‖〈k̃〉ψ̂‖2L2(]0,1[×Zd−1)

and we estimate separately each term of the right hand side. First, we have

‖λ1∂1ψ̂‖2L2(]0,1[×Zd−1) =
∑
〈k̃〉≤h−1

h−2|θ̂(k̃)|2
∫ ∞

0
|ρ′( x1

hλ1
)|2dx1

+
∑
〈k̃〉≥h−1

〈k̃〉2|θ̂(k̃)|2
∫ ∞

0
|ρ′(x1〈k̃〉

λ1
)|2dx1

= ‖ρ′‖2L2

(λ1

h

∑
〈k̃〉≤h−1

|θ̂(k̃)|2 + λ1

∑
〈k̃〉≥h−1

〈k̃〉|θ̂(k̃)|2
)

≤ ‖ρ′‖2L2

(λ1

h
‖θ‖2L2 + λ1‖θ‖2

H
1
2
λ′,λ′′ (Σ)

)
≤ C‖ρ′‖2L2

thanks to (5.12) and (5.13). Let us now estimate the last term in (5.25).
We have

‖〈k̃〉ψ̂‖2L2(]0,1[×Zd−1) =
∑
〈k̃〉≤h−1

|θ̂(k̃)|2〈k̃〉2
∫ ∞

0
|ρ(

x1

hλ1
)|2dx1

+
∑
〈k̃〉≥h−1

|θ̂(k̃)|2〈k̃〉2
∫ ∞

0
|ρ(
x1〈k̃〉
λ1

)|2dx1

= ‖ρ‖2L2

(
hλ1

∑
〈k̃〉≤h−1

|θ̂(k̃)|2〈k̃〉2 + λ1

∑
〈k̃〉≥h−1

|θ̂(k̃)|2〈k̃〉
)

≤ ‖ρ‖2L2λ1‖θ‖2
H

1
2
λ′,λ′′ (Σ)

≤ C‖ρ‖2L2

thanks again to (5.13). This achieves to prove that ‖ψ‖2
H1
λ(A1)

= O(1). �
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