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1. Introduction

We consider the non-linear Schrödinger equation with magnetic field on �n, n ≥ 1

i�tu = HA�t�u+ b�f�x� u� (1.1)

with initial condition

u�t=t0
= �� (1.2)

Here

HA�t� =
n∑

j=1

�i�xj − bAj�t� x��
2� t ∈ �� x ∈ �n

is the time-depending Schrödinger operator associated to the magnetic potential
A�t� x� = �A1�t� x�� � � � � An�t� x��, the parameter b > 0 measures the strength of the
magnetic field and � ≥ 0. We sometimes omit the space dependence and write A�t�
instead of A�t� x�. The first aim of this note is to study the Cauchy problem in
the energy space. At the end of the paper we show how recent improvement in
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Remarks on Non-Linear Schrödinger Equation 1199

the qualitative study of non-linear Schrödinger equations can be adapted to the
magnetic context. Let us begin with the general framework of our study.

We suppose that the magnetic potential is a smooth function A ∈ C�

��t ×�n
x��

n� and that it satisfies the following assumption.

Assumption 1. There exists some constants C� > 0, � ∈ �n such that

(1) ∀� ∈ �n sup�t�x�∈�×�n ���x�tA� ≤ C�.
(2) ∀��� ≥ 1� sup�t�x�∈�×�n ���xA� ≤ C�.
(3) ∃	 > 0�∀��� ≥ 1� sup�t�x�∈�×�n ���xB� ≤ C��x	−1−	

where B�t� x� is the matrix defined by Bjk = �xjAk − �xkAj .

Note that compactly supported perturbations of linear (with respect to x)
magnetic potentials satisfy the above hypothesis.

Under Assumption 1, the domain D�HA�t�� = 
u ∈ L2��n
x�� HA�t�u ∈ L2��n

x��

does not depend on t. Indeed, for t� t′ ∈ � one has

HA�t′� = HA�t� + bW�t� t′��i�x − bA�t��+ b�i�x − bA�t��W�t� t′�+ b2W�t� t′�2 (1.3)

with x �→ W�t� t′� x� = ∫ t′
t
�sA�s� x�ds. Moreover, W is bounded as well as its

x-derivatives uniformly with respect to t� t′ in any compact set. Therefore, the above
identity shows that the space

H
mg��

n� = 
u ∈ � ′��n�� �1+HA�t��
/2u ∈ L2��n��

does not depend on t ∈ �. As D�HA�t�� = H2
mg��

n�, the above statement is
straightforward. Moreover, the natural norms on this space are equivalent and
this equivalence is uniform with respect to the parameter b for close times. More
precisely, denoting mA = sup�t�x�∈�×�n ��tA�t� x��, we have the following.

Proposition 1.1. Suppose that Assumption 1 is satisfied and let  > 0 and T > 0. Then,
for all t� t′ ∈ � such that �t − t′� ≤ b−1T and all u ∈ H

mg we have

�HA�t′� + 1�uL2 ≤ �1+ 2mAT +m2
AT

2��HA�t� + 1�uL2 �

Proof. It is a straightforward consequence of equation (1.3), Assumption 1 and the
fact that �i�x − bA�t���HA�t� + 1�−1 is bounded by 1 in L2. �

For  ∈ � we define

u
H


A�t�

= �i�x − bA�t��uL2 + uL2 � (1.4)

This norm is clearly equivalent (uniformly with respect to b) to �1+HA�t��
/2uL2 .

In view of Proposition 1.1, we define the magnetic Sobolev norm by

u
H


mg

= u
H


A�t0�

�
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1200 Michel

Under Assumption 1 it is well-known (see [15], Th. 4.6, p. 143, or [18]) that for
� ∈ H1

mg, the linear Schrödinger equation

i�tu = HA�t�u� u�t=s = � (1.5)

has a solution U0�t� s��. The operator U0�t� s� is continuous from L2 into L2 and
from H1

mg into H1
mg. Moreover, U0�t� s�� is the unique H1

mg valued solution of (1.5)
and U0�t� s� is unitary on L2.

The first aim of this paper is to solve the Cauchy problem for the non-
linear equation in the most appropriate space. In the sequel we assume that
f ��n ×�→� is a measurable function such that

Assumption 2.

(1) f�x� 0� = 0 for a.e. x ∈ �n.
(2) ∃M ≥ 0� � ∈ �0� 4

n−2 ��� ∈ �0��� if n = 1� 2) such that

�f�x� z1�− f�x� z2��≤M�1+ �z1�� + �z2����z1 − z2�

for a.e. x ∈ �n and for all z1� z2 ∈ �.
(3) ∀z ∈ �� f�x� z� = �z/�z��f�x� �z��.

These assumptions are often used in the case A = 0. More precisely, in the case
A = 0, the second property of the above assumption corresponds to a subcritical
non-linearity with respect to H1.

Let us introduce some energy functional associated to these nonlinerarities.
We define

F�x� z� =
∫ �z�

0
f�x� s�ds� G�u� =

∫
�n

F�x� u�x��dx

and for t ∈ � and u ∈ H1
mg we define the energy

E�b� t� u� =
∫
�n

1
2
��i�x − bA�t� x��u�x��2dx + b�G�u��

Formally, it is straightforward to see that any sufficiently regular solution of (1.1),
(1.2), enjoys the following energy evolution law:

E�b� t� u� = E�b� 0� ��− bRe
∫ t

0
��sA�s�u�x�� �i� − bA�s��u�s�	ds�

where �� 	 denotes the L2 scalar product. Therefore, a natural space to solve
(1.1)–(1.2) is H1

mg.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied and let � ∈ H1
mg. Then,

there exists Tb� T
b > 0 and a unique u ∈ C��−Tb� T

b�� H1
mg� ∩ C1��−Tb� T

b�� H−1
mg �

solution of (1.1).
Moreover, either Tb = � (resp. Tb = �), or limt→−Tb

u�t�H1
mg

= � (resp.
limt→Tb u�t�H1

mg
= �) and

u�t�L2 = �L2� (1.6)

E�b� t� u� = E�b� 0� ��− bRe
∫ t

0 ��sA�s�u�x�� �i� − bA�s��u�s�	L2ds� (1.7)
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Remarks on Non-Linear Schrödinger Equation 1201

for all t ∈ �−Tb� T
b�. In addition, there exists 	 > 0 such that, for all b > 0 and � ∈ H1

mg

such that �H1
mg

≤ Cb, we have Tb� T
b ≥ 	b−� with � > 0 depending only on �� �� n.

Let us make a few remarks on this result. The Cauchy problem for non-
linear Schrödinger equation has a long story. In absence of magnetic field there are
numerous results; see for instance [5, 9, 10].

In presence of magnetic field, the behavior of A when �x� becomes large plays
an important role. In the case where the magnetic potential A is bounded, the spaces
H1

mg and H1 coincide and the Cauchy problem can be solved in H1 using standard
techniques. If the magnetic field is unbounded, it is not possible to solve the Cauchy
problem in H1 since the product u �→ Au is not bounded on L2.

To overcome this difficulty a possible strategy is to work in the weighted
Sobolev space � = 
u ∈ H1��n�� �1+ �x��u ∈ L2� � (see for instance [7, 14]).
In particular, a decay of the initial data at infinity is required.

In [7], a decay is required because the author uses dispersive properties for the
Laplacian instead of HA�t�. In [14] the authors use magnetic Strichartz estimates but
their method is based on fixed-point theorem and is not adapted to the magnetic
context.

On the other hand, there exists also a result of Cazenave and Esteban [4] dealing
with the special case where the magnetic field B is constant (and hence, A does
not depend on t and is linear with respect to x). In one way, this paper is more
satisfactory as they only require u0 to belong to the energy space. Nevertheless, their
result applies only to constant magnetic field.

Our theorem is a generalization of the above results. Before going further, let
us remark that for unbounded A, the spaces H1, H1

mg and � are different. First, it is
evident that � is contained in H1 ∩H1

mg. Let us give an example where � is strictly
contained in H1

mg. For this purpose, we restrict ourselves to the case of dimension
n = 2 and consider the magnetic potential A�x� y� = �y� x�. Let g ∈H1��2� be such
that �x�g � L2: simple computations show that f�x� y� = g�x� y�e−ixy belongs to
H1

mg\�.
In the case of defocusing non-linearities the energy law implies the following

result.

Corollary 1. Suppose that f�x� z� ≥ 0 for all x� z, then Tb� T
b = +�.

Proof. For f ≥ 0, we deduce from (1.7) and Cauchy–Schwarz inequality, that

�i� − bA�t��u�t�L2 ≤ C1 + C2

∫ t

0
�i� − bA�s��u�s�L2ds

for some fixed constant C1� C2 > 0. Hence, Gronwall Lemma shows that
�i� − bA�t��u�t�L2 remains bounded on any bounded time-interval. Using (1.6)
and the characterization of Tb, we obtain the result. �

The next section contains the proof of Theorem 1. In Section 3 we give some
qualitative results on the solution of (1.1) in the limit b → �. More precisely, we
construct WKB solutions and prove instability results with respect to the initial data
and to the parameter b.
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1202 Michel

2. Cauchy Problem in the Energy Space

The proof of Theorem 1 relies on the Strichartz estimates proved in [18] for the
problem

i�tu = HA�t�u+ g�t�� u�t=s = � (2.1)

In the following, we denote 2∗ = 2n
n−2 if n ≥ 3 and 2∗ = +� if n = 1� 2.

Theorem 2 (Yajima). Let I be a finite real interval, �q� r� and ��j� �j�� j = 1� 2
be such that r� �j ∈ �2� 2∗�, q� rj ∈�2�+��, 2

q
= n� 12 − 1

r
� and 2

�j
= n� 12 − 1

�j
�. Let

gj ∈L�′j �I� L�′j ��n
x��� j = 1� 2, where �′j� �

′
j are the conjugate exponents of �j� �j . Then

the solution u to (2.1) with g = g1 + g2 satisfies

uLq�I�Lr ��n
x��

≤ C�g1L�′1 �I�L�′1 ��n
x��

+ g2L�′2 �I�L�′2 ��n
x��

+ �L2��n�� (2.2)

where the constant C depends only on the length of I and the constants �C���∈�n of
Assumption 1.

Proof. In the case g = 0 it is exactly Theorem 1 of [18]. In the general case it suffices
to follow the proof of Proposition 2.15 of [2] using a celebrated result of Christ
and Kiselev [6]. The fact that the constant C depends only on the C� is a direct
consequence of the construction of Yajima [18]. �

Remark 2.1. In the case where the magnetic potential is not regular, recent results
of Stefanov [16] and Georgiev and Tarulli [8] provide Strichartz estimates under
smallness assumption on the magnetic fields. This should lead to the corresponding
existence and uniqueness result for NLS in the case of small magnetic field. This
could also have consequences on the well-posedness of the Schrödinger–Maxwell
system (see [12, 13, 17] for results on this topics).

It is important to notice that Theorem 1 is not a straightforward consequence
of the above Strichartz estimate. Indeed, if we apply a fixed point method to
equation (1.1), a difficulty occurs when one aims at controlling the nonlinearity in
the H1

mg norm. Consider for instance the case f�u� = �u�2u, then we have

�i�x − bA�t����u�2u� = �u�2�i�x − bA�t���u�+ ui�x��u2���

The first term of the right hand side of this equality will be controlled by uH1
mg
,

whereas in the second term, as A�t� x� is not bounded with respect to x, there is no
chance to control i�x��u2�� by �i�x − bA�t����u2��. For the same reason it does not
seem easy to solve the Cauchy problem in magnetic Sobolev spaces of high degree.

To overcome this difficulty, we work as in [5, 4] and approximate the solution
of (1.1) by the solution of a non-linear Schrödinger equation with a non-linearity
which is linear at infinity. In the work of Cazenave and Weissler, the main tool to
justify the approximation is an energy conservation. In our case, the Hamiltonian
depends on time, so that the energy is not conserved. Nevertheless, the error
term is controlled by the H1

mg-norm so that it is possible to implement the same
strategy. Another difference involved by the dependence with respect to time of the
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Remarks on Non-Linear Schrödinger Equation 1203

Hamiltonian is that the usual techniques to solve the Cauchy problem with regular
initial data and suitable non-linearities do not apply in our context. Therefore, in
addition to the approximation of the non-linearity, we introduce an approximation
of the magnetic field itself and justify the convergence to the initial problem.

Let us introduce the approximated non-linearities used in the sequel.
Following [5], we decompose f = f̃1 + f̃2 with

f̃1�x� z� = 1
�z�≤1�f�x� z�+ 1
�z�>1�f�x� 1�z (2.3)

and

f̃2�x� z� = 1
�z�>1��f�x� z�− f�x� 1�z�� (2.4)

Next, we define fm = f̃1 + f̃2�m where

f̃2�m�x� z� = 1
�z�≤m�f̃2�x� z�+ 1
�z�>m�f̃2�x�m�
z

m
(2.5)

Remark that these functions satisfy Assumption 2. We consider also the energy
functional associated to these approximated non-linearities. We define

Fm�x� z� =
∫ �z�

0
fm�x� s�ds� Gm�u�

∫
�n

Fm�x� u�x��dx (2.6)

and for t ∈ � and u ∈ H1
mg we define

Em�b� t� u� =
∫
�n

1
2
��i�x − bA�t� x��u�x��2dx + b�Gm�u�� (2.7)

Without loss of generality, it suffices to prove Theorem 1 for t0 = 0. For
simplicity we prove Theorem 1 in the particular case b = 1. To get the general case
it suffices to keep track of b along the proof. We will also restrict our study to t ≥ 0,
the case of negative times being treated by reversing time in the equation.

2.1. Preliminary Results

In the sequel, we need Sobolev embeddings in the magnetic context. In this
subsection, A�t� x� is a magnetic potential satisfying Assumption 1. We also suppose
that t ∈ �0� T0� with T0 < 1/mA to be chosen.

Lemma 2.2. Let 0 < s < n
2 and ps = 2n

n−2s , then Hs
mg is continuously embedded in

Lp��n� for all p ∈ �2� ps� and there exists C > 0 independent of A such that for all
t ∈ �0� T0�

uLp ≤ CuHs
mg

(2.8)

Proof. From the diamagnetic inequality (see [1]), we know that almost everywhere
we have

�u� = ��HA�0� + 1�−
s
2 �HA�0� + 1�

s
2 u� ≤ �−�+ 1�−

s
2 ��HA�0� + 1�

s
2 u��

Taking the Lp norm, the result follows from standard Sobolev inequalities. �
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1204 Michel

Until the end of this section, we suppose that �1 = 2, �2 = �+ 2 and for k = 1� 2
2/�k = n�1/2− 1/�k�. We also denote, �′

k� �
′
k the conjugate exponents of �k� �k.

Lemma 2.3. Let M > 0, then

(1) the sequence �f̃2�m��� u��m∈�∗ converges to f̃2��� u� in L�′2��n� uniformly with
respect to u ∈ H1

mg such that uH1
mg

≤ M .
(2) there exists C�M� > 0 independent of A such that for all m ∈ �∗ and for all

u� v∈H1
mg with max�uH1

mg
� vH1

mg
� ≤ M we have

f̃1��� u�− f̃1��� v�L�′1 ��n�
≤ C�M�u− vL�1

and

f̃2�m��� u�− f̃2�m��� v�L�′2 ��n�
+ f̃2��� u�− f̃2��� v�L�′2 ��n�

≤ C�M�u− vL�2 ��n��

Proof. We follow the method of Example 3 in [5]. Taking � as the characteristic
function of the set 
x ∈ �n � �u�x�� > m� and using Assumption 2, we have

f̃2�u�− f̃2�m�u�L�′2 ��n�
≤ 2��u��+1

L
�′2 = 2�u�+1

L�+2 � (2.9)

On the other hand, using Lemma 2.2 we get for p∈ ��+ 2� 2∗�,

uH1
mg

≥ C�uLp ≥ Cm1− �+2
p �u

�+2
p

L�+2 � (2.10)

As 1− �+2
p

> 0, combining Equations (2.9) and (2.10), we obtain the first point of
Lemma 2.3.

The second assertion follows, as in Example 3 in [5], from Hölder’s inequality,
Assumption 2 and Lemma 2.2. The fact that the constant C�M� is independent of
the magnetic field follows from the uniformity of the constant in Lemma 2.2. �

Lemma 2.4. For M > 0 there exists a constant C�M� independent of A, such that the
following hold true:

(1) for all t ∈ � and u� v ∈ H1
A�t� with max�uH1

A�t�
� vH1

A�t�
� ≤ M we have

�G�u�−G�v�� + �Gm�u�−Gm�v�� ≤ C�M��v− uL2 + v− u�L2��

with � = 1− 2
�2
.

(2) for all 0 < T < T0 and for all u� v ∈ L���0� T��H1
mg�, we have

f̃1��� u�− f̃1��� v�L�′1 ��0�T��L�′1 ��n��
≤ C�M��T + T 1/2�u− vL�1 ��0�T��L�1 ��n���

and

f̃2�m��� u�− f̃2�m��� v�L�′2 ��0�T��L�′2 ��n��
+ f̃2��� u�− f̃2��� v�L�′2 ��0�T��L�′2 ��n��

≤ C�M��T + T���u− vL�2 ��0�T��L�2 ��n�� + u− vL���0�T��L2��n���

Moreover, Gm → G as m → � uniformly on bounded sets of H1
mg.
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Remarks on Non-Linear Schrödinger Equation 1205

Proof. Noting that G�u� = ∫ 1
0 �f�x� su�� u	L2ds and Gm�u� =

∫ 1
0 �fm�x� su�� u	L2ds,

we mimic the proof of Lemma 3.3 in [5], replacing classical Sobolev inequalities by
Lemma 2.2 and using Lemma 2.3. �

We are now in position to prove the uniqueness part of Theorem 1.

Proposition 2.5. Let T > 0 and u� v ∈ C��0� T��H1
mg� ∩ C1��0� T��H−1

mg � be solutions of
(1.1). Then u = v.

Proof. Let u� v ∈ C��0� T��H1
mg� ∩ C1��0� T��H−1

mg � be solutions of (1.1), and define
w = v− u. Then w�0� = 0 and

i�tw −HA�t�w = f̃1�u�− f̃1�v�+ f̃2�u�− f̃2�v��

Let r ∈ �2� 2∗� and q ∈ �2�+�� such that 2
q
= n� 12 − 1

r
�. Applying Theorem 2

together with Lemma 2.4, we get

wLq��0�T��Lr � ≤ C�T + T���wL���0�T��L2� + wL�2 ��0�T��L�2 ���

As we can alternatively take �q� r� to be equal to �2��� and ��2� �2�, we conclude
by summing the resulting inequalities and by taking T > 0 small enough. �

2.2. Autonomous Case

In this section we sketch how to solve the Cauchy problem in H1
mg when the

magnetic field A�t� x� = A�x� is time independent. In this context, the functional E
does not depend on time and formally we have the following conservation of energy:
assume that u is solution of (1.1) then

E�u�t�� = E���� ∀t�

Moreover, in that case the norms �mg and �H1
A
coincide.

Proposition 2.6. Let M > 0 and let A be time independent and satisfying Assumption 1
with some constants �C���∈�n . Then, there exists T > 0 depending only on M and
the �C��s such that for all � ∈ H1

A such that �H1
A
≤ M , there exists a unique

u∈C0��0� T��H1
A� ∩ C1��0� T��H−1

A � maximal solution of

i�tu = HAu+ f�x� u�

with initial condition u�t=0 = �. Moreover, for all t ∈ �0� T� we have

E�u�t�� = E����

In addition, if T < � then limt→T uH1
A
= �.

The proof is slight adaption of [5, 4] to our context. We need also to
investigate the dependence of the existence time with respect to the magnetic field.
However, the scheme of proof is the same and consists to consider an approximate
problem and justify convergence on fixed time intervals. Let us give the main steps
of the proof.
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1206 Michel

Step 1. Let fm be defined by (2.3)–(2.5) and let A be a magnetic field satisfying
the above hypotheses. Consider the problem

i�tu = HAu+ fm�x� u�� ut=0 = � (2.11)

with � ∈ H1
A. We have the following

Lemma 2.7. Let � ∈ H1
A, then there exists �m�A > 0 such that there exists um ∈

C��0� �m�A�� H
1
A� ∩ C1��0� �m�A�� H

−1
A � solution of (2.11). Moreover for any t ∈ �0� �m�A�,

we have

Em�um� = Em��� (2.12)

and

um�t�L2 = �L2 � (2.13)

Proof. The proof is the same as in Lemma 3.5 of [5], replacing usual derivatives by
magnetic derivatives. �

Step 2. We show that the existence time �m�A can be bounded from
below uniformly with respect to m ∈ � and A satisfying the assumptions of
Proposition (2.6).

Lemma 2.8. Let M > 0 and let A satisfy Assumption 1 with some constants �C���∈�n .
Then, there exists T1 > 0 depending only on M and the �C��’s such that for all � ∈ H1

A

such that �H1
A
≤ M , we have

umL���0�T1��H
1
A�
≤ 2�H1

A
�

Proof. The proof is exactly the same as in Lemma 3.6 of [5], using Lemma 2.7
(in particular, we use strongly the conservation of energy) and Lemma 2.3 to get
uniformity with respect to A. �

Step 3. The final step is to prove the convergence of the um to a solution of
the initial problem. First, we prove convergence in L2.

Lemma 2.9. Let M > 0 and let A satisfy Assumption 1 with some constants �C���∈�n .
Then, there exists T2 > 0 depending only on M and the �C��’s such that for all � ∈ H1

A

such that �H1
A
≤ M , �um�m∈� is a Cauchy sequence in C��0� T2�� L

2�.

Proof. The proof is the same as in [5], using Theorem 2, Lemmas 2.3, 2.4 and 2.7.
�

We complete the proof of Proposition 2.6. We denote by u the limit of um

in C��0� T2�� L
2�. From Lemma 2.8, it follows that u ∈ L���0� T2�� H

1
A� and by

Lemma 2.2, um converges to u in C��0� T2�� L
r� for all r ∈ �2� 2∗�. Hence, it follows

from Lemma 2.3 that fm�um� converges to f�u� in C��0� T2�� H
−1
A � and u solves (1.1)

in L���0� T2�� H
−1
A �. Moreover, combining Lemmas 2.4 and 2.7 we get

E�u�t�� = E����

This shows that u ∈ C��0� T2�� H
1
A� and hence u ∈ C1��0� T2�� H

−1
A �.
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Remarks on Non-Linear Schrödinger Equation 1207

2.3. Cauchy Problem in the Time-Depending Case

We suppose now that A�t� x� satisfies Assumption 1. The strategy of proof is the
same as in the autonomous case and we first consider the problem

i�tu = HA�t�u+ fm�x� u�� ut=0 = �� (2.14)

At least formally, we can see that the energy of the solution of this equation satisfies
the following identity

E�t� u� = E�0� ��−Re
∫ t

0
��sA�s�u�s�� �i�x − A�s��u�s�	ds� (2.15)

This replaces the energy conservation in our approach. On the other hand another
problem occurs if we try to mimic the proof of [5]. Indeed, the natural first step
would be to obtain a generalization of Lemma 2.7 in the time depending framework.
Following the proof of Lemma 3.5 in [5], we should then regularize the initial data
and solve the Cauchy problem in H2

mg. In time-depending context the difficulty is
that contrary to the autonomous case, the existence of smooth solution is not easy to
prove. Indeed, the key point in the approach of [5] is that for any g ∈ C��0� T��H1�

being Lipschitz continuous with respect to time, the function v�t� = ∫ t

0 U0�t� s�g�s�ds

is also Lipschitz continuous with respect to time. Such a result is easily proved in
the autonomous case as the identity U0�t + h� s� = U0�t� s − h� permits to use the
assumption on g. This fails to be true in the time-depending case. For this reason,
we prove the existence in H1

mg in a direct way.

2.3.1. Existence of Solution for Approximated Problem.

Proposition 2.10. Let � ∈ H1
mg, then there exists T̃ > 0 such that there exists

um ∈C��0� T̃ �� H1
mg� ∩ C1��0� T̃ �� H−1

mg � solution of (2.14). Moreover for any t ∈ �0� T̃ �,
we have

Em�t� um� = Em�t� ��−Re
∫ t

0
��sA�s�u�s�� �i�x − A�s��u�s�	ds� (2.16)

and

um�t�L2 = �L2 � (2.17)

Proof. The method consists in approximating the magnetic potential A�t� x� by
potentials which are piecewise constant with respect to time. For this purpose,
we first notice that, thanks to Assumption 1 and Proposition 2.6, for all M > 0 there
exists T2 = T2�M�∈ �0� T0� such that for all t0 ∈ �0� T2� the Cauchy problem

i�tu = HA�t0�
u�t�+ fm�u�t��� u�t=t0

= �

can be solved in C��t0� t0 + T2�� H
1
A�t0�

� for all initial data such that �H1
A�t0�

≤ M .
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1208 Michel

Let � ∈ H1
mg be such that �H1

A�0�
≤ M

4 and let T ∈ �0� T2�. For n ∈ �∗,
k∈ 
0� � � � � n� we define tkn = kT

n
and

An�t� x� =
n∑

k=0

1�tkn�tk+1
n ��t�A�t

k
n� x�� ∀t ∈ �0� T�

Next, we define the Hamiltonian Hn = �i�x − An�
2 and we look for solutions un�m of

i�tu = Hnu+ fm�u�� u�t=0 = �� (2.18)

From uniqueness in the autonomous case, such a function is necessarily given by

un�m�t� x� =
n−1∑
k=0

1�tkn�tk+1
n ��t�vk�n�m�t� x�� (2.19)

where the functions vk�n�m�t� x� are defined as follows. We choose v0�n�m to be a
solution of i�tv0�n�m = �i�x − A�t0n� x��

2v0�n�m + fm�v0�n�m�

v0�n�m�t
0
n� x� = ��x�

(2.20)

and for k ≥ 1, vk�n�m�t� x� is the solution ofi�tvk�n�m = �i�x − A�tkn� x��
2vk�n�m + fm�vk�n�m�

vk�n�m�t
k
n� x� = vk−1�n�m�t

k
n� x��

(2.21)

Let us show that the functions vk�n�m� k = 0� � � � � n− 1 are well-defined.
As �H1

A�0�
<M/4 it follows from Proposition 2.6 that one can solve the problem

(2.20). Moreover, for any k ∈ 
1� � � � � n− 1�, to prove that vk�n�m is well defined,
it suffices to show that vk−1�n�mH1

A�tkn�

≤ M . Let k1 ∈ 
1� � � � � n− 1� be the greatest

integer such that the preceding inequality holds true. Then, the function un�m given
by (2.19) is well-defined for t ∈ �0� tk1+1

n � and is continuous with values in H1
mg. For

w ∈ H1
mg��

n� we define

En�m�t� w� =
1
2

∫
�n

��i�x − An�t� x��w�x��2dx +Gm�w��

Then, for all k ∈ 
1� � � � � k1� and t ∈ �tkn� t
k+1
n �, it follows from Proposition 2.6 that

En�m�t� vk�n�m�t�� = En�m�t
k
n� vk�n�m�t

k
n���

Let us write A�tkn� x� = A�tk−1
n � x�+Wn�k�x� with Wn�k�x� =

∫ tkn
tk−1
n

�sA�s� x�ds and use
vk�n�m�t

k
n� x� = vk−1�n�m�t

k
n� x�, then

En�m�t
k
n� un�m�t

k
n�� = En�m�t

k−1
n � un�m�t

k−1
n ��

−
∫ tkn

tk−1
n

Re��i�x − A�tk−1
n ��un�m�t

k
n�� �sA�s� x�un�m�t

k
n�	ds

+ Wn�kun�m�t
k
n�2L2 (2.22)
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Remarks on Non-Linear Schrödinger Equation 1209

for all k ∈ 
1� � � � � k1�. Thanks to Assumption 1 and the conservation of the mass,
we have

Wn�kun�m�t
k
n�2L2 = O

(�2
L2

n2

)
uniformly with respect to k� n�m. For t ∈ �0� tk1+1

n � denote k0 = � nt
T
�. Taking the sum

of equations (2.22) for k = 1� � � � � k0, and using the fact that the energy is constant
on �tk0n � tk0+1

n � we get for t ∈ �tk0n � tk0+1
n �

En�m�t� un�m�t�� = En�m�0� ��

−
k0∑
k=1

∫ tkn

tk−1
n

Re��i�x − A�tk−1
n ��un�m�t

k
n�� �sA�s� x�un�m�t

k
n�	ds

+ O

(
1
n
�2L2

)
� (2.23)

On the other hand, thanks to Proposition 1.1, Lemmas 2.2 and 2.3 and the equation
satisfied by un�m, there exists K�M� > 0 independent of n�m ∈ �, such that

�tun�mH−1
mg

≤ K�M�� ∀n�m ∈ �� ∀t ∈ �0� tk1+1
n �

and consequently,

un�m − �2L2 ≤ 2MK�M�t� ∀t ∈ �0� tk1+1
n �� (2.24)

Moreover, it follows from (2.23) that

1
2
�i�x − An�t��un�m�t�2L2

= 1
2
�i�x − A�0���2L2 −Gm�un�m�+Gm���

−
n∑

k=1

∫ tkn

tk−1
n

Re��i�x − A�tkn��un�m�t
k
n�� �sA�s� x�un�m�t

k−1
n �	ds

+ O

(
t

n
�2L2

)
� (2.25)

As �tA is bounded, the fourth term of the right hand side of (2.25) is bounded by
CtM2. Moreover it follows from Lemma 2.4 and estimate (2.24) that

�Gm�un�m�−Gm���� ≤ C�M��t1/2 + t�/2��

Combining these estimates with Proposition 1.1 we get

un�m�t�2H1
mg

≤ M2

4
+ C�M�

(
T

1/2
0 + T

�/2
0

)
� (2.26)
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1210 Michel

for any t ∈ �0� tk1+1
n �. Taking T0 sufficiently small, the right hand side of (2.26) is

smaller than M2. This proves that vk�n�m is well defined for all k ∈ 
1� � � � � n� and that
for all T ∈ �0� T0� we have

un�mL���0�T��H1
mg�

≤ M� ∀n�m ∈ �� (2.27)

For m ∈ � fixed we claim that �un�m�n∈� is a Cauchy sequence in L��L2�.
Indeed, for p� p′ ∈ �, we havei�t�up�m − up′�m� = Hp�up�m − up′�m�+ Rp�p′�m + fm�up�m�− fm�up′�m�

�up�m − up′�m��t=0 = 0�

where

Rp�p′�m�t� = ��Ap′ − Ap��t��i� − A�0��+ �i� − A�0���Ap′ − Ap��t�

+ �A2
p − A2

p′��t�+ 2A�0��Ap′ − Ap��t��up′�m�t��

Thanks to Theorem 2 and Lemma 2.4, for T̃ ∈ �0� T�, r ∈ �2� 2∗� and 2
q
= n� 12 − 1

r
�,

we have

up�m − up′�mLq��0�T̃ ��Lr ��n�� ≤ Rp�p′�mL���0�T̃ ��L2��n��

+ C�M��T̃ + T̃ ��
(up�m − up′�mL���0�T̃ ��L2��n��

+ up�m − up′�mL�2 ��0�T̃ ��L�2 ��n��

)
� (2.28)

On the other hand, 	 > 0 being fixed, we have

sup
�t�x�∈�×�n

�Ap − Ap′ � ≤ �	�

where � > 0 can be taken as small as we want provided p� p′ are large enough.
Hence,

Rp�p′�mL���0�T̃ ��L2��n�� ≤ 2�	up′�mH1
mg
+ C �	up′�mL2 ≤ CM �	� (2.29)

Combining (2.28) and (2.29), we obtain for p� p′ large enough

up�m − up′�mLq��0�T̃ ��Lr ��n�� ≤ C�M��T̃ + T̃ ��
(up�m − up′�mL���0�T̃ ��L2��n��

+ up�m − up′�mL�2 ��0�T̃ ��L�2 ��n��

)+ 	�

This estimate is available, both for �q� r� = ��� 2� or �q� r� = ��2� �2�. Summing the
two inequalities obtained and taking T̃ > 0 small enough, we get

up�m − up′�mLq��0�T̃ ��Lr ��n�� ≤ 2	�

Therefore, the sequence �un�m�n∈� converges, as n goes to infinity, to a limit um ∈ L2

which is solution of (2.14). Moreover, since �un�m�n∈� is bounded in H1
mg we can
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Remarks on Non-Linear Schrödinger Equation 1211

assume without loss of generality that it converges weakly to um in H1
mg. Combining

these properties with equation (2.23) it is straightforward that

En�m�t� un�m�− En�m�0� �� −→ −Re
∫ t

0
��sA�s�um�s�� �i�x − A�s��um�s�	ds�

as n goes to infinity. From Lemma 2.3 and weak lower semicontinuity of the
magnetic Sobolev norm �i� − A�t�� �L2 it follows that

Em�t� um� ≤ Em�0� ��−Re
∫ t

0
��sA�s�u�s�� �i�x − A�s��u�s�	ds� (2.30)

Finally, t > 0 being fixed, consider vn�m�s� = un�m�t − s�, which is solution of

i�svn�m = −HA�t−s�vn�m + gm�vn�m�

with initial data vn�m�s = 0� = un�m�t�. Then we perform the same computations as
above to get the converse inequality to (2.30) and hence (2.16) is proved. �

2.3.2. Convergence to the Initial Problem. In this section, we show that the sequence
um converges to a solution of (1.1) when m goes to infinity..

Lemma 2.11. There exists T̃2 > 0 depending only on �H1
mg

such that �um�m∈� is a

Cauchy sequence in C��0� T̃2�� L
2�.

Proof. The proof is the same as in [5], using Theorem 2, Lemmas 2.3, 2.4 and
Proposition 2.10. �

Now, we complete the proof of Theorem 1. This is the same as in [5] and we
recall it for reader’s convenience. Let u be the limit of um in C��0� T̃2�� L

2�. From
estimate (2.27), it follows that u ∈ L���0� T̃2�� H

1
mg� and by Lemma 2.2, um converges

to u in C��0� T̃2�� L
r� for all r ∈ �2� 2∗�. Hence, it follows from Lemma 2.3 that

fm�um� converges to f�u� in C��0� T̃2�� H
−1
mg � and u solves (1.1) in L���0� T̃2�� H

−1
mg �.

Moreover, combining Lemma 2.4 and Proposition 2.10 we prove that

E�t� u� = E�0� ��−Re
∫ t

0
��sA�s�u�s�� �i�x − A�s��u�s�	ds�

This shows that u ∈ C��0� T̃2�� H
1
mg� and hence u ∈ C1��0� T̃2�� H

−1
mg �.

3. WKB Approximation

In this section we justify WKB approximation for solution of (1.1) when the strength
of the magnetic field b goes to infinity and we prove instability results. We focus
our attention on the case where the magnetic field and the non-linearity both
have the same strength; that is we consider the case � = 2 and search approximate
solution for {

i�su = HA�s�u+ b2ug��u�2��
u�s=0 = a0�x�e

ibS�x�
(3.1)
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1212 Michel

where g does not depend on x. Note that with the previous notations, f = ug��u�2�.
In this section we still assume that f satisfies Assumption 2 and we require
additionally.

Assumption 3. g ∈ C���+��� with g′ > 0.

Remark that if we assume that a0 ∈ H1 and �S + A�0� ∈ L2 then the initial data
satisfies a0�x�e

ibS�x�H1
mg

= O�b�. Therefore, under Assumptions 1, 2 and 3 it follows
from Theorem 1 that there exists a unique solution of (3.1) in C�−Tb� T

b�� H1
mg� with

Tb� T
b ≥ Cb−�� � > 0. In fact this solution takes a particular form.

Theorem 3. Let � > n
2 + 2 and suppose that Assumptions 1, 2 and 3 are satisfied. In

addition, assume that �tA belongs to H�−1��n� for all t ∈ � and let a0 be in H���n�
and S such that �S + A�t = 0� belongs to H�−1��n�. Then, there exist T > 0 and �b� �b

in C��0� T��H���n�� ∩ C1��0� T��H�−1��n�� such that u�t� x� = �b�bt� x�e
ib�S�x�+�b�bt�x��

is a solution of (3.1) on �0� b−1T�.

Proof. We start the proof by a time rescaling that leads to a semiclassical feature.
We define h = b−1 > 0 and set u�s� = v�bs�. Then equation (3.1) is equivalent to{

ih�tv = �ih�x − A�ht��2v+ vg��v�t��2�
v�t=0 = a0�x�e

ih−1S�x�
(3.2)

We follow the general method initiated by Grenier [11] for the semiclassical
Schrödinger equation and look for a phase and an amplitude depending on the
parameter h. Putting v�t� x� = �h�t� x�e

ih−1�h�t�x� in the Equations (3.2) we get{
�t�h + ��A�h�2 + g���h��2 = 0

�t�h + �A�h���h + div��A�h��h = ih��h
(3.3)

where �A� = ��x�+ A�ht��. Next we let �h�t� x� = �A�h�t� x� ∈ �n and
differentiate the above eikonal equation with respect to x. We obtain{

�t�h + 2�h���h + 2g′���h�2�Re��h��h� = h�tA�ht� x�

�t�h + �h���h + div��h��h = ih��h
(3.4)

Separating real and imaginary parts of �h = �1�h + i�2�h, (3.4) becomes

�twh +
n∑

j=1

Aj�wh��xjwh = hLwh + �h (3.5)

with

wh =


�1�h
�2�h
�1�h
���

�n�h

 � �h =


0
0

h�tA1�ht� x�
���

h�tAn�ht� x�

 (3.6)



D
ow

nl
oa

de
d 

B
y:

 [U
ni

v.
 D

e 
N

ic
e 

S
op

hi
a 

A
nt

ip
ol

is
] A

t: 
08

:4
2 

30
 J

un
e 

20
08

 

Remarks on Non-Linear Schrödinger Equation 1213

L =
0 −� 0
� 0 0
0 0 0n×n

 (3.7)

and

Aj�w� =



�j�h 0 �1 � � � �1
0 �j�h �2 � � � �2

2g′�1 2g′�2 vj 0 0
���

��� 0
� � � 0

2g′�1 2g′�2 0 0 �j�h

 (3.8)

This system has the same form as in [3, 11] except the source term �h in right hand
side of (3.5) and the initial data. Thanks to the assumptions, �h belongs to H�−1�Rn�.
Moreover the initial condition in (3.2) yields

wh�t = 0� =


Re ao

Im a0

�x1S + A1�0�
���

�xnS + An�0�

 (3.9)

which belongs to H�−1��n�.
In addition, thanks to the assumption on g′, the system (3.5) can be

symmetrized by

S =
(
I2 0
0 1

g′ In

)
(3.10)

which is symmetric and positive. It follows from general theory of hyperbolic
systems that problem (3.5) together with initial condition (3.9) has a unique solution
wh ∈ L���0� Th��H

�−1� for some Th > 0.
Hence, we have to bound Th from below by a constant independent of h. This is

done by computing classical energies estimates as in [3, 11], and using the fact that
�tA, �xS + A�0� belong to H�−1�

Finally we define �h and �h by �h = w1�h + iw2�h and

�h = S�x�−
∫ t

0
��h�2 + f���h�2�ds�

By construction, �h belongs to L2. Moreover, a simple calculus shows that
�x�h =�h − A�ht� belongs to H�−1 so that �h is in fact in H�. Going back to
the equation on �h and making energies estimates we show that �h ∈ H�. Finally,
straightforward computation shows that ��h� �h� defined above solves (3.3). �

Remark 3.1. The above solution belongs to the magnetic Sobolev space H1
mg.

Indeed,

�i�x − bA�
(
�be

ib�b
) = �i��b − b���b + A��b�e

ib�b
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belongs to L2. Therefore the solution obtained in Theorem 3 coincides with the
solution of Theorem 1.

With Theorem 3 it is easy to prove instability results:

Proposition 3.2. Let � > n
2 + 2 and let A satisfy the assumptions of Theorem 3.

Suppose that S is such that �S + A�t = 0� belongs to H�−1��n�. Then, there exists a0

and ã0�b in H���n� and 0 < tb < Cb−1 such that

a0 − ã0�bL2 → 0 as b → �

and the solutions ub (resp. ũb) associated to (3.1) with initial data a0e
ibS�x�

(resp. ã0e
ibS�x�) satisfy

ub − ũbL���0�tb��L2� ≥ 1�

Proof. It is a straightforward consequence of Theorem 3 and the methods of
Carles [3]. �
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