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Abstract We study the spectral theory of a reversible Markov chain associated with a hypoelliptic
random walk on a manifold M. This random walk depends on a parameter h ∈]0, h0] which is roughly

the size of each step of the walk. We prove uniform bounds with respect to h on the rate of convergence
to equilibrium, and the convergence when h → 0 to the associated hypoelliptic diffusion.

Keywords: partial differential equations; global analysis; analysis on manifolds; probability theory and
stochastic processes

1. Introduction and results

The purpose of this paper is to study the spectral theory of a reversible Markov chain

associated with a hypoelliptic random walk on a manifold M . This random walk will

depend on a parameter h ∈]0, h0] which is roughly the size of each step of the walk. We

are in particular interested, as in [5, 6], in getting uniform bounds with respect to h on

the rate of convergence to equilibrium. The main tool in our approach is to compare

the random walk on M with a natural random walk on a nilpotent Lie group. This

idea was used by Rotschild and Stein [14] to prove sharp hypoelliptic estimates for some

differential operators. (See also the article by Nagel, Stein, and Wainger [13] for the study

of hypoelliptic geometries.)

We will also verify that, when h → 0, this random walk converges to a continuous

hypoelliptic diffusion. The discretization of a continuous hypoelliptic diffusion with

applications to numerical simulations has been performed in particular in [2, 3].

Let M be a smooth, connected, compact manifold of dimension m, equipped with a

smooth volume form dµ such that
∫

M dµ = 1. We denote by µ the associated probability

on M . Let X = {X1, . . . , X p} be a collection of smooth vector fields on M . Denote by G
the Lie algebra generated by X . In all the paper we assume that the Xk are divergence

free with respect to dµ:

∀k = 1, . . . , p,
∫

M
Xk( f )dµ = 0, ∀ f ∈ C∞(M), (1.1)
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and that they satisfy the Hörmander condition:

∀x ∈ M, Gx = Tx M. (1.2)

Let r ∈ N be the smallest integer such that, for any x ∈ M , Gx is generated by

commutators of length at most r. For k = 1, . . . , p and x0 ∈ M , denote by R 3 t 7→ et Xk x0
the integral curve of Xk starting from x0 at t = 0.

Let h ∈]0, h0] be a small parameter. Let us consider the following simple random walk,

x0, x1, . . . , xn, . . . on M , starting at x0 ∈ M : at step n, choose j ∈ {1, . . . , p} at random

and t ∈ [−h, h] at random (uniform), and set xn+1 = et X j xn .

Due to the condition div(X j ) = 0, this random walk is reversible for the probability µ

on M . It is easy to compute the Markov operator Th associated with this random walk:

for any bounded and measurable function f : M → R, define

Tk,h f (x) =
1

2h

∫ h

−h
f (et Xk x)dt. (1.3)

Since the vector fields Xk are divergence free, for any f, g, we have∫
M

Tk,h f (x)g(x)dµ =
∫

M
f (x)Tk,h g(x)dµ,

and the Markov operator associated with our random walk is

Th f (x) =
1
p

p∑
k=1

Tk,h f (x). (1.4)

One has Th(1) = 1, ‖Th‖L∞→L∞ = 1, and Th can be uniquely extended as a bounded

self-adjoint operator on L2
= L2(M, dµ) such that ‖Th‖L2→L2 = 1. In the following, we

will denote by th(x, dy) the distribution kernel of Th , and by tn
h the kernel of T n

h . Then,

by construction, the probability for the walk starting at x0 to be in a Borel set A after n
step is equal to

P(xn ∈ A) =
∫

A
tn
h (x0, dy).

The goal of this paper is to study the spectral theory of the operator Th and the

convergence of tn
h (x0, dy) towards µ as n tends to infinity. Since Th is Markov and

self-adjoint, its spectrum is a subset of [−1, 1]. We shall denote by g(h) the spectral gap

of the operator Th . It is defined as the best constant such that the following inequality

holds true for all u ∈ L2:

‖u‖2L2 −〈u, 1〉2L2 6
1

g(h)
〈u− Thu, u〉L2 . (1.5)

The existence of a non-zero spectral gap means that 1 is a simple eigenvalue of Th , and

the distance between 1 and the rest of the spectrum is equal to g(h). Our first result is

the following.

Theorem 1.1. There exist h0 > 0, δ1, δ2 > 0, A > 0, and constants Ci > 0 such that, for

any h ∈]0, h0], the following holds true.



Spectral analysis of hypoelliptic random walks 3

(i) The spectrum of Th is a subset of [−1+ δ1, 1], 1 is a simple eigenvalue of Th,

and Spec(Th)∩ [1− δ2, 1] is discrete. Moreover, for any 0 6 λ 6 δ2h−2, the number of

eigenvalues of Th in [1− h2λ, 1] (with multiplicity) is bounded by C1(1+ λ)A.

(ii) The spectral gap satisfies

C2h2 6 g(h) 6 C3h2, (1.6)

and the following estimate holds true for all integers n:

sup
x∈�
‖tn

h (x, dy)−µ‖T V 6 C4e−ng(h). (1.7)

Here, for two probabilities on M, ‖ν−µ‖T V = supA |ν(A)−µ(A)|, where the sup is over

all Borel sets A, is the total variation distance between ν and µ.

Key ingredients in the proof of Theorem 1.1 are the decomposition of a given function f
on M into its low-frequency and high-frequency parts with respect to the spectral theory

of Th , f = fL + fH , and the use of a Nash inequality, which is a Sobolev inequality, on

the low-frequency part. We have already used these types of argument in [5, 6]. However,

in the hypoelliptic setting, a new difficulty appears in the control of the Sobolev norms

of the low-frequency part by the Dirichlet form associated with Th (see Lemma 5.3). This

forces us to prove a new result on the semi-classical analysis of a system of vector fields

satisfying the hypoelliptic condition (see Proposition 4.1).

We describe now the spectrum of Th near 1. Let H1(X ) be the Hilbert space

H1(X ) = {u ∈ L2(M), ∀ j = 1, . . . , p, X j u ∈ L2(M)}.

Let ν be the best constant such that the following Poincaré inequality holds true for all

u ∈ H1(X ):

‖u‖2L2 −〈u, 1〉2L2 6
E(u)
ν
, (1.8)

where

E(u) =
1

6p

∫
M

p∑
k=1

|Xku|2dµ. (1.9)

Let us recall that local Poincaré inequalities have been proven in the hypoelliptic case by

Jerison, in [11]. By the hypoelliptic theorem of Hörmander (see [10, Vol. 3]), one has, for

some s > 0, H1(X ) ⊂ H s(M) = {u ∈ D′(M), Pu ∈ L2(M), ∀P ∈ 9s
}, where 9s denotes

the set of classical pseudodifferential operators on M of degree s. On the other hand,

standard Taylor expansion in formula (1.3) shows that, for any fixed smooth function

g ∈ C∞(M), one has the following convergence in the space C∞(M):

lim
h→0

1− Th

h2 g = L(g), (1.10)

where the operator L = − 1
6p
∑
k

X2
k is the positive Laplacian associated with the Dirichlet

form E(u). It has a compact resolvent and spectrum ν0 = 0 < ν1 = ν < ν2 < · · · . Let m j
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be the multiplicity of ν j . One has m0 = 1 since Ker(L) is spanned by the constant function

1 thanks to the Chow theorem [4]. In fact, for any x, y ∈ M there exists a continuous

curve connecting x to y which is a finite union of pieces of trajectory of one of the fields

X j .

Theorem 1.2. One has

limh→0h−2g(h) = ν. (1.11)

Moreover, for any R > 0 and ε > 0 such that the intervals [ν j − ε, ν j + ε] are disjoint for

ν j 6 R, there exists h1 > 0 such that, for all h ∈]0, h1],

Spec
(

1− Th

h2

)
∩]0, R] ⊂ ∪ j>1[ν j − ε, ν j + ε], (1.12)

and the number of eigenvalues of 1−Th
h2 with multiplicities, in the interval [ν j − ε, ν j + ε],

is equal to m j .

The paper is organized as follows.

In § 2, we recall some basic facts on nilpotent Lie groups, and we recall the Goodman

version (see [9]) of one of the main results of the Rotschild and Stein paper.

In § 3, the main result is Proposition 3.1, which gives a lower bound on a suitable

power T P
h of Th . This in particular allows us to get a first crude but fundamental bound

on the L∞ norms of eigenfunctions of Th associated with eigenvalues close to 1.

Section 4 is devoted to the study of the Dirichlet form associated with our random walk.

The fundamental result of this section is Proposition 4.1. It allows to separate clearly

the spectral theory of Th in low and high frequencies with respect to the parameter h. In

order to prove Proposition 4.1, we construct suitable h-pseudodifferential cutoff operators

adapted to the hypoelliptic setting. In the case of left invariant vector fields on a nilpotent

Lie algebra, Lemma A.2 allows us to use only convolution operators. This construction

is extended to the general case using in particular results from the Rotschild and Stein

paper [14].

Section 5 is devoted to the proof of Theorems 1.1 and 1.2. With Propositions 3.1 and

4.1 in hand, the proof follows the general strategy of [5, 6]. This section also contains a

paragraph on the Fourier analysis associated with Th that will be useful in 6. In particular,

Lemma 5.5 gives a precise Sobolev estimate for the eigenfunctions of the Markov operator

Th associated with eigenvalues in [1− c4, 1], with c4 > 0 small enough, and Proposition 5.6

extends, in our Markov setting, the classical fact that a function is smooth iff its Fourier

coefficients are rapidly decreasing.

Section 6 is devoted to the proof of the convergence when h → 0 of our Markov chain to

the hypoelliptic diffusion on the manifold M associated with the generator L = −1
6p
∑
k

X2
k .

This is probably a well-known result for specialists, but we have not succeeded in finding

a precise reference. Since this convergence follows as a simple byproduct of our estimates,

we decided to include it in the paper.

Finally, the appendix contains two lemmas. Lemma A.1 shows how to deduce from

Proposition 4.1 a Weyl-type estimate on the eigenvalues of Th in a neighbourhood of 1.
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Lemma A.2 is an elementary cohomological lemma on the Schwartz space of the nilpotent

Lie algebra N .

Remark 1.3. It is likely that Theorems 1.1 and 1.2 remain true (with almost the same

proof) in the case of a compact manifold M with boundary, if one assumes that the

boundary ∂M is non-characteristic, i.e., if, for any point x ∈ ∂M , there exists j such that

X j (x) is not tangent to ∂M . In that case, the associated walk near the boundary will be

defined by a Metropolis-type algorithm: at step n, choose j ∈ {1, . . . , p} at random and

t ∈ [−h, h] at random (uniform), and set xn+1 = et X j xn if es X j xn ∈ M for all s ∈ [0, t], and

xn+1 = xn otherwise. Then, in Theorem 1.2, the limit operator should be L =
∑d

j=1 X2
j

with the Neumann boundary condition.

2. The lifted operator to a nilpotent Lie algebra

We will use the notation Nq = {1, . . . , q}. For any family of vector fields Z1, . . . , Z p and

any multi-index α = (α1, . . . , αk) ∈ Nk
p, denote by |α| = k the length of α, and let

Zα = Hα(Z1, . . . , Z p) = [Zα1 , [Zα2 , . . . [Zαk−1 , Zαk ] . . .]. (2.1)

Let Y1, . . . ,Yp be a system of generators of the free Lie algebra with p generators F ,

and let A∞ be a set of multi-indexes such that (Yα)α∈A∞ is a basis of F .

Let N be the free up to step r nilpotent Lie algebra generated by p elements Y1, . . . , Yp,

and let N be the corresponding simply connected Lie group. We have the decomposition

N = N1⊕ · · ·⊕Nr, (2.2)

where N1 is generated by Y1, . . . , Yp and N j is spanned by the commutators Y α =
Hα(Y1, . . . , Yp) with |α| = j for 2 6 j 6 r. Let A = {α ∈ A∞, |α| 6 r} and Ar = {α ∈

A, |α| = r}. The family (Y α)α∈A is a basis for N , and, for any r ∈ Nr, {Y α, α ∈ Ar }

is a basis of Nr . We denote by D = ]A the dimension of N . The action of R+ on N is

given by

t.(v1, v2, . . . , vr ) = (tv1, t2v2, . . . , trvr).

A homogeneous norm ‖v‖ which is smooth in N \ oN is given by

‖v‖ =

∑
j

|v j |
(2r!)/j

1/(2r!)

,

where |v j | is a Euclidian norm on N j , and

Q =
∑

j dim(N j )

is the quasi-homogeneous dimension of N . We will identify the Lie algebra N with

the Lie group N by the exponential map; i.e., the product law a.b on N is given by

exp(a.b) = exp(a) exp(b). In particular, one has with this identification a−1
= −a for all

a ∈ N . To avoid notational confusion, we will sometimes use the notation e = oN , so
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that a.e = e.a = a for all a ∈ N . For Y ∈ TeN ' N , we denote by Ỹ the left invariant

vector field on N such that Ỹ (oN ) = Y ; i.e.,

Ỹ ( f )(x) =
d
ds
( f (x .sY )|s=0.

The right invariant vector field on N such that Z(oN ) = Y is defined by

Z( f )(x) =
d
ds
( f (sY.x)|s=0.

Here, sY is the usual product of the vector Y ∈ N by the scalar s ∈ R. For a ∈ N , let τa
be the diffeomorphism of N defined by τa(u) = a.u. One has

Ỹ (a) = dτa(e)(Y ).

Example 2.1. The standard 3D-Heisenberg group is N = R3, with the product law

(x, y, t).(x ′, y′, t ′) = (x + x ′, y+ y′, t + t ′+ xy′− yx ′),

and the left invariant vector fields associated respectively to the vectors (1, 0, 0), (0, 1, 0),
and (0, 0, 1) are in that case

Ỹ1 =
∂

∂x
− y

∂

∂t
, Ỹ2 =

∂

∂y
+ x

∂

∂t
, and

∂

∂t
=

1
2
[Ỹ1, Ỹ2].

Remark 2.2. In general, for x = (x1, . . . , xr) and y = (y1, . . . , yr), x j , y j ∈ N j , the

product law is given by

(x1, . . . , xr).(y1, . . . , yr) = (z1, . . . , zr),

z j = x j + y j + Pj (x< j , y< j ),

 (2.3)

with the notation x< j = (x1, . . . , x j−1), and where Pj is a polynomial of degree j with

respect to the homogeneity on N ; i.e.,

Pj ((t.x)< j , (t.y)< j ) = t j Pj (x< j , y< j ),

which is compatible with the identity t.(x .y) = (t.x).(t.y).

Let λ : N → G be the unique linear map such that, for any α ∈ A, λ(Y α) = Xα. Then

λ is a Lie homomorphism ‘up to step r’:

λ([Y α, Y β ]) = [Xα, Xβ ] (2.4)

for any multi-indexes α, β such that |α| + |β| 6 r.

Let x0 ∈ M . There exists a subset Ax0 ⊂ A such that (Xα(x))α∈Ax0
is a basis of Tx M

for any x close to x0. Therefore, there exists a neighbourhood �0 of the origin oN in N
and a neighbourhood V0 of x0 in M such that the map 3

3 : u =
∑
α∈A

uαY α ∈ �0 7→ eλ(u)x0 = e
∑
α∈A uαXα x0
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is a submersion from �0 onto V0, and the map Wx0 : C∞(V0)→ C∞(�0) defined by

Wx0 f (u) = f (eλ(u)x0) is injective. Since 3 is a submersion, there exists a system of

coordinates θ : Rm
×Rn

→ N defined near oN , where m+ n = D, such that 3θ : Rm
→

M is a system of coordinates near x0, and in these coordinates one has 3(x, y) = x .

We thus may assume that in these coordinates one has �0 = V0×U0, where U0 is a

neighbourhood of 0 ∈ Rn .

Example 2.3. Take for example the two vectors fields in R2, X1 = ∂x , X2 = x∂y . Then

[X1, X2] = ∂y . Then take for N the 3D-Heisenberg group, and the map λ, with T = 2∂t =

[Y1, Y2], is given by

λ(u1Y1+ u2Y2+ u3T ) = u1 X1+ u2 X2+ u3[X1, X2] = u1∂x + (u3+ u2x)∂y .

Thus we get

eλ(u)(x, y) =
(

x + u1, y+ u3+ u2x +
1
2

u1u2

)
. (2.5)

Let Ih = {|u1| < h, |u2| < h, |u3| < h2
}. One has Vol(Ih) = 8h4, and the set B̃h,(x,y) =

{eλ(u)(x, y), u ∈ Ih}, with (x, y) fixed and h small, has volume of order:

h2 when x 6= 0, and h3 when x = 0.

Let us now recall the notion of the order of a vector field used in [9, 14]. Denote by

{δt }t>0 the one-parameter group of dilating automorphisms on N :

δt Y α = t |α|Y α.

Let � be a compact neighbourhood of oN in N . For any m ∈ N, let

C∞m = { f ∈ C∞(�,R), f (u) = O(‖u‖m)}.

We have the filtration C∞(�) = C∞0 ⊇ C∞1 ⊇ . . . , and C∞m .C
∞
n ⊆ C∞m+n . Let T :

C∞(�)→ C∞(�). We say that T is of order less than k at 0 if T (C∞m ) ⊆ C∞m−k for

all integers m > 0. If ∂α denotes differentiation in the direction Y α, then a vector field

T =
∑
α

ϕα∂α is of order 6 k iff ϕα ∈ C∞
|α|−k for all α, with the convention C∞m = C∞0 for

m 6 0.

The following result is the Goodman version of one of the results of the article [14] by

Rothschild and Stein.

Theorem 2.4. For a sufficiently small �0, there exist C∞ vector fields Z1, . . . , Z p on �0
such that, for any α ∈ A, and with Zα = Hα(Z1, . . . , Z p) (see (2.1)), we have

(i) ZαWx0 = Wx0 Xα.

(ii) Zα = Ỹ α + Rα, where Rα is a vector field of order 6 |α| − 1 at 0.

Observe that, in the previous coordinate system (x, y) on �0, one can write, for α ∈ A,

Xα =
∑

j

aα, j (x)
∂

∂x j
, Zα =

∑
j

aα, j (x)
∂

∂x j
+

∑
l

bα,l(x, y)
∂

∂yl
. (2.6)
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As an obvious consequence of this theorem, we have the following, with W = Wx0 , and

λ̃(u) =
∑
α∈A

uαZα.

Proposition 2.5. Let f ∈ C0(V0), and let ω0 ⊂⊂ �0 be a neighbourhood of oN . Then,

there exists r0 > 0 such that, for all ‖u‖ 6 r0, and v ∈ ω0, we have

(W f )(eλ̃(u)v) = W ( fu)(v), (2.7)

where the function fu is defined near x0 by fu(x) = f (eλ(u)x).

Using this proposition, we can easily compute the action of W on the operator Th acting

on functions with support close to x0. We get immediately

W Th = T̃h W, T̃h =
1
p

p∑
k=1

T̃k,h, (2.8)

where, for u ∈ N small,

T̃k,h g(u) =
1

2h

∫ h

−h
g(et Zk u)dt. (2.9)

Using the notation T α = Tαk ,h . . . Tα1,h for any multi-index α = (α1, . . . , αk), we get, for

any u ∈ N close to oN such that 3(u) = x ,

T α f (x) = W (T α f )(u) =
1

(2h)k

∫
[−h,h]k

(W f )(et1 Zα1 . . . etk Zαk u)dt1 . . . dtk . (2.10)

3. Rough bounds on eigenfunctions

Let us recall from § 2 that, for u =
∑
α∈A

uαY α ∈ N , the vector field λ(u) on M is defined

by λ(u) =
∑
α∈A

uαXα. Let ε > 0 and Iε,h be the neighbourhood of oN in N defined by

Iε,h =

{
u =

∑
α∈A

uαY α, uα ∈]− εh|α|, εh|α|[

}
.

For any x ∈ M , we define a positive measure Sεh(x, dy) on M by the formula

∀ f ∈ C0(M),
∫

f (y)Sεh(x, dy) = h−Q
∫

u∈Iε,h
f (eλ(u)x) du, (3.1)

where du = 5αduα is the left (and right) invariant Haar measure on N . Let us introduce

the numerical sequence (bn)n∈N∗ defined by b1 = 1 and bn+1 = 2bn + 2, so that, for all

n ∈ N∗, we have bn = 3.2n−1
− 2.

Proposition 3.1. For all r = 1, . . . , r, denote ar = ]Ar = dimNr , and let P =
r∑

r=1
ar br .

There exist ε > 0, c > 0, and h0 > 0 such that, for all h ∈]0, h0], x ∈ M,

t P
h (x, dy) = ρh(x, dy)+ cSεh(x, dy), (3.2)

where ρh(x, dy) is a non-negative Borel measure on M for all x ∈ M.
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Remark 3.2. As in [5], one can deduce from Proposition 3.1 that the inequality (3.2)

holds true for t N
h (x, dy) as soon as N > P, eventually with different constants ε > 0,

c > 0, and h0 > 0 depending on N .

Before proving this proposition, let us give two simple but fundamental corollaries. Like

in [5], these two corollaries will play a key role in the proofs of Theorems 1.1 and 1.2.

Here, we use the same notation for a bounded measurable family in x of non-negative

Borel measure k(x, dy) and the corresponding operator f 7→ K ( f )(x) =
∫

f (y)k(x, dy)
acting on L∞.

Corollary 3.3. There exist h0 > 0 and γ < 1 such that, for all h ∈]0, h0] and all x ∈ M,

‖ρh(x, dy)‖L∞→L∞ 6 γ < 1. (3.3)

Proof. By definition, the non-negative measure ρh is given by ρh(x, dy) = t P
h (x, dy)−

cSεh(x, dy). Therefore∣∣∣∣∫
M

f (x)dρh(x, dy)
∣∣∣∣ 6 ‖ f ‖L∞

∫
M

dρh(x, dy) 6 ‖ f ‖L∞

(
1− c inf

x∈M

∫
M

Sεh(x, dy)
)
,(3.4)

since t P
h (x, dy) is a Markov kernel. From (3.1), one has

∫
M Sεh(x, dy) = h−Qmeas(Iε,h) =

(2ε)D. Combined with (3.4), this implies the result.

Corollary 3.4. Let a ∈]γ
1
P , 1] be fixed. There exists C = Ca > 0 such that, for any λ ∈

[a, 1] and any f ∈ L2(M, dµ), we have

Th f = λ f H⇒ ‖ f ‖L∞ 6 Ch−
Q
2 ‖ f ‖L2 . (3.5)

Proof. Suppose that Th f = λ f ; then T P
h f = λP f . Hence, Sεh f = λP f − ρh( f ) and then

‖Sεh f ‖L∞ > λP
‖ f ‖L∞ − γ ‖ f ‖L∞ > ca‖ f ‖L∞ , (3.6)

with ca = a P
− γ . On the other hand, since u 7→ eλ(u)x is a submersion from

a neighbourhood of oN ∈ N onto a neighbourhood of x ∈ M , we get, by the

Cauchy–Schwarz inequality,

|Sεh f (x)| 6 h−Qmeas(Iε,h)1/2
(∫

u∈Iε,h
| f (eλ(u)x)|2 du

)1/2

6 Ch−Q/2
‖ f ‖L2(M). (3.7)

Putting together (3.6) and (3.7), we obtain the announced result.

Let us now prove Proposition 3.1. We have to show that there exist c, ε > 0 independent

of h small such that, for any non-negative continuous function f on M , one has

T P
h f (x) > cSεh f (x). Since M is compact and the operator Th moves supports of functions

at distance at most h, we can assume without loss of generality that f is supported near

some point x0 ∈ M where we can apply the results of § 2. Recall that λ̃(u) =
∑
α∈A

uαZα.

From Proposition 2.5, one has f (eλ(u)x) = W ( f )(eλ̃(u)w) for any w close to oN such that
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3(w) = x . Using also (2.8), we are thus reduced to proving the existence of c, ε > 0
independent of h small such that, for any non-negative continuous function g on N
supported near oN , one has

T̃ P
h g(w) > ch−Q

∫
u∈Iε,h

g(eλ̃(u)w) du. (3.8)

For each possibly non-commutative sequence (Ak) of operators, we denote 5K
k=1 Ak =

AK . . . A1 (i.e., A1 is the first operator acting). Endowing Ar with the lexicographical

order, we can write Ar = {α1 < · · · < αar } and, for any non-commutative sequence (Bα)
indexed by A, we define 5α∈Ar Bα = 5

ar
j=1 Bα j and 5α∈ABα = 5r

r=15α∈Ar Bα.

Let α = (α1, . . . , αk) ∈ Nk
p, and let t = (t1, . . . , tk) ∈ Rk close to 0. One defines by

induction on |α| a smooth diffeomorphism φα(t) of N near oN , with φα(0) = Id, by

the following formulas.

If |α| = 1 and α = j ∈ {1, . . . , p}, set φα(t)(w) = et Z jw. If |α| = k > 2, set α = ( j, β),
with β ∈ Nk−1

p and t = (t1, t ′) with t ′ ∈ Rk−1, and set

φα(t) = φ−1
β (t ′)e−t1 Z jφβ(t ′)et1 Z j . (3.9)

Observe that φα(t) = Id if one of the t j is equal to 0. The map (t, w) 7→ φα(t)(w) is

smooth, and one has, in local coordinates on N , and for t close to 0,

φα(t)(w) = w+ (516l6|α| tl) Zα(w)+ rα(t, w), (3.10)

with rα(t, w) ∈ (516l6|α| tl)O(|t |). From (3.9), one easily gets by induction on k the

following lemma.

Lemma 3.5. For 2 6 k 6 r, there exist maps

εk : {1, . . . , bk} → {±1}, `k : {1, . . . , bk} → {1, . . . , k}, jk : {1, . . . , bk} → {1, . . . , p},

such that εk(1) = 1, εk(bk/2) = −1, `k(1) = 1, `k(bk/2) = 1, ]`−1
k ( j) = 2 j for j 6 k− 1,

]`−1
k (k) = 2k−1, jk(m) = α`k (m), and such that, for all t = (t1, . . . , tk), one has

φα(t) =
bk∏

m=1

eεk (m)t`k (m)Z jk (m) . (3.11)

Since g is non-negative, one has

T̃ P
h g(w) >

1
pP

∏
α∈A

b|α|∏
k=1

T j|α|(k),h g(w). (3.12)

Therefore, we are reduced to proving that there exist ε, c > 0 independent of h small and

w near oN such that the following inequality holds true.

h−P
∫
[−h,h]P

g

∏
α∈A

b|α|∏
k=1

et|α|,k Z j|α|(k)w

 dt > ch−Q
∫

z∈Iε,h
g(eλ̃(z)w) dz. (3.13)
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Let 8w : RP
−→ N be the smooth map defined for s = (sα,k)α∈A,k=1,...,b|α| ∈ RP by the

formula

8w(s) =

 r∏
r=1

∏
α∈Ar

br∏
k=1

esα,k Z j|α|(k)

w. (3.14)

Since (Zβ(w))β∈A is a basis of TwN , u = (uβ)β∈A 7→ e

∑
β∈A

uβ Zβ

w is a local coordinate

system centred at w ∈ N , and therefore, there exist smooth functions Uβ,w(s) such that

8w(s) = e
∑
β∈A Uβ,w(s)Zβw. (3.15)

Moreover, it follows easily from the Campbell–Hausdorff formula, that one has Uβ,w(s) ∈
O(s|β|) near s = 0. Let now κ : RQ

−→ RP be the map defined by

(tα,l)α∈A,l∈N|α| 7→ (εα(k)tα,`|α|(k))α∈A,k=1,...,b|α| . (3.16)

Then, from Lemma 3.5, we have the following identity for any t = (tα)α∈A ∈ RQ :

8w ◦ κ(t) = 5α∈Aφα(tα)w. (3.17)

From (3.10) and the Campbell–Hausdorff formula, one gets

5α∈Aφα(tα)w = e
∑
β∈A fβ (t)Zβw,

fβ(t) = 516l6|β|tβ,l + gβ((tγ )|γ |<|β|)+ rβ(t),

 (3.18)

with gβ a homogeneous polynomial of degree |β| depending only on (tγ )|γ |<|β| and rβ(t) ∈
O(|t ||β|+1). Let δ ∈] 12 , 1[, and define ξ = (ξα,k)α∈A,k∈N|α| ∈ RQ by ξα,1 = 0 and ξα,k = δh
for k = 2, . . . , |α|. Let ζ : RD

−→ RQ be the map defined by the formula

s = (sα)α∈A 7→ (ζα,k(s))α∈A,k∈N|α| ,

ζα,1(s) = sα, and ζα,k(s) = 0 ∀k > 2,

 (3.19)

and let σ : RP−D
−→ RP be the map defined by the formula

v = (vα,k)α∈A,k=2,...,b|α| 7→ (σα,k(v))α∈A,k=1,...,b|α| ,

σα,1(v) = 0, and σα,k(v) = vα,k ∀k 6= 1.

 (3.20)

Set κ̂ξ (u, v) = κ(ζ(u)+ ξ)+ σ(v), and let 9w : RD
×RP−D

→ N be defined by

9w(u, v) = 8w(κ̂ξ (u, v)). (3.21)

Then, it follows from (3.15) that there exist smooth maps ϕ̂α,w(u, v) such that

9w(u, v) = e
∑
α∈A ϕ̂α,w(u,v)Zαw. (3.22)
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From (3.17), one has

9w(u, 0) = 8w(κ(ζ(u)+ ξ)) = 5α∈Aφα(uα, δh, . . . , δh)w,

and therefore, from (3.18), we get, since κ̂ξ (u, v) is linear in ξ, u, v,

ϕ̂α,w(u, v) = uα(δh)|α|−1
+ gα,w((uγ )|γ |<|α|, δh)+ pα,w(u, δh, v)+ qα,w(u, δh, v),

(3.23)

where gα,w(u, s) is a homogenous polynomial of degree |α| depending only on uγ for

|γ | < |α|, pα,w(u, s, v) is a homogenous polynomial of degree |α| in (u, s, v) such that

pα,w(u, s, 0) = 0, and qα,w(u, s, v) ∈ O((u, s, v)1+|α|) near (u, s, v) = (0, 0, 0). Moreover,

from φα(0, δh, . . . , δh) = Id, one gets gα,w(0, s) = 0 and also qα,w(0, s, 0) = 0. Observe

that w is just a smooth parameter in the above constructions. Thus, we will remove the

dependence on w in what follows. Define now

Q : RP
= RD

×RP−D
−→ RP

(u, v) = ((uα)α∈A, (vα,k)α∈A,k=2,...,b|α|) 7→ ((ϕ̂α(u, v))α∈A, v),

 (3.24)

and, for η, ε > 0, let

1ε,η = {(u, v) = ((uα)α∈A, (vα,k)α∈A,k=2,...,b|α|) ∈ RP , |uα| < εh, and

|vα,k | < ηh for all α, k}.

Lemma 3.6. Let δ ∈] 12 , 1[ be fixed. There exist 0 < η � ε < 1/2 and h0 > 0 such that the

restriction Qε,η of Q to 1ε,η enjoys the following:

1. there exists Uε,η, open neighbourhood of 0 ∈ RP such that Qε,η : 1ε,η → Uε,η is a

C∞ diffeomorphism,

2. there exists some constant C > 0 such that, for all h ∈]0, h0] and all (u, v) ∈ 1ε,η,

hQ−D/C 6 JQε,η(u, v) := | det(D(u,v)Qε,η)| 6 ChQ−D,

3. there exists M > 1 such that, for all h ∈]0, h0], the set Uε,η contains Iε/M,h×]−

ηh, ηh[P−D, where Iε/M,h =
∏
α∈A] − εh|α|/M, εh|α|/M[.

Proof. The proof is just a scaling argument. Set uα = hũα, vα,k = hṽα,k , and ϕ̂α = h|α|zα.

Then the map Q becomes after scaling Q̃ : (ũ, ṽ) 7→ (z, ṽ), and from (3.23) one has

zα = ũαδ|α|−1
+ gα((ũγ )|γ |<|α|, δ)+ pα(ũ, δ, ṽ)+ hq̃α(ũ, δ, ṽ, h),

pα(ũ, δ, 0) = 0, q̃α(ũ, δ, ṽ, h) is smooth and vanishes at order |α| + 1 at 0 as a function

of (ũ, δ, ṽ), and gα(0, δ) = 0, q̃α(0, δ, 0, h) = 0. From the triangular structure above, it

is obvious that Q̃ is a smooth diffeomorphism at 0 ∈ RP , such that Q̃(0) = 0. Thus,

for η � ε, h 6 h0 small, and M � 1, we get the inclusion {|zα| < ε/M, |ṽα,k | < η}) ⊂

Q̃({|ũα| < ε, |ṽα,k | < η}). One has by construction | det(D(u,v)Q)| = hQ−D
| det(D(ũ,ṽ)Q̃)|.

The proof of Lemma 3.6 is complete.
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It is now easy to verify that (3.13) holds true. One has det D(u,v)κ̂ξ = 1 for all (u, v) ∈
RP , and for 1

2 < δ < 1, and 0 < η � ε < 1/2, there exist some numbers −1 < αi < βi < 1,

i = 1, . . . , P − D depending only on ε, η, δ and such that κ̂ξ (1ε,η) is contained in the set

1̂ε,η = {(t, s), t ∈ [−εh, εh]D, s ∈
∏P−D

i=1 [αi h, βi h]}. Using again the positivity of g and

the change of variable κ̂, we obtain, with a constant c > 0 changing from line to line,

h−P
∫
[−h,h]P

g(8(t))dt > h−P
∫
1̂ε,η

g(8(t))dt > h−P
∫
κ̂ξ (1ε,η)

g(8(t))dt

> ch−P
∫
1ε,η

g(8 ◦ κ̂ξ (u, v))dudv = ch−P
∫
1ε,η

g(9(u, v))dudv. (3.25)

Thanks to Lemma 3.6, we can use the change of variable Qε,η to get

h−P
∫
1ε,η

g(9(u, v))dudv > chD−P−Q
∫

Uε,η
g
(

e
∑
α∈A zα Zαw

)
dzdv

> ch−Q
∫

Iε′,η
g(e

∑
α∈A zα Zαw)dz = ch−Q

∫
z∈Iε′,h

g(eλ̃(z)w) dz, (3.26)

with ε′ = ε/M , and M is given by Lemma 3.6. The proof of Proposition 3.1 is complete.

4. Dirichlet form

Let Eh be the rescaled Dirichlet form associated with the Markov kernel Th :

0 6 Eh(u) =
(

1− Th

h2 u|u
)

L2
, ∀u ∈ L2(M, dµ). (4.1)

The main result of this section is the following proposition.

Proposition 4.1. Under the hypoelliptic hypothesis (1.2), there exist C, h0 > 0 such that

the following holds true for all h ∈]0, h0]: for all u ∈ L2(M, dµ) such that

‖u‖2L2 + Eh(u) 6 1, (4.2)

there exist vh ∈ H1(X ) and wh ∈ L2 such that

u = vh +wh, ‖wh‖L2 6 Ch, sup
16 j6p

‖X jvh‖L2 6 C. (4.3)

This proposition is easy to prove when the vector fields X j span the tangent bundle at

each point, by elementary Fourier analysis. Under the hypoelliptic hypothesis, the proof

is more involved, and it will be done in several steps. In step 1, we reduce the problem to

the construction of suitable operators acting on the Lie algebra N (see formula (4.11)).

In step 2, we construct these operators in the special case of a system of left invariant

vectors on N . Finally, in step 3, this construction is extended to the general case.

Step 1: Localization and reduction to the nilpotent Lie algebra.

Let us first verify that, for all ϕ ∈ C∞(M), there exists Cϕ independent of h ∈]0, 1]
such that

Eh(ϕu) 6 Cϕ(‖u‖2L2 + Eh(u)). (4.4)
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One has 1− Th =
1
p

p∑
k=1
(1− Tk,h) and

2((1− Tk,h)u|u) =
∫

M

1
2h

∫ h

−h
|u(x)− u(et Xk x)|2dt dµ(x).

Since supx∈M |ϕ(x)−ϕ(e
t Xk x)| 6 C |t |, this implies that, for some constant Cϕ and all k,

((1− Tk,h)ϕu|ϕu) 6 Cϕ(((1− Tk,h)u|u)+ h2
‖u‖2L2),

and therefore (4.4) holds true. Thus, in the proof of Proposition 4.1, we may assume

that u ∈ L2(M, dµ) is supported in a small neighbourhood of a given point x0 ∈ M where

Theorem 2.4 applies. More precisely, with the notation of § 2, we may assume in the

coordinate system 3θ centred at x0 ' 0 that u is supported in the closed ball Bm
r = {x ∈

Rm, |x | 6 r} ⊂ V0. Let χ(y) ∈ C∞0 (U0) with support in Bn
r ′ ⊂ U0, such that

∫
χ(y)dy = 1.

Set g(x, y) = χ(y)u(x). One has g(x, y) = χ(y)Wx0(u)(x, y). By hypothesis, one has

‖u‖2L2 + Eh(u) 6 1,

which implies that, for all k,

2((1− Tk,h)u|u) =
∫

M

1
2h

∫ h

−h
|u(x)− u(et Xk x)|2dt dµ(x) 6 ph2.

Thus, for any compact K ⊂ U0, there exists CK such that, for all k and h ∈]0, h0], one

has ∫
V0×K

1
2h

∫ h

−h
|u(x)− u(et Xk x)|2dt dxdy 6 CK h2. (4.5)

Here, h0 is small enough so that et Xk x remains in V0 for |t | 6 h0 and x ∈ Br . Let φ(x, y) =
χ(y). One has supx,y |φ(x, y)−φ(et Zk (x, y))| 6 C |t | and ‖g‖L2 6 C . Thus, decreasing h0,

we get from (4.5) that there exists a constant C independent of k and h ∈]0, h0] such

that ∫
V0×U0

1
2h

∫ h

−h
|g(x, y)− g(et Zk (x, y))|2dt dxdy 6 Ch2. (4.6)

Therefore, there exists C0 independent of h ∈]0, h0] such that one has

‖g‖2L2(N )
+

p∑
j=1

h−2
∫

V0×U0

1
2h

∫ h

−h
|g(x, y)− g(et Zk (x, y))|2dt dxdy 6 C0. (4.7)

Lemma 4.2. There exist C1, h0 > 0 such that, for all h ∈]0, h0], any g with support in

Bm
r × Bn

r ′ such that (4.7) holds true can be written in the form

g = fh + lh,

p∑
k=1

‖Zk fh‖L2(V0×U0)
6 C1, ‖lh‖L2(V0×U0)

6 C1h.



Spectral analysis of hypoelliptic random walks 15

Let us assume that Lemma 4.2 holds true. Then one can write g = χ(y)u(x) = fh + lh .

Let ψ ∈ C∞0 (V0×U0) be equal to 1 near Bm
r × Bn

r ′ . Set

vh =

∫
ψ(x, y) fh(x, y)dy, wh =

∫
ψ(x, y)lh(x, y)dy.

One has vh +wh =
∫
ψ(x, y)χ(y)u(x)dy =

∫
χ(y)u(x)dy = u(x) and ‖wh‖L2 6 Ch.

Moreover, we get, from (2.6),

Xk(vh) =

∫ (
Zk −

∑
l

bk,l(x, y)
∂

∂yl

)
ψ(x, y) fh(x, y)dy.

Since fh, Zk( fh) ∈ OL2(1) and
∫

b ∂
∂yl
(ψ fh)dy = −

∫
∂
∂yl
(b)ψ fhdy ∈ OL2(1), we get that

(4.3) holds true. We are thus reduced to proving Lemma 4.2.

For any given k, the vector field Zk is not singular; thus, decreasing V0,U0 if

necessary, there exist coordinates (z1, . . . , zD) = (z1, z′) such that Zk =
∂
∂z1

. Using a

Fourier transform in z1, we get that, if g satisfies (4.7), one has

2
∫ (

1−
sin hζ1

hζ1

)
|ĝ(ζ1, z′)|2 dζ1dz′ =

∫
1

2h

∫ h

−h
|1− eitζ1 |

2dt |ĝ(ζ1, z′)|2 dζ1dz′ 6 C ′0h2.

(4.8)

Let a > 0 be small. There exists c > 0 such that (1− sin hζ1
hζ1

) > ch2ζ 2
1 for h|ζ1| 6 a and

(1− sin hζ1
hζ1

) > c for h|ζ1| > a. Since

g(z1, z′) =
1

2π

∫
h|ζ1|6a

eiz1ζ1 ĝ(ζ1, z′)dζ1+
1

2π

∫
h|ζ1|>a

eiz1ζ1 ĝ(ζ1, z′)dζ1 = vh,k +wh,k,

we get from (4.8) that g satisfies, for some C0 independent of h ∈]0, h0],

‖g‖L2(N ) 6 C0, support(g) ⊂ V0×U0

∀k, g = vh,k +wh,k

‖Zkvh,k‖L2(N ) 6 C0, ‖wh,k‖L2(N ) 6 C0h,


(4.9)

and we want to prove that the decomposition g = vh,k +wh,k may be chosen independent

of k, i.e., there exists C > 0 independent of h such that

g = vh +wh

∀k, ‖Zkvh‖L2(N ) 6 C

‖wh‖L2(N ) 6 Ch.


(4.10)

In order to prove the implication (4.9) ⇒ (4.10), we will construct operators 8, C j ,

Bk, j , Rl , depending on h, acting on L2 functions with support in a small neighbourhood
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of oN in N , with values in L2(N ), such that 8, C j , Bk, j , Rl , C j h Z j , Bk, j h Zk are

uniformly in h bounded on L2 and

1−8 =
p∑

j=1

C j h Z j + h R0

Z j8 =

p∑
k=1

Bk, j Zk + R j


, (4.11)

and then we set

vh = 8(g), wh = (1−8)(g).

With this decomposition of g, we get

wh =

p∑
j=1

C j h Z j (vh, j +wh, j )+ h R0(g) ∈ OL2(h),

and

Zk(vh) =

p∑
j=1

B j,k Z j

(
vh, j + h

1
h
wh, j

)
+ Rk(g) ∈ OL2(1).

We are thus reduced to proving the existence of the operators 8,C j , Bk, j , Rl , with

suitable bounds on L2, and such that (4.11) holds true. This is a problem on the

Lie algebra N with vector fields Z j given by the Rothschild–Stein–Goodman theorem,

Theorem 2.4. We will first do this construction in the special case where the vector

fields Z j are equal to the left invariant vector fields Ỹ j on N . In that special case, we

will have Rl = 0 in formula (4.11). We will conclude in the general case by a suitable

h-pseudodifferential calculus.

Step 2: The case of left invariant vector fields on N .

Let f ∗ u be the convolution on N ,

f ∗ u(x) =
∫
N

f (x .y−1)u(y)dy =
∫
N

f (z)u(z−1.x)dz.

Here, dy is the left (and right) invariant Haar measure on N , which is simply equal

to the Lebesgue measure dy1 . . . dyr in the coordinates used in formula (2.3). Then, for

u ∈ L1(N ), the map f 7→ f ∗ u is bounded on Lq(N ) by ‖u‖L1 for any q ∈ [1,∞]. The

vector fields Ỹ j are divergence free for the Haar measure dy.

If f is a function on N , and a ∈ N , let τa( f ) be the function defined by τa( f )(x) =
f (a−1.x). One has, for any a ∈ N and Y ∈ TeN ' N , τa Ỹ = Ỹ τa , and the following

formula holds true:

τa( f ) = δa ∗ f

Ỹ f = f ∗ Ỹ δe.

 (4.12)

Let us denote by Th the scaling operator Th( f )(x) = h−Q f (h−1.x). One has h.(x−1) =

(h.x)−1 and Th( f ∗ g) = Th( f ) ∗ Th(g). The action of Th on the space D′(N ) of
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distributions on N , compatible with the action on functions, is given by 〈Th(T ), φ〉 =
〈T, x 7→ φ(h.x)〉. Thus one has Thδe = δe and Th(Ỹ j (δe)) = hỸ j (δe) for j ∈ {1, . . . , p}.

Let S(N ) be the Schwartz space on N , and let ϕ ∈ S(N ), with
∫
N ϕ(x)dx = 1. For

h ∈]0, 1], let 8h be the operator defined by

8h( f ) = f ∗ϕh, ϕh(x) = h−Qϕ(h−1.x) = Th(ϕ). (4.13)

Since the Jacobian of the transformation x 7→ h.x is equal to hQ , one has ‖ϕh‖L1 = ‖ϕ‖L1

for all h ∈]0, 1], and therefore the operator 8h is uniformly bounded on L2.

If we define the operators Bk, j,h by Bk, j,h( f ) = f ∗ Th(ϕk, j ), with ϕk, j ∈ S(N ), the

equation

Ỹ j8h =

p∑
k=1

Bk, j,h Ỹk

is equivalent to finding the ϕk, j ∈ S(N ) such that

Ỹ jϕ =

p∑
k=1

Ỹkδe ∗ϕk, j . (4.14)

One has
∫
N Ỹ j (ϕ)(x)dx = 0, and, since f 7→ Ỹkδe ∗ f is the right invariant vector field Zk

on N such that Zk(oN ) = Yk , (4.14) is solvable, thanks to Lemma A.2 in the appendix.

Moreover, the operators 8h , Bk, j,h , and Bk, j,hhỸk are uniformly in h ∈]0, 1] bounded on

L2 (one has Bk, j,h(hỸk( f )) = f ∗ Th(Ỹk(δe) ∗ϕk, j ) and Ỹk(δe) ∗ϕk, j ∈ S(N )).
Let now c j ∈ C∞(N \ {oN }) be Schwartz for ‖x‖ > 1, and quasi-homogeneous of degree

−Q+ 1 near oN (i.e., c j (t.x) = t−Q+1c j (x) for 0 < ‖x‖ 6 1 and t > 0 small). Let C j,h be

the operators defined by C j,h( f ) = f ∗ Th(c j ). Then the equation 1−8h =
∑

j
C j,hhỸ j is

equivalent to

δe−ϕ =
∑

j

Ỹ jδe ∗ c j . (4.15)

In order to solve (4.15), we denote by E ∈ C∞(N \ {oN }) the (unique) fundamental

solution, quasi-homogeneous of degree −Q+ 2 on N , of the hypoelliptic equation (for

the existence of E , we refer to [8, Theorem 2.1, p. 172])

δe =

p∑
j=1

Z2
j (E), Z j ( f ) = Ỹ jδe ∗ f.

Let ψ ∈ C∞0 (N ) with ψ(x) = 1 near e = oN . We will choose c j of the form

c j = ψZ j (E)− d j , d j ∈ S(N ). (4.16)

Then equation (4.15) is equivalent to

ϕ+

p∑
j=1

[Z j , ψ]Z j (E) = ϕ0 =

p∑
j=1

Z j (d j ). (4.17)
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One has ϕ0 ∈ S(N ) and
∫
N ϕ0(x)dx = 0, since

∫
N ϕ(x)dx = 1 and

∫
N

p∑
j=1
[Z j , ψ]Z j (E)dx

= −
∫
N

p∑
j=1

ψZ2
j (E)dx = −1. Thus, (4.14) is solvable thanks to Lemma A.2. Moreover,

since c j ∈ L1(N ), the operators C j,h are uniformly in h bounded on L2. It remains

to verify that the operators C j,hhỸ j are uniformly in h bounded on L2. One

has C j,hhỸ j ( f ) = f ∗ Th(Z j (c j )). Since ‖Th( f )‖L2 = h−Q/2
‖ f ‖L2 , it is equivalent to

prove that the operator g 7→ g ∗Z j (c j ) is bounded on L2. By construction, one has

Z j (c j ) = ψZ2
j (E)+ l j , l j ∈ S(N ). With the terminology of [8], the distribution Z2

j (E)
is homogeneous of degree 0 (i.e., quasi-homogeneous of degree −Q), and thus of the

form Z2
j (E) = a jδe+ f j , where f j ∈ C∞(N \ {oN }), quasi-homogeneous of degree −Q,

and such that
∫

b<|u|<b′ f j (u)du = 0. Thus, by [8, Proposition 1.9, p. 167], the operator

g 7→ g ∗Z j (c j ) is bounded on L2.

Step 3: A suitable h-pseudodifferential calculus on N .

Let Zα be the smooth vector fields defined in a neighbourhood � of oN in N given

by the Goodman theorem, Theorem 2.4. In this last step, we will finally construct the

operators such that (4.11) holds true. We first recall the construction of the map 2(a, b),
which play a crucial role in the construction of a parametrix for hypoelliptic operators in

[14]. Let us recall that (Y αa = Hα(Y1, . . . , Yp) ∈ TeN , α ∈ A) is a basis of TeN . For a ∈ N
close to e and u =

∑
α∈A

uαY α ∈ TeN close to 0, let 3(u) =
∑
α∈A

uαZα and

8(a, u) = e3(u)a. (4.18)

Clearly, (a, u) 7→ (a,8(a, u)) is a diffeomorphism of a neighbourhood of (e, 0) in N × TeN
onto a neighbourhood of (e, e) in N ×N , and 8(a, 0) = a. We denote by 2(a, b) the map

defined in a neighbourhood of (e, e) in N ×N into a neighbourhood of oN in N ' TeN
by

8(a,2(a, b)) = b. (4.19)

For b = 8(a, u), one has 8(b,−u) = e3(−u)(e3(u)a) = e−3(u)(e3(u)a) = a. Thus one has

the symmetry relation

2(a, b) = −2(b, a) = 2(b, a)−1. (4.20)

Observe that, in the special case Z j = Ỹ j , 3(u) is equal to the left invariant vector field

on N such that 3(u)(oN ) = u, i.e., 3(u) = ũ and 8(a, u) = eũa = a.u, and this implies

in that case that

2(a, b) = a−1.b. (4.21)

Let ϕ ∈ S(N ), with
∫
N ϕ(x)dx = 1. By step 2, there exist functions ϕk, j ∈ S(N ), and

c j ∈ C∞(N \ {oN }), Schwartz for ‖x‖ > 1, quasi-homogeneous of degree −Q+ 1 near oN ,

such that the following hold true:
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Ỹ j (ϕ) =

p∑
k=1

Zk(ϕk, j ),

δe−ϕ =
∑

j

Z j (c j ).

 (4.22)

Let ω0 ⊂⊂ ω1 be small neighbourhoods of oN such that 2(y, x) is well defined for

(y, x) ∈ ω0×ω1, and χ ∈ C∞0 (ω1) be equal to 1 in a neighbourhood of ω0. We define the

operators 8h , Bk, j,h , and C j,h for 1 6 j, k 6 p by the formulas

8h( f )(x) = χ(x) h−Q
∫
N
ϕ(h−1.2(y, x)) f (y)dy

Bk, j,h( f )(x) = χ(x) h−Q
∫
N
ϕk, j (h−1.2(y, x)) f (y)dy

C j,h( f )(x) = χ(x) h−Q
∫
N

c j (h−1.2(y, x)) f (y)dy.


(4.23)

All these operators are of the form

Ah( f )(x) = h−Q
∫
N

g(x, h−1.2(y, x)) f (y)dy, (4.24)

where the function g(x, .) is smooth in x , with compact support ω1, and takes values in

L1(N ), i.e., supx∈ω1
‖∂
β
x g(x, .)‖L1(N ) <∞ for all β. The function Ah( f ) is well defined

for f ∈ L∞(N ) such that support( f ) ⊂ ω0. We have introduced the cutoff χ(x) just to

have Ah( f )(x) defined for all x ∈ N , and one has Ah( f )(x) = 0 for all x /∈ ω1.

Lemma 4.3. Let g(x, .) be smooth in x with compact support in ω1, with values in L1(N ).
Then the operator Ah defined by (4.24) is uniformly in h ∈]0, 1] bounded from Lq(ω0)

into Lq(N ) for all q ∈ [1,∞].

Proof. The proof is standard. By interpolation, it is sufficient to treat the two cases q =
∞ and q = 1. When q = ∞, the Jacobian of the change of coordinates y 7→ u = 2(y, x)
is bounded by C for all x ∈ ω1, y ∈ ω0. Thus we get

|Ah( f )(x)| 6 C‖ f ‖L∞(ω0)h
−Q

∫
N
|g(x, h−1.u)|du = C‖ f ‖L∞(ω0)‖g(x, .)‖L1 .

Since x 7→ g(x, .) is smooth in x with values in L1(N ), one has C∞ = supx∈ω1
‖g(x, .)‖L1 <

∞. Thus we get ‖Ah( f )‖L∞ 6 CC∞‖ f ‖L∞(ω0).

For q = 1, we first extend g as a smooth L-periodic function of x ∈ N , with L large

enough, g(x, u) =
∑

k∈ZD
gk(u)e2iπk.x/L , the equality being valid for x ∈ ω1. Observe that

‖gk‖L1(N ) is rapidly decreasing in k. Then one has

Ah( f )(x) =
∑

k

Ah,k( f )(x)eik.x/L , Ah,k( f )(x) = h−Q
∫
N

gk(h−1.2(y, x)) f (y)dy.
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The Jacobian of the change of coordinates (x, y) 7→ (u = 2(y, x), y) is bounded by C for

all (x, y) ∈ ω1×ω0, and one has∫
ω1

|Ah,k( f )(x)|dx 6 Ch−Q
∫
N

∫
ω0

|gk(h−1.u)|| f (y)|dydu = C‖ f ‖L1‖gk‖L1 .

Thus we get suph∈]0,1] ‖Ah,k‖L1 = dk with dk rapidly decreasing in k, and this implies that

suph∈]0,1] ‖Ah‖L1 6
∑
k

dk <∞. The proof of Lemma 4.3 is complete.

Observe that, in the special case Z j = Ỹ j , using (4.21), we get that the operators

8h, Bk, j,h,C j,h defined by formula (4.23) are precisely equal, up to the factor χ(x), to

the operators we have constructed in step 2.

In the general case, it remains to show that the following assertion hold true.

(i) The operators Rl,h defined by

R0,h = h−1
(

1−8h −

p∑
j=1

C j,hh Z j

)

R j,h = Z j8h −

p∑
k=1

Bk, j,h Zk, 1 6 j 6 p


(4.25)

are uniformly bounded in h ∈]0, 1] on L2.

(ii) The operators C j,hh Z j and Bk, j,hh Zk, k > 0 are uniformly bounded in h ∈]0, 1] on

L2.

For the verification of (i) and ii), we just follow the natural strategy which is developed

in [14]. If f is a function defined near a ∈ N , let 8a( f ) be the function defined near 0

in N ' TeN by 8a( f )(u) = f (8(a, u)). The following fundamental lemma is proven in

[14, Theorem 5] and also in [9] (§ 5, ‘Estimation of the error’).

Lemma 4.4. For all j ∈ {1, . . . , p}, and a ∈ N near e, the vector field V j,a defined near

0 in N ,

V j,a(g) = 8a(Z j (8
−1
a g))− Ỹ j (g), (4.26)

is of order 6 0 at 0. If we introduce the system of coordinates (uα) = (ul,k) with l(α) = |α|
and 1 6 k 6 al = dim(Nl), we thus have

V j,a =

r∑
l=1

al∑
k=1

v j,l,k(a, u)
∂

∂ul,k
, (4.27)

where the functions v j,l,k(a, u) are smooth and satisfy v j,l,k(a, u) ∈ O(‖u‖l).

Let us denote by Ah[g] an operator of the form (4.24). Recall that g(x, u) is smooth

in x with compact support in ω1, with values in L1(N ). More precisely, we have two

cases to consider: (a) g is Schwartz in u, and (b) g is smooth in u in N \ {oN }, Schwartz
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for ‖u‖ > 1, and quasi-homogeneous of degree −Q+ 1 near oN . We have to compute the

kernel of the operators Z j Ah[g] and Ah[g]Z j .

We first compute the kernel of Z j Ah(g). For any fixed y, perform the change of

coordinates x = 8y(u) so that 2(y, x) = u. Denote by Z x
j the vector field Z j acting

on the variable x . Using Lemma 4.4, we get

Z j (Ah[g]( f ))(x)= h−Q
∫
N

Z x
j (g(x, h−1.2(y, x))) f (y)dy

= h−Q
∫
N

h−1(Ỹ u
j g)(x, h−1.2(y, x)) f (y)dy

+ h−Q
∫
N
(Z x

j g)(x, h−1.2(y, x)) f (y)dy

+

r∑
l=1

al∑
k=1

h−Q
∫
N
v j,l,k(y,2(y, x))h−l

×
∂g
∂ul,k

(x, h−1.2(y, x)) f (y)dy. (4.28)

By Lemma 4.3, the second term in (4.28) is uniformly bounded in h ∈]0, 1], from L2(ω0)

into L2(N ). The same holds true for the third term. To see this point, following the

proof of Lemma 4.3, first write v j,l,k(y, u) =
∑
n
v j,l,k,n(u)e2iπn.y/L , with v j,l,k,n(u) rapidly

decreasing in n and O(‖u‖l) near u = oN . We are then reduced to showing that an

operator of the form

Rh( f ) = h−Q
∫
N

h−l G(2(y, x))
∂g
∂ul,k

(x, h−1.2(y, x)) f (y)dy,

with G(u) smooth and G(u) ∈ O(‖u‖l), is uniformly bounded in h ∈]0, 1] from L2(ω0)

into L2(N ) by a constant which depends linearly on a finite number of derivatives of

G. Clearly, there exists such a constant C such that h−l
|G(2(y, x))| 6 C‖h−1.2(y, x)‖l .

Thus the result follows from the proof of Lemma 4.3, since ‖u‖l ∂g
∂ul,k

(x, u) is L1 in u in

both case (a) and case (b) (the vector field ‖u‖l ∂
∂ul,k

is of order 0).

If we denote by Rh any operator uniformly bounded on L2, we have thus proven that

Z j Ah[g] = h−1 Ah[Ỹ u
j g] + Rh . (4.29)

Let us now compute the kernel of Ah[g]Z j . The basic observation is the following identity

(recall that u−1
= −u and Z j ( f ) = Ỹ j (δe) ∗ f is the right invariant vector field such that

Z j (0) = Y j ):

−Ỹ j ( f (−u)) = Z j ( f )(−u). (4.30)

Let l j be the smooth function such that t Z j = −Z j + l j . For any given x , perform the

change of coordinates y = 8x (u). By (4.20), one has 2(y, x) = −2(x, y) = −u. We thus

get from Lemma 4.4 and (4.30) the following formula:

Ah[g](Z j ( f ))(x)= h−Q
∫
N

g(x, h−1.2(y, x))Z j ( f )(y)dy
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= h−Q
∫
N
(−Z y

j + l j (y))(g(x, h−1.2(y, x))) f (y)dy

= h−Q
∫
N

h−1(Zu
j g)(x, h−1.2(y, x)) f (y)dy

+ h−Q
∫
N

g(x, h−1.2(y, x))l j (y) f (y)dy

+

r∑
l=1

al∑
k=1

h−Q
∫
N
v j,l,k(x,−2(y, x))h−l

×
∂g
∂ul,k

(x, h−1.2(y, x)) f (y)dy. (4.31)

As above, this gives the identity, with Rh uniformly bounded on L2,

Ah[g]Z j = h−1 Ah[Zu
j g] + Rh . (4.32)

Observe that formulas (4.22), (4.29), and (4.32) imply that (4.25) holds true.

Moreover, from (4.32) and Lemma 4.3, the operators Bk, j,hh Zk, k > 0 are uniformly

bounded in h ∈]0, 1] on L2. In order to get from (4.32) the same uniform bounds

for the operators C j,hh Z j , we just observe that, in the case where g(x, u) is

quasi-homogeneous in u of degree −Q+ 1 near oN , one has Zu
j g(x, u) = C j (x)δe+

f j (x, u) with
∫

b<|u|<b′ f j (x, u)du = 0, and we conclude as at the end of step 2 by

Proposition 1.9 of [8].

The proof of Proposition 4.1 is complete.

5. Proof of Theorems 1.1 and 1.2

This section is devoted to the proof of Theorems 1.1 and 1.2. Let Bh be the bilinear

form associated with the rescaled Dirichlet form Eh :

Bh( f, g) =
(

1− Th

h2 f |g
)

L2
, f, g ∈ L2(M, dµ). (5.1)

Proposition 5.1. Let f ∈ H1(X ). Let (rh, γh) ∈ H1(X )× L2 be such that the sequence (rh)

converges weakly (when h → 0) in H1(X ) to r ∈ H1(X ), and suph ‖γh‖L2 <∞. Then

lim
h→0

Bh( f, rh + hγh) =
1

6p

p∑
k=1

(Xk f |Xkr)L2 . (5.2)

Proof. Write rh = r + r ′h . The weak limit of r ′h in H1(X ) is 0. Since Bh( f, rh) = Bh( f, r)+
Bh( f, r ′h), we have to prove the following two assertions:

lim
h→0

Bh( f, r) =
1

6p

p∑
k=1

(Xk f |Xkr)L2 , ∀ f, r ∈ H1(X ), (5.3)

and, under the hypothesis that the weak limit of rh in H1(X ) is 0,

lim
h→0

(
1− Tk,h

h2 f |rh + hγh

)
L2
= 0, ∀k ∈ {1, . . . , p}. (5.4)
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In order to verify (5.4), since M is compact, we may assume that f is supported in

a small neighbourhood of a point x0 ∈ M where the Goodman theorem, Theorem 2.4,

applies. With the notation of § 2, we may thus assume in the coordinate system 3θ

centred at x0 ' 0 that f, rh, γh are supported in the closed ball Bm
r = {x ∈ Rm, |x | 6 r} ⊂

V0. Let χ(y) ∈ C∞0 (U0) with support in Bn
r ′ ⊂ U0, such that

∫
χ(y)dy = 1, and write

dµ(x) = ρ(x)dx with ρ smooth. For u, v ∈ L2(M) supported in Bm
r , one has

(u|v)L2 =

∫
V0

u(x)v(x)dµ(x) =
∫

V0×U0

u(x)ρ(x)χ(y)v(x)dxdy.

Set f̃ (x, y) = Wx0( f )(x, y) = f (x), r̃h(x, y) = ρ(x)χ(y)rh(x), γ̃h(x, y) = ρ(y)χ(y)γh(x).
We get, from (2.8),(

1− Tk,h

h2 f |rh + hγh

)
L2
=

∫
V0×U0

(
1− T̃k,h

h2 f̃
)

r̃h + hγ̃h dxdy. (5.5)

Observe that γ̃h is bounded in L2(V0×U0). Since the injection H1(X ) ⊂ L2(M) is

compact, rh converges strongly to 0 in L2, and therefore r̃h converges strongly to 0 in

L2(V0×U0). Moreover, Zk(r̃h) converges weakly to 0 in L2(V0×U0). Finally, since T̃k,h
increases the support of at most ' h, we may replace f̃ by F = θ(y) f̃ with θ ∈ C∞0 equal

to 1 near the support of χ . Then F is compactly supported in V0×U0 and satisfies F ∈ L2

and Zk F ∈ L2. Since the vector field Zk is not singular, decreasing V0,U0 if necessary,

there exist coordinates (z1, . . . , zD) = (z1, z′) such that Zk =
∂
∂z1

. One has dxdy = q(z)dz
with q > 0 smooth. Set qr̃h = Rh, qγ̃h = Qh . Using a Fourier transform in z1, it remains

to show that

lim
h→0

Ih = 0, Ih = h−2
∫ (

1−
sin(hξ1)

hξ1

)
F̂(ξ1, z′)R̂h(ξ1, z′)dξ1dz′

lim
h→0

Jh = 0, Jh = h−1
∫ (

1−
sin(hξ1)

hξ1

)
F̂(ξ1, z′)Q̂h(ξ1, z′)dξ1dz′.

 (5.6)

Recall that Qh is bounded in L2, Rh converges strongly to zero in L2, ∂z1 Rh converges

weakly to zero in L2, and F, ∂z1 F ∈ L2. We write the first integral in (5.6) in the form

Ih =

∫
ψ(hξ1)ξ1 F̂(ξ1, z′)ξ1 R̂h(ξ1, z′)dξ1dz′,

with ψ(x) = x−2(1− sin(x)
x ). One has ψ ∈ C∞(R) and |ψ(x)| 6 C 1

1+x2 . Then we write

Ih = I1,h + I2,h with I1,h defined by the integral over |ξ1| 6 M and I2,h defined by the

integral over |ξ1| > M . Since ξ1 R̂h(ξ1, z′) is bounded in L2, and ψ ∈ L∞, we get, by the

Cauchy–Schwarz inequality,

|I2,h | 6 C
(∫
|ξ1|>M

|ξ1 F̂(ξ1, z′)|2dξ1dz′
)1/2

→ 0 when M →∞.

On the other hand, one has ψ(x) = ψ(0)+ τ(x) with ψ(0) = 1/6 and supx∈R τ(x)/x 6 C0.

Thus we get

I1,h =
1
6

∫
|ξ1|6M

ξ1 F̂(ξ1, z′)ξ1 R̂h(ξ1, z′)dξ1dz′+
∫
|ξ1|6M

τ(hξ1)ξ1 F̂(ξ1, z′)ξ1 R̂h(ξ1, z′)dξ1dz′.

(5.7)
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For any fixed M , the first term in (5.7) goes to 0 when h → 0 since ξ1 R̂h(ξ1, z′) converges

weakly to 0 in L2 and ξ1 F̂(ξ1, z′) ∈ L2. Since ξ1 R̂h(ξ1, z′) is bounded in L2 by say A, by

the Cauchy–Schwarz inequality, the second term is bounded by C0hM A‖∂z1 F‖L2 . Thus

one has lim
h→0

Ih = 0.

We proceed exactly in the same way to prove that lim
h→0

Jh = 0: one has, with xψ = φ,

Jh =

∫
φ(hξ1)ξ1 F̂(ξ1, z′)Q̂h(ξ1, z′)dξ1dz′,

and we use the fact that φ ∈ L∞, Q̂h(ξ1, z′) is bounded in L2, φ(0) = 0, and φ(x)/x ∈
L∞(R).

Let us now verify (5.3). From (1.10), this is obvious if f is smooth and r ∈ H1(X ).
Standard smoothing arguments show that C∞(M) is dense in H1(X ). Let now f ∈ H1(X ),
and choose fh ∈ C∞(M) converging strongly to f in H1(X ). Then lim

h→0
(Xk fh |Xkr)L2 =

(Xk f |Xkr)L2 , and from (5.4) one has also lim
h→0

Bh( fh, r) = lim
h→0

Bh(r, fh) = Bh( f, r).

The proof of Proposition 5.1 is complete.

5.1. Proof of Theorem 1.1

Let |4h | be the rescaled (non-negative) Laplacian associated with the Markov kernel Th :

|4h | =
1− Th

h2 . (5.8)

From Proposition 4.1 and Lemma A.1, there exist h0 > 0 and C4,C5 > 0 independent

of h ∈]0, h0], such that Spec(|4h |)∩ [0, λ] is discrete for all λ 6 C4h−2, and one has the

Weyl-type estimate

#(Spec(|4h |)∩ [0, λ]) 6 C5〈λ〉
dim(M)/2s, ∀λ 6 C4h−2. (5.9)

In particular, since Th(1) = 1, 1 is an isolated eigenvalue of Th . Let us verify that 1 is a

simple eigenvalue of Th . Let f ∈ L2
= L2(M, dµ) such that Th( f ) = f . One has, for any

g ∈ L2,

((1− Th)g|g)L2 =
1
2

∫∫
|g(x)− g(y)|2th(x, dy)dµ(x). (5.10)

Thus we get, for all k ∈ {1, . . . , p},∫
M

∫ h

−h
| f (x)− f (et Xk x)|2 dtdµ(x) = 0.

This gives f (x)− f (et Xk x) = 0 for almost all (x, t) ∈ M×]− h, h[. Therefore, one has

Xk f = 0 in D′(M) for all k, and this implies that f = Cte thanks to the Hörmander

and Chow theorems. We can also give a more direct argument: we have T P
h ( f ) = f , and

therefore if we use (5.10) with the Markov kernel T P
h and Proposition 3.1, we get∫

M

∫
u∈Iε,h

| f (x)− f (eλ(u)x)|2 dudµ(x) = 0.
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Since u 7→ eλ(u)x is a submersion, this implies that f (x)− f (y) = 0 for almost all (x, y)
in a neighbourhood of the diagonal in M ×M , and therefore f = Cte.

Let us now verify that there exists δ1 > 0 such that, for all h ∈]0, h0], the spectrum of

Th is a subset of [−1+ δ1, 1]. It is sufficient to prove that the same holds true for an odd

power T 2N+1
h of Th . We are thus reduced to proving the existence of h0,C0 > 0 such that

the following inequality holds true for all h ∈]0, h0] and all f ∈ L2(�):

( f + T 2N+1
h f | f )L2 =

1
2

∫
M×M

t2N+1
h (x, dy)| f (x)+ f (y)|2dµ(x) > C0‖ f ‖2L2 . (5.11)

Take N large enough such that Proposition 3.1 applies for T 2N+1
h , i.e., t2N+1

h (x, dy) >
cSεh(x, dy). Then we are reduced to proving the existence of C independent of h such that∫

M×M
Sεh(x, dy)| f (x)+ f (y)|2dµ(x) > C‖ f ‖2L2 . (5.12)

From definition (3.1) of Sεh , we get∫
M×M

Sεh(x, dy)| f (x)+ f (y)|2dµ(x) =
∫

M
h−Q

∫
u∈Iε,h

| f (x)+ f (eλ(u)x)|2dudµ(x) = B.

Define A by the formula

A =
∫

M
h−2Q

∫
u∈Iε/2,h

∫
v∈Iε/2,h

| f (eλ(v)y)+ f (eλ(u)y)|2dudvdµ(y).

Since λ(v) is divergence free as a linear combination with constant coefficients of

commutators of the vector fields Xk , the change of variables eλ(v)y = x gives

A =
∫

M
h−2Q

∫
u∈Iε/2,h

∫
v∈Iε/2,h

| f (x)+ f (eλ(u−v)x)|2dudvdµ(x).

Therefore, one has, for some constant cε > 0 independent of h, B > cε A. Clearly, one has∫
M

Re
(∫

u∈Iε/2,h

∫
v∈Iε/2,h

f (eλ(v)y) f (eλ(u)y)dudv
)

dµ(y) > 0,

and this implies, still using the change of variables eλ(v)y = x , that

A > 2
∫

M
h−2Q

∫
u∈Iε/2,h

∫
v∈Iε/2,h

| f (eλ(v)y)|2dudvdµ(y)

= 2εD
∫

M
h−Q

∫
v∈Iε/2,h

| f (eλ(v)y)|2dvdµ(y) = 2ε2D
∫

M
| f (x)|2dµ(x). (5.13)

From (5.13) and B > cε A, we get that (5.12) holds true.

Lemma 5.2. There exist C2,C3 > 0 such that the spectral gap of Th satisfies

C2h2 6 g(h) 6 C3h2. (5.14)
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Proof. The right inequality in (5.14) is an obvious consequence of the min–max principle,

since for any f ∈ C∞(M) one has lim
h→0

1−Th
h2 f = L( f ). From (5.9), we get that, for any

a ∈]0, 1], ma = ](Spec(Th)∩ [1− ah2, 1[) is bounded by a constant independent of h small,

and we have to verify that there exist h0 > 0 and a > 0 independent of h ∈]0, h0] such

that ma = 0. If this is not true, there exist two sequences εn, hn → 0 and a sequence

fn ∈ L2, with ‖ fn‖L2 = 1 and ( fn|1)L2 =
∫

M fndµ = 0 such that

Thn fn = (1− h2
nεn) fn .

This implies that Ehn ( fn) = εn . Using Proposition 4.1, we get fn = vn + hnγn with

supn ‖γn‖L2 <∞ and ‖vn‖H1(X ) 6 C . The hypoelliptic theorem of Hörmander implies the

existence of s > 0 such that one has H1(X ) ⊂ H s(M); hence the injection H1(X ) ⊂ L2(M)
is compact. As a direct byproduct, we get (up to extraction of a subsequence) that the

sequence fn converges strongly in L2 to some f ∈ H1(X ), and vn converges weakly in

H1(X ) to f . Set vn = f + rn . Then rn converges weakly to 0 in H1(X ), fn = f + rn + hnγn ,

and one has

Ehn ( fn) = Ehn ( f )+ 2Re(Bhn ( f, rn + hγn))+ Ehn (rn + hnγn).

Since one has Eh(.) > 0, Proposition 5.1 implies that

1
6p

p∑
k=1

‖Xk f ‖2L2 = lim
n→∞

Ehn ( f ) 6 lim inf
n→∞

Ehn ( fn) = 0, (5.15)

and therefore f = Cte. But since fn converges strongly in L2 to f , one has ‖ f ‖L2 = 1 and

( f |1)L2 =
∫

M f dµ = 0. This is a contradiction. The proof of Lemma 5.2 is complete.

To conclude the proof of Theorem 1.1, it remains to prove the total variation estimate

(1.7). Let 50 be the orthogonal projector in L2(M, dµ) onto the space of constant

functions

50( f )(x) =
∫

M
f dµ. (5.16)

Then

2 sup
x∈M
‖tn

h (x, dy)−µ‖T V = ‖T n
h −50‖L∞→L∞ . (5.17)

Thus, we have to prove that there exist C0, h0, such that, for any n and any h ∈]0, h0],

one has

‖T n
h −50‖L∞→L∞ 6 C0e−ng(h). (5.18)

Observe that, since g(h) ' h2, and ‖T n
h −50‖L∞→L∞ 6 2, in the proof of (5.18), we may

assume that n > Ch−2 with C large. Let Eh,L be the (finite-dimensional) subspace of

L2(M, dµ) spanned by the eigenvectors e j,h of |4h |, associated with eigenvalues λ j,h 6
C4h−2, with C4 > 0 small enough. Here, the subscript L means ‘low frequencies’. Recall

from (5.9) that dim(Eh,L) 6 Ch−dim(M)/2s . We will denote by Jh the set of indices

Jh = { j, λ j,h 6 C4h−2
}. (5.19)
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Lemma 5.3. There exist p > 2 and C independent of h ∈]0, h0] such that, for all u ∈ Eh,L ,

the following inequality holds true:

‖u‖2L p(M) 6 C(Eh(u)+‖u‖2L2). (5.20)

Proof. We denote by C > 0 a constant independent of h, changing from line to line. Let

u ∈ Eh,L such that Eh(u)+‖u‖2L2 6 1. From Proposition 4.1, one has u = vh +wh with

‖vh‖H1(X ) 6 C and ‖wh‖L2 6 Ch. From the continuous imbedding H1(X ) ⊂ H s(M) ⊂
Lq(M) with s > 0, q > 2, s = dim(M)(1/2− 1/q), we get

‖vh‖Lq 6 C.

One has u =
∑

λ j,h6C4h−2
z j,he j,h with

∑
λ j,h6C4h−2

|z j,h |
2 6 1. From Corollary 3.4, one has, for

C4 > 0 small enough, ‖e j,h‖L∞ 6 Ch−Q/2. Therefore, by the Cauchy–Schwarz inequality,

we get

‖u‖L∞ 6 Ch−Q/2

 ∑
λ j,h6C4h−2

|z j,h |
2

1/2

(dim(Eh,L))
1/2 6 Ch−Q/2−dim(M)/4s . (5.21)

From the proof of Proposition 4.1 (see Lemma 4.3), one has ‖vh‖L∞ 6 C‖u‖L∞ . Thus

we get ‖wh‖L∞ 6 ‖u‖L∞ +‖vh‖L∞ 6 Ch−Q/2−dim(M)/4s . Since ‖wh‖L2 6 Ch, we get by

interpolation that there exists q ′ > 2 such that

‖wh‖Lq′ 6 C.

Then (5.20) holds true with p = min(q, q ′) > 2. The proof of Lemma 5.3 is complete.

We are now ready to prove (5.18), essentially following the strategy of [5], but with

some simplifications. We split Th in two pieces, according to spectral theory. We write

Th −50 = Th,1+ Th,2, with

Th,1(x, y) =
∑

λ1,h6λ j,h6C4h−2

(1− h2λ j,h)e j,h(x)e j,h(y). (5.22)

One has T n
h −50 = T n

h,1+ T n
h,2, and we will get the bound (5.18) for each of the two terms.

We start with very rough bounds. From ‖e j,h‖L∞ 6 Ch−Q/2, |(1− h2λ j,h)| 6 1, we get,

with A = Q/2+ dim(M)/4s, as in the proof of (5.21), with C independent of n > 1 and

h,
‖T n

h,1‖L∞→L∞ 6 ‖T n
h,1‖L2→L∞ 6 Ch−A. (5.23)

Since T n
h is bounded by 1 on L∞, we get, from T n

h −50 = T n
h,1+ T n

h,2,

‖T n
h,2‖L∞→L∞ 6 Ch−A. (5.24)

Let P be the integer defined at the beginning of § 3. Let Mh be the Markov operator

Mh = T P
h . Write n = k P + r , with 0 6 r < P. From Proposition 3.1 and Corollary 3.3,

one has Mh = ρh + Rh , with

‖ρh‖L∞→L∞ 6 γ < 1,

‖Rh‖L2→L∞ 6 C0h−Q/2.

 (5.25)
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From this, we deduce that, for any k = 1, 2, . . . , one has Mk
h = Ak,h + Bk,h , with A1,h =

ρh, B1,h = Rh , and the recurrence relation Ak+1,h = ρh Ak,h, Bk+1,h = ρh Bk,h + Rh Mk
h .

Thus one gets, since Mk
h is bounded by 1 on L2,

‖Ak,h‖L∞→L∞ 6 γ k,

‖Bk,h‖L2→L∞ 6 C0h−Q/2(1+ γ + · · ·+ γ k) 6 C0h−Q/2/(1− γ ).
 (5.26)

Let θ = 1−C4 < 1 so that ‖Th,2‖L2→L2 6 θ . Then one has

‖T n
h,2‖L∞→L2 6 ‖T n

h,2‖L2→L2 6 θn . (5.27)

For m > 1, k > 1, and 0 6 r < P − 1, one gets, using the fact that Th is bounded by 1 on

L∞, and (5.24), (5.26), and (5.27),

‖T k P+r+m
h,2 ‖L∞→L∞ = ‖T r

h Mk
h T m

h,2‖L∞→L∞ 6 ‖Mk
h T m

h,2‖L∞→L∞

6 ‖Ak,h T m
h,2‖L∞→L∞ +‖Bk,h T m

h,2‖L∞→L∞

6 Ch−Aγ k
+C0h−Q/2θm/(1− γ ). (5.28)

Thus we get that there exist C > 0, µ > 0, and a large constant B � 1, such that

‖T n
h,2‖L∞→L∞ 6 Ce−µn, ∀h, ∀n > B log(1/h), (5.29)

and thus the contribution of T n
h,2 is far smaller than the bound we have to prove in (5.18).

It remains to study the contribution of T n
h,1.

From Lemma 5.3, using the interpolation inequality ‖u‖2L2 6 ‖u‖
p

p−1
L p ‖u‖

p−2
p−1

L1 , we deduce

the Nash inequality, with 1/d = 2− 4/p > 0:

‖u‖2+1/d
L2 6 C(Eh(u)+‖u‖2L2)‖u‖

1/d
L1 , ∀u ∈ Eh,L . (5.30)

For λ j,h 6 C4h−2, one has h2λ j,h 6 1, and thus, for any u ∈ Eh,L , one gets Eh(u) 6
‖u‖2L2 −‖Thu‖2L2 , and thus we get, from (5.30),

‖u‖2+1/d
L2 6 Ch−2(‖u‖2L2 −‖Thu‖2L2 + h2

‖u‖2L2)‖u‖
1/d
L1 , ∀u ∈ Eh,L . (5.31)

From (5.29) and T n
h −50 = T n

h,1+ T n
h,2, we get that there exists C2 such that, for all h and

all n > B log(1/h), one has ‖T n
1,h‖L∞→L∞ 6 C2, and thus, since T1,h is self-adjoint on L2,

‖T n
1,h‖L1→L1 6 C2. Fix p ' B log(1/h). Take g ∈ L2 such that ‖g‖L1 6 1, and consider

the sequence cn, n > 0 defined by

cn = ‖T
n+p
h,1 g‖2L2 . (5.32)

Then, 0 6 cn+1 6 cn , and, from (5.31) and T n+p
h,1 g ∈ Eh,L , we get

c
1+ 1

2d
n 6 Ch−2(cn − cn+1+ h2cn)‖T

n+p
h,1 g‖1/dL1

6 CC1/d
2 h−2(cn − cn+1+ h2cn). (5.33)
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Thus there exists A which depends only on C,C2, d, such that, for all 0 6 n 6 h−2, one

has cn 6 ( Ah−2

1+n )
2d (this is the key point in the argument; for a proof of this estimate, see

[7]). Thus, for all 0 6 n 6 h−2, and with p ' B log(1/h), one has

‖T n+p
h,1 g‖L2 6

(
Ah−2

1+ n

)d

‖g‖L1 , (5.34)

and since T1,h is self-adjoint on L2, we get, by duality,

‖T n+p
h,1 g‖L∞ 6

(
Ah−2

1+ n

)d

‖g‖L2 . (5.35)

Thus there exists C0 such that, for N ' h−2, one has

‖T N+p
h,1 g‖L∞ 6 C0‖g‖L2 , (5.36)

and so we get, for any m > 0, and with N ' h−2,

‖T N+p+m
h,1 g‖L∞ 6 C0(1− h2λ1,h)

m
‖g‖L2 . (5.37)

Thus, for n > h−2
+ N + p, since h2λ1,h = g(h) and 0 6 (1− r)m 6 e−mr for r ∈ [0, 1], we

get

‖T n
h,1‖L∞→L∞ 6 C0e−(n−(N+p))g(h)

= C0e(N+p)g(h)e−ng(h) 6 C ′0e−ng(h). (5.38)

The proof of Theorem 1.1 is complete.

5.2. Proof of Theorem 1.2

The proof of Theorem 1.2 is exactly the same that the one given in [6]. Let R > 0 be

fixed. If νh ∈ [0, R] and uh ∈ L2(M) satisfy |4h |uh = νhuh and ‖uh‖L2 = 1, then, thanks

to Proposition 4.1, uh can be decomposed as uh = vh +wh with ‖wh‖L2 = O(h) and vh
bounded in H1(X ). Hence (extracting a subsequence if necessary) it may be assumed

that vh weakly converges in H1(X ) to a limit v and that νh converges to a limit ν.

Hence uh converges strongly in L2 to v. It now follows from Proposition 5.1 that, for any

f ∈ C∞(M),

ν( f |v)= lim
h→0

( f |νhuh) = lim
h→0

(|4h |( f )|uh)

= lim
h→0

Bh( f, vh +wh) =
1

6p

p∑
k=1

(Xk f |Xkv)L2 = ( f |Lv). (5.39)

Since f is arbitrary, it follows that (L − ν)v = 0. By the Weyl-type estimate (5.9), the

number of eigenvalues |4h | in the interval [0, R] is uniformly bounded. Moreover, the

dimension of an orthonormal basis is preserved by strong limit. So the above argument

proves that, for any ε > 0 small, there exists hε > 0 such that, for h ∈]0, hε], one has

Spec(|1h |)∩ [0, R] ⊂ ∪ j [ν j − ε, ν j + ε] (5.40)
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and

]Spec(|1h |)∩ [ν j − ε, ν j + ε] 6 m j . (5.41)

The fact that one has equality in (5.41) for ε small follows exactly like in the proof

of Theorem 2(iii) in [6]: this uses only Proposition 5.1, the min–max principle, and a

compactness argument. The proof of Theorem 1.2 is complete.

Remark 5.4. Observe that estimate (5.14) on the spectral gap is a direct consequence

of Theorem 1.2, and moreover observe that in the proof of Theorem 1.2 we only use

Proposition 5.1 in the special case f ∈ C∞(M), and that, for f ∈ C∞(M), Proposition 5.1

is obvious. However, we think that the fact that Proposition 5.1 holds true for any function

f ∈ H1(X ) is interesting by itself, and, since it is an easy byproduct of Proposition 4.1,

we decided to include it in the paper.

5.3. Elementary Fourier analysis

We conclude this section by collecting some basic results on Fourier analysis theory

(uniformly with respect to h) associated with the spectral decomposition of Th . These

results are consequences of the preceding estimates. We start with the following lemma,

which gives an honest L∞ estimate of the eigenfunction e j,h ∈ Eh,L . Recall that 〈x〉 =
(1+ x2)1/2.

Lemma 5.5. There exists C independent of h such that, for any eigenfunction e j,h ∈ Eh,L ,

‖e j,h‖L2 = 1, associated with the eigenvalue 1− h2λ j,h of Th, the following inequality holds

true:

‖e j,h‖L∞ 6 C〈λ j,h〉
d . (5.42)

Proof. This is a byproduct of the preceding estimate (5.35). Apply this inequality to

g = e j,h . This gives

(1− h2λ j,h)
n+p
‖e j,h‖L∞ 6

(
Ah−2

1+ n

)d

. (5.43)

Thus we get, with n ' h−2
〈λ j,h, 〉

−1

‖e j,h‖L∞ 6

(
Ah−2

h−2〈λ j,h〉−1

)d

(1− h2λ j,h)
−h−2

〈λ j,h〉
−1
−B log(1/h) 6 C〈λ j,h〉

d . (5.44)

The proof of Lemma 5.5 is complete.

Let h0 > 0 be a small given real number. We will use the following notation. If X is

a Banach space, we denote by Xh the space L∞(]0, h0], X), i.e., the space of functions

h 7→ xh from h ∈]0, h0] into X such that suph∈]0,h0]
‖xh‖X <∞. For a > 0, the notation

xh ∈ OX (ha) means that there exists C independent of h such that ‖xh‖X 6 Cha , and

xh ∈ OX (h∞) means that xh ∈ OX (ha) for all a. We denote C∞h = ∩k>0Ck
h(M).

Let 5h,L be the L2-orthogonal projection on Eh,L , and denote 5h,2 = Id−5h,L . Let

(e j,h) j∈Jh be an orthonormal basis of Eh,L with Th(e j,h) = (1− h2λ j,h)e j,h . For f ∈ L2 we
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denote by c j,h( f ) = ( f |e j,h) the corresponding Fourier coefficient of f . Recall that Jh is

defined in (5.19).

Proposition 5.6. Let fh ∈ C∞h . For all integers N , the following holds true:

|4h |
N fh ∈ C∞h and ∃ CN , sup

h∈]0,h0]

∑
j∈Jh

λN
j,h |c j,h( fh)|

2 6 CN . (5.45)

Moreover, one has the following estimates:

5h,L( fh) ∈ OL∞(M)(1) (5.46)

and

5h,2( fh) ∈ OL∞(M)(hN ). (5.47)

Proof. Let X be a vector field on M , and let f ∈ C∞(M). The smooth function F(t, x) =
f (et X x) satisfies the transport equation

∂t F = X ( f ), F(0, x) = f (x).

Thus, one has, by Taylor expansion at t = 0, and for any integer N ,

F(t, x) =
∑
n6N

tn

n!
Xn( f )(x)+ t N+1rN (t, x),

with rN (t, x) smooth. From the definition of Th , we thus get

Th f (x)
∑

n even 6N

hn

(n+ 1)!

(
1
p

p∑
k=1

Xn
k ( f )(x)

)
+ hN+1r̃N (h, x),

with r̃N (h, x) ∈ C∞h . This implies, for fh ∈ C∞h , that

|4h | fh = L( fh)+ h2gh, gh ∈ C∞h .

Therefore, one has |4h | fh ∈ C∞h , and hence by induction |4h |
N fh ∈ C∞h for all N . The

second assertion of (5.45) follows from suph∈]0,h0]
‖gh‖L2 <∞ for any gh ∈ C∞h and the

fact that ∑
j∈Jh

λN
j,h |c j,h( fh)|

2
= ‖5h,L |4h |

N fh‖
2
L2 6 ‖|4h |

N fh‖
2
L2 .

For the proof of (5.46), we just write

5h,L( fh) =
∑
j∈Jh

c j,h( fh)e j,h,

and we use estimate (5.42) of Lemma 5.5 to get the bound

‖5h,L( fh)‖L∞ 6 C
∑
j∈Jh

|c j,h( fh)|〈λ j,h〉
d

6 C

∑
j∈Jh

|c j,h( fh)|
2
〈λ j,h〉

2d+2N

1/2∑
j∈Jh

〈λ j,h〉
−2N

1/2

.
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From the Weyl-type estimate (5.9), there exist N and C independent of h such that∑
j∈Jh

〈λ j,h〉
−2N

1/2

6 C,

and therefore (5.46) follows from (5.45). It remains to prove the estimate (5.47). We first

prove the weaker estimate,

5h,2( fh) ∈ OL2(M)(h
N ). (5.48)

Observe that 5h,2( fh) satisfies, for all N > 1, the equation

h2N5h,2(|4h |
N fh) = (h2

|4h |)
N5h,2( fh) = (Id− Th5h,2)

N5h,2( fh). (5.49)

By (5.27), the operator Id− Th5h,2 = Id− Th,2 is invertible on L2 with inverse bounded

by (1− θ)−1. Since |4h |
N fh ∈ C∞h , we get, from (5.49), 5h,2( fh) ∈ OL2(h2N ).

Set gh = 5h,2( fh). One has |4h |
N fh = 5h,L(|4h |

N fh)+ |4h |
N gh . From (5.45) and

(5.46), one has 5h,L(|4h |
N fh) ∈ OL∞(1). Thus we get |4h |

N gh ∈ OL∞(1), for any N .

Let Mh = T P
h , and |4̃h | = (Id+ Th + · · ·+ T P−1

h )|4h |. Then gh satisfies the equation

h2
|4̃h |gh = gh −Mh gh . (5.50)

As in (5.25), write Mh = ρh + Rh . Since Th is bounded by 1 on L∞, one gets

gh − ρh gh = h2rh + Rh gh, rh = |4̃h |gh ∈ OL∞(1). (5.51)

By the second line of (5.25) and (5.48), one has Rh gh ∈ OL∞(h∞), and by the first line

of (5.25), the operator Id− ρh is invertible on L∞ with inverse bounded by (1− γ )−1.

Thus we get, from (5.51), gh ∈ OL∞(h2). Since |4̃h |gh = 5h,2(|4̃h | fh) and |4̃h | fh ∈ C∞h ,

the same estimates shows that |4̃h |gh = rh ∈ OL∞(h2). Then (5.51) implies that gh ∈

OL∞(h4). By induction, we get gh ∈ OL∞(h2N ) for all N . The proof of Proposition 5.6 is

complete.

Let Fk = Ker(L − νk). Recall that mk = dim(Fk) is the multiplicity of the eigenvalue νk
of L. Let us denote by Jk the set of indices j such that, for h small, λ j,h is close to νk ,

and Fh,k = span(e j,h, j ∈ Jk). By Theorem 1.2 and its proof, the set Jk is independent

of h ∈]0, hk] for hk small, and one has ](Jk) = dim(Fh,k) = k for h ∈]0, hk]. Let 5Fk and

5Fh,k be the L2-orthogonal projectors on Fk and Fh,k .

Lemma 5.7. For all f ∈ Fk , one has

lim
h→0
‖ f −5Fh,k ( f )‖L∞ = 0. (5.52)

Proof. For f ∈ Fk , and h small, one has

f −5Fh,k ( f ) =
∑

j∈Jh\Jk

c j,h( f )e j,h +5h,2( f ). (5.53)

One has f ∈ C∞h , and thus, by (5.47), we get

5h,2( f ) ∈ OL∞(h∞). (5.54)
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Since f ∈ Fk , for any given j ∈ Jh \Jk , one has lim
h→0

c j,h( f ) = lim
h→0

( f |e j,h)L2 = 0.

Therefore, it remains to prove that

lim
N→∞

sup
h∈]0,h0]

∑
j∈Jh , j>N

|c j,h( f )|‖e j,h‖L∞ = 0. (5.55)

Let N � νk . From (5.42), the Cauchy–Schwarz inequality, (5.45), and the Weyl-type

estimate (5.9), there exist N0 and a constant C( f ) independent of h such that one has

the estimate∑
j∈Jh , j>N

|c j,h( f )|‖e j,h‖L∞ 6 C
∑

j∈Jh , j>N

|c j,h( f )|〈λ j,h〉
d

6 C

∑
j∈Jh

|c j,h( f )|2〈λ j,h〉
2d+2N0

1/2 ∑
j∈Jh , j>N

〈λ j,h〉
−2N0

1/2

6 C( f ) sup
h∈]0,h0]

 ∑
j∈Jh , j>N

〈λ j,h〉
−2N0

1/2

−→ 0 (N →∞).

(5.56)

In fact, since by (5.9) one has ]{ j, λ j,h 6 m} 6 C5〈m〉dim(M)/2s , one can choose N0 = 1+
dim(M)/4s. Then one has

sup
h∈]0,h0]

∑
j∈Jh , j>N

〈λ j,h〉
−2N0 6 C5

∑
m>m(N )

〈m〉−2N0〈m+ 1〉dim(M)/2s,

with m(N ) the bigger integer such that λN ,h > m(N ) for any h ∈]0, h0]. Observe that

(5.9) implies that lim
N→∞

m(N ) = ∞. The proof of Lemma 5.7 is complete.

6. The hypoelliptic diffusion

We refer to the paper of Bismut [1] and references therein for a construction of the

hypoelliptic diffusion associated with the generator L.

For a given x0 ∈ M , let Xx0 = {ω ∈ C0([0,∞[,M), ω(0) = x0} be the set of continuous

paths from [0,∞[ to M , starting at x0, equipped with the topology of uniform convergence

on compact subsets of [0,∞[, and let B be the Borel σ -field generated by the open sets

in Xx0 . We denote by Wx0 the Wiener measure on Xx0 associated with the hypoelliptic

diffusion with generator L. Let pt (x, y)dµ(y) be the heat kernel, i.e., the kernel of the

self-adjoint operator e−t L , t > 0. Then Wx0 is the unique probability on (Xx0 ,B), such

that, for any 0 < t1 < t2 < · · · < tk and any Borel sets A1, . . . , Ak in M , one has

Wx0(ω(t1) ∈ A1, ω(t2) ∈ A2, . . . , ω(tk) ∈ Ak)

=

∫
A1×A2×···×Ak

ptk−tk−1(xk, xk−1) . . . pt2−t1(x2, x1)

× pt1(x1, x0)dµ(x1)dµ(x2) . . . dµ(xk). (6.1)
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Let us first introduce some notation. Let Y = {1, . . . , p}× [−1, 1], and let ρ be the

uniform probability on Y , which means that, for any function g(k, s) on Y , one has∫
Y

gdρ =
1

2p

p∑
k=1

∫
+1

−1
g(k, s)ds. (6.2)

We denote by YN the infinite product space YN
= {y = (y1, y2, . . . , yn, . . .), y j ∈ Y }.

Equipped with the product topology, it is a compact metrisable space, and we denote

by ρN the product probability on YN. Let MN be the infinite product space MN
= {x =

(x1, x2, . . . , xn, . . .), x j ∈ M}. Equipped with the product topology, MN is a compact

metrisable space. For h ∈]0, 1], and x0 ∈ M , let πx0,h be the continuous map from YN

into MN defined by

πx0,h((k j , s j ) j>1) = (x j ) j>1, x j = es j h Xk j . . . es2h Xk2 es1h Xk1 x0. (6.3)

We will use the notation Xn
h,x0
= (πx0,h)n . This means that Xn

h,x0
is the position after n

steps of the random walk starting at x0. Let Px0,h be the probability on MN defined by

Px0,h = (πx0,h)∗(ρ
N). Then, by construction, one has, for all Borel sets A1, . . . , Ak in M ,

Px0,h(x1 ∈ A1, x2 ∈ A2, . . . , xk ∈ Ak)

=

∫
A1×A2×···×Ak

th(xk−1, dxk) . . . th(x1, dx2)th(x0, dx1). (6.4)

Let us recall that x j+1 = es j+1h Xk j+1 x j . Then t ∈ [0, h2
] 7→ e

t
h2 s j+1h Xk j+1 x j is a smooth

curve connecting x j and x j+1. Let jx0,h be the map from YN into Xx0 defined by, with

y = ((k j , s j ) j>1),

jx0,h(y)= ω ⇐⇒ ∀ j > 0, ∀t ∈ [0, h2
], ω( jh2

+ t) = e
t

h2 s j+1h Xk j+1 x j (6.5)

with x j = (πx0,h(y)) j if j > 1. Let Px0,h be the probability on Xx0 defined as the image

of ρN by the continuous map jx0,h . Our aim is to prove the following theorem of weak

convergence of Px0,h to the Wiener measure Wx0 when h → 0.

Theorem 6.1. For any bounded continuous function ω 7→ f (ω) on Xx0 , one has

lim
h→0

∫
f dPx0,h =

∫
f dWx0 . (6.6)

Observe that the proof below shows that our study of the Markov kernel Th on M is also

a way to prove the existence of the Wiener measure Wx0 associated with the hypoelliptic

diffusion. Let g be a Riemannian distance on M , and let dg the associated distance. We

start by proving that the family of probability Px0,h is tight, and hence is compact by

the Prohorov theorem.

Proposition 6.2. For any ε > 0, there exists hε > 0 such that the following holds true for

any T > 0:

lim
δ→0

(
sup

h∈]0,hε]
Px0,h

(
max

|s−t |6δ, 06s,t6T
dg(ω(s), ω(t)) > ε

))
= 0. (6.7)
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Proof. We start with the following lemma.

Lemma 6.3. Let f ∈ C∞(M). There exists C such that, for all h ∈]0, h0], one has

∀δ ∈ [0, 1], sup
nh26δ

‖T n
h ( f )− f − nh2

|4h | f ‖L∞ 6 Cδ2. (6.8)

Proof. We may assume that δ > 0 and n > 1. Then nh2 6 δ implies that h 6
√
δ. With

the notation of § 5, one has

T n
h ( f )− f − nh2

|4h | f =
∑

j∈Jh
c j,h( f )

(
(1− h2λ j,h)

n
− 1− nh2λ j,h

)
e j,h + R(n, h)

R(n, h) = T n
h 5h,2( f )−5h,2( f + nh2

|4h | f ).


(6.9)

One has |4h | f ∈ C∞h , by (5.45), Th is bounded by 1 on L∞, and nh2 6 δ 6 1. Thus, from

(5.47), we get

sup
nh26δ

‖R(n, h)‖L∞ ∈ O(h∞) ⊂ O(δ∞). (6.10)

For all j ∈ Jh , one has h2λ j,h ∈ [0, 1], and, for all x ∈ [0, 1],

|(1− x)n − 1− nx | 6
n(n− 1)

2
x2.

Therefore, we get∥∥∥∥∥∥
∑
j∈Jh

c j,h( f )
(
(1− h2λ j,h)

n
− 1− nh2λ j,h

)
e j,h

∥∥∥∥∥∥
L∞

6
n2h4

2

∑
j∈Jh

λ2
j,h |c j,h( f )|‖e j,h‖L∞ .

(6.11)

By the Weyl-type estimate (5.9), (5.42), and (5.45), there exists a constant C such that

sup
h∈]0,h0]

∑
j∈Jh

λ2
j,h |c j,h( f )|‖e j,h‖L∞ 6 C.

Therefore (6.8) is consequence of (6.10) and (6.11). The proof of Lemma 6.3 is complete.

The proof of Proposition 6.2 is now standard, and it proceeds as follows. Let ε0 > 0 be

small with respect to the injectivity radius of the Riemannian manifold (M, g), and let

ε ∈]0, ε0] be fixed. One has

ρN(dg(Xn
h,x0

, x0) > ε) =

∫
dg(y,x0)>ε

tn
h (x0, dy) = T n

h (1dg(y,x0)>ε)(x0). (6.12)

Let ϕ(r) ∈ C∞([0,∞[) be a nondecreasing function equal to 0 for r 6 3/4 and equal to

1 for r > 1, and set

ϕx0,ε(x) = ϕ
(

dg(x, x0)

ε

)
. (6.13)
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Then ϕx0,ε is a smooth function, and, from 1dg(y,x0)>ε 6 ϕx0,ε 6 1, we get, since Th is

Markovian,

0 6 T n
h (1dg(y,x0)>ε) 6 T n

h (ϕx0,ε). (6.14)

Since Th moves the support at distance 6 ch, one has ϕx0,ε(x0)+ nh2(|4h |ϕx0,ε)(x0) = 0
for ch 6 ε/2. From Lemma 6.3, we thus get that there exist hε > 0 and Cε such that

sup
h∈]0,hε]

sup
nh26δ

T n
h (ϕx0,ε)(x0) 6 Cεδ2. (6.15)

Since M is compact, it is clear from the proof of Lemma 6.3 that we may assume Cε to

be independent of x0 ∈ M . From (6.12), (6.14), and (6.15) we get

sup
x0∈M

sup
h∈]0,hε]

sup
nh26δ

ρN(dg(Xn
h,x0

, x0) > ε) 6 Cεδ2. (6.16)

Let T > 0 be given. One has, for h ∈]0, hε], the following inequalities.

ρN(∃ j〈l 6 h−2T, (l − j)h2 6 δ, dg(X
j
h,x0

, X l
h,x0

)〉4ε)

6
C
δ

sup
y0∈M

ρN(∃ j〈l 6 h−2δ, dg(X
j
h,y0

, X l
h,y0

)〉4ε)

6
C
δ

sup
y0∈M

ρN(∃ j 6 h−2δ, dg(X
j
h,y0

, y0) > 2ε)

6
2C
δ

sup
z0∈M,nh26δ

ρN(dg(Xn
z0
, z0) > ε)

(by (6.16)) 6 2CCεδ. (6.17)

In fact, for the first inequality in (6.17), we just use the fact that the interval [0, T ] is a

union of ' C/δ intervals of length δ/2. The second inequality is obvious, since the event

{∃ j〈l 6 h−2δ, dg(X
j
h,y0

, X l
h,y0

)〉4ε} is a subset of {∃ j 6 h−2δ, dg(X
j
h,y0

, y0) > 2ε}. For the

third one, we use the fact that the event A = {∃ j 6 h−2δ, dg(X
j
h,y0

, y0) > 2ε} is contained

in B ∪ j<k (C j ∩ D j ) with B = {dg(X k
h,y0

, y0) > ε} (k is the greatest integer 6 δh−2), C j =

{dg(X
j
h,y0

, X k
h,y0

) > ε}, D j = {dg(X
j
h,y0

, y0) > 2ε and dg(X l
h,y0

, y0) 6 2ε for l < j}, and the

fact that C j and D j are independent and the D j are disjoints.

Since Px0,h = ( jx0,h)∗(ρ
N), (6.7) follows easily from (6.17) and definition (6.5) of the

map jx0,h . The proof of Proposition 6.2 is complete.

With the result of Proposition 6.2, the proof of Theorem 6.1 follows now the classical

proof of weak convergence of a sequence of random walks in the Euclidian space Rd to

Brownian motion on Rd , for which we refer to [12, Chapter 2.4]. We have to prove that

any weak limit Px0 of a sequence Px0,hk , hk → 0, is equal to the Wiener measure Wx0 . We

denote by ωh(t) the map from YN into M defined by ωh(t)(y) = jx0,h(y)(t). By Theorem

4.15 of [12], it is sufficient to show that, for any m > 1, any 0 < t1 < · · · < tm , and any
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continuous function f (x1, . . . , xm) defined on the space Mm , one has

lim
h→0

∫
YN

f (ωh(t1), . . . , ωh(tm))dρN

=

∫
f (x1, . . . , xm)ptm−tm−1(xm, xm−1) . . . pt2−t1(x2, x1)

× pt1(x1, x0)dµ(x1)dµ(x2) . . . dµ(xm). (6.18)

As in [12], we may assume that m = 2. For a given t > 0, let n(t, h) ∈ N be the greatest

integer such that h2n(t, h) 6 t . By (6.5), one has, for some c > 0 independent of h and

y ∈ YN, dg(ωh(t), Xn(t,h)
h,x0

) 6 ch. Since f is uniformly continuous on Mm , we are reduced

to proving that

lim
h→0

∫
f (Xn(t1,h)

h,x0
, Xn(t2,h)

h,x0
)dρN =

∫
f (x1, x2)pt2−t1(x2, x1)pt1(x1, x0)dµ(x1)dµ(x2).

(6.19)

From (6.4), one has∫
f (Xn(t1,h)

h,x0
, Xn(t2,h)

h,x0
)dρN =

∫
f (x1, x2)t

n(t2,h)−n(t1,h)
h (x1, dx2)t

n(t1,h)
h (x0, dx1). (6.20)

By (6.19), (6.20), we have to show that, for any continuous function f (x1, x2) on the

product space M ×M , one has

lim
h→0

∫
M×M

f (x1, x2)t
n(t2,h)−n(t1,h)
h (x1, dx2)t

n(t1,h)
h (x0, dx1)

=

∫
M×M

f (x1, x2)pt2−t1(x2, x1)pt1(x1, x0)dµ(x1)dµ(x2), (6.21)

or, equivalently,

lim
h→0

T n(t1,h)
h

(
T n(t2,h)−n(t1,h)

h ( f (x1, .))(x1)
)
(x0) = e−t1 L

(
e−(t2−t1)L( f (x1, .))(x1)

)
(x0).

(6.22)

Since ‖T n(t,h)
h ‖L∞ 6 1 and ‖e−t L

‖L∞ 6 1, the following ‘central limit’ theorem will

conclude the proof of Theorem 6.1.

Lemma 6.4. For all f ∈ C0(M), and all t > 0, one has

lim
h→0
‖e−t L( f )− T n(t,h)

h ( f )‖L∞ = 0. (6.23)

Since one has ‖T n(t,h)
h ‖L∞ 6 1 and ‖e−t L

‖L∞ 6 1, it is sufficient to prove that (6.23)

holds true for f ∈ D, with D a dense subset of the space C0(M), and therefore we may

assume that f ∈ Fk is an eigenvector of L associated with the eigenvalue νk . We set

n = n(t, h), and we use the notation of § 5. One has

T n
h ( f ) =

∑
j∈Jk

c j,h( f )(1− h2λ j,h)
ne j,h + Rt,h( f ), (6.24)
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with

Rt,h( f ) =
∑

j∈Jh\Jk

c j,h( f )(1− h2λ j,h)
ne j,h + T n

h 5h,2( f ). (6.25)

One has |(1− h2λ j,h)
n
| 6 1, and Th is bounded by 1 on L∞. By (5.54) and (5.55), we

thus get

lim
h→0
‖Rt,h( f )‖L∞ = 0.

One has lim
h→0

(1− h2λ j,h)
n(t,h)

= e−tνk , for all j ∈ Jk . Moreover, one has ]Jk = mk and

suph∈]0,h0]
sup j∈Jk

‖e j,h‖L∞ <∞, by Lemma 5.5. Therefore, Lemma 5.7 and e−t L( f ) =
e−tνk f imply that

lim
h→0

∥∥∥∥∥∥
∑
j∈Jk

c j,h( f )(1− h2λ j,h)
ne j,h − e−t L( f )

∥∥∥∥∥∥
L∞

= 0.

The proof of Lemma 6.4 is complete.
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A.

Let P = P(x, ∂x ) be an elliptic second-order differential operator on M , with smooth

coefficients, such that P = P∗ > Id, where P∗ is the formal adjoint on L2(M, µ) = L2.

Let (e j ) j>1 be an orthonormal basis of eigenfunctions of P in L2, and let 1 6 ν1 6 ν2 . . .

be the associated eigenvalues. By the classical Weyl formula, one has

#{ j, ν1/2
j 6 r} ' rdim(X). (A 1)

For s ∈ R and f =
∑

j
f j e j in the Sobolev space H s(M), we set

‖v‖2H s =

∑
j

νs
j | f j |

2
= (Ps f | f )L2 .

Let us recall that this H s-norm depends on P, but another choice for P gives an equivalent

norm. The following elementary lemma is useful for us.

Lemma A.1. Let s > 0, and let Ah = A∗h > 0, h ∈]0, 1], be a family of non-negative

self-adjoint bounded operators acting on L2(M, µ). Assume that there exists a constant

C0 > 0 independent of h such that, for all u ∈ L2(M, µ), the following holds true:

((Id+ Ah)u|u) 6 1⇒ ∃(v,w) ∈ H s
× L2 such that u = v+w, ‖v‖H s 6 C0, ‖w‖L2 6 C0h.

(A 2)
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Let C1 <
1

4C2
0

. There exists C2 > 0 independent of h such that Spec(Ah)∩ [0, λ− 1] is

discrete for all λ 6 C1h−2, and

#(Spec(Ah)∩ [0, λ− 1]) 6 C2〈λ〉
dim(M)/2s, ∀λ 6 C1h−2. (A 3)

Here, #(Spec(Ah)∩ [0, r ]) is the number of eigenvalues of Ah in the interval [0, r ] with

multiplicities, and 〈λ〉 =
√

1+ λ2.

Proof. Let Bh = Id+ Ah . Let Ch be the bounded operator on L2 defined by

Ch

∑
j

u j e j

 =∑
j

min(h−1, ν
s/2
j )u j e j .

For u = v+w, one has

‖Chu‖2L2 6 2‖Chv‖
2
L2 + 2‖Chw‖

2
L2 6 2(‖v‖2H s + h−2

‖w‖2L2).

From (A 2), we get, for all u ∈ L2,

‖Chu‖2L2 6 4C2
0(Bhu|u). (A 4)

For any non-negative self-adjoint bounded operator T on L2, set, for j > 1,

λ j (T ) = min
dim(F)= j

(
max

u∈F,‖u‖L2=1
(T u|u)

)
.

It is well known that, if #{ j, λ j (T ) ∈ [0, a[} <∞, the spectrum of T in [0, a[ is discrete,

and, in that case, the λ j (T ) ∈ [0, a[ are the eigenvalues of T in [0, a[ with multiplicities.

From (A 4), we get, for all j > 1, the inequality

λ j (Bh) >
1

4C2
0
λ j (C2

h). (A 5)

For all j such that νs
j < h−2, one has λ j (C2

h) = ν
s
j , and, therefore, for all λ < h−2,

we get from (A 1), #{ j, λ j (C2
h) 6 λ} 6 C〈λ〉dim(M)/2s . Therefore, the spectrum of Bh in

[0, h−2/4C2
0 [ is discrete, and (A 3) follows from (A 5) and Spec(Ah) = Spec(Bh)− 1. The

proof of Lemma A.1 is complete.

Lemma A.2. Let N = N1⊕ · · ·⊕Nr be the free up to rank r nilpotent Lie algebra with p
generators. Let (Y1, . . . , Yp) be a basis of N1, and let (Z1, . . . ,Zp) be the right invariant

vector fields on N such that Z j (0) = Y j . Let S(N ) be the Schwartz space of N . Let

ϕ ∈ S(N ) be such that
∫
N ϕdx = 0. Then there exists ϕk ∈ S(N ) such that

ϕ =

p∑
k=1

Zk(ϕk). (A 6)

Proof. Let Y α = Hα(Y1, . . . , Yp), and let Zα be the right invariant vector fields on N
such that Zα(0) = Y α. Let uα, α ∈ A be the coordinates on N associated with the basis
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(Y α, α ∈ A) of N . Let ∂α be the derivative in the direction of uα. Let ϕ ∈ S(N ) such that∫
N ϕdx = 0. Using the Fourier transform in coordinates (uα), and ϕ̂(0) = 0, one easily

gets that there exist functions ψα ∈ S(N ) such that

ϕ =
∑
α∈A

∂α(ψα). (A 7)

By (2.3), the vector field Zα is of the form

Zα
= ∂α +

∑
|β|>|α|

pα,β(u〈|β|) ∂β = ∂α +
∑
|β|〉|α|

∂β pα,β(u<|β|),

where the pα,β are polynomials in u depending only on (u1, . . . , u j ) with j < |β|.
Therefore, there exist polynomials qα,β such that

∂α = Zα
+

∑
|β|>|α|

Zβqα,β .

Since the Schwartz space S(N ) is stable by multiplication by polynomials, we get from

(A 7) that there exists φα ∈ S(N ) such that

ϕ =
∑
α∈A

Zα(φα). (A 8)

For |α| > 1, there exist j ∈ {1, . . . , p} and β with |β| = |α| − 1 such that Zα
= Z jZβ

−

ZβZ j . By induction on |α|, since the Schwartz space S(N ) is stable by the vector fields

Z j , this shows that, for any α and φ ∈ S(N ), there exists φ j ∈ S(N ) such that Zα(φ) =
p∑

j=1
Z j (φ j ). Thus (A 6) follows from (A 8). The proof of Lemma A.2 is complete.
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