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Introduction

Motivations

Consider a time homogenous Langevin processes
dX: = &£(Xt) + V2ho(X:)dB;

where
- (B:) = Brownian motion on M = R? or a compact manifold.
- & M — TM = vector field
- the matrix o is the diffusion coefficient

- h is proportional to the temperature of the system.
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Metastability (process point of view)

Denote X* = {& = 0} the set of stationary points of &.

@ Assume x, € X* is asymptotically stable for the deterministic
flow h = 0: for x ~ xy, X¢(x) remains close to x, and
converges to x, when t — +00.

o If 0 < h << 1, X; may stay close to x, during long time
(depending on h) until it escapes and converges to another
stationary point

@ One aims to quantify this discrete dynamic on the set of
critical points
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The exit problem from a fixed domain

Let 2 € M be a smooth bounded open set. Given x € Q denote
T5e = inf{t >0, X ¢ Q}
where XX denotes the process with initial condition X;_, = x.
e compute E(75.)?
@ compute the distribution of the exit point X%c

@ links with the spectrum of the associated generator

@ Hitting time problem: given two equilibrum point X, Vv,
compute E(Tl;?y*7h))

o Freidlin-Wentzell 70's, Day 80’s, DiGesu-Lelievre-Le
Peutrec-Nectoux 10 's, Bovier-Eckhoff-Gayrard-Klein (00's)
See the review by [Berglund 13].
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Fokker-Planck equations

The generator of the process (X;) is
L=—h) ajj00x — > &by,
i k
with a = (a;j) = oot. We shall denote £ the formal adjoint of £

e Given any test function ¢, let u(t,x) = E(¢(X[)). Then u
solves the Fokker-Planck equation

Otu+Lu=0, ys—g=1¢

@ Denote by u(t, x) the law of the process (X:) with initial
distribution po. Then p solves the

oeu+ L =0, Hlt=0 = Mo
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Stationary measure

We will often assume the following

Assumption Gibbs

There exists a smooth function f : R — R such that
Li(e=f/M) = 0.

v

@ Solving the equation in adapted functional spaces.

@ Long time behavior of the solutions? Return to equilibrium?
Eyring-Kramers law?

@ Resolvent estimates

@ Spectral asymptotics?

\
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Summary of some questions of interrest

@ Reversible processes (self-adjoint generator)
e Boundaryless case
e topological questions
@ construct sharp quasimodes
e Boundary case
@ relation between spectrum and exit time
@ exit event
@ construction of quasimodes
@ Non-reversible processes (non self-adjoint generator)
o Resolvent estimates
o Elliptic situation
@ Hypoelliptic situation
e Quasimode construction
o Eigenvalue expansion (return to equilibrium)
e Boundary value problems
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Questions discussed in this lecture

@ Reversible processes (self-adjoint generator)
e Boundaryless case
e topological questions
@ construct sharp quasimodes /
e Boundary case
o relation between spectrum and exit time 4/
@ exit event 4/
@ construction of quasimodes -/
@ Non-reversible processes (non self-adjoint generator)
o Resolvent estimates
o Elliptic situation 4/
o Hypoelliptic situation /
o Quasimode construction 4/
o Eigenvalue expansion (return to equilibrium) +/
e Boundary value problems +/
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© Semiclassical analysis of Schrodinger operators
@ Recalls on selfadjoint operators
@ Harmonic approximation
o WKB methods
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Recalls on selfadjoint operators

Recalls on unbounded operators

Let H be a Hilbert space and A: D(A) — H be un unbounded
operator with dense domain D(A).

@ A s said to be closed if its graph is closed.

@ The spectrum o(A) of a closed operator A is defined by

o(A)° ={zeC, (A—z) is invertible }
If z¢ o(A), then (A — z)~1 is bounded.
@ The adjoint A* of A has domain
D(A*) ={veH, 3C, >0, Vue D(A), [(Au,v)| < C|u|}
e We say that A is symmetric if D(A) < D(A*) and for all
u,ve D(A), (Au, vy = (u,Av)
o We say that A is self-adjoint if A is symmetric and
D(A) = D(A*).
@ We say that A is essentially self-adjoint if it admits a unique
self-adjoint extension.
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Recalls on selfadjoint operators

Functionnal calculus of self-adjoint operators

o Let A: D(A) — H be self-adjoint. Denote B,(RY) the space
bounded Borel functions. There exists an application
f > f(A) defined on Bp(R?) such that
o (F+8)(A) = f(A) + g(A), (f)(A) = F(A)g(A)
o [F(A)] = supxeo(ay |FOV)]
o if f >0, then f(A) >0

e Given a Borel set Q c R, denote Py = 1o(A).
e For any v € H, Q + (Pq1,1) is a Borel measure denoted by
d{Px1,1). One has

A,y = f NPy, 1)

or more shortly
f(A) = J f(\)dPy
a(A)

@ the above formula can be generalized to unbounded function
f for 9 in suitable domains.
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Recalls on selfadjoint operators

Applications of functional calculus

@ One has the resolvent estimate for self-adjoint operators

1
Vze C\o(A A—2) Y yow < ————.
2eCo(A), (A=2) on < s

@ Assume A is a non-negative self-adjoint operator. Let
ug € D(A) and let u(t) = e"*ug. Then u solves the heat
equation

Otu+Au =0, up_g = uo.

@ Assume A has compact resolvent and denote Ax, k = 1 the
increasing sequence of eigenvalues and [Nk the associated
orthogonal projector. Then f(A) = >}, -, f(Ax)Mk. In
particular for any K > 1

K—1
e—tA _ 2 e_tkkl_lk—&— OH(e_t)\K)
k=1
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Recalls on selfadjoint operators

Spectrum of self-adjoint operators

Theorem (Weyl criterion)

Let A: D(A) — H be a self-adjoint operator and let A € C. Then
A € o(A) iff there exists a normalized sequence (f,) such that
(A= X)f, > 0as n— .

Definition-Proposition

| A

@ The essential spectrum of A (denoted by 0ess(A)) is the set of
A € C such that there exists an infinite orthonormalized
sequence (f,) such that (A — \)f, — 0 as n — o0.

@ The discrete spectrum of A (denoted by o4isc(A)) is the set of
eigenvalues of A which are isolated with finite multiplicity.

One has 0(A) = 0yisc(A) L Oess(A).

A
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Recalls on selfadjoint operators

Maxi-min principle

Proposition (Maximin principle)

Let A: D(A) — H be a self-adjoint operator bounded from below.
Assume A admits an increasing sequence of eigenvalues (Ag)k>1
such that Ax < inf oess(A). Then one has

Ak = max min (Au, u).
Iﬁl,...,wn,lEH uED(A),uJ_’lﬂh...,'l/)n_l

Let F be a finite dimensional subspace of H.
o Assume dim F = k and A > a on D(A) n F-, then \j41
@ Assume F < D(A), dimF = k and A< aon F, then A,

a
a

N\
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Recalls on selfadjoint operators

Schrodinger operators

Consider a semiclassical Schrodinger operator on L?(RY)
P=—hA+V

@ Assume V € CO(R",R) bounded from below, V > —m, then
P is essentially self-adjoint on C*(RY).
o If lim,|_, ;o V(x) = +c0, then P has compact resolvent

o(P) = {eigenvalues going to + o0}
o If lim inﬂxb%o V(x) = co > 0, then
Tess(P) < [co + o]
and

o(P)n] — o0, co[= 04isc(P) = {finite multiplicity eigenvalues}
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Recalls on selfadjoint operators

@ Using functional calculus one has

K—1
e—tP _ Z eft)‘kl_lk—&— O(eftAK)
k=1

where A\; < ... < A, < ... denote the sequence of eigenvalues
below the essential spectrum.

@ One aims at computing the eigenvalues of P when h — 0.
This leads to

e Harmonic approximation
o WKB methods
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Harmonic approximation

The harmonic oscillator

Let A be a symmetric positive definite matrix and let
Na(h) = —h*A + (Ax, x)

acting on L2(R9). Then
@ Na(h) has compact resolvent
@ One has
a(Na(h)) = {hv, ke N}

where vy = ch-’:l /Hj(2kj + 1) and the p; are the eigenvalues
of A.

1
o hig has multiplicity 1 associated to e <A2x)/h,

@ eigenfunctions= Hermite functions are O(e“x‘2/°h) for some
c>0.
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Harmonic approximation

Proof

@ Using unitary transformation U such that U*AU is diagonal
we can assume d = 1. We study

2
N = hZ% + a%x?
on the line.
@ We make the change of variable x — (3 )%x then N~ haQ
with P2
Q:—ﬁ+x =b*b+1

with b = 0y + x.
@ observe that b(e_XQ/z) = 0 gives the ground state
@ use
Qb*u = b*Q + 2b*

to generate the other eigenvalues
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Harmonic approximation

Single well potential

Let P = —h?A + V with V a smooth confining potential with only
one local minimum (in x) which is non degenerate. Then

Theorem [Helffer-Sjostrand, Simon 80's]

o(P) is made of eigenvalues of finite multiplicity (Ex(h))ene and
for all k € Z4,

6
5

Ek(h) = V(Xo) + vih + O(h )

where v are the eigenvalues of Na(1) with A = £ Hess(V)(xo). In
particular the bottom of the spectrum is

d
Eo(h) = Z %

where ); are the eigenvalues of Hess(V)(xo).

M\H
Lmo«
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Harmonic approximation

Harmonic approximation

We can assume xg = 0 and V/(xg) = 0. Assume to simplify the
numerology d = 1. Let (fi(h)),ene be the Hermite function
associated to the eigenvalue vgh of Na(h). Recall

fi = O(e WF/ch,

Let xy € C*(RY) equal to 1 near 0.

@ Introduce the quasimodes gi(h) = X(hfgx)fk(x)
@ For k =0, let
Fr = span{gl, v 7gk}

with the convention Ffy = (.

1
Observe that gx — fr = O(e=" ®) in any Sobolev norm.
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Harmonic approximation

Upper bound on A.

Denote Ny = Na(h). Recall that
2 1 3 3
P=—h"A+ §<Ax,x > 4+0(|x]”) = Na+ O(|x]?)

Moreover |x|3 = O(hg) on supp(xn). Hence, for any j < k, one
has

6
(Pgj, 8> = (Nagj, gj) + (O(x*)gj, &) = (Nagj, gy + O(hs) ;|
Moreover

1
Nagj = Nafj — Na((1 = xn)fj) = hvjgj + O(e™" )
hence for all j < k
B
(Pgj, &> = hvjlgj|* + O(h3)|g?

which shows that, A\ < hyy + O(h5)
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Harmonic approximation

Lower bound on .

Assume u € F,({l. Then xpu is orthogonal to span{f;, j < k —1}.
Hence,

6 6
(Pxhu, xnuy = {Naxnu, xnuy+O(hs) [xnul® = (hvi+O(hs))|xnul

and
(P(1=xn)u, (1 = xn)u) = V(1= xn)u, (1= xn)u)
> COA(1— xn)u, (1= xp)u)
> h5|(1 = xn)ul
and hence

(Pu,uy = (hvg + O(h%))|ul?

which shows that Agy1 > hvx — O(hS).
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Harmonic approximation

Generalization

Let P = —h*A + V + hW with:
@ V a smooth confining potential with only one local minimum
in0
@ Hess(V)(0) invertible
@ W a smooth bounded potential

Theorem [Helffer-Sjostrand, Simon 80's]

o(P) is made of eigenvalues of finite multiplicity (Ex(h))ene and
for all k € Z4,

Ex(h) = V(0) + h(vx + W(0)) + O(hS)

where v are the eigenvalues of Na(1) with A = % Hess(V/)(0). In
particular the bottom of the spectrum is

Eo(h) ')7) + O(hs)

I
=
N
_l’_
=
=
N
+
w/—\}’
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WKB methods

Semiclassical anzats

Prove more precise spectral asymptotics \

Suppose V(0) = 0. One looks for (E(h) uh) under the form
E(hy~h) WEj, up(x oMY W aj(x)

Jj=0 Jj=0

Plug this into the equation (—h?A + V — E(h))up, = 0, we get
@ Eikonal equation
IVo(x)|? = V(x)

e Transport equations
1 _
(/:, — Eo)aj = EAaj_l + Z Ej,kak
k=0

with L =V¢ -V + %Aqﬁ and the convention a; = 0 for k < 0.
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WKB methods

Positive solutions of the Eikonal equation

One aims to solve near 0
[Vo(x)]? = V(x)
Hess(¢) > 0

If V(x) = (Ax,x) with A = I Hess(V/)(0), take ¢(x) = <A%x,x>.
In the general case, we can use symplectic geometry
o Let g(x,&) = |£|> — V(x) and the associated Hamiltonian
vector field Hy = 0:q0x — 0xq0k.
@ Observe that g is constant along the flow exp(tHg)
e apply the stable/instable manifold theorem to the H, flow in
(0,0) gives stable manifold A, < R??
@ one has A\, < {qg =0}
@ since Hess(V)(0) > 0 then dim(Ay) = d
e A, is Lagragian, Ay = {{ = V¢ (x)} for some smooth
function ¢
@ Hess ¢ (0) is positive definite
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WKB methods

Solving the transport equations

e Equation on a;:
([, — Eo)aj = Rj
with £ = V¢ -V + $A¢.
o Consider the vector field [ = V-V and let k = 1 A¢ — E.
We look for non trivial solutions u of

lu+ku=g

by characteristic method.

o Let 7, be the integral curve of ' such that 7,(0) = x. Then

(5 + k()0 = 8(3)
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WKB methods

o Integrate between —o0 and 0 gives

0 t
ulo) = w0)e™ Lo KD 1 [T RkOONIg (1))

which is well defined and smooth as soon as
o k(0)=0
e g vanishes at infinite order in 0.
o Consequently, we first solve the transport equation modulo

0(x%)
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WKB methods

Approximate solution of the transport equations

@ We look for solutions u of
lu+ ku=g.

in formal power expansion u = ] - um with u, € 27
homogenous polynomial of degree m.

o Denote H = Hess(¢)(0), then I = Hx - 0x + O(x?)dx. Then
(Hx - 0x + k(0))uo = go (TO)
and form>1
(Hx - 0x + k(0))um = vim (T>)

where v, depends on g, Ug, ..., Un—1.
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WKB methods

(]

To simplify consider the first transport equation, then gg = 0.

Since Hx - dx = 0 on &P solving (T0) is possible as soon as
k(0) = 0. This is equivalent to choose Eq = £A¢(0).
@ Since H is definite positive, then for m > 1, Hx - 0 is

invertible on #7}"  which permits to solve (T>).

@ Using a Borel procedure, we obtain solution & such that
M+ ki = O(x™)
@ We look for solution u under the form u = i + v with
v = O(x®). Then v solves
v+ kv =g (1)
for some g = O(x*) depending on .
@ Conclude with characteristic method.
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WKB methods

Accurate asymptotics

Using the previous construction we get the following

Theorem [Helffer-Sjostrand 80's]

For any k > 1, there exists a formal serie Ex(h) ~ h} ;- WEk j
and a symbol ax(x, h) ~ .-, Waj(x) such that near x = 0, one

Ij
has

(P — Ex(h))(ake™?") = O(h®)e= 9/

with Ex o # 0 equal to the k-th eigenvalue of the harmonic
approximation of P and ag = 1.

As a corollary, we get the following

Theorem [Helffer-Sjostrand 80's]

For any k € N, the eigenvalues A\x(h) admits a power expansion
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WKB methods

Proof

Let fi = yaxe %/h for some cut-off function x. Then
(Pfi, fiy = Ex(h)|f|® + O(h*)

hence by maxi-min principle, A\ < E; + O(h™). Conversely,
assume by contradiction there exists M € N such that
M < Ex(h) — Ch™ and let N = M + 1. Hence the Riesz projector

. 1
Mg = — (z—P)"tdz = 0.
2im JoD(Ex(h),hV)

Since )\k+1 > E (h) + Ch then for all z € dD(E,(h), h"), one has
(P —2z)"t = O(h™M) and since (P — Ex(h))fx = O(h™), then

(z—P)7 Yy = (z — E) Y + O(h™).

This implies Mg f, = fi + O(h*) which is a contradiction. o
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WKB methods

Keywords to go further

o multiple well setting

degenerate situations (non-resonant wells, submanifolds
critical sets)

exponential estimates of eigenfunctions (Agmon estimates)
tunnel effect

resonance theory

non-selfadjoint operators
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WKB methods
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e Reversible processes
@ Eyring-Kramers law for Witten laplacian
@ The labelling procedure
@ Sketch of proof
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Eyring-Kramers law for Witten laplacian

Overdamped Langevin equation

Consider the overdamped Langevin process
dX; = —2Vf(X;) + V2hdB,
The generator of this process is
L =hA—-2Vf- V.
We consider this operator on [2(R?, e=2f/"dx). Let Qi) = e/,
then

QQ = _%Af,h

where A¢ ), = —h?A + |Vf|? — hAf is the semiclassical Witten
Laplacian associated to f.
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Eyring-Kramers law for Witten laplacian

Witten Laplacian |

Assumption (Confin)

There exists C > 0 and a compact K < R9 such that for all
x € RY\K, one has

ViG] > &, [Hess(f(x))| < CIVF2, and (x) > Clxl.

Under this assumption, one has the following properties
e As is essentially self-adjoint on CZ(X).
e Ar =0
@ there exists Cp, hg > 0 such that for all 0 < h < hg

Uess(Af> < [C07 QO[

@ 0 is an eigenvalue of Af associated to the eigenstate e~ /",
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Eyring-Kramers law for Witten laplacian

Witten Laplacian Il

Assumption (Morse)

We assume f is a Morse function. We denote
@ U = critical points of f
o UP)= critical points of f of index p
o n, =HUP) <

Theorem [Witten 82, Simon 84, Helffer-Sjostrand 84]

There exists C, €y, hg > 0 such that for all 0 < h < hg one has
ﬂo‘(Af) N [0,60/7] = ng.

Moreover
o(Af) N [0, e0h] = [0,e /M.
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Eyring-Kramers law for Witten laplacian

Proof

o Apply previous result to P = —h’A + V + hW with
= |Vf|?> and W = —Af
@ The minima of V are all the critical points of f denoted by U.
@ In any point u € U, one has
Hess(V) = 2Hess(f)?> and W = — trHess(f)
In particular the eigenvalues of Hess(V/) are \; = 2)\12, where
Aj = eigenvalues of Hess(f).
@ Apply harmonic approximation in xg € U. The associated first
eigenvalue is

N\»—A
U'HG\

w\yl

d
O_hE (0)) + O(h#)

A

= h2,

)\\—Z)\ + O(hs)
j=1
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Eyring-Kramers law for Witten laplacian

e First case: xp is @ minimum of f. Then all the )\; are

positive, hence
d d
DNI=2 N =0
j=1 j=1
which implies
Eo = O(hS)

@ Second case: Xxp is a critical points of index j > 1. Then
one of the )\; is negative and hence

d d
DI =DIA>0
j=1 j=1

which implies
Eo = h

for some ¢g > 0



Reversible processes
00000@00

Eyring-Kramers law for Witten laplacian

o Let me U® and let y € C*(RY) be equal to 1 near 0. For
r > 0 small, let

X—m )
/l/)m,r(X) = Zm,hX( )ef(fff(m»/h

with Zpy, 5 > 0 such that |V |2 = 1. By Laplace method,
one has

Zon — - det Heis(f)% .
T
e Since Are~ /" =0, then
Aftpm,r = h* Zoplx, A~
@ Since f — f(m) = ¢ > 0 on supp([x, A]) then

Afthm,r = O(e=/h)
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Eyring-Kramers law for Witten laplacian

Exponentially small eigenvalues: log-limit

Denote 0 = A1 (h) < Aa(h) < ... < Ay (h) the small eigenvalues of
A

@ On compact manifolds, [Holley-Kusuoka-Stroock 89] proved
(by functional inequalities approach) that

Cihe™23/" < \y(h) < Gohe™25/h

with S = highest height a particle has to jump in order to
reach the absolute minimum of f

o [Mathieu 95], [Miclo 95] generalized this result to \;, j > 3
(functional inequalities)

@ Breackthrough in understanding the interraction between
wells by [Bovier-Eckhoff-Gayrard-Klein 04].
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Eyring-Kramers law for Witten laplacian

Let us write A(m, h), m € U(®) the ny small eigenvalues of Ar.

Theorem [Bovier-Gayrard-Klein 04], [Helffer-Klein-Nier 04]

Suppose (Confin), (Morse) and a non-degeneracy assumption
(NonDegen) are satisfied. Then, there exists a map

iU Pyl

such that f is constant on j(m) and for all m € /(©) and h small
enough
f(j(m))—Ff(m
Am, h) = h¢(m, hye 2
where {(m, h) = 0 and for all m # m, ¢ admits a classical
expansion ¢ ~ >, hK() with

go(m):(detHessf(m))% 5 ()] )

2 ) | det Hess f(s)|%

sej(m
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The labelling procedure

The labelling procedure |

For any s € YY) and r > 0 small enough, the set
B(s,r) n{xeR? f(x) < f(s)}

has exactly two connected components Cj(s,r), j = 1,2.

Definition [Hérau-Hitrik-Sjostrand 11]

o seUW is a separating saddle point (ssp) iff Ci(s, r) and
Cy(s, r) are contained in two different connected components
of {x e RY, f(x) < f(s)}. We denote by V(1) the set of ssp.

@ 0 € R is a separating saddle value (ssv) if it is of the form
o = f(s) with s € V(1. We denote
Y = f(V(l)) = {0'2 >03>...> O'N}.
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The labelling procedure

Example of SSP |

Level set of a potential with 2 minima, 2 saddle points and 1
maximum
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The labelling procedure

Example of SSP Il




Reversible processes
000®00000

The labelling procedure

Example of SSP Il

s1 is not separating
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The labelling procedure

Example of SSP Il

Ci(s2,r) Co(so, r)
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The labelling procedure

Example of SSP Il

C1(52,r) Cé(Sz,r)

S is separating
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The labelling procedure

The labelling procedure I

Add a fictive infinite saddle value o1 = +o0 to X and let
Y={o1juX={o1>02>...>0pn}

@ To 01 = 40 associate the unique connected component
Eiq1 = RY of {f < o1}. In E1 1, pick up my 1 one (non
necessarily unique) minimum of flEy -

@ The set {f < oy} has finitely many connected components.
One of them contains my 1. The others are denoted
Ex1,...,Exn,. In each of these CC, one choses one absolute
minimum my ; of f|52.j.

@ The set {f < o} has finitely many CC. One denotes by
Ex1,..., Exn, those of these CC which do not contain any
m;j, I < k. In each E, j one choses one absolute minimum
mg ; of fiEk,j'
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The labelling procedure

The labelling procedure Il

@ Denote m = my ; the absolute minimum of f that was chosen
at the first step of the labelling procedure.

o Let O(R?) denote the connected open subsets of RY. Using
the preceding labelling one constructs the following
applications:

o o:U® - ¥ defined by o(m;;) = o;.
o E:U® — O(RY), defined by £E(m; ;) = E; ;. Thatis E(m) is
the CC of {f < f(o(m))} that contains m.

U@ —puW)
defined by j(m) = 0E(m) n V).
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The labelling procedure

The non degeneracy Assumption

The following hypothesis introduced by Hérau-Hitrik-Sjostrand
(2011) is a generalization of Bovier-Gayrard-Klein and
Helffer-Klein-Nier assumption (2004).

Non Degeneracy Assumption (NonDegen):

For all m e (9, the following hold true:
i) fie(m) has a unique point of minimum

i) for any m # m’, j(m) njm’) = &
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Sketch of proof

Proof: Finite dimensional reduction

The general strategy:
@ Introduce
o F(©) = eigenspace associated to the ng low lying eigenvalues
o M = projector on F© .
o M = restriction of Af to F(®,
We have to compute the eigenvalues of M.

@ Construct suitable WKB approximated eigenfunctions 905,?)

indexed by m € /(9 and show that

I—I(O)gp.(,?) = 995,?) + error

@ Compute the matrix of M in the base I'I(O)npf,?).

@ Compute the eigenvalues of M by complex analysis methods
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Sketch of proof

Construction of Gaussian quasimodes

@ To simplify consider the double-well case with 2 minima m;
and my and one saddle point s = 0. Assume also
f(ml) < f(mz) =0.

@ Inspired by [Bovier etal 04], [Di Gesu Le Peutrec 17], [Le
Peutrec-Michel 20], we consider the quasimodes

oy = Zye (= m)/h

and

Pmy = Zox2 Ope” (F=Fm2))/h

with x2 and 6, suitable cut-off functions
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Sketch of proof

Definition of 6,

Look for 6 = 65 under the form

1 L(x,h) )
O(x,h) =1+ = e s /2 s (2)
Ch Jo
with

e (smooth, £(x,h) ~ >,;-q We;(x) and £y # 0.

@ Think £(x, h) as a linear coordinate function nears s,
U(x,h) ~ (x —s) - &(s)

@ ¢j normalization coeff. such that v = —1 for £ >> 1 and
v=1forl << -1
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Sketch of proof

Cut-off functions

supp(x2)

_ -7 supp(x2)
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Sketch of proof

Action of the operator on the quasimodes

Lemma

One has ,
P(0e~ /") = (w + r)e=(FT2)/h,

where
w = h(2Vf - VL + |VIPl) — AL

the function r and all its derivatives are (locally) bounded,
uniformly with respect to h, and supp(r) < {|¢| = 7}.
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Sketch of proof

Equations on /

@ We look for ¢ so that
w = O(h®)

o Using the expansion ((x, h) ~ > ;g W;(x) and identifying
the powers of h, we get the
e "Eikonal” equation on ¢

2VF -V + ‘V@o‘zfo =0
e Transport equations on the ¢;, j > 1
2V -Vl + 206Vl - VU + |V 2 = —Ri(x, 4o, - .., 4j—1),

with R; depending only on fo, ..., ¢;_1.
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Sketch of proof

Resolution of the "Eikonal” equation

@ Let ¢, be "the definite positive” solution of
Vo[ = [V
@ One can show that 1
oy —f = 5&2)

for some smooth function ¢y

lo solves the " Eikonal" equation.

Let £(s) = V/p(s). Then &(s) is an eigenvector of Hess(f)(s)
associated to its unique negative eigenvalue p(s) and

HOIEE

@ Observe in particular that £ + %63 is positive definite.
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Sketch of proof

End of the proof

Denote S, = f(s) — f(my) and let ((h) ~ >~ h"¢, with (o # 0.

Proposition

Assume ( Morse) and (Confin) and that there exists
L2(Q2)-normalized functions ¢ € D(Py) such that:

o (Phpan, p2nyiz = ((h)e™2%2/h,
%2 = O(hoo)<PhS02,h7S02’h>L2,

® |Prp2,nl

then

A(mga, h) = h¢(h)e 252/
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Sketch of proof

Remarks

@ The original semiclassical proof by Helffer-Klein-Nier uses
supersymmetry properties of the Witten Laplacian. This
requires

e introduce the Witten Laplacian A,(cl) on 1-forms

o use Helffer-Sjostrand’s BKW constructions for A;l)
@ The gaussian quasimodes construction is more robust and can
be generalized to

o Non-reversible settings [Le Peutrec-Michel 20], [Bony-Le
Peutrec-Michel 22]
o pseudodifferential settings [Normand 23]
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Sketch of proof

Extensions

General Morse functions [Michel 19]

Small eigenvalues of Witten Laplacian on p-forms [Le
Peutrec-Nier-Viterbo 2013]
@ More general critical sets
o Arhenius law for general functions [Le Peutrec-Nier-Viterbo, to
appear]
o submanifold critical sets [Assal-Bony-Michel 23]
@ Problems with boundary
o Dirichlet BC [Helffer-Nier 2006]
o Neumann BC [Le Peutrec 2010]
o First exit point from a domain [Di Gesu-Le
Peutrec-Lelievre-Nectoux 2010's]
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Sketch of proof
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General Framework

General framework

We consider a semiclassical second order differential operator
1
P = —hdivoAo hV + §(b~ hV + hdivob) + ¢

where the symmetric matrix A = (aj;), the vector field b = (by)
and the function ¢ depend smoothly on x € RY. Throughout, we

assume
dyaij(x,h) = 0O(1),

|>0
Vja| =1, 02bi(x,h) = O(1),
| =2, 0%(x,h)=0(1).
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General Framework

General framework

We assume that for any e € {ajj, bj, c}, one has the classical
expansion

K
Vae N, VK >0, 0%(e — )| h*e¥) = O(h"TT)
k=0

We also assume that

®(x) =0, and A(x,h) = (a;j(x, h));; is positive semidefinite.

Theorem [Hérau-Hitrik-Sjostrand 2008]

Under the above assumption the operator P initially defined on
(R?) admits a unique maximal accretive extension.
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General Framework

Some examples

o Witten Laplacian: Take A=1d, b =0 and
c(x) = |Vf(x)|? — hAf(x), then

P = —hA +|VFf|? — hAf = Af

@ Non reversible diffusion: take A = Id,
c(x) = |[Vf(x)]?2 — hAf(x) and b(x)LVf(x) on RY, then

P = Af+ b- hox
@ Generalized Kramers-Fokker-Planck operators: take
(0 0 [ o W(v)
A_(Old>M&”_<—@W@>
c(x,v) = [0, W(v)|?> — hA,W(v). Then
P=0,W-hox—0xV-ho, +Aw

where Ay, = Witten Laplacian in variable v associated to
W(v).
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Resolvent estimates

Resolvent estimate in non selfadjoint setting

@ For selfadjoint operators one has

1

IA=27 = Gz otAn

@ For non selfadjoint operators, the above estimate fails to be

true:
e Y- (1)

@ link between spectrum and resolvent estimate leads to the
notion of pseudospectrum
@ intensive area of research in the early 2000’s, see references in

e B. Davies, Linear operators and their spectra, 2007
e J. Sjostrand, Non selfadjoint differential operators, 2019
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Elliptic models

Consider the non reversible elliptic model
P=Af+v-hV
with vector field  such that for all x € RY,
()] < C(1+[VF(x))

and
v(x)-Vf(x)=0 and div(r)=0

This model was studied by Bouchet-Reygner 2016,
Landim-Mariani-Seo 2019 (hitting time), Landim-Seo 2019 (1D
periodic result without the decomposition of b)
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Resolvent estimates

Theorem [Le Peutrec-Michel, 2020]

The following hold true:
@ There exists C,Ag > 0 such that o(P) < 'y, where

Mh, = {z€C, Re(z) =0, |Imz| < Aog(Re(z) + v/Re(2)}

@ One has

_ 1 <
H(P Z) HL2—>L2 = RE(Z)

for all ze T'§ N {Re(z) > 0}.

@ There exists ¢; > 0 and hg > 0 such that for all 0 < h < hg
the map z — (P — z)~! is meromorphic in {Re(z) < ¢1} with
finite rank residues.




Non reversible models
000®00000000000C

Resolvent estimates

First spectral localization

Assume f is a Morse function with ng minima.

Theorem [Le Peutrec-Michel, 2020]

There exists €9 > 0 and hg > 0 such that for all h €]0, ho],
o(P) n {Re(z) < egh} is finite and

to(P) n {Re(2) < eoh} = mo
Moreover , one has
o(P) n {Re(z) < eoh} < B(0, C'e=¢/h)
for some C, C’ > 0. Eventually, for any 0 < € < ¢, one has

(P-2)"t=0(n1

uniformly with respect to z such that |z| = eh and Re(z) < egh.

’
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Resolvent estimates

One idea of Proof

@ Observe
Re(Pu, u) = (Afu,u) = |[Veul> =0
and
[ Im{Pu, uy| < C(|Veul? + [u][Veul)
Then write

(P — z)u, u)| = |Re{(P — z)u, u)| + | Im{(P — z)u, u)|
> |[Vrul? = Re(2)[ul® + [1m(2)[|u]® = [1m{Pu, u)l

@ Localization of small eigenvalues is proved by using a Grushin
problem associated to the eigenvectors of small eigenvalues of
the Witten laplacian ey, ..., e, and observing that

o Ar>=Chon {er,..., et
o v-hocej = v (hdx + Vif)e = O(e~/h)
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Resolvent estimates

The semiclassical hypocoercivity approach for KFP

Let
P = vhd, — 0xVho, — h*A, + |v|? — hd

acting on L%(R?9). Throughout we denote

X = vhd, — 0xVhd, and N = —h*A, + |v|? — hd.

Proposition

The operator P initially defined on CX(R??) admits a unique
maximal accretive extension that we still denote by (P, D(P)).




Non reversible models
000000e®00000000C

Resolvent estimates

Assumption (Confin)

There exist C > 0 and a compact set K < R such that

1
V > —C, [VV(x)| > and |HessV(x)| < CIVV(x)?.
for all x e RI\K.
We denote
vi?
f(x,v) = o + V(x)
and pu(x,v) = e f/h,

Suppose that Assumption (Confin) holds true. One has u € D(P)
and
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Resolvent estimates

Assumption (Morse)

The function V is a Morse function.

Under this assumption, the Witten laplacian Ay in the x variable
acting on L?(R9) admits ng = #4/(°) exponentially small
eigenvalues. Denote by (A(M), ®m) e the associated
eigenpairs. One has

o [0xdm| = O(e /") where 6, = hV + V,V
o for all u e span{gm,me U} (Ayu,u) = Ch|ul?

v 2
For any m, define g (x,v) = gf)m(x)e*%. The g, are orthogonal
and hence the vector space

G = span{gm, m € U}
has dimension ng. Throughout, for t € R, we denote

Y ={zeC, Re(z) < t}.
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Resolvent estimates

Resolvent estimate on a finite codimension space

Theorem

Suppose that Assumptions (Confin) and (Morse) are satisfied.
There exists hg > 0, ¢g > 0 and ¢; > 0 such that for all h €]0, ho],
and all ue D(P) n Gj-, one has

(P = 2)ull2 = crhlu2

uniformly with respect to z € ¥ p.

@ Hérau, 2006 (Boltzmann)

@ Dolbeault-Mouhot-Schmeiser 2009, Villani 2009 (general
setting)

@ Robbe 2016 (semiclassical Boltzmann)
@ Guillin-Nectoux 2020 (semiclassical PDMP)
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Resolvent estimates

Proof of hypocoercive estimates

. . 4 P .
We introduce the function p(v) = (7)* e 2 and the projector

defined on L2(R?9) by
Myu(x,v) = JRd u(x,v)p(w)dwp(v).
We define an auxiliary operator
_ * —1 S
A= (h + (ah) l(XHp) (Xnﬁ)) (XTp)
v[2e= P dy.

where a = {4 |

The operator A is bounded on L?(IR??), it satisfies A = I1,A and
one has the estimate

o

Al 22 <
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Resolvent estimates

Proposition

There exists cp, dp, ho > 0 such that for all h €]0, hg] and for all
ue D(P) n G+, one has

Re (Pu, (1+ do(A+ A*))uy,, = cohllul?

Application to the proof of the theorem. For ¢g = ﬁ and
Re z < ¢gh we have

Re((P — z)u, (1 + 8o(A + A*)u) > %h\|u||2.
Using Cauchy-Schwartz and the boundedness of A, it follows that
|(P = 2)ul = cihlu|

for some ¢; > 0.
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Resolvent estimates

Proof of the Proposition

Recall Ay = —h2A + [VV[2 — hAV = §55 , 65 = hVx + V, V.

One has

A= (h+Ay) (XN,

Proof. Write M,f(x,v) = ﬂ,(x)e_"z/(%) and observe
(vho, — O Vhé’v)(fp(x)e—v2/(2h)) — V. 5Xfp(x)e—v2/(2h)
and

v\z

WP
(XN, (XTp)f, &) 12(mas,) = JRd<5xfpa5xgp>L2(IR;’)|V|2e ndv
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Resolvent estimates

For all § > 0, let us define
Is = Re (Pu,(1+6(A+ A*)u),,

Using the decomposition P = X + N, and the skew-adjointness of

X, one gets
Is = {Nu, uy + 6{Pu, (A + A*)u)

Since N > h(1 —T1,), it follows that

[(1—,)ul? + 6¢Pu, (A+ A*)u).

(1 =T, ul? + §({AXu, u) + (ANu, u)
+ (Xu, Auy + {Nu, Au))

and since A =I1,A and l1,N = 0 it follows that

Is > h||(1 —
h(1 —

=
=

Is = h|(1 —N,)ul? + 6{AXT,u, M u) + 6J

with
J = (AX(1—Ny,)u, uy + (ANu, u) + (Xu, Au).
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Resolvent estimates

Is = h|(1 —Ny)ul? + 6{AXT,u, M,u) + 6J
Recall

AXN, = (h+ Ay)'N,(XN,)*XM, = ha(h+ Ay)tAy 1,

There exists cp, hp > 0 such that for all h€]0, hy] and v € GhL, one
has

(AX o M,u, u) = coh||M,ul?

Proof.
o Observe that u e G- = [M,u & span{¢m, me U}
@ Hence, on Ghi, AyTll, = ch and by functionnal calculus
c

h+Ay) AV, > ——
(h+2Av) Vp1+c

p
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Resolvent estimates

o We deduce
Is = h|(1—N,)ul?+ dcoh|Myul® + §J

@ We want to estimate the error term
J = C(AX(1—N,)u, uy + (ANu, u) + {Xu, Au)

Lemma

There exists C, hg > 0 such that for all h €]0, hg] and for all
u e Gj-, one has

[CAX(1 = Ny)u, )| < Ch[M,ul[ (1 =T,)ul

[CANu; )| < ChMpul (1 = T,)u]
[(Xu, Auy| < Chl|(1 = T,)ul®




Non reversible models
00000000000000O!

Resolvent estimates

End of the proof

It follows that

ls > h(1— CO)|(L— M,)ul? + cosh M, ul?
— Con|Mul (1~ 1,)u]

> h(1— C§— CSR)|(1 —N,)ul? + 5h(C — %)anuw
> Ch|ul?

by taking R large first and then § > 0 small and then h > 0 small.
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Resolvent estimates

Resolvent estimate away from the small "spectrum”

Theorem

Suppose that Assumptions (Confin) and (Morse) are satisfied.
There exists hg > 0, ¢g > 0 and ¢ > 0 such that for all h €]0, ho],
fo(P) N X¢n = no counted with multiplicity. Moreover, there
exists C > 0 such that

o(P) M Eeon < {|2] < e /M)
and for all 0 < €1 < €g, and all h €]0, hg], one has

|(P~2)" 22 = O(h7Y)

uniformly with respect to z € X ,\B(0, €1h).
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Resolvent estimates

@ Let P denote the orthogonal projection on Gy, and let
zZe Zgoh\B(O, €1h>.

e For all ue D(P), one has PPu = O(e /"|ul|) and
P*Pu = O(e~</"|u|) which implies

|(P = z)u|? = (P = 2)Pul + (P — 2)(1 — P)u|®
+2Re{(P — z)(1 = P)u, (P — z)Pu)
|22 IPul + (e0 — e1)?h?[(1 — B)u|® + O(e™")uf?

>
> ch?|lul?

for h > 0 small enough.

@ One has the same estimate for (P* — z).
@ This shows:

o 0(P) n{Re(z) < egh} < {|z| < e1h}

o the resolvent estimate



Non reversible models
000000000000000C

Resolvent estimates
Consider the Riesz projector

1
Mo = —
0~ Jin

(z— P)tdz.
|z|=€e1h
Let us prove that dy := dim Ran 1y = np.
o First dy < ng since |PMg| < Cerh and P > egh on Gj- and
dim Gh = ng.

o Conversely, for m e U(®, denote gn = Mogm. One has

1
o _ - _ P -1 _ -1 d
&m — 8m oin \z\:qh«z ) z77)gmdz
1
= 7Yz — P) " Pgpndz = O(e~ /")
2im |z|=€1h

thanks to the resolvent estimate.
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Resolvent estimates

@ Since (gm) is orthonormal then (&) quasi-orthonormal family
of Ranp.

@ Using Gram-Schmidt procedure it can be orthonormalized in a
family gm such that gm — gm = O(e=</").

@ This proves that dy > ng. Moreover for any u € RanTllg, one
has u = ), (U, 8m)8m, hence

Pu = Z<u7gm>Pgm = O(e_C/h)'

Hence Pjrann, = O(e=c</hy
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Resolvent estimates

Remarks on the method

@ Robust method that can be generalized to many situations

e Boltzmann equations [Robbe 16], [Normand 23]
o PDMP [Guillin-Nectoux 20]
o degenerate KFP [Delande, 23]

@ requires a Gibbs state and separation of variables
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Resolvent estimates

Hérau-Hitrik-Sjostrand theory: Assumptions

Let p(x, &, h) denote the semiclassical Weyl symbol of P.
@ One has p = p® + O(h), where p°® = p? + ip? + p with

P (x,€) = - A%, pi(x,€) = b(x) - & p(x) = c’(x)

o We define the symbol p(x, &) = pJ(x) + p%gf) and given

T>0

1 T tH o
</3>T:J poe *idt.
2T )_+

@ Introduce the critical set

C = {(x,0) e T*R? b°(x) =0 and c%(x) = 0}.
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Resolvent estimates

Hérau-Hitrik-Sjostrand theory: Assumptions

Denote p = (x, ). We assume that C = {p1,...,pn} is finite and
@ for any neighborhood U of 7,C, there exists C > 0 such that

meas{t e[-T,T]; co(etbo'v(x)) > %} > % (EN)

@ for some fixed T > 0 there exists some constant C > 0 such
that

1
for p near any p;, we have (p)71(p) = E|p —pj|*> (Harmo)
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Resolvent estimates

Hérau-Hitrik-Sjostrand theory: results

Theorem (Hérau-Hitrik-Sjostrand 2008)

Assume (Ell) and (Harmo) hold true. For any B > 0, there exists
C > 0 such that for h small enough,

@ the operator P has no spectrum in
{ze C; Rez < Bh and |Imz| > Ch},

@ the spectrum of P in D(0, Bh) is discrete and

¢
h7
uniformly on {z € C, Rez < Bh, dist(z,o(P)) > h/B}.

|(P=2)7H <
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Resolvent estimates

Hérau-Hitrik-Sjostrand theory: results

Theorem (Hérau-Hitrik-Sjostrand 2008)
The spectrum of P in D(0, Bh) is made eigenvalues of the form

ppk(h) = h(py e + O(h%)),

where o > 0 and

d

1 1~
0
p’p,k = i;”p,kl)\pi + Etr(pno)v

with v, k¢ € N and )\, 4, tr(p, p) constants depending on the
quadratic approximation of P.
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Eyring-Kramers formula for the spectrum

Our assumptions

We assume that

o there exists f : R? — R such that e~f// belongs to L?(RY)
and

P(e=/"y=0 and  Pf(e /") =0, (Gibbs)

where PT denotes the formal adjoint of P.

f is a Morse fct with finite numb. of crit. pts. ~ (Morse)

From now, we denote U the set of critical points of f, Y) the
critical points of index j.

As an immediate consequence, we have the indentities

Bo(x)-VFf(x) =0 and c%(x) = A%(x)VF(x)- VFf(x)
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Eyring-Kramers formula for the spectrum

Remark on the hypo-elliptic assumption

Lemma (Kalman criterion)

Let us assume (Gibbs) and (Morse). Then, the condition (Harmo)
is satisfied if and only if, for every u e U,

ﬂ ker (A°(B = {0}.

where A° = A%(u) and B = db%(u).
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Suppose that assumptions (Harmo), (Gibbs) and (Morse) hold
true. Then C = U x {0}.

Proof. Recall C = {(x,0) € T*R? b°(x) = 0 and c°(x) = 0}.
o Let uelf, then c®(u) =0 and
Vf(x) = H(x —u) + O((x — u)?) with H invertible. Hence

b%(x) - H(x —u) = O((x — u)?))

which proves b%(u) = 0 and U x {0} = C.
e Conversely, assume (u,0) € C and denote n = Vf(u). Then

0 = c®(u) = A%u)n - n

Hence 7 € ker(A%). Moreover, one can prove 7 € ker BE.
Hence n = 0.
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Eyring-Kramers formula for the spectrum

Rough Asymptotics

Proposition

Assume the above assumptions. There exist €, > 0 and hg > 0
such that for h €]0, ho], P has exactly ny = t/(©) eigenvalues in
{Re(z) < e4h} and these eigenvalues are O(h'*%) with o > 0.

v

o We denote A\(m, h), m e U© these small eigenvalues.

@ We chose m and absolute minimum of f.
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Eyring-Kramers formula for the spectrum

A geometrical Lemma

B(u) = db°(u)
H(u) = Hess(f)(u)

| \

Lemma

Let k € {0,...,d}. Let ue U be a critical point of index k.
Then, i) the matrix

A(u) := 2H(u)A°(u) + Bt (u)

admits exactly k eigenvalues in C_ and d — k eigenvalues in C,..
ii) if k =1, then the unique eigenvalue zi(u) in C_ is real (and
thus p(u) < 0).

A\

Similar Lemma was proved by [Landim-Mariani-Seo 2019] and [Le
Peutrec-Michel 2020] for elliptic operators.
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Eyring-Kramers formula for the spectrum

Proof of the geometric Lemma

o Linearizing the equation BO(x) - VF(x) = 0, we get BtH = J
with J antisymetric, hence B* = HJ with J antisymetric, and
we get

A= HQA® + ).

o Consider the matrix A\, = rA+ (1 —r)H

@ Show that A, has no eigenvalue on Re(z) = 0. Indeed, if
Aru = zv with Re(z) = 0, then

0 = Re{A,v, H71v) = 2r(A%, v) + (1 — r)|v|?

@ Use continuity argument with respect to r € [0, 1].
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Eyring-Kramers formula for the spectrum

Sharp asymptotics of small spectral values

Theorem [Bony-Le Peutrec-Michel]

Suppose that the above assumptions hold true. Under a non
degeneracy assumption on the minima of f, there exists a map
j:U® - PUWD) such that f is constant on j(m) and for all
m € 4(® and h small enough

A(m, h) = h¢(m, h)e 2"

where {(m, h) = 0 and for all m # m, ¢ admits a classical
expansion ¢ ~ 3, hK() with

(det Hess f(m))% ( &)

Co(m) =
2m ) | det Hess f(s)]%

s€j(m
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Remarks

@ This theorem recovers previous results

o Elliptic reversible case: Bovier-Gayrard-Klein 04,
Helffer-Klein-Nier 04

o Elliptic Non reversible case: Le Peutrec-Michel 20

o Fokker-Planck type operators with symmetries (supersymmetry
and PT-symmetry) Hérau-Hitrik-Sjostrand 08-11 (operators of
the form

P=dfoGods
with dr twisted derivative and G invertible matrix.)

@ there exists operators satisfying our assumptions which are
not supersymmetric

@ We can get rid of the Non-Degeneracy assumption a deal with
all Morse functions

@ this theorem gives all the small eigenvalues, that is the whole
metastable time scales
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Strategy of proof

1
h= ——
2im |z|=€h

and E, = Ran[l,. Then dim E, = ng and P : E, — E},.

(P—2z)tdz

Compute the spectrum of the restriction of P to Ep. This is a
problem in finite dimension.

The general strategy is the following:
1) Construct suitable approximated eigenfunctions ¢m, m € U©
of the operator P
2) Project these eigenfunctions on Ep, em = [yom and estimate
the difference eq — ¥Ym-
3) Compute the matrix M of P in the base (em, m e U©)
4) Compute the spectrum of M
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Details on steps 2,3,4

@ Step 2 uses the resolvent estimate via the formula

1
m — m:rI m— ¥m = P— B md
em — ¥ hPm = Pm = 5 ‘Z‘:eh(( z)" =z )pmdz
—1
= P_ -1 *1P md _ h*le
iz |, (P22 Pondz = O™ [Pml)

@ Step 3 consists in application of Laplace’'s method

@ Step 4 consists in computing the spectrum of a non
self-adjoint matrix. We replace maxi-min principle by Schur
complement method
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Gaussian cut-off

Given s € UV, we look for an approximate solution of Pu = 0 near
s under the form

u(x) = (1 + v(x, h))e F&/h

with a function v of the form

1 L(x,h) 2o
v(x, h) = ChL e S /2hds (3)

with
e (smooth, {(x,h) ~ > i Wli(x) and lo #0. and 7 >0 is a
small parameter
@ ¢, = normalization coeff.

Construction inspired from [Bovier-Gayrard-Klein 04, Di Gesu-Le
Peutrec 17 , Le Peutrec-Michel 20]



Non reversible models
Eyring-Kramers formula for the spectrum

@ Think ¢(x, h) as a linear coordinate function nears s,

U(x;h) ~ (x—s) - n(s)
@ cpissuchthat v=—1forf{>>1landv=1forl << —1
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Action of the operator on the quasimodes

One has

P(ve 1M = (w + r)e~(F+ 5/
where

w = + D) - + 0 = [\
h((zAw b) - VE + (AVY V€)€> h? div(AV0),

the function r and all its derivatives are (locally) bounded,
uniformly with respect to h, and supp(r) < {|¢| = 7}.
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Equations on /

Using the expansion £(x, h) ~ 3._, W{;(x) and identifying the

1j=0
powers of h, we get the

@ Eikonal equation on ¢

(2A°VF + b%) - Vil + (AWl - Vi)l = 0 (Eik)

@ Transport equations on the ¢, j > 1

(2A°VF + 20040V ° + b°) . V¢,

Trans
(Ol Vho); — —R; T"P)

with R; depending only on {g, ... ,¢; 1.
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Resolution of the Eikonal equation

Lemma (Hérau-Hitrik-Sjostrand, Bony-Le Peutrec-Michel)

Let s € (V). There exists a function /o solving (Eik) in a
neighborhood of s and such that

@ the vector 7(s) := V/{(s) is an eigenvector of the matrix
A(s) = 2H(s)A%(s) + B%(s)

associated to its negative eigenvalue (s).

1
det Hess (f + Ef%) (s) = —det Hess(f)(s).
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Recall on Hille-Yosida Theorem

Theorem (Hile-Yosida)

Let E be a Banach space and A: D(A) — E be an unbounded
operator with dense domain. Then the following are equivalent

i) A generates a semigroup of contraction S(t) = e~

ii) for all A €] —o0,0[, A— X is invertible and one has the

estimate 1
[(A=X) " ese < Y

v

The constant 1 in the RHS of the resolvent is crucial. \
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Corollary

Assume there exists w € R such that

1
VA A-N"Ye g ——
<w, |( ) le—E Y

Then

IS()e—e < €7
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Application to eigenvalue expansion: first try

@ Suppose P : D(P) — L2 is a KFP operator. Then P is
maximal accretive hence |e~ || < 1

@ Assume we are in the situation where
0(P) n{Re(z) <€} = {A1,...,An,} and let I be the
associated Riesz projector. Then

e P —e PNy e (1)

o the term et can be computed if one knows the )\
@ one aims at estimating e_tP(l —n) = e~ tP where P = 1P
with [T =1—T1.

A

e By definition, o(P) < {Re(z) = €}

-
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@ If P is self-adjoint, then for all A < ¢

1 1

P—N1 < — <
It ) dist(z,0(P)) ~ €—A

N

This implies that
le" (1 -M)| < e << e N

by Hille-Yosida corollary

o in the general case, (P — \)~! is not better than —1 for
A <0.



Non reversible models

Eigenvalue expansion

Case of sectorial operators

Let P: D(P) — E be maximal accretive and assume that P is
sectorial, that is there exists 6 > 0 such that

o(P)c Ny :={|Im(z)| < ORe(2)}

and for any 6’ > 6, there exists C > 0 such that for all z e C\Ay/,
one has
[(P—2)"eme < Clz| ™

o LetM=T, ul_withly ={-1+x(1+i6), £x =0}

@ Then one has the Dunford representation formula

e tP = J e (P —z)tdz
r
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@ Under the same localization assumption on the spectrum of P
as above, one has

e P —e P4 f” e (P —2z)"tdz
F

where T = ....
@ Using the resolvent estimate, this yields

e—tP _ e—tPI—l + O(e_ft).
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@ This approach can be used to deal with non reversible
diffusions
P=Af+b-hV

@ In non semiclassical setting, a similar approach is used in
Hérau-Nier (04) (with parabolic integration contour) to deal
with KFP operator

@ For semiclassical KFP operator, we do not have uniform
resolvent estimate away from the spectrum
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Gearhardt-Pruss Theorem

Theorem (Gearhardt-Priiss)

Let P: D(P) — E be a densely defined closed operator generating
a continuous semigroup U(t). Assume there exists w > 0 such that
(P — z)~! is bounded uniformly with respect to z € {Re(z) < w}.
Then there exists a constant M > 0 such that

VE> 0, |U(D)]eme < Me™ (P(M,w))

v

e We want to apply this result to P(1 — 1)

@ When P depends on h we need a control of M with respect to
h.
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Quantitative Gearhardt-Priss Theorem

Theorem (Helffer-Sjostrand)

Let P: D(P) — E be a densely defined closed operator generating
a continuous semigroup U(t). Assume that

o there exists M > 0 and & € R such that
Vt =0, |U(t)] < Me®t

@ there exists w > & and r(w) > 0s.t. o(P) < {Re(z) > w} and

1
Re(z) < P—2)7Y < —
VRe(z) <w, [[(P—2)""| @)
Then
5 2M(w — &
vVt >0, |U(t)|e—e < M(1 + C “’))e—wf
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Application to Fokker-Planck equations

Let P = P(h) be semiclassical Fokker Plank operator as above.
Assume that the assumption (Harmo), (Ell), (Gibbs), (Morse) are
satisfied. Then we proved

@ P is maximal accretive

@ There exists g > 0 such that for all r, e such that
0 <r<e<eg, one has

o(P) n {Re(z) < eoh} = {Am, me U@}
and
Vz € {Re(z) < eh}\B(0, rh), |(P —2)7}| < Ch!

for some C > 0 depending on ¢, h.
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Let )
h= 57— (Z — P)_ldz
2iT |z|:§h
and Q := P(1 — 1) with domain D(Q) = (1 — M)D(P). Then
o there exists C > 0 such that |[,]| < C for all h > 0.
e @ is maximal accretive, in particular it generates a continuous

semigroup et such that
le? <1
e 0(Q) c {Re(z) = ¢h} and
VRe(z) <eh, [(Q—2)7Y < Cht
We apply quantitative Gearhardt-Priiss Theorem, it follows that
Vt >0, [|e”™Q < Ce oht
Going back to P, we get

e P = e PN, + O(efeoht).
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Under the generic assumption the small eigenvalues Ay, m € 4(©
are distinct. One has M, = > ) MNm » with
1
nm7h = — (Z — P)_ldz
2iT JoD (A, i)
for some ry, > 0 sufficiently small. Moreover, one can show that
@ there exists C > 0 such that

vme O, |Mpp

< C
@ the projector Ny, on the smallest eigenvalue Ay = 0 satisfies

Nmu = U, Om)Pm

(F=F(m))/h normalized eigenstate associated to

with om = Zpe™
Am-
@ This implies
e Puy = (o, pmypm + Y, €My + O(e™)
meld(0\m
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