
Introduction Semiclassical analysis of Schrödinger operators Reversible processes Non reversible models

Semiclassical methods for the analysis of reversible
and non reversible metastable processes

L. Michel (Université de Bordeaux)
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Motivations

Consider a time homogenous Langevin processes

dXt “ ξpXtq `
?

2hσpXtqdBt

where

- pBtq “ Brownian motion on M “ Rd or a compact manifold.

- ξ : M Ñ TM “ vector field

- the matrix σ is the diffusion coefficient

- h is proportional to the temperature of the system.
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Metastability (process point of view)

Denote X ˚ “ tξ “ 0u the set of stationary points of ξ.

Assume x˚ P X ˚ is asymptotically stable for the deterministic
flow h “ 0: for x » x˚, Xtpxq remains close to x˚ and
converges to x˚ when t Ñ `8.

If 0 ă h ăă 1, Xt may stay close to x˚ during long time
(depending on h) until it escapes and converges to another
stationary point

One aims to quantify this discrete dynamic on the set of
critical points
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The exit problem from a fixed domain

Let Ω Ă M be a smooth bounded open set. Given x P Ω denote

τ xΩc “ inftt ě 0, X x
t R Ωu

where X x
t denotes the process with initial condition X x

t“0 “ x .

Questions

compute Epτ xΩc q?

compute the distribution of the exit point X x
τ x

Ωc

links with the spectrum of the associated generator

Hitting time problem: given two equilibrum point x˚, y˚,
compute Epτ x˚Bpy˚,hqq

Freidlin-Wentzell 70’s, Day 80’s, DiGesu-Lelievre-Le
Peutrec-Nectoux 10 ’s, Bovier-Eckhoff-Gayrard-Klein (00’s)

See the review by [Berglund 13].
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Fokker-Planck equations

The generator of the process pXtq is

L “ ´h
ÿ

i ,j

ai ,jBxiBxj ´
ÿ

k

ξkBxk

with a “ pai ,jq “ σσt . We shall denote L: the formal adjoint of L
Given any test function ϕ, let upt, xq “ EpϕpX x

t qq. Then u
solves the Fokker-Planck equation

Btu ` Lu “ 0, u|t“0 “ ϕ

Denote by µpt, xq the law of the process pXtq with initial
distribution µ0. Then µ solves the

Btu ` L:µ “ 0, µ|t“0 “ µ0
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Stationary measure

We will often assume the following

Assumption Gibbs

There exists a smooth function f : Rd Ñ R such that
L:pe´f {hq “ 0.

Question

Solving the equation in adapted functional spaces.

Long time behavior of the solutions? Return to equilibrium?
Eyring-Kramers law?

Resolvent estimates

Spectral asymptotics?
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Summary of some questions of interrest

Reversible processes (self-adjoint generator)
Boundaryless case

topological questions
construct sharp quasimodes

Boundary case

relation between spectrum and exit time
exit event
construction of quasimodes

Non-reversible processes (non self-adjoint generator)
Resolvent estimates

Elliptic situation
Hypoelliptic situation

Quasimode construction
Eigenvalue expansion (return to equilibrium)
Boundary value problems
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Questions discussed in this lecture

Reversible processes (self-adjoint generator)
Boundaryless case

topological questions
‘

construct sharp quasimodes
‘

Boundary case

relation between spectrum and exit time
‘

exit event
‘

construction of quasimodes
‘

Non-reversible processes (non self-adjoint generator)
Resolvent estimates

Elliptic situation
‘

Hypoelliptic situation
‘

Quasimode construction
‘

Eigenvalue expansion (return to equilibrium)
‘

Boundary value problems
‘



Introduction Semiclassical analysis of Schrödinger operators Reversible processes Non reversible models

1 Introduction

2 Semiclassical analysis of Schrödinger operators
Recalls on selfadjoint operators
Harmonic approximation
WKB methods

3 Reversible processes
Eyring-Kramers law for Witten laplacian
The labelling procedure
Sketch of proof

4 Non reversible models
General Framework
Resolvent estimates
Eyring-Kramers formula for the spectrum
Eigenvalue expansion



Introduction Semiclassical analysis of Schrödinger operators Reversible processes Non reversible models

Recalls on selfadjoint operators

Recalls on unbounded operators

Let H be a Hilbert space and A : DpAq Ñ H be un unbounded
operator with dense domain DpAq.

A is said to be closed if its graph is closed.

The spectrum σpAq of a closed operator A is defined by

σpAqc “ tz P C, pA´ zq is invertible u

If z R σpAq, then pA´ zq´1 is bounded.

The adjoint A˚ of A has domain

DpA˚q “ tv P H, DCv ą 0, @u P DpAq, |xAu, vy| ď C}u}u

We say that A is symmetric if DpAq Ă DpA˚q and for all
u, v P DpAq, xAu, vy “ xu,Avy

We say that A is self-adjoint if A is symmetric and
DpAq “ DpA˚q.

We say that A is essentially self-adjoint if it admits a unique
self-adjoint extension.
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Recalls on selfadjoint operators

Functionnal calculus of self-adjoint operators

Let A : DpAq Ñ H be self-adjoint. Denote BbpRdq the space
bounded Borel functions. There exists an application
f ÞÑ f pAq defined on BbpRdq such that

pf ` gqpAq “ f pAq ` gpAq, pfgqpAq “ f pAqgpAq
}f pAq} “ supλPσpAq |f pλq|
if f ě 0, then f pAq ě 0

Given a Borel set Ω Ă R, denote PΩ “ 1ΩpAq.
For any ψ P H, Ω ÞÑ xPΩψ,ψy is a Borel measure denoted by
dxPλψ,ψy. One has

xf pAqψ,ψy “

ż

σpAq
f pλqdxPλψ,ψy

or more shortly

f pAq “

ż

σpAq
f pλqdPλ

the above formula can be generalized to unbounded function
f for ψ in suitable domains.
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Recalls on selfadjoint operators

Applications of functional calculus

One has the resolvent estimate for self-adjoint operators

@z P CzσpAq, }pA´ zq´1}HÑH ď
1

distpz , σpAqq
.

Assume A is a non-negative self-adjoint operator. Let
u0 P DpAq and let uptq “ e´tAu0. Then u solves the heat
equation

Btu ` Au “ 0, u|t“0 “ u0.

Assume A has compact resolvent and denote λk , k ě 1 the
increasing sequence of eigenvalues and ΠK the associated
orthogonal projector. Then f pAq “

ř

kě1 f pλkqΠk . In
particular for any K ě 1

e´tA “
K´1
ÿ

k“1

e´tλk Πk ` OHpe
´tλK q
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Recalls on selfadjoint operators

Spectrum of self-adjoint operators

Theorem (Weyl criterion)

Let A : DpAq Ñ H be a self-adjoint operator and let λ P C. Then
λ P σpAq iff there exists a normalized sequence pfnq such that
pA´ λqfn Ñ 0 as n Ñ8.

Definition-Proposition

The essential spectrum of A (denoted by σesspAqq is the set of
λ P C such that there exists an infinite orthonormalized
sequence pfnq such that pA´ λqfn Ñ 0 as n Ñ8.

The discrete spectrum of A (denoted by σdiscpAq) is the set of
eigenvalues of A which are isolated with finite multiplicity.

One has σpAq “ σdiscpAq \ σesspAq.
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Recalls on selfadjoint operators

Maxi-min principle

Proposition (Maximin principle)

Let A : DpAq Ñ H be a self-adjoint operator bounded from below.
Assume A admits an increasing sequence of eigenvalues pλkqkě1

such that λk ď inf σesspAq. Then one has

λk “ max
ψ1,...,ψn´1PH

min
uPDpAq,uKψ1,...,ψn´1

xAu, uy.

Corollary

Let F be a finite dimensional subspace of H.

Assume dim F “ k and A ě a on DpAq X FK, then λk`1 ě a

Assume F Ă DpAq, dim F “ k and A ď a on F , then λk ď a
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Recalls on selfadjoint operators

Schrödinger operators

Consider a semiclassical Schrödinger operator on L2pRdq

P “ ´h2∆` V

Assume V P C 0pRd ,Rq bounded from below, V ě ´m, then
P is essentially self-adjoint on C8c pRdq.

If lim|x |Ñ`8 V pxq “ `8, then P has compact resolvent

σpPq “ teigenvalues going to `8u

If lim inf |x |Ñ`8 V pxq “ c0 ą 0, then

σesspPq Ă rc0 `8r

and

σpPqXs ´8, c0r“ σdiscpPq “ tfinite multiplicity eigenvaluesu
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Recalls on selfadjoint operators

Using functional calculus one has

e´tP “
K´1
ÿ

k“1

e´tλk Πk ` Ope´tλK q

where λ1 ď . . . ď λk ď . . . denote the sequence of eigenvalues
below the essential spectrum.

One aims at computing the eigenvalues of P when h Ñ 0.
This leads to

Harmonic approximation
WKB methods
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Harmonic approximation

The harmonic oscillator

Let A be a symmetric positive definite matrix and let

NAphq “ ´h2∆` xAx , xy

acting on L2pRdq. Then

NAphq has compact resolvent

One has
σpNAphqq “ thνk , k P Ndu

where νk “
řd

j“1
?
µjp2kj ` 1q and the µj are the eigenvalues

of A.

hν0 has multiplicity 1 associated to e´xA
1
2 x ,xy{h.

eigenfunctions= Hermite functions are Ope´|x |
2{chq for some

c ą 0.
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Harmonic approximation

Proof

Using unitary transformation U such that UtAU is diagonal
we can assume d “ 1. We study

N “ ´h2 d2

dx2
` a2x2

on the line.

We make the change of variable x ÞÑ pha q
1
2 x , then N ; haQ

with

Q “ ´
d2

dx2
` x2 “ b˚b ` 1

with b “ Bx ` x .

observe that bpe´x
2{2q “ 0 gives the ground state

use
Qb˚u “ b˚Q ` 2b˚

to generate the other eigenvalues
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Harmonic approximation

Single well potential

Let P “ ´h2∆` V with V a smooth confining potential with only
one local minimum (in x0) which is non degenerate. Then

Theorem [Helffer-Sjöstrand, Simon 80’s]

σpPq is made of eigenvalues of finite multiplicity pEkphqqkPNd and
for all k P Zd ,

Ekphq “ V px0q ` νkh ` Oph
6
5 q

where νk are the eigenvalues of NAp1q with A “ 1
2 HesspV qpx0q. In

particular the bottom of the spectrum is

E0phq “ V px0q ` h
d
ÿ

j“1

p
λj
2
q

1
2 ` Oph

6
5 q

where λj are the eigenvalues of HesspV qpx0q.
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Harmonic approximation

Harmonic approximation

We can assume x0 “ 0 and V px0q “ 0. Assume to simplify the
numerology d “ 1. Let pfkphqqkPNd be the Hermite function
associated to the eigenvalue νkh of NAphq. Recall

fk “ Ope´|x |
2{Chq.

Let χ P C8c pRdq equal to 1 near 0.

Introduce the quasimodes gkphq “ χph´
2
5 xqfkpxq

For k ě 0, let
Fk “ spantg1, . . . , gku

with the convention F0 “ H.

Observe that gk ´ fk “ Ope´ch
´ 1

5
q in any Sobolev norm.
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Harmonic approximation

Upper bound on λk .

Denote NA “ NAphq. Recall that

P “ ´h2∆`
1

2
xAx , x ą `Op|x |3q “ NA ` Op|x |3q

Moreover |x |3 “ Oph
6
5 q on supppχhq. Hence, for any j ď k, one

has

xPgj , gjy “ xNAgj , gjy ` xOpx
3qgj , gjy “ xNAgj , gjy ` Oph

6
5 q}fj}

2

Moreover

NAgj “ NAfj ´ NApp1´ χhqfjq “ hνjgj ` Ope´ch
´ 1

5
q

hence for all j ď k

xPgj , gjy “ hνj}gj}
2 ` Oph

6
5 q}gj}

2

which shows that, λk ď hνk ` Oph
6
5 q.
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Harmonic approximation

Lower bound on λk .

Assume u P FKk´1. Then χhu is orthogonal to spantfj , j ď k ´ 1u.
Hence,

xPχhu, χhuy “ xNAχhu, χhuy`Oph
6
5 q}χhu}2 ě phνk`Oph

6
5 qq}χhu}2

and

xPp1´ χhqu, p1´ χhquy ě xV p1´ χhqu, p1´ χhquy

ě Cxx2p1´ χhqu, p1´ χhquy

ě h
4
5 }p1´ χhqu}

2

and hence
xPu, uy ě phνk ` Oph

6
5 qq}u}2

which shows that λk`1 ě hνk ´ Oph
6
5 q.
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Harmonic approximation

Generalization

Let P “ ´h2∆` V ` hW with:

V a smooth confining potential with only one local minimum
in 0
HesspV qp0q invertible
W a smooth bounded potential

Theorem [Helffer-Sjöstrand, Simon 80’s]

σpPq is made of eigenvalues of finite multiplicity pEkphqqkPNd and
for all k P Zd ,

Ekphq “ V p0q ` hpνk `W p0qq ` Oph
6
5 q

where νk are the eigenvalues of NAp1q with A “ 1
2 HesspV qp0q. In

particular the bottom of the spectrum is

E0phq “ V p0q ` h
`

W p0q `
d
ÿ

j“1

p
λj
2
q

1
2

˘

` Oph
6
5 q

where λj are the eigenvalues of HesspV qp0q.
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WKB methods

Semiclassical anzats

Goal

Prove more precise spectral asymptotics

Suppose V p0q “ 0. One looks for pE phq, uhq under the form

E phq „ h
ÿ

jě0

hjEj , uhpxq „ e´φpxq{h
ÿ

jě0

hjajpxq

Plug this into the equation p´h2∆` V ´ E phqquh “ 0, we get

Eikonal equation
|∇φpxq|2 “ V pxq

Transport equations

pL´ E0qaj “
1

2
∆aj´1 `

j´1
ÿ

k“0

Ej´kak

with L “ ∇φ ¨∇` 1
2 ∆φ and the convention ak “ 0 for k ă 0.
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WKB methods

Positive solutions of the Eikonal equation

One aims to solve near 0

|∇φpxq|2 “ V pxq
Hesspφq ą 0

If V pxq “ xAx , xy with A “ 1
2 HesspV qp0q, take φpxq “ xA

1
2 x , xy.

In the general case, we can use symplectic geometry

Let qpx , ξq “ |ξ|2 ´ V pxq and the associated Hamiltonian
vector field Hq “ BξqBx ´ BxqBξ.
Observe that q is constant along the flow expptHqq

apply the stable/instable manifold theorem to the Hq flow in
p0, 0q gives stable manifold Λ` Ă R2d

one has Λ` Ă tq “ 0u
since HesspV qp0q ą 0 then dimpΛ`q “ d
Λ` is Lagragian, Λ` “ tξ “ ∇φ`pxqu for some smooth
function φ`
Hessφ`p0q is positive definite
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WKB methods

Solving the transport equations

Equation on aj :
pL´ E0qaj “ Rj

with L “ ∇φ ¨∇` 1
2 ∆φ.

Consider the vector field Γ “ ∇φ ¨∇ and let k “ 1
2 ∆φ´ E0.

We look for non trivial solutions u of

Γu ` ku “ g

by characteristic method.

Let γx be the integral curve of Γ such that γxp0q “ x . Then

p
d

dt
` kpγxqqu ˝ γx “ gpγxq
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WKB methods

Integrate between ´8 and 0 gives

upxq “ up0qe´
ş0
´8

kpγx psqqds `

ż 0

´8

e
şt

0 kpγx psqqdsgpγxptqqdt

which is well defined and smooth as soon as

kp0q “ 0
g vanishes at infinite order in 0.

Consequently, we first solve the transport equation modulo
Opx8q
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WKB methods

Approximate solution of the transport equations

We look for solutions u of

Γu ` ku “ g .

in formal power expansion u “
ř

mě0 um with um P Pm
hom

homogenous polynomial of degree m.

Denote H “ Hesspφqp0q, then Γ “ Hx ¨ Bx ` Opx2qBx . Then

pHx ¨ Bx ` kp0qqu0 “ g0 (T0)

and for m ě 1

pHx ¨ Bx ` kp0qqum “ vm (Tě)

where vm depends on gm, u0, . . . , um´1.
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WKB methods

To simplify consider the first transport equation, then g0 “ 0.

Since Hx ¨ Bx “ 0 on P0
hom solving (T0) is possible as soon as

kp0q “ 0. This is equivalent to choose E0 “
1
2 ∆φp0q.

Since H is definite positive, then for m ě 1, Hx ¨ Bx is
invertible on Pm

hom which permits to solve (Tě).

Using a Borel procedure, we obtain solution ũ such that

Γũ ` kũ “ Opx8q

We look for solution u under the form u “ ũ ` v with
v “ Opx8q. Then v solves

Γv ` kv “ g (1)

for some g “ Opx8q depending on ũ.

Conclude with characteristic method.
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WKB methods

Accurate asymptotics

Using the previous construction we get the following

Theorem [Helffer-Sjöstrand 80’s]

For any k ě 1, there exists a formal serie Ekphq „ h
ř

jě0 hjEk,j

and a symbol akpx , hq „
ř

jě0 hjajpxq such that near x “ 0, one
has

pP ´ Ekphqqpake´φ{hq “ Oph8qe´φ{h

with Ek,0 ‰ 0 equal to the k-th eigenvalue of the harmonic
approximation of P and a0 “ 1.

As a corollary, we get the following

Theorem [Helffer-Sjöstrand 80’s]

For any k P N, the eigenvalues λkphq admits a power expansion
λkphq „ h

ř

jě0 Ek,jh
j
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WKB methods

Proof

Let fk “ χake´φ{h for some cut-off function χ. Then

xPfk , fky “ Ekphq}fk}
2 ` Oph8q

hence by maxi-min principle, λk ď Ek ` Oph8q. Conversely,
assume by contradiction there exists M P N such that
λk ď Ekphq ´ ChM and let N ě M ` 1. Hence the Riesz projector

Π̃k :“
1

2iπ

ż

BDpEk phq,hNq
pz ´ Pq´1dz “ 0.

Since λk`1 ě Ekphq ` Ch then for all z P BDpEkphq, h
Nq, one has

pP ´ zq´1 “ Oph´Mq and since pP ´ Ekphqqfk “ Oph8q, then

pz ´ Pq´1fk “ pz ´ Ekq
´1fk ` Oph8q.

This implies Π̃k fk “ fk ` Oph8q which is a contradiction. ˝
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WKB methods

Keywords to go further

multiple well setting

degenerate situations (non-resonant wells, submanifolds
critical sets)

exponential estimates of eigenfunctions (Agmon estimates)

tunnel effect

resonance theory

non-selfadjoint operators
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WKB methods
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Eyring-Kramers law for Witten laplacian

Overdamped Langevin equation

Consider the overdamped Langevin process

dXt “ ´2∇f pXtq `
?

2hdBt

The generator of this process is

L “ h∆´ 2∇f ¨∇.

We consider this operator on L2pRd , e´2f {hdxq. Let Ωψ “ ef {hψ,
then

Ω´1LΩ “ ´
1

h
∆f ,h

where ∆f ,h “ ´h2∆` |∇f |2 ´ h∆f is the semiclassical Witten
Laplacian associated to f .
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Eyring-Kramers law for Witten laplacian

Witten Laplacian I

Assumption (Confin)

There exists C ą 0 and a compact K Ă Rd such that for all
x P RdzK , one has

|∇f pxq| ě
1

C
, |Hesspf pxqq| ď C |∇f |2, and f pxq ě C |x |.

Under this assumption, one has the following properties

∆f is essentially self-adjoint on C8c pX q.
∆f ě 0

there exists C0, h0 ą 0 such that for all 0 ă h ă h0

σessp∆f q Ă rC0,8r

0 is an eigenvalue of ∆f associated to the eigenstate e´f {h.
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Eyring-Kramers law for Witten laplacian

Witten Laplacian II

Assumption (Morse)

We assume f is a Morse function. We denote

U “ critical points of f

U ppq= critical points of f of index p

np “ 7U ppq ă 8

Theorem [Witten 82, Simon 84, Helffer-Sjöstrand 84]

There exists C , ε0, h0 ą 0 such that for all 0 ă h ă h0 one has

7σp∆f q X r0, ε0hs “ n0.

Moreover
σp∆f q X r0, ε0hs Ă r0, e´C{hs.
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Eyring-Kramers law for Witten laplacian

Proof

Apply previous result to P “ ´h2∆` V ` hW with

V “ |∇f |2 and W “ ´∆f

The minima of V are all the critical points of f denoted by U .
In any point u P U , one has

HesspV q “ 2 Hesspf q2 and W “ ´ tr Hesspf q

In particular the eigenvalues of HesspV q are λ̃j “ 2λ2
j , where

λj “ eigenvalues of Hesspf q.
Apply harmonic approximation in x0 P U . The associated first
eigenvalue is

E0 “ hp
d
ÿ

j“1

p
λ̃j
2
q

1
2 `W p0qq ` Oph

6
5 q

“ hp
d
ÿ

j“1

|λj | ´
d
ÿ

j“1

λjq ` Oph
6
5 q
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Eyring-Kramers law for Witten laplacian

First case: x0 is a minimum of f . Then all the λj are
positive, hence

d
ÿ

j“1

|λj | ´
d
ÿ

j“1

λj “ 0

which implies

E0 “ Oph
6
5 q

Second case: x0 is a critical points of index j ě 1. Then
one of the λj is negative and hence

d
ÿ

j“1

|λj | ´
d
ÿ

j“1

λj ą 0

which implies
E0 ě c0h

for some c0 ą 0
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Eyring-Kramers law for Witten laplacian

Let m P U p0q and let χ P C8c pRdq be equal to 1 near 0. For
r ą 0 small, let

ψm,r pxq “ Zm,hχp
x ´m

r
qe´pf´f pmqq{h

with Zm,h ą 0 such that }Ψm,r }L2 “ 1. By Laplace method,
one has

Zm,h “ h´
d
4

det Hesspf q
1
4

π
d
4

.

Since ∆f e´f {h “ 0, then

∆f ψm,r “ h2Zm,hrχ,∆se
´pf´f pmqq{h

Since f ´ f pmq ě c ą 0 on suppprχ,∆sq then

∆f ψm,r “ Ope´c{hq
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Eyring-Kramers law for Witten laplacian

Exponentially small eigenvalues: log-limit

Denote 0 “ λ1phq ă λ2phq ď . . . ď λn0phq the small eigenvalues of
∆f .

On compact manifolds, [Holley-Kusuoka-Stroock 89] proved
(by functional inequalities approach) that

C1he´2S{h ď λ2phq ď C2he´2S{h

with S “ highest height a particle has to jump in order to
reach the absolute minimum of f

[Mathieu 95], [Miclo 95] generalized this result to λj , j ě 3
(functional inequalities)

Breackthrough in understanding the interraction between
wells by [Bovier-Eckhoff-Gayrard-Klein 04].
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Eyring-Kramers law for Witten laplacian

Let us write λpm, hq, m P U p0q the n0 small eigenvalues of ∆f .

Theorem [Bovier-Gayrard-Klein 04], [Helffer-Klein-Nier 04]

Suppose (Confin), (Morse) and a non-degeneracy assumption
(NonDegen) are satisfied. Then, there exists a map

j : U p0q Ñ PpU p1qq

such that f is constant on jpmq and for all m P U p0q and h small
enough

λpm, hq “ hζpm, hqe´2 f pjpmqq´f pmq
h

where ζpm, hq “ 0 and for all m ‰ m, ζ admits a classical
expansion ζ „

ř

k hkζk with

ζ0pmq “
pdet Hess f pmqq

1
2

2π

´

ÿ

sPjpmq

|µpsq|

| det Hess f psq|
1
2

¯
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The labelling procedure

The labelling procedure I

For any s P U p1q and r ą 0 small enough, the set

Bps, rq X tx P Rd , f pxq ă f psqu

has exactly two connected components Cjps, rq, j “ 1, 2.

Definition [Hérau-Hitrik-Sjöstrand 11]

s P U p1q is a separating saddle point (ssp) iff C1ps, rq and
C2ps, rq are contained in two different connected components
of tx P Rd , f pxq ă f psqu. We denote by Vp1q the set of ssp.

σ P R is a separating saddle value (ssv) if it is of the form
σ “ f psq with s P Vp‘1q. We denote
Σ “ f pVp1qq “ tσ2 ą σ3 ą . . . ą σNu.
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The labelling procedure

Example of SSP I

s1

s2

Level set of a potential with 2 minima, 2 saddle points and 1
maximum
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The labelling procedure

Example of SSP II

s1

C1ps1, rq C2ps1, rq



Introduction Semiclassical analysis of Schrödinger operators Reversible processes Non reversible models

The labelling procedure

Example of SSP II

s1

C1ps1, rq C2ps1, rq

tf ă f ps1qu

s1 is not separating
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The labelling procedure

Example of SSP III

s2

C1ps2, rq C2ps2, rq
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The labelling procedure

Example of SSP III

s2

C1ps2, rq C2ps2, rq

tf ă f ps2qu

s2 is separating
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The labelling procedure

The labelling procedure II

Add a fictive infinite saddle value σ1 “ `8 to Σ and let

Σ “ tσ1u Y Σ “ tσ1 ą σ2 ą . . . ą σNu

To σ1 “ `8 associate the unique connected component
E1,1 “ Rd of tf ă σ1u. In E1,1, pick up m1,1 one (non
necessarily unique) minimum of f|E1,1

.

The set tf ă σ2u has finitely many connected components.
One of them contains m1,1. The others are denoted
E2,1, . . . ,E2,N2 . In each of these CC, one choses one absolute
minimum m2,j of f|E2,j

.

The set tf ă σku has finitely many CC. One denotes by
Ek,1, . . . ,Ek,Nk

those of these CC which do not contain any
mi ,j , i ă k. In each Ek,j one choses one absolute minimum
mk,j of f|Ek,j

.
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The labelling procedure

The labelling procedure III

Denote m “ m1,1 the absolute minimum of f that was chosen
at the first step of the labelling procedure.

Let OpRdq denote the connected open subsets of Rd . Using
the preceding labelling one constructs the following
applications:

σ : U p0q Ñ Σ, defined by σpmi,jq “ σi .
E : U p0q Ñ OpRdq, defined by E pmi,jq “ Ei,j . That is E pmq is
the CC of tf ă f pσpmqqu that contains m.

j : U p0q Ñ PpVp1qq

defined by jpmq “ BE pmq X Vp1q.
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The labelling procedure

The non degeneracy Assumption

The following hypothesis introduced by Hérau-Hitrik-Sjöstrand
(2011) is a generalization of Bovier-Gayrard-Klein and
Helffer-Klein-Nier assumption (2004).

Non Degeneracy Assumption (NonDegen):

For all m P U p0q, the following hold true:

i) f|Epmq has a unique point of minimum

ii) for any m ‰ m1, jpmq X jpm1q “ H
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Sketch of proof

Proof: Finite dimensional reduction

The general strategy:

Introduce

F p0q = eigenspace associated to the n0 low lying eigenvalues
Πp0q = projector on F p0q .
M “ restriction of ∆f to F p0q.

We have to compute the eigenvalues of M.

Construct suitable WKB approximated eigenfunctions ϕ
p0q
m

indexed by m P U p0q, and show that

Πp0qϕ
p0q
m “ ϕ

p0q
m ` error

Compute the matrix of M in the base Πp0qϕ
p0q
m .

Compute the eigenvalues of M by complex analysis methods
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Sketch of proof

Construction of Gaussian quasimodes

To simplify consider the double-well case with 2 minima m1

and m2 and one saddle point s “ 0. Assume also
f pm1q ă f pm2q “ 0.

Inspired by [Bovier etal 04], [Di Gesu Le Peutrec 17], [Le
Peutrec-Michel 20], we consider the quasimodes

ϕm1 “ Z1e´pf´f pm1qq{h

and
ϕm2 “ Z2χ2 θ2e´pf´f pm2qq{h

with χ2 and θ2 suitable cut-off functions
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Sketch of proof

Definition of θ2

Look for θ “ θ2 under the form

θpx , hq “ 1`
1

ch

ż `px ,hq

0
e´s

2{2hds (2)

with

` smooth, `px , hq „
ř

jě0 hj`jpxq and `0 ı 0.

Think `px , hq as a linear coordinate function nears s,
`px , hq „ px ´ sq ¨ ξpsq

ch normalization coeff. such that v “ ´1 for ` ąą 1 and
v “ 1 for ` ăă ´1
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Sketch of proof

Cut-off functions

supppχ2q

tf ă f psqu

x
m2

s

2
?

h

ξpsq

s
θ2 “ 1

θ2 “ 0

supppχ2q

tf “ f psqu
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Sketch of proof

Action of the operator on the quasimodes

Lemma

One has

Ppθe´f {hq “ pw ` rqe´pf`
`2

2
q{h,

where
w “ h

`

2∇f ¨∇`` |∇`|2`
˘

´ h2∆`

the function r and all its derivatives are (locally) bounded,
uniformly with respect to h, and suppprq Ă t|`| ě τu.
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Sketch of proof

Equations on `

We look for ` so that

w “ Oph8q

Using the expansion `px , hq „
ř

jě0 hj`jpxq and identifying
the powers of h, we get the

”Eikonal” equation on `0

2∇f ¨∇`0 ` |∇`0|
2`0 “ 0

Transport equations on the `j , j ě 1

2∇f ¨∇`j ` 2`0∇`0 ¨∇`j ` |∇`0|
2`j “ ´Rjpx , `0, . . . , `j´1q,

with Rj depending only on `0, . . . , `j´1.
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Sketch of proof

Resolution of the ”Eikonal” equation

Let φ` be ”the definite positive” solution of

|∇φ`|2 “ |∇f |2.

One can show that

φ` ´ f “
1

2
`2

0

for some smooth function `0

`0 solves the ”Eikonal” equation.

Let ξpsq “ ∇`0psq. Then ξpsq is an eigenvector of Hesspf qpsq
associated to its unique negative eigenvalue µpsq and
|ξpsq|2 “ ´µ.

Observe in particular that f ` 1
2`

2
0 is positive definite.



Introduction Semiclassical analysis of Schrödinger operators Reversible processes Non reversible models

Sketch of proof

End of the proof

Denote S2 “ f psq ´ f pm2q and let ζphq „
ř8

r“0 hrζr with ζ0 ‰ 0.

Proposition

Assume ( Morse) and (Confin) and that there exists
L2pΩq-normalized functions ϕ2,h P DpPhq such that:

xPhϕ2,h, ϕ2,hyL2 “ ζphqe´2S2{h,

}Phϕ2,h}
2
L2 “ Oph8q xPhϕ2,h, ϕ2,hyL2 ,

then
λpm2, hq “ hζphqe´2S2{h
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Sketch of proof

Remarks

The original semiclassical proof by Helffer-Klein-Nier uses
supersymmetry properties of the Witten Laplacian. This
requires

introduce the Witten Laplacian ∆
p1q
f on 1-forms

use Helffer-Sjostrand’s BKW constructions for ∆
p1q
f

The gaussian quasimodes construction is more robust and can
be generalized to

Non-reversible settings [Le Peutrec-Michel 20], [Bony-Le
Peutrec-Michel 22]
pseudodifferential settings [Normand 23]
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Sketch of proof

Extensions

General Morse functions [Michel 19]

Small eigenvalues of Witten Laplacian on p-forms [Le
Peutrec-Nier-Viterbo 2013]

More general critical sets

Arhenius law for general functions [Le Peutrec-Nier-Viterbo, to
appear]
submanifold critical sets [Assal-Bony-Michel 23]

Problems with boundary

Dirichlet BC [Helffer-Nier 2006]
Neumann BC [Le Peutrec 2010]
First exit point from a domain [Di Gesu-Le
Peutrec-Lelièvre-Nectoux 2010’s]
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Sketch of proof
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General Framework

General framework

We consider a semiclassical second order differential operator

P “ ´h div ˝A ˝ h∇` 1

2
pb ¨ h∇` h div ˝bq ` c

where the symmetric matrix A “ paijq, the vector field b “ pbkq

and the function c depend smoothly on x P Rd . Throughout, we
assume

@|α| ě 0, Bαx ai ,jpx , hq “ Op1q,
@|α| ě 1, Bαx bjpx , hq “ Op1q,
@|α| ě 2, Bαx cpx , hq “ Op1q.
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General Framework

General framework

We assume that for any e P taij , bj , cu, one has the classical
expansion

@α P Nd , @K ě 0, Bαx pe ´
K
ÿ

k“0

hkekq “ OphK`1q

We also assume that

c0pxq ě 0 , and Apx , hq “ pai ,jpx , hqqi ,j is positive semidefinite.

Theorem [Hérau-Hitrik-Sjöstrand 2008]

Under the above assumption the operator P initially defined on
S pRdq admits a unique maximal accretive extension.
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General Framework

Some examples

Witten Laplacian: Take A “ Id, b “ 0 and
cpxq “ |∇f pxq|2 ´ h∆f pxq, then

P “ ´h2∆` |∇f |2 ´ h∆f :“ ∆f

Non reversible diffusion: take A “ Id,
cpxq “ |∇f pxq|2 ´ h∆f pxq and bpxqK∇f pxq on Rd , then

P “ ∆f ` b ¨ hBx

Generalized Kramers-Fokker-Planck operators: take

A “

ˆ

0 0
0 Id

˙

, bpx , vq “

ˆ

BvW pvq
´BxV pxq

˙

cpx , vq “ |BvW pvq|2 ´ h∆vW pvq. Then

P “ BvW ¨ hBx ´ BxV ¨ hBv `∆W

where ∆W “ Witten Laplacian in variable v associated to
W pvq.
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Resolvent estimates

Resolvent estimate in non selfadjoint setting

For selfadjoint operators one has

}pA´ zq´1} “
1

distpz , σpAqq

For non selfadjoint operators, the above estimate fails to be
true:

A “

ˆ

0 1
0 0

˙

ùñ pA` zq´1 “

ˆ

1{z ´1{z2

0 1{z

˙

link between spectrum and resolvent estimate leads to the
notion of pseudospectrum

intensive area of research in the early 2000’s, see references in

B. Davies, Linear operators and their spectra, 2007
J. Sjöstrand, Non selfadjoint differential operators, 2019
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Resolvent estimates

Elliptic models

Consider the non reversible elliptic model

P “ ∆f ` ν ¨ h∇

with vector field ν such that for all x P Rd ,

|νpxq| ď C p1` |∇f pxq|q

and
νpxq ¨∇f pxq “ 0 and divpνq “ 0

This model was studied by Bouchet-Reygner 2016,
Landim-Mariani-Seo 2019 (hitting time), Landim-Seo 2019 (1D
periodic result without the decomposition of b)
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Resolvent estimates

Theorem [Le Peutrec-Michel, 2020]

The following hold true:

There exists C ,Λ0 ą 0 such that σpPq Ă ΓΛ0 where

ΓΛ0 “
 

z P C, Repzq ě 0, | Im z | ď Λ0pRepzq `
a

Repzq
(

One has

}pP ´ zq´1}L2ÑL2 ď
C

Repzq

for all z P Γc
Λ0
X tRepzq ě 0u.

There exists c1 ą 0 and h0 ą 0 such that for all 0 ă h ă h0

the map z ÞÑ pP ´ zq´1 is meromorphic in tRepzq ă c1u with
finite rank residues.
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Resolvent estimates

First spectral localization

Assume f is a Morse function with n0 minima.

Theorem [Le Peutrec-Michel, 2020]

There exists ε0 ą 0 and h0 ą 0 such that for all h Ps0, h0s,
σpPq X tRepzq ď ε0hu is finite and

7σpPq X tRepzq ď ε0hu “ n0

Moreover , one has

σpPq X tRepzq ď ε0hu Ă Bp0,C 1e´C{hq

for some C ,C 1 ą 0. Eventually, for any 0 ă ε ă ε0, one has

pP ´ zq´1 “ Oph´1q

uniformly with respect to z such that |z | ě εh and Repzq ă ε0h.
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Resolvent estimates

One idea of Proof

Observe
RexPu, uy “ x∆f u, uy “ }∇f u}2 ě 0

and
| ImxPu, uy| ď C p}∇f u}2 ` }u}}∇f u}q

Then write

2|xpP ´ zqu, uy| ě |RexpP ´ zqu, uy| ` | ImxpP ´ zqu, uy|

ě }∇f u}2 ´ Repzq}u}2 ` | Impzq|}u}2 ´ | ImxPu, uy|

Localization of small eigenvalues is proved by using a Grushin
problem associated to the eigenvectors of small eigenvalues of
the Witten laplacian e1, . . . , en0 and observing that

∆f ě Ch on te1, . . . , en0u
K

ν ¨ hBxej “ ν ¨ phBx `∇x f qej “ Ope´c{hq
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Resolvent estimates

The semiclassical hypocoercivity approach for KFP

Let
P “ vhBx ´ BxVhBv ´ h2∆v ` |v |

2 ´ hd

acting on L2pR2dq. Throughout we denote

X “ vhBx ´ BxVhBv and N “ ´h2∆v ` |v |
2 ´ hd .

Proposition

The operator P initially defined on C8c pR2dq admits a unique
maximal accretive extension that we still denote by pP,DpPqq.
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Resolvent estimates

Assumption (Confin)

There exist C ą 0 and a compact set K Ă Rd such that

V ě ´C , |∇V pxq| ě
1

C
and |Hess V pxq| ď C |∇V pxq|2 .

for all x P RdzK .

We denote

f px , vq “
|v |2

2
` V pxq

and µpx , vq “ e´f {h.

Lemma

Suppose that Assumption (Confin) holds true. One has µ P DpPq
and

X pµq “ Y pµq “ Npµq “ 0
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Resolvent estimates

Assumption (Morse)

The function V is a Morse function.

Under this assumption, the Witten laplacian ∆V in the x variable
acting on L2pRdq admits n0 “ 7U p0q exponentially small
eigenvalues. Denote by pλpmq, φmqmPUp0q the associated
eigenpairs. One has

}δxφm} “ Ope´c{hq where δx “ h∇x `∇xV

for all u P spantφm,m P U p0quK, x∆V u, uy ě Ch}u}2

For any m, define gmpx , vq “ φmpxqe
´
|v |2

2h . The gm are orthogonal
and hence the vector space

Gh “ spantgm, m P U p0qu

has dimension n0. Throughout, for t P R, we denote

Σt “ tz P C, Repzq ă tu.
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Resolvent estimates

Resolvent estimate on a finite codimension space

Theorem

Suppose that Assumptions (Confin) and (Morse) are satisfied.
There exists h0 ą 0, ε0 ą 0 and c1 ą 0 such that for all h Ps0, h0s,
and all u P DpPq X GKh , one has

}pP ´ zqu}L2 ě c1h}u}L2

uniformly with respect to z P Σε0h.

Hérau, 2006 (Boltzmann)

Dolbeault-Mouhot-Schmeiser 2009, Villani 2009 (general
setting)

Robbe 2016 (semiclassical Boltzmann)

Guillin-Nectoux 2020 (semiclassical PDMP)
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Resolvent estimates

Proof of hypocoercive estimates

We introduce the function ρpvq “
`

π
h

˘
d
4 e´

|v |2

2h and the projector
defined on L2pR2dq by

Πρupx , vq “

ż

Rd

upx , vqρpwqdwρpvq.

We define an auxiliary operator

A “
`

h ` pαhq´1pX Πρq
˚pX Πρq

˘´1
pX Πρq

˚

where α “
ş

Rd |v |
2e´|v |

2
dv .

Lemma

The operator A is bounded on L2pR2dq, it satisfies A “ ΠρA and
one has the estimate

}A}L2ÑL2 ď

?
α

2
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Resolvent estimates

Proposition

There exists c0, δ0, h0 ą 0 such that for all h Ps0, h0s and for all
u P DpPq X GKh , one has

Re
@

Pu, p1` δ0pA` A˚qqu
D

L2 ě c0h}u}2L2

Application to the proof of the theorem. For ε0 “
c0

2`δ0
?
α

and

Re z ă ε0h we have

RexpP ´ zqu, p1` δ0pA` A˚quy ě
c0

2
h}u}2.

Using Cauchy-Schwartz and the boundedness of A, it follows that

}pP ´ zqu} ě c1h}u}

for some c1 ą 0.
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Resolvent estimates

Proof of the Proposition

Recall ∆V “ ´h2∆` |∇V |2 ´ h∆V “ δ˚x δx , δx “ h∇x `∇xV .

Lemma

One has
pX Πρq

˚pX Πρq “ hαd∆V ˝ Πρ

where αd “
ş

Rd |v |
2e´|v |

2
dv “ d

2π
d
2 . As a consequence, one has

A “ ph `∆V q
´1pX Πρq

˚

Proof. Write Πρf px , vq “ fρpxqe
´v2{p2hq and observe

pvhBx ´ BxVhBv qpfρpxqe
´v2{p2hqq “ v ¨ δx fρpxqe

´v2{p2hq

and

xpX Πρq
˚pX Πρqf , gyL2pR2d

x,v q
“

ż

Rd

xδx fρ, δxgρyL2pRd
x q
|v |2e´

|v |2

h dv

˝
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Resolvent estimates

For all δ ą 0, let us define

Iδ “ Re
@

Pu, p1` δpA` A˚qu
D

L2

Using the decomposition P “ X ` N, and the skew-adjointness of
X , one gets

Iδ “ xNu, uy ` δxPu, pA` A˚quy

Since N ě hp1´ Πρq, it follows that

Iδ ě h}p1´ Πρqu}
2 ` δxPu, pA` A˚quy.

ě h}p1´ Πρqu}
2 ` δpxAXu, uy ` xANu, uy

` xXu,Auy ` xNu,Auyq

and since A “ ΠρA and ΠρN “ 0 it follows that

Iδ ě h}p1´ Πρqu}
2 ` δxAX Πρu,Πρuy ` δJ

with
J “ xAX p1´ Πρqu, uy ` xANu, uy ` xXu,Auy.
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Resolvent estimates

Iδ ě h}p1´ Πρqu}
2 ` δxAX Πρu,Πρuy ` δJ

Recall

AX Πρ “ ph `∆V q
´1ΠρpX Πρq

˚X Πρ “ hαph `∆V q
´1∆V Πρ

Lemma

There exists c0, h0 ą 0 such that for all h Ps0, h0s and u P GKh , one
has

xAX ˝ Πρu, uy ě c0h}Πρu}2

Proof.

Observe that u P GKh ùñ Πρu P spantφm, m P U p0quK.

Hence, on GKh , ∆V Πρ ě ch and by functionnal calculus

ph `∆V q
´1∆V Πρ ě

c

1` c
Πρ
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Resolvent estimates

We deduce

Iδ ě h}p1´ Πρqu}
2 ` δc0h}Πρu}2 ` δJ

We want to estimate the error term
J “ xAX p1´ Πρqu, uy ` xANu, uy ` xXu,Auy

Lemma

There exists C , h0 ą 0 such that for all h Ps0, h0s and for all
u P GKh , one has

|xAX p1´ Πρqu, uy| ď Ch}Πρu} }p1´ Πρqu}

|xANu, uy| ď Ch}Πρu} }p1´ Πρqu}

|xXu,Auy| ď Ch}p1´ Πρqu}
2
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Resolvent estimates

End of the proof

It follows that

Iδ ě hp1´ Cδq}p1´ Πρqu}
2 ` c0δh}Πρu}2

´ Cδh}Πρu} }p1´ Πρqu}

ě hp1´ Cδ ´ CδRq}p1´ Πρqu}
2 ` δhpC ´

C

R
q}Πρu}2

ě Ch}u}2

by taking R large first and then δ ą 0 small and then h ą 0 small.
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Resolvent estimate away from the small ”spectrum”

Theorem

Suppose that Assumptions (Confin) and (Morse) are satisfied.
There exists h0 ą 0, ε0 ą 0 and c ą 0 such that for all h Ps0, h0s,
7σpPq X Σε0h “ n0 counted with multiplicity. Moreover, there
exists C ą 0 such that

σpPq X Σε0h Ă t|z | ď e´C{hqu

and for all 0 ă ε1 ă ε0, and all h Ps0, h0s, one has

}pP ´ zq´1}L2ÑL2 “ Oph´1q

uniformly with respect to z P Σε0hzBp0, ε1hq.
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Let P denote the orthogonal projection on Gh and let
z P Σε0hzBp0, ε1hq.

For all u P DpPq, one has PPu “ Ope´c{h}u}q and
P˚Pu “ Ope´c{h}u}q which implies

}pP ´ zqu}2 “ }pP ´ zqPu}2 ` }pP ´ zqp1´ Pqu}2

` 2 RexpP ´ zqp1´ Pqu, pP ´ zqPuy

ě |z |2}Pu}2 ` pε0 ´ ε1q
2h2}p1´ Pqu}2 ` Ope´c{hq}u}2

ě ch2}u}2

for h ą 0 small enough.

One has the same estimate for pP˚ ´ zq.

This shows:

σpPq X tRepzq ă ε0hu Ă t|z | ă ε1hu
the resolvent estimate
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Consider the Riesz projector

Π0 “
1

2iπ

ż

|z|“ε1h
pz ´ Pq´1dz .

Let us prove that d0 :“ dim Ran Π0 “ n0.

First d0 ď n0 since }PΠ0} ď Cε1h and P ě ε0h on GKh and
dim Gh “ n0.

Conversely, for m P U p0q, denote g̃m “ Π0gm. One has

g̃m ´ gm “
1

2iπ

ż

|z|“ε1h
ppz ´ Pq´1 ´ z´1qgmdz

“ ´
1

2iπ

ż

|z|“ε1h
z´1pz ´ Pq´1Pgmdz “ Ope´C{hq

thanks to the resolvent estimate.
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Since pgmq is orthonormal then pg̃mq quasi-orthonormal family
of Ran Π0.

Using Gram-Schmidt procedure it can be orthonormalized in a
family ḡm such that gm ´ ḡm “ Ope´c{hq.

This proves that d0 ě n0. Moreover for any u P Ran Π0, one
has u “

ř

mxu, ḡmyḡm, hence

Pu “
ÿ

m

xu, ḡmyPḡm “ Ope´c{hq.

Hence P|Ran Π0
“ Ope´c{hq
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Remarks on the method

Robust method that can be generalized to many situations

Boltzmann equations [Robbe 16], [Normand 23]
PDMP [Guillin-Nectoux 20]
degenerate KFP [Delande, 23]

requires a Gibbs state and separation of variables
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Hérau-Hitrik-Sjöstrand theory: Assumptions

Let ppx , ξ, hq denote the semiclassical Weyl symbol of P.

One has p “ p0 ` Ophq, where p0 “ p0
2 ` ip0

1 ` p0
0 with

p0
2px , ξq “ ξ ¨ A0pxqξ, p0

1px , ξq “ b0pxq ¨ ξ, p0
0pxq “ c0pxq

We define the symbol rppx , ξq “ p0
0pxq `

p0
2px ,ξq
xξy2

and given

T ą 0

xrpyT “
1

2T

ż T

´T
rp ˝ e

tH
p0

1 dt.

Introduce the critical set

C “
 

px , 0q P T ˚Rd ; b0pxq “ 0 and c0pxq “ 0
(

.
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Hérau-Hitrik-Sjöstrand theory: Assumptions

Denote ρ “ px , ξq. We assume that C “ tρ1, . . . , ρNu is finite and

for any neighborhood U of πxC, there exists C ą 0 such that

meas
!

t P
“

´ T ,T
‰

; c0
`

etb
0¨∇pxq

˘

ě
1

C

)

ě
1

C
. (Ell)

for some fixed T ą 0 there exists some constant C ą 0 such
that

for ρ near any ρj , we have xrpyT pρq ě
1

C
|ρ´ ρj |

2 (Harmo)
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Hérau-Hitrik-Sjöstrand theory: results

Theorem (Hérau-Hitrik-Sjöstrand 2008)

Assume (Ell) and (Harmo) hold true. For any B ą 0, there exists
C ą 0 such that for h small enough,

the operator P has no spectrum in

tz P C; Re z ă Bh and | Im z | ą Chu,

the spectrum of P in Dp0,Bhq is discrete and

}pP ´ zq´1} ď
C

h
,

uniformly on tz P C, Re z ă Bh, distpz , σpPqq ě h{Bu.
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Hérau-Hitrik-Sjöstrand theory: results

Theorem (Hérau-Hitrik-Sjöstrand 2008)

The spectrum of P in Dp0,Bhq is made eigenvalues of the form

µρ,kphq “ hpµ0
ρ,k `Ophαqq,

where α ą 0 and

µ0
ρ,k “

1

i

d
ÿ

`“1

νρ,k,`λρ,` `
1

2
rtrpp, ρq,

with νρ,k,` P N and λρ,`, rtrpp, ρq constants depending on the
quadratic approximation of P.
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Our assumptions

We assume that

there exists f : Rd Ñ R such that e´f {h belongs to L2pRdq

and

Ppe´f {hq “ 0 and P:pe´f {hq “ 0, (Gibbs)

where P: denotes the formal adjoint of P.

f is a Morse fct with finite numb. of crit. pts. (Morse)

From now, we denote U the set of critical points of f , U pjq the
critical points of index j .

As an immediate consequence, we have the indentities

b0pxq ¨∇f pxq “ 0 and c0pxq “ A0pxq∇f pxq ¨∇f pxq
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Remark on the hypo-elliptic assumption

Lemma (Kalman criterion)

Let us assume (Gibbs) and (Morse). Then, the condition (Harmo)
is satisfied if and only if, for every u P U ,

d´1
č

n“0

ker
`

A0pBtqn
˘

“ t0u.

where A0 “ A0puq and B “ db0puq.
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Lemma

Suppose that assumptions (Harmo), (Gibbs) and (Morse) hold
true. Then C “ U ˆ t0u.

Proof. Recall C “
 

px , 0q P T ˚Rd ; b0pxq “ 0 and c0pxq “ 0
(

.

Let u P U , then c0puq “ 0 and
∇f pxq “ Hpx ´ uq ` Oppx ´ uq2q with H invertible. Hence

b0pxq ¨ Hpx ´ uq “ Oppx ´ uq2qq

which proves b0puq “ 0 and U ˆ t0u Ă C.

Conversely, assume pu, 0q P C and denote η “ ∇f puq. Then

0 “ c0puq “ A0puqη ¨ η

Hence η P kerpA0q. Moreover, one can prove η P ker Bt .
Hence η “ 0.
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Rough Asymptotics

Proposition

Assume the above assumptions. There exist ε˚ ą 0 and h0 ą 0
such that for h Ps0, h0s, P has exactly n0 “ 7U p0q eigenvalues in
tRepzq ă ε˚hu and these eigenvalues are Oph1`αq with α ą 0.

Notation

We denote λpm, hq, m P U p0q these small eigenvalues.

We chose m and absolute minimum of f .
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A geometrical Lemma

Notations

Bpuq “ db0puq
Hpuq “ Hesspf qpuq

Lemma

Let k P t0, . . . , du. Let u P U pkq be a critical point of index k .
Then, iq the matrix

Λpuq :“ 2HpuqA0puq ` Btpuq

admits exactly k eigenvalues in C´ and d ´ k eigenvalues in C`.
iiq if k “ 1, then the unique eigenvalue µpuq in C´ is real (and
thus µpuq ă 0q.

Similar Lemma was proved by [Landim-Mariani-Seo 2019] and [Le
Peutrec-Michel 2020] for elliptic operators.
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Proof of the geometric Lemma

Linearizing the equation b0pxq ¨∇f pxq “ 0, we get BtH “ J̃
with J̃ antisymetric, hence Bt “ HJ with J antisymetric, and
we get

Λ :“ Hp2A0 ` Jq.

Consider the matrix Λr “ rΛ` p1´ rqH

Show that Λr has no eigenvalue on Repzq “ 0. Indeed, if
Λru “ zv with Repzq “ 0, then

0 “ RexΛrv ,H´1vy “ 2rxA0v , vy ` p1´ rq}v}2

Use continuity argument with respect to r P r0, 1s.
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Sharp asymptotics of small spectral values

Theorem [Bony-Le Peutrec-Michel]

Suppose that the above assumptions hold true. Under a non
degeneracy assumption on the minima of f , there exists a map
j : U p0q Ñ PpU p1qq such that f is constant on jpmq and for all
m P U p0q and h small enough

λpm, hq “ hζpm, hqe´2 f pjpmqq´f pmq
h

where ζpm, hq “ 0 and for all m ‰ m, ζ admits a classical
expansion ζ „

ř

k hkζk with

ζ0pmq “
pdet Hess f pmqq

1
2

2π

´

ÿ

sPjpmq

|µpsq|

| det Hess f psq|
1
2

¯
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Remarks

This theorem recovers previous results

Elliptic reversible case: Bovier-Gayrard-Klein 04,
Helffer-Klein-Nier 04
Elliptic Non reversible case: Le Peutrec-Michel 20
Fokker-Planck type operators with symmetries (supersymmetry
and PT-symmetry) Hérau-Hitrik-Sjöstrand 08-11 (operators of
the form

P “ d˚f ˝ G ˝ df

with df twisted derivative and G invertible matrix.)

there exists operators satisfying our assumptions which are
not supersymmetric

We can get rid of the Non-Degeneracy assumption a deal with
all Morse functions

this theorem gives all the small eigenvalues, that is the whole
metastable time scales
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Strategy of proof

Let

Πh “
1

2iπ

ż

|z|“εh
pP ´ zq´1dz

and Eh “ Ran Πh. Then dim Eh “ n0 and P : Eh Ñ Eh.

Goal

Compute the spectrum of the restriction of P to Eh. This is a
problem in finite dimension.

The general strategy is the following:

1) Construct suitable approximated eigenfunctions ϕm, m P U p0q
of the operator P

2) Project these eigenfunctions on Eh, em “ Πhϕm and estimate
the difference em ´ ϕm.

3) Compute the matrix M of P in the base pem,m P U p0qq
4) Compute the spectrum of M
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Details on steps 2,3,4

Step 2 uses the resolvent estimate via the formula

em ´ ϕm “ Πhϕm ´ ϕm “
1

2iπ

ż

|z|“εh
ppP ´ zq´1 ´ z´1qϕmdz

“
´1

2iπ

ż

|z|“εh
pP ´ zq´1z´1Pϕmdz “ Oph´1}Pϕm}q

Step 3 consists in application of Laplace’s method

Step 4 consists in computing the spectrum of a non
self-adjoint matrix. We replace maxi-min principle by Schur
complement method
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Gaussian cut-off

Given s P U p1q, we look for an approximate solution of Pu “ 0 near
s under the form

upxq “ p1` vpx , hqqe´f pxq{h,

with a function v of the form

vpx , hq “
1

ch

ż `px ,hq

0
e´s

2{2hds (3)

with

` smooth, `px , hq „
ř

jě0 hj`jpxq and `0 ı 0. and τ ą 0 is a
small parameter

ch “ normalization coeff.

Construction inspired from [Bovier-Gayrard-Klein 04, Di Gesu-Le
Peutrec 17 , Le Peutrec-Michel 20]
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Think `px , hq as a linear coordinate function nears s,
`px , hq „ px ´ sq ¨ ηpsq
ch is such that v “ ´1 for ` ąą 1 and v “ 1 for ` ăă ´1

2
?

h

ηpsq

s
vh “ 1vh “ ´1

tf “ f psqu
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Action of the operator on the quasimodes

Lemma

One has

Ppve´f {hq “ pw ` rqe´pf`
`2

2
q{h,

where

w “ h
´

p2A∇f ` bq ¨∇`` pA∇` ¨∇`q`
¯

´ h2 divpA∇`q,

the function r and all its derivatives are (locally) bounded,
uniformly with respect to h, and suppprq Ă t|`| ě τu.
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Equations on `

Using the expansion `px , hq „
ř

jě0 hj`jpxq and identifying the
powers of h, we get the

Eikonal equation on `0

p2A0∇f ` b0q ¨∇`0 ` pA
0∇`0 ¨∇`0q`0 “ 0 (Eik)

Transport equations on the `j , j ě 1

p2A0∇f ` 2`0A0∇`0 ` b0q ¨∇`j
` pA0∇`0 ¨∇`0q`j “ ´Rj

(Transp)

with Rj depending only on `0, . . . , `j´1.
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Resolution of the Eikonal equation

Lemma (Hérau-Hitrik-Sjöstrand, Bony-Le Peutrec-Michel)

Let s P U p1q. There exists a function `0 solving (Eik) in a
neighborhood of s and such that

the vector ηpsq :“ ∇`0psq is an eigenvector of the matrix

Λpsq “ 2HpsqA0psq ` Btpsq

associated to its negative eigenvalue µpsq.

det Hess
´

f `
1

2
`2

0

¯

psq “ ´ det Hesspf qpsq.
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Recall on Hille-Yosida Theorem

Theorem (Hile-Yosida)

Let E be a Banach space and A : DpAq Ñ E be an unbounded
operator with dense domain. Then the following are equivalent

i) A generates a semigroup of contraction Sptq “ e´tA

ii) for all λ Ps ´8, 0r, A´ λ is invertible and one has the
estimate

}pA´ λq´1}EÑE ď ´
1

λ

Remark

The constant 1 in the RHS of the resolvent is crucial.
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Corollary

Assume there exists ω P R` such that

@λ ă ω, }pA´ λq´1}EÑE ď
1

ω ´ λ

Then
}Sptq}EÑE ď e´ωt
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Application to eigenvalue expansion: first try

Suppose P : DpPq Ñ L2 is a KFP operator. Then P is
maximal accretive hence }e´tP} ď 1

Assume we are in the situation where
σpPq X tRepzq ă εu “ tλ1, . . . , λn0u and let Π be the
associated Riesz projector. Then

e´tP “ e´tPΠ` e´tPp1´ Πq

the term e´tPΠ can be computed if one knows the λk

one aims at estimating e´tPp1´ Πq “ e´tP̂ where P̂ “ Π̂PΠ̂
with Π̂ “ 1´ Π.

By definition, σpP̂q Ă tRepzq ě εu
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If P is self-adjoint, then for all λ ă ε

}pP̂ ´ λq´1} ď
1

distpz , σpP̂qq
ď

1

ε´ λ

This implies that

}e´tPp1´ Πq} ď e´εt ăă }e´tPΠ}

by Hille-Yosida corollary

in the general case, pP̂ ´ λq´1 is not better than ´ 1
λ for

λ ă 0.
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Case of sectorial operators

Let P : DpPq Ñ E be maximal accretive and assume that P is
sectorial, that is there exists θ ą 0 such that

σpPq Ă Λθ :“ t| Impzq| ď θ Repzqu

and for any θ1 ą θ, there exists C ą 0 such that for all z P CzΛθ1 ,
one has

}pP ´ zq´1}EÑE ď C |z |´1

Let Γ “ Γ` Y Γ´ with Γ˘ “ t´1` xp1˘ iθq, ˘x ě 0u

Then one has the Dunford representation formula

e´tP “

ż

Γ
e´tzpP ´ zq´1dz
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Under the same localization assumption on the spectrum of P
as above, one has

e´tP “ e´tPΠ`

ż

Γ̃
e´tzpP ´ zq´1dz

where Γ̃ “ ....

Using the resolvent estimate, this yields

e´tP “ e´tPΠ` Ope´εtq.
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This approach can be used to deal with non reversible
diffusions

P “ ∆f ` b ¨ h∇

In non semiclassical setting, a similar approach is used in
Hérau-Nier (04) (with parabolic integration contour) to deal
with KFP operator

For semiclassical KFP operator, we do not have uniform
resolvent estimate away from the spectrum
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Gearhardt-Prüss Theorem

Theorem (Gearhardt-Prüss)

Let P : DpPq Ñ E be a densely defined closed operator generating
a continuous semigroup Uptq. Assume there exists ω ą 0 such that
pP ´ zq´1 is bounded uniformly with respect to z P tRepzq ă ωu.
Then there exists a constant M ą 0 such that

@t ě 0, }Uptq}EÑE ď Me´ωt (PpM, ωq)

We want to apply this result to Pp1´ Πq

When P depends on h we need a control of M with respect to
h.
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Quantitative Gearhardt-Prüss Theorem

Theorem (Helffer-Sjöstrand)

Let P : DpPq Ñ E be a densely defined closed operator generating
a continuous semigroup Uptq. Assume that

there exists M̂ ą 0 and ω̂ P R such that

@t ě 0, }Uptq} ď M̂e´ω̂t

there exists ω ą ω̂ and rpωq ą 0 s.t. σpPq Ă tRepzq ą ωu and

@Repzq ď ω, }pP ´ zq´1} ď
1

rpωq

Then

@t ě 0, }Uptq}EÑE ď M̂p1`
2M̂pω ´ ω̂q

rpωq
qe´ωt
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Application to Fokker-Planck equations

Let P “ Pphq be semiclassical Fokker Plank operator as above.
Assume that the assumption (Harmo), (Ell), (Gibbs), (Morse) are
satisfied. Then we proved

P is maximal accretive

There exists ε0 ą 0 such that for all r , ε such that
0 ă r ă ε ă ε0, one has

σpPq X tRepzq ď ε0hu “ tλm, m P U p0qu

and

@z P tRepzq ď εhuzBp0, rhq, }pP ´ zq´1} ď Ch´1

for some C ą 0 depending on ε, h.
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Let

Πh “
1

2iπ

ż

|z|“ ε
2
h
pz ´ Pq´1dz

and Q :“ Pp1´ Πhq with domain DpQq “ p1´ ΠhqDpPq. Then

there exists C ą 0 such that }Πh} ď C for all h ą 0.

Q is maximal accretive, in particular it generates a continuous
semigroup e´tQ such that

}e´tQ} ď 1

σpQq Ă tRepzq ě ε0hu and

@Repzq ď εh, }pQ ´ zq´1} ď Ch´1

We apply quantitative Gearhardt-Prüss Theorem, it follows that

@t ě 0, }e´tQ} ď Ce´ε0ht

Going back to P, we get

e´tP “ e´tPΠh ` Ope´ε0htq.
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Under the generic assumption the small eigenvalues λm, m P U p0q
are distinct. One has Πh “

ř

mPUp0q Πm,h with

Πm,h “
1

2iπ

ż

BDpλm,rmq
pz ´ Pq´1dz

for some rm ą 0 sufficiently small. Moreover, one can show that

there exists C ą 0 such that

@m P U p0q, }Πm,h} ď C

the projector Πm on the smallest eigenvalue λm “ 0 satisfies

Πmu “ xu, ϕmyϕm

with ϕm “ Zhe´pf´f pmqq{h normalized eigenstate associated to
λm.

This implies

e´tPu0 “ xu0, ϕmyϕm `
ÿ

mPUp0qzm

e´λmtΠm ` Ope´εhtq
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