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Abstract. Let P (h), h ∈]0, 1] be a semiclassical scalar differential operator of
order 2. The existence of a supersymmetric structure given by a matrix G(x;h)
was exhibited by Hérau, Hitrik, and Sjöstrand (2011) under rather general
assumptions. In this paper we give a sufficient condition on the coefficients
of P (h) so that the matrix G(x;h) enjoys some nice estimates with respect to
the semiclassical parameter.

1. Introduction

In many problems arising in physics there is interest in accurately computing
the spectrum of some differential operators depending on a small parameter (that
we shall denote by h throughout). In numerous situations, proving sharp results
can be done by using a specific structure of the operator. For instance, in the
setting of Schrödinger operators, geometric assumptions on the potential leads to
sharp computation of the splitting between eigenvalues [4]. More recently, the
computation of the low lying eigenvalues of the semiclassical Witten Laplacian was
performed by using the specific structure of the operator [5], [3]. In these papers, the
fact that the Witten Laplacian enjoys a supersymmetric structure (that is, can be
written as a twisted Hodge Laplacian) is fundamental, and it doesn’t seem possible
to obtain the sharp results without using this property. Similarly, the existence
of a supersymmetric structure was used in [1] to compute the spectrum of some
semiclassical Markov operators and hence the rate of convergence to equilibrium of
the associated random walk.

In a nonselfadjoint setting numerous results in the same spirit were obtained by
Hérau, Hitrik, Sjöstrand [6–8]. In all these papers, the authors were led to compute
a spectral gap for nonselfadjoint operators. Their approach was based on the fact
that the underlying operator is supersymmetric for a convenient bilinear product
and that then some tools developed for the study of the Witten Laplacian can be
used (of course, one major additional difficulty comes from the fact that they are
in a nonselfadjoint situation).

In most situations mentioned above, the supersymmetric structure of the op-
erator is known in advance. Nevertheless, it can occur that the supersymmetric
structure is hidden and has to be exhibited. This was for instance the case in [1]
where the authors give a sufficient condition for selfadjoint pseudodifferential op-
erators to be supersymmetric. Roughly speaking, the main assumption made in
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2 L. MICHEL

[1] is that the Weyl symbol of the operator is an even function of the ξ variable.
The first motivation of the present work was hence to investigate what happens
when this assumption fails to be true. As we shall see later, the pseudodifferen-
tial situation is quite intricate and we shall restrict our attention to the case of
second order scalar differential operators. This issue was already addressed in [9],
where the authors consider semiclassical and nonsemiclassical operators P . In both
situation the author exhibit supersymmetric structure (under the assumption that
the kernels of P and P ∗ contain some specific element), but they emphasize the
fact that in the semiclassical situation, the factorization of the operator is done
without control with respect to the semiclassical parameter. The goal of this paper
is to give a sufficient condition in order to have a control with respect to h in the
factorization and also to discuss the optimality of this condition. We decided to
use the formalism of [9] that we recall in the next paragraph.

Let X be either R
n or an n-dimensional smooth connected compact manifold

without boundary equipped with a smooth volume density ω(dx), and let P = P (h),
h ∈]0, 1], denote a second order scalar semiclassical differential operator on X with
real smooth coefficient. For 0 ≤ k < n, let Ωk(X) = C∞(X,ΛkT ∗X) and denote
d : Ωk(X) → Ωk+1(X) the exterior derivative. For any x ∈ X, we recall the natural
pairing 〈., .〉Λ,Λ∗ on ΛkTX ×ΛkT ∗X given by 〈u, v∗〉Λ,Λ∗ = det((v∗i (uj))i,j) for any
v∗ = v∗1 ∧ . . . ∧ v∗k and u = u1 ∧ . . . ∧ uk. It gives rise to a natural pairing on
C∞(X,ΛkT ∗X)× C∞(X,ΛkTX) by integrating the preceding formula against the
volume form. Then, we let δ : C∞(X,ΛkTX) → C∞(X,Λk−1TX) be the adjoint of
d for this pairing.

Suppose that G(x) : T ∗
xX → TxX is a linear mapping depending smoothly on

x ∈ X. Then ΛkG maps ΛkT ∗
xX into ΛkTxX (by convention Λ0G is the identity

on R) and we can define a bilinear product on C∞
c (X,ΛkT ∗X) by the formula

(1.1) 〈u, v〉G =

∫
X

〈G(x)u(x), v(x)〉Λ,Λ∗ω(dx),

where for short, we write G(x) instead of ΛkG(x). When G(x) is invertible for any
x ∈ X we can define dG,∗ = (Gt)−1δGt and one checks easily that dG,∗ is the formal
adjoint of d with respect to G,

(1.2) 〈du, v〉G = 〈u, dG,∗v〉G, ∀u, v ∈ C∞
c (X,ΛkT ∗X).

Notice that on 1-forms dG,∗, C∞(X,Λ1T ∗X) → C∞(X,R) is given by dG,∗ = δ ◦Gt,
which makes sense even if G is not invertible.

In the case where X is a compact Riemaniann manifold, we can identify T ∗
xX

and TxX by means of the metric g, so that G can be considered as an operator
acting on T ∗

xX. When X = R
n is equipped with the Euclidean metric, then G will

be identified with its matrix in the basis of canonical 1-forms.
Given ϕ ∈ C∞(X,R), the associated Witten complex is defined by the semiclas-

sical weighted de Rham differentiation

dϕ,h = e−ϕ/h ◦ hd ◦ eϕ/h = hd+ dϕ∧

and its formal adjoint with respect to the bilinear form (1.1) is

dG,∗
ϕ,h = eϕ/h ◦ hdG,∗ ◦ e−ϕ/h = (Gt)−1 ◦ (hδ + dϕ�) ◦Gt.

Let us now recall the definition of a supersymmetric structure used in [9].
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SEMICLASSICAL SECOND ORDER DIFFERENTIAL OPERATORS 3

Definition 1.1. Let P = P (x, hDx;h) be a second order scalar real semiclassical
differential operator on X. We say that P has a supersymmetric structure if there
exists a linear h-dependent map G(x;h) : T ∗

xX → TxX, smooth with respect to
x ∈ X, and functions ϕ, ψ ∈ C∞(X,R) such that

P = dG,∗
ψ,hdϕ,h

for all h ∈]0, h0], h0 > 0.

Here we decided to consider phase functions ϕ, ψ which are independent of h
in order to simplify. As noticed in [9], no control of G(x;h) with respect to h is
required in this definition. In order to get some bounds on G(x;h), we first need to
handle a metric on X. If X = R

n we consider g the Euclidean metric and if X is
a compact manifold we take g to be any Riemaniann metric. From this metric we
get a normed vector space structure on TxX and T ∗

xX. In the case where X = R
n

we need to control the function at infinity. Given an order function a (in the sense
of Def. 7.4 in [2]) we say that a function f ∈ C∞(X,R) belongs to S(a) if

(1.3) ∀α ∈ N
n, ∃Cα > 0, ∀x ∈ X, |∂αf(x)| ≤ Cαa(x).

Throughout, we will use the japanese bracket 〈x〉 = (1 + |x|2) 1
2 for x ∈ R

n. Given
m ∈ R, we will often use the order function ρm defined by ρm(x) = 〈x〉m when
X = R

n and by ρm = 1 if X is compact. We shall denote Sm = S(ρm). We
introduce the following

Definition 1.2. Let P = P (x, hDx;h) be a second order scalar real semiclassical
differential operator on X. We say that P has a temperate supersymmetric struc-
ture if it has a supersymmetric structure (in the sense of the above definition) and
if the map G(x;h) : T ∗

xX → TxX satisfies the following: there exist m ∈ R and
some constants Cν > 0 such that

(1.4) ‖∂ν
xG(x, h)‖T∗

xX→TxX ≤ Cνρm(x), ∀x ∈ X,

for all ν ∈ N
n, h ∈]0, h0].

Throughout the paper we shall call a “supersymmetric structure” any operator
G(x;h) as above. We shall say that G is temperate if it satisfies (1.4) for some
m ∈ R. Observe that the preceding definition doesn’t depend on the choice of
the metric g since if g1 and g2 are two metric on a compact manifold X, the
corresponding norms on tangent and cotangent spaces are uniformly equivalent.

In the applications (e.g. for the analysis of the spectrum of the Witten Laplacian
[3] or the Kramers-Fokker-Planck operator [8]), the supersymmetric structure is
used to make a link between the spectrum of P and the spectrum of the associated
operator on 1-forms. As we have seen before, this operator is well defined if the
matrix G(x;h) is invertible. It is then important to find a condition which ensures
that G is invertible. We will come back to this issue at the end of section 2.

In practice, it is often useful to expand quantities in powers of the semiclassical
parameter h. Given a function f ∈ S(a), we shall say that it has a classical
expansion if there exists a sequence (fk)k∈N in S(a) such that for all K ∈ N,

f −
K∑

k=0

hkfk ∈ S(hK+1a).

We shall denote by Scl(a) the set of semiclassical functions having a classical ex-
pansion and Sm,cl = Scl(ρm). Let us now recall one of the results proved in [9].
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4 L. MICHEL

Theorem 1.3. Let P = P (x, hDx;h) be a second order scalar real semiclassi-
cal differential operator on X. Assume there exists ϕ, ψ ∈ C∞(X,R) such that
P (e−ϕ/h) = P ∗(e−ψ/h) = 0, where P ∗ denotes the formal adjoint of P . Assume
also that the δ complex is exact in degree 1 for smooth sections. Then P has a
supersymmetric structure.

Notice that the above theorem holds true in a very general context. For instance,
if X = R

n, any scalar second order differential operator such that P (e−ϕ/h) =
P ∗(e−ψ/h) = 0 admits a supersymmetric structure. Nevertheless, no control on
the linear map G(x;h) giving the supersymmetric structure is proved. This was
noticed in the remark after Definition 1.1 of [8] and finding the condition that
ensures control over G(x;h) was raised as an open question. Moreover, the author
emphasized the fact that the procedure of factorization of P runs in two separate
ways. The factorization of the symmetric part of P is immediate and provides
an explicit bound, whereas the antisymmetric part is obtained as a solution of
a δ problem with exponential weights. This difficulty which concentrated on the
antisymmetric part has to be linked with the general factorization result obtained
for pseudodifferential operators in [1].

Let us now briefly recall this last result. We state the result in a slightly different
class of symbols than the one the used in [1] so that it contains the second order
differential operators. It is not difficult to see that the proof could be adapted to the
present context. Let p(x, ξ) be a symbol in the class S(〈ξ〉2), and let P = Opwh (p)
denote its Weyl quantization (we refer to [2] for the basics of pseudodifferential
calculus). Assume that ϕ is a smooth function that behaves at most as |x| at
infinity such that P (e−ϕ/h) = 0. The fundamental assumption made in [1] is the
following:

(1.5) ξ �→ p(x, ξ) is even for all x ∈ R
n.

From this assumption and the equation P (e−ϕ/h) = 0 we get P ∗(e−ϕ/h) = 0, and
the question of supersymmetry can be investigated. From Lemma 3.2 and Remark
3.3 in [1], it follows that there exists a matrix-valued pseudodifferential operator
Qh(x, hD) ∈ Ψ(1) such that P = d∗ϕ,hQh(x, hD)dϕ,h. In other word, P admits

a temperate supersymmetric structure with the matrix G(x;h) replaced by the
pseudodifferential operator Qh(x, hD).

In order to discuss the preceding results and state our first theorem, we need to
write the operator P in a specific form. It is not hard to verify that any second
order scalar real semiclassical differential operator on X can be written in a unique
way under the form

(1.6) P (x, hDx, h) = hδ ◦A(x;h) ◦ hd+ U(x;h) ◦ hd+ v(x;h),

where A, U and v have the following properties:

• A(x;h) : T ∗
xX → TxX and U(x;h) : T ∗

xX → R are linear and v(x;h) ∈ R.
• Identifying T ∗∗

x X and TxX, A(x;h) is symmetric.
• A, U and v belong to Sm for some m ∈ R.

Observe that U(x;h) ∈ T ∗∗
x X for any x ∈ X. Again using the canonical identifica-

tion T ∗∗
x X  TxX, it can be seen as an element of TxX. In local coordinates, (1.6)
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SEMICLASSICAL SECOND ORDER DIFFERENTIAL OPERATORS 5

reads

(1.7) P = −
n∑

i,j=1

h∂xi
◦ ai,j(x;h) ◦ h∂xj

+

n∑
k=1

uk(x;h) ◦ h∂xk
+ v(x;h)

for some real symmetric matrix A = (aij(x;h)), some vector U = (uk(x;h)) and
v(x;h) ∈ R. So that we can compare the results in [1] and [9], we shall rewrite the
assumptions in a pseudodifferential way. Assume that we work on X = R

n and
that P is given by (1.6). Then one has P = Opwh (p), p = peven + podd with
(1.8)

peven(x, ξ) = ξtA(x)ξ+v(x)+
h

2
div(U)+

h2

4

∑
i,j

∂i∂jaij(x) and podd(x, ξ) = iU(x)ξ,

where we dropped the dependence of the functions with respect to h in order to
lighten the notation. Suppose that U(x) = 0 and P (e−ϕ/h) = 0. Then we can
apply the results of [1] and the operator P admits a temperate supersymmetric
structure P = d∗ϕ,hQdϕ,h, where the operator Q obtained from [1] is a priori a
pseudodifferential operator. Nevertheless, a careful look at the proof shows that
the operator Q is in fact a multiplication by a temperate matrix. In the case where
ϕ = ψ this gives an improvement of the conclusion of Theorem 1.3. In the following
we try to find a sharp assumption to make on the antisymmetric part of P in order
to prove temperate supersymmetry.

Let us recall the general framework. We consider a second order scalar semiclas-
sical differential operator written under the form (1.6) and we assume that there
exists ϕ, ψ such that P (e−ϕ/h) = P ∗(e−ψ/h) = 0. We wonder if P admits a tem-
perate supersymmetric structure. A simple computation shows that P (e−ϕ/h) = 0
if and only if the following eikonal equation holds true:

(1.9) dϕ�(A(x)dϕ) + U(x)dϕ− v(x) + hδ(A(x)dϕ) = 0.

On the other hand, since A is symmetric, we have P ∗ = hδ ◦A(x) ◦ hd− U ◦ hd+
hδ(U) + v(x), and we see that P ∗(e−ψ/h) = 0 is equivalent to a second eikonal
equation:

(1.10) dψ�(A(x)dψ)− U(x)dψ − v(x)− hδ(U) + hδ(A(x)dψ) = 0,

where U(x) : T ∗
xX → R is sometimes seen as an element of TxX.

For any φ ∈ C∞(X) and N ∈ N, let EN
φ ⊂ C∞(X,Λ2TX) denote the subspace

of C∞(X,Λ2TX) given by

EN
φ = {θ =

∑
finite

(αj ◦ φ) θj , αj ∈ S(〈t〉N), θj ∈ ker(δ)}

and also define the corresponding classical set by

EN
φ,cl = {θ ∈ Eφ, αj ∈ Scl(〈t〉N )}.

We are now in a position to state our first result.

Theorem 1.4. Let P be as in (1.6) with coefficients A,U, v belonging to Sm1
for

some m1 ∈ R. Assume that there exists ϕ, ψ ∈ Sm2
for some m2 ∈ R such that

(1.9) holds true and assume that

(1.11) U + d(ϕ− ψ)� ◦A ∈ δ(EN
ϕ+ψ).
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6 L. MICHEL

Then P admits a temperate supersymmetric structure given by some G(x;h) :
T ∗
xX → TxX.
If additionally, A and v are classical functions and U+d(ϕ−ψ)�◦A ∈ δ(EN

ϕ+ψ,cl),

then the linear map G(x;h) has a classical expansion.

Observe that the conclusion of the above theorem implies that the second eikonal
equation (1.10) holds true. This could look surprising since we did not specifically
require (1.10) in our assumptions. In fact, one can easily prove that (1.9) and (1.11)
imply (1.10). It is natural to wonder if assumption (1.11) is necessary in order to
have a temperate supersymmetric structure. In the last section of this paper we
give a partial answer to this question.

2. Proof of Theorem 1.4

For any antisymmetricH(x) : T ∗
xX → TxX, define δ(H) : T ∗

xX → R by δ◦H◦d =
δ(H) ◦ d (since H is antisymmetric, this operator is indeed an homogeneous first
order differential operator). For any G = G(x;h) : T ∗

xX → TxX, one has on the
0-forms

dG,∗
ψ,hdϕ,h = hδ ◦Gt ◦ hd+ dψ� ◦Gt ◦ hd+ hδ ◦Gt(dϕ) + dψ� ◦Gt ◦ dϕ∧

= hδ ◦Gt ◦ hd+ dψ� ◦Gt ◦ hd− dϕ� ◦G ◦ hd+ hδ(Gtdϕ) + dψ�Gt(dϕ)

= hδ ◦ Gt +G

2
◦ hd+ h

δ(Gt −G)

2
◦ hd+ (dψ� ◦Gt − dϕ� ◦G) ◦ hd

+ hδ(Gtdϕ) + dψ�Gt(dϕ).

Let us introduce the symmetric and antisymmetric part of G:

Gs =
1

2
(G+Gt) and Ga =

1

2
(G−Gt).

Then we get

dG,∗
ψ,hdϕ,h = hδ ◦Gs ◦ hd− hδ(Ga) ◦ hd+ (d(ψ − ϕ)� ◦Gs − d(ϕ+ ψ)� ◦Ga) ◦ hd

+ hδ(Gsdϕ)− hδ(Gadϕ) + dψ�(Gsdϕ)− dψ�(Gadϕ).

(2.1)

Identifying (2.1) and (1.6), we see that P = dG,∗
ψ,hdϕ,h if and only if

(2.2)

⎧⎨
⎩

Gs(x) = A(x;h)
U(x;h) + d(ϕ− ψ)� ◦Gs = −hδ(Ga)− d(ϕ+ ψ)�Ga

v(x;h) = hδ(Gsdϕ)− hδ(Gadϕ) + dψ�(Gsdϕ)− dψ�(Gadϕ).

Looking for G under the form G = A+B with B antisymmetric, (2.2) becomes

(2.3)

{
U(x;h) + d(ϕ− ψ)� ◦A = −hδ(B)− d(ϕ+ ψ)� ◦B
v(x;h) = hδ(Adϕ)− hδ(Bdϕ) + dψ�(Adϕ)− dψ�(Bdϕ).

Suppose now that the first equation of the above system is solved. Then,

U(dϕ) = dψ�(Adϕ)− dϕ�(Adϕ)− hδ(Bdϕ) + dψ�Bdϕ,

and using (1.9), we get easily the second one. Hence, we are reduced to find a map
B ∈ C∞(X,Λ2TX) which is temperate and solves

(2.4) U + d(ϕ− ψ)� ◦A = −hδ(B)− dφ�B,
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SEMICLASSICAL SECOND ORDER DIFFERENTIAL OPERATORS 7

where φ = ϕ + ψ. Thanks to assumption (1.11), there exists θ1, . . . , θK ∈
C∞(X,Λ2TX) and α1, . . . αK ∈ C∞(R,R) such that δθk = 0 for all k and

U + d(ϕ− ψ)� ◦A = δθ

with θ =
∑K

k=1(αk ◦ φ) θk. Hence (2.4) is equivalent to

(2.5) δθ = −hδ(B)− dφ�B.

On the other hand, for any k, we have

δ((αk ◦ φ)θk) = (αk ◦ φ)δθk − d(αk ◦ φ)�θk = −(α′
k ◦ φ)dφ�θk,

and hence (2.5) is equivalent to

(2.6) hδ(B) + dφ�B =
K∑

k=1

(α′
k ◦ φ)dφ�θk.

Since this is a linear equation, it suffices find some temperate Bk such that

hδ(Bk) + dφ�Bk = (α′
k ◦ φ)dφ�θk

for all k. In order to lighten the notation, we will drop the index k in the following
lines. Setting B̃ = e−φ/hB, the above equation is equivalent to

(2.7) hδ(B̃) = e−φ/h(α′ ◦ φ)dφ�θ.
Our aim is to find a solution B̃ of this equation such that B = eφ/hB̃ is temperate.
For this purpose, simply observe that

e−φ/h(α′ ◦ φ)dφ = d(β ◦ φ)
with β ∈ C∞(R,R) defined by

(2.8) β(t) = −
∫ m∞

t

α′(s)e−s/hds

with m∞ = +∞ when X = R
n and m∞ = 1+supφ when X is a compact manifold.

Hence (2.7) becomes

hδ(B̃) = d(β ◦ φ)�θ = −δ((β ◦ φ)θ).
A solution is trivially given by B̃ = − 1

h (β ◦ φ)θ, that is,

B(x) =
( 1
h
eφ/h

∫ m∞

φ(x)

α′(s)e−s/hds
)
θ(x)

=
1

h

( ∫ m∞−φ(x)

0

α′(s+ φ(x))e−s/hds
)
θ(x).

(2.9)

It remains to check that B is temperate. For this purpose it suffices to observe that
m∞ − φ(x) ≥ 0, and hence we necessarily have e−s/h ≤ 1 in the above integral. In
the case where X is compact, this shows immediately that ∂νB = O(ρNm2

) for all
ν ∈ N

n. In the case where X = R
n, using the fact that α has at most polynomial

growth and performing integration by parts we similarly obtain ∂νB = O(ρNm2
).

Suppose now that A, v have a classical expansion and that U + d(ϕ− ψ)� ◦A ∈
δ(EN

ϕ+ψ,cl). In order to show that G has a classical expansion, it suffices to do so

for B(x) above. A simple change of variable shows that

B(x) = −
( ∫ (m∞−φ(x))/h

0

α′(hs+ φ(x))e−sds
)
θ(x).
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8 L. MICHEL

In the case where X = R
n, m∞ = +∞ and a simple Taylor expansion in the above

integral gives the result. Suppose now that X is a compact manifold. The Taylor
expansion of α′(hs+ φ(x)) reduces the proof to expand terms of the form

∫ (m∞−φ(x))/h

0

(hs)ke−sds,

which is easily obtained by integration by parts. This concludes the proof. �

Remark 2.1. From the preceding proof, we see that if α satisfies additional prop-
erties, then B can be computed explicitly. For instance, if α is a polynomial,
integration by parts leads to an explicit formula for B.

In the conclusion of this section we shall discuss the invertibility of G(x;h). In
order to simplify the discussion, we suppose that X = R

n. Assume that there
exists θ ∈ Eϕ+ψ such that U + d(ϕ − ψ)� ◦ A = δθ. From the proof above, one
has G = A+B with A real symmetric defined by (1.6) and B real antisymmetric.
Assume that A is uniformly positive definite, that is,

∃C > 0, ∀x ∈ R
n, ∀ξ ∈ T ∗

xX, 〈A(x;h)ξ, ξ〉 ≥ C|ξ|2.

One checks easily that G enjoys the same estimate and hence is invertible with G−1

bounded by C−1.
Let us now consider the case where A(x;h) is only positive (not necessary def-

inite). Assume that there exist some orthogonal subspaces E,F independent of
(x, h) such that Rn = E ⊕ F with E = kerA(x;h) for all x ∈ R

n. In some specific
situations we can ensure that G is invertible. For instance, if kerB = F and B|E
and A|F are invertible with inverse uniformly bounded, then G has a uniformly
bounded inverse. Another interesting situation is a generalization of the Kramers-
Fokker-Planck operator. Recall that the Kramers-Fokker-Planck operator is defined
on R

2n by

(2.10) K(h) = y · h∇x −∇xV (x) · h∇y − h2Δy + y2 − hn,

where (x, y) ∈ R
n × R

n denotes the space variable and V is a smooth function.

This operator admits a supersymmetric structure K(h) = dG,∗
ϕ,h ◦dϕ,h with ϕ(x, y) =

1
2y

2 + V (x) and

G(x, h) =
1

2

(
0 Id

− Id 2 Id

)
.

In particular, G is invertible and G−1 = O(1). In [8], this permitted the authors
to define the whole associated Witten complex and to obtain precise information
on the spectrum of K(h). This situation can be easily generalized. Let us go back
to the above situation where E = kerA(x, h) is independent of x and suppose that

B(E) ⊂ F . Denote Π : X → E as the orthogonal projection and Π̂ = 1−Π. Then,
ΠBΠ = 0 and

G = Π̂AΠ̂ + ΠBΠ̂ + Π̂BΠ+ Π̂BΠ̂.

Therefore, the equation Gξ = 0 is equivalent to{
Π̂AΠ̂ξ + Π̂BΠξ + Π̂BΠ̂ξ = 0

ΠBΠ̂ξ = 0.
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Taking the scalar product with ξ, we get 〈Π̂BΠξ, ξ〉 = 〈Πξ, BtΠ̂ξ〉 = −〈ξ,ΠBΠ̂ξ〉 =
0 and hence

〈AΠ̂ξ, Π̂ξ〉+ 〈BΠ̂ξ, Π̂ξ〉 = 0.

Since A is definite positive on F and B is antisymmetric, it follows immediately
that Π̂ξ = 0. Hence G is injective if and only if B|E : E → F is injective. In

particular it is necessary that dimF ≥ dimE. In order to estimate G−1 one starts
from Gξ = η. Working as above we show easily that ‖Π̂ξ‖ ≤ 2C−1

0 ‖η‖, where C0

is the smallest eigenvalue of A on F . One also has

Π̂BΠξ = Π̂η − Π̂AΠ̂ξ − Π̂BΠ̂ξ.

Hence, assuming additionally that B : E → Im(B) has an inverse which is uniformly
bounded with respect to h, G−1 is automatically uniformly bounded with respect
to h.

3. About assumption (1.11)

The aim of this section is to discuss the necessity of assumption (1.11) in order
to get temperate supersymmetry. Throughout this section, we assume that ϕ = ψ.
Then, the question of the existence of a supersymmetric structure can be reduced
to the same question for operators of order 1. Indeed, we can write P = P1 + P2

with P1 = 1
2 (P + P ∗). Observe that P1 is formally selfadjoint and P2 is formally

antiadjoint. Moreover, since ϕ = ψ, we have P1(e
−ϕ/h) = 0, P2(e

−ϕ/h) = 0 and
we claim that P1 automatically admits a temperate supersymmetric structure with
phase functions ϕ = ψ . Indeed, we have

P1 = hδ ◦A ◦ hd+ h

2
δ(U) + v

and we know from the proof of Theorem 1.4 that P1 admits a temperate supersym-
metric structure if and only if there exists B antisymmetric, such that

d(ϕ− ψ)� ◦A = −hδ(B)− d(ϕ+ ψ)� ◦B.

Since ϕ = ψ, B = 0 solves this equation. We are then reduced to investigate the
condition that ensures that

(3.1) P2 = U ◦ hd− h

2
δ(U)

admits a temperate supersymmetric structure with phase functions ϕ = ψ.

3.1. The two-dimensional case. In this section we assume that X = R
2, the

Euclidean plane, and we consider operators P of the form (3.1). We make the
additional assumption that δ(U) = 0. We denote by C the set of critical points
of ϕ and by ω = ∂x1

∧ ∂x2
the canonical element of C∞(X,Λ2TX). Using the

Euclidean structure we can write P = U(x) · h∇. The following lemma shows that
away from critical points U necessarily has the form (1.11).

Lemma 3.1. For any x0 ∈ R
2 \ C , there exists a neighborhood V of x0 and a

smooth function fx0
: R → R such that U = δ((fx0

◦ ϕ)ω).

Proof. Under the above assumptions, the eikonal equation reads

U(dϕ) = 0,

and since δ(U) = 0, there exists α ∈ C∞(R2) such that U = δ(αω) = ∂2α∂x1
−

∂1α∂x2
. Going back to the eikonal equation we obtain ∂2α∂1ϕ−∂1α∂2ϕ = 0, which
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10 L. MICHEL

can be interpreted as det(∇α,∇ϕ) = 0. From this equation we deduce that near
any point x0 ∈ R

2 there exists a smooth function fx0
such that α = fx0

◦ϕ. To see
this, recall that x0 is noncritical, hence there exists V a neighborhood of x0 such
that V ∩C = ∅. Shrinking V if necessary and changing coordinates, we can assume
that there exists ν ∈ R

2 such that

(3.2) ϕ(z) = ϕ(x0) + 〈ν, z − x0〉 for all z ∈ V.

Suppose that x, y ∈ V are such that ϕ(x) = ϕ(y). Then, we deduce from (3.2) that
there exists a smooth path γ : [0, 1] → V such that γ(0) = x, γ(1) = y and ϕ ◦ γ is
constant (take γ(t) = x+ t(y − x)). Since

α(x)− α(y) =

∫ 1

0

d

dt
α ◦ γ(t)dt =

∫ 1

0

∇α ◦ γ · γ̇(t)dt = 0

for that γ̇ orthogonal to ∇ϕ, this shows that α depends only on ϕ on V . Hence
there exists a function fx0

such that α = fx0
◦ϕ. Moreover, using the fact that ∇ϕ

doesn’t vanish on V one can easily show that fx0
is smooth. �

Without additional assumption on ϕ it seems difficult to globalize the above
result. However, in the case where ϕ is a Morse function one can get further
information on the structure of U . In the following, we assume that ϕ is a Morse
function. For k = 0, 1, 2, let C (k) denote the set of critical points of index k. The
following is an improvement of Lemma 3.1.

Lemma 3.2. Assume that ϕ is a Morse function. Then for any x0 ∈ R
2 \ C (1)

there exists a neighborhood V of x0 and a smooth function fx0
: R → R such that

U = δ((fx0
◦ ϕ)ω).

Proof. It suffices to check the conclusion in the case where x0 is either a minimum
or a maximum of ϕ. Assume that x0 is a minimum of ϕ (the maximum case can
be treated in the same way). As in the previous lemma, we first choose a small
neighborhood V of x0 and new coordinates such that

(3.3) ϕ(z) = ϕ(x0) + |z − x0|2 for all z ∈ V.

Without loss of generality, we can also assume that x0 = 0 and ϕ(0) = 0. Let
x, y ∈ V be such that ϕ(x) = ϕ(y), that is, |x| = |y|, and denote by α the angle
between x and y. Let γ : [0, 1] → V be the path defined by γ(t) = rtα(x), where rθ
denotes the rotation of angle θ. Then γ(0) = x, γ(1) = y and ϕ◦γ is constant. The
same argument as in Lemma 3.1 shows that α(x) = α(y). Hence α depends only
on ϕ on V and there exists a function fx0

such that α = fx0
◦ ϕ. It is clear that

fx0
is smooth away from x0 = 0 since the gradient of ϕ doesn’t vanish. In order to

show that fx0
is smooth in x0 we write fx0

(t) = α(
√
t, 0). Let us write the Taylor

expansion of α near the origin

α(x1, x2) 
∑
j,k

αj,kx
j
1x

k
2 .

The equation det(∇α,∇ϕ) = 0 yields x2∂1α = x1∂2α, and it follows that for all
j, k, jαj,k−2 = kαj−2,k with the convention αp,q = 0 for p < 0 or q < 0. Using
this relation, we immediately get αj,k = 0 for any j, k such that j or k is odd. In
particular αj,0 = 0 for any odd j, which shows that fx0

is smooth at the origin. �
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From now, we will assume additionally that the set C of critical points of ϕ is
finite. Let Σ = ϕ(C (1)) ⊂ R denote the saddle values of ϕ. Then R

2 \ ϕ−1(Σ)
has a finite number of connected components Ω1, . . . ,ΩJ and only one (say ΩJ ) is
unbounded.

Lemma 3.3. Assume that ϕ is a Morse function with a finite critical set. Then
there exists some functions f1, . . . , fJ ∈ C∞(R) such that

U = δ((fj ◦ ϕ)ω) on Ωj .

Proof. Let j ∈ {1, . . . , J} be fixed and let x, y ∈ Ωj such that ϕ(x) = ϕ(y) =: σ.
We shall prove that the set Fσ := ϕ−1(σ) is arcwise connected. We first assume
that Ωj is bounded. Hence there exists a covering of Ωj by a finite collection of
convex open set (ωk)k=1,...,K such that on each ωk, there exists some change of
coordinates θk : Ok → ωk such that ϕk = ϕ ◦ θk takes one of the forms

ϕk(z) = 〈z, ν〉, ν ∈ R
2 \ 0 or ϕk(z) = |z|2 or ϕk(z) = −|z|2

for any z∈Ok neighborhood of 0∈R
2. LetM=2πK supk=1,...,K(‖Dθk‖∞ diam(Ok))

and

(3.4) Γj = {M -Lipschitz path γ contained in Ωj and joining x to y}.
Since Ωj is arcwise connected, Γj is nonempty. Indeed there exists a smooth path
γ0 : [0, 1] → Ωj joining x to y, and up to reparametrization we can also assume that
|γ′

0| is constant. Moreover, using the specific form of ϕ on each ωk we can modify
γ0 into a piecewise C1 path so that Ik := {t ∈ [0, 1], γ0(t) ∈ ωk} is an interval for
all k = 1, . . . ,K. It follows easily that

|γ′
0(t)| ≤ 2π

∑
k, Ik �=∅

diam(Ok)‖Dθk‖∞ ≤ M,

except for a finite number of values of t. Therefore γ0 ∈ Γj .
Introduce next the set M = {sup[0,1] ϕ ◦ γ, γ ∈ Γj} ⊂ [σ,+∞[ since ϕ(x) = σ,

and let m = infM ≥ σ. We claim that m = σ. Indeed, it follows from the Ascoli
theorem that Γj is relatively compact in C([0, 1],Ωj). Hence there exists a path γ1
contained in Ωj and joining x and y such that m = supϕ◦γ1 = ϕ◦γ1(t1). Suppose
by contradiction that m > σ and let x1 = γ1(t1). By definition of Ωj , x1 cannot
be a saddle point of ϕ, and since m = supϕ ◦ γ1 it is not a minimum. Hence x1

is either a local maximum or a noncritical point of ϕ. In both cases, it is easy to
locally modify the path γ1 in order to decrease m. This gives a contradiction.

Hence m = σ and there exists a continuous path γ̃1 ⊂ Ωj joining x and y and
such that sup[0,1] ϕ◦γ̃ = σ. Moreover, by construction γ̃1 isM -Lipschitz. Therefore,
the set

(3.5) Γ̃j = {M -Lipschitz path γ contained in Ωj ∩ {ϕ ≤ σ} and joining x to y}
is nonempty. Let L = {inf [0,1] ϕ ◦ γ̃, γ ∈ Γ̃j} and � = supL. As before, there exists
a Lipschitz path γ2 such that � = supϕ ◦ γ2 and we can show easily that ϕ ◦ γ2
is a constant equal to σ. Using this path γ2 and the fact that ϕ−1(σ) is locally
connected, we construct a path γ3 ⊂ ϕ−1(σ) from x to y which is piecewise C1.

Using this path γ3 and repeating the argument of the proof of Lemma 3.2, it
follows easily that α(x) = α(y) and hence α depends only on ϕ. This permits us
to construct a function fj such that α = fj ◦ ϕ on Ωj . The smoothness of fj is a
local property and then follows from Lemma 3.2.
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Let us now prove the result for the unbounded component ΩJ . Let σ ∈ R be
fixed and let x, y ∈ ΩJ ∩ ϕ−1(σ). By definition, there exists a path γ contained in
ΩJ joining x and y. Let R > 0 be such that γ ⊂ B(0, R). Since ΩJ ∩ B(0, R) is
relatively compact, one can follow the same strategy as for the bounded component
with Ωj replaced by ΩJ ∩B(0, R). �

As a consequence of the above lemma we get the following

Theorem 3.4. Let P (h) = U ◦ hd with δ(U) = 0. Assume that ϕ is a Morse
function with a finite number of critical points and such that U · ∇ϕ = 0. Assume
additionally that for all i, j = 1, . . . , J , i �= j, and all x ∈ Ωi, y ∈ Ωj, such that
ϕ(x) = ϕ(y), there exists a smooth path γ from x to y such that

(3.6)

∫
γ

�U = 0,

where � denotes the Hodge star operator. Then P satisfies (1.11) and hence admits
a temperate supersymmetric structure.

Proof. Let I denote the image of ϕ which is a (bounded or unbounded) interval.
From (3.6), one knows that for all i �= j and all x ∈ Ωi, y ∈ Ωj such that ϕ(x) =
ϕ(y), one has fi ◦ ϕ(x) = fj ◦ ϕ(y). Hence, the function f : I → R given by
f ◦ ϕ(x) = α(x) is well defined. One has to show that f is smooth and the only
point which has not already been examined is the smoothness near saddle points.
Let s0 be a saddle point of ϕ. Without loss of generality, we assume s0 = 0 and
ϕ(x) = x2

1 − x2
2 near the origin. As in the proof of Lemma 3.2, we write U = δ(αω)

with α 
∑

j,k αj,kx
j
1x

k
2 , and it follows from the equation U(dϕ) = 0 that

(3.7) jαj,k−2 = −kαj−2,k

for all j, k (with the convention αj,k = 0 for negative j or k). As before, we get
αj,k = 0 for j or k odd and one has

f(t) =

{
α(

√
t, 0) if t > 0

α(0,
√
−t) if t < 0.

From the Taylor expansion of α we see that f is smooth if and only if α2j,0 =
(−1)jα0,2j , which is a consequence of (3.7). �

In consideration of the above theorem, one could think that operators admitting
temperate supersymmetric structure are more or less of the form (1.11). In fact,
when the dimension is greater than 2, this is not the case. One way to see this is
to notice that supersymmetric structure can be easily tensorized.

Let Xj , j = 1, 2, be either a Euclidean space or a smooth connected compact
manifold. Let Pj(xj , hDxj

) denote a second order semiclassical differential operator
on Xj , and let ϕj , ψj ∈ C∞(Xj ,R).

Theorem 3.5. Assume that the Pj admit a supersymmetric structure Gj(xj ;h)
associated to the phase ϕj , ψj. Then the operator P (x, hDx) = P1(x1, hDx1

) +
P2(x2, hDx2

) acting on X = X1 ×X2 admits a supersymmetric structure

P = dG,∗
ψ,hdϕ,h

with ϕ(x1, x2) = ϕ1(x1) + ϕ2(x2), ψ(x1, x2) = ψ1(x1) + ψ2(x2) and G(x;h) =(
G1 0
0 G2

)
.
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Proof. This is immediate. �

Using this result, we can easily construct some examples where U does not
necessarily have the form (1.11), even locally. For instance, let X = R

3, ϕ(x) =
x2
1 + x2

2 + x2
3 and

P (x, hDx) = x1 cos(x
2
1 + x2

2)h∂x2
− x2 cos(x

2
1 + x2

2)h∂x1
= U ◦ hd

with U(x) = −x2 cos(x
2
1+x2

2)∂x1
+x1 cos(x

2
1+x2

2)∂x2
. Then P admits a supersym-

metric structure with phases ϕ = ψ, and one has U = δ(sin(x2
1 + x2

2)∂x1
∧ ∂x2

) but
U cannot be written under the form (1.11).

3.2. Perturbation of a supersymmetric structure. In this section we go back
to the general situation where X is either a compact manifold without boundary or
R

n. We assume that ϕ : X → R is a smooth function such that the set V = ϕ(C )
of critical values of ϕ is finite. In the case where X = R

n we assume additionaly
that lim|x|→∞ ϕ(x) = ∞. For any σ ∈ R we denote Xσ = {x ∈ X, ϕ(x) < σ}
and we consider a fixed connected component ωσ of Xσ. For any ε > 0 we denote
ωε
σ = ωσ ∩ Xσ−ε. Since V is finite, there exists ε0 > 0 small enough such that

]σ − ε0, σ[∩V = ∅. Therefore, the set ωε
σ has smooth boundary for all 0 < ε < ε0

and ωε
σ is relatively compact in ωσ (in the case X = R

n this is true since ϕ goes to
infinity at infinity). Hence we can construct a smooth cut-off function χε such that
χ = 1 on ωε

σ and supp(χε) ⊂ ωσ. Let α ∈ C∞(R) such that supp(α) ⊂]−∞, σ − ε[
and let θ be a 2-form such that δθ = 0. Consider

Uε = δ((χε α ◦ ϕ)θ).
Then Uε is a smooth 1-form such that δUε = 0. Moreover, by construction
supp(dχε) ⊂ {σ − ε < ϕ < σ} and hence α ◦ ϕdχε = 0. Therefore, we have in
fact

Uε = χεδ((α ◦ ϕ)θ) = −χεα
′ ◦ ϕdϕ�θ,

and hence Uε(dϕ) = 0. Then, the operator Pε = Uε ◦hd is formally self-adjoint and
we have Pε(e

−ϕ/h) = 0.

Proposition 3.6. Assume that the above assumptions are fulfilled; then Pε admits
a temperate supersymmetric structure.

Proof. Set φ = 2ϕ. Let

B0(x) :=
( 1

2h
eφ/h

∫ 2(σ−ε)

φ(x)

α′(
s

2
)e−s/hds

)
θ(x),

which is temperate since α is supported in {s < σ − ε}. It follows from the proof
of Theorem 1.4 that

hδB0 + dφ�B0 = (α′ ◦ ϕ)dϕ�θ = −δ(α ◦ ϕθ).
Set B = χεB

0. Thanks to the support properties of χε and α, one has δB = χδB0.
Therefore,

hδB + dφ�B = −Uε,

which is exactly the eikonal equation we have to solve. Moreover, the same proof
as in Theorem 1.4, with mε instead of m∞, shows that B is temperate. �

Remark 3.7. Assume Xσ has two distinct connected components. Then Uε has a
temperate supersymmetric structure and doesn’t satisfy (1.11).
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