
ANALYSIS & PDE

msp

Volume 8 No. 2 2015

JEAN-FRANÇOIS BONY, FRÉDÉRIC HÉRAU AND LAURENT MICHEL

TUNNEL EFFECT FOR SEMICLASSICAL RANDOM WALKS





ANALYSIS AND PDE
Vol. 8, No. 2, 2015

dx.doi.org/10.2140/apde.2015.8.289 msp

TUNNEL EFFECT FOR SEMICLASSICAL RANDOM WALKS

JEAN-FRANÇOIS BONY, FRÉDÉRIC HÉRAU AND LAURENT MICHEL

We study a semiclassical random walk with respect to a probability measure with a finite number n0 of
wells. We show that the associated operator has exactly n0 eigenvalues exponentially close to 1 (in the
semiclassical sense), and that the others are O.h/ away from 1. We also give an asymptotic of these small
eigenvalues. The key ingredient in our approach is a general factorization result of pseudodifferential
operators, which allows us to use recent results on the Witten Laplacian.

1. Introduction

Let � W Rd ! R be a smooth function and let h 2 �0; 1� denote a small parameter throughout. Under
suitable assumptions specified later, the density e��.x/=h is integrable and there exists Zh > 0 such that
d�h.x/ D Zhe��.x/=hdx defines a probability measure on Rd . We can associate to �h the Markov
kernel th.x; dy/ given by

th.x; dy/D
1

�h.B.x; h//
1jx�yj<h d�h.y/: (1-1)

From the point of view of random walks, this kernel can be understood as follows: Assume that at
step n the walk is in xn; then the point xnC1 is chosen in the small ball B.xn; h/ uniformly at random
with respect to d�h. The probability distribution at time n 2 N of a walk starting from x is given by the
kernel tn

h
.x; dy/. The long-time behavior (n!1) of the kernel tn

h
.x; dy/ carries information on the

ergodicity of the random walk, and has many practical applications (we refer to [Lelièvre et al. 2010] for
an overview of computational aspects). Observe that, if � is a Morse function, then the density e��=h

concentrates at scale
p

h around minima of �, whereas the moves of the random walk are at scale h.
Another point of view comes from statistical physics and can be described as follows: One can associate

to the kernel th.x; dy/ an operator Th acting on the space C0 of continuous functions going to zero at
infinity by the formula

Thf .x/D

Z
Rd

f .y/th.x; dy/D
1

�h.B.x; h//

Z
jx�yj<h

f .y/ d�h.y/:

This defines a bounded operator on C0, enjoying the Markov property .Th.1/D 1/.
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The transpose T ?
h

of Th is defined by duality on the set of bounded positive measures MC

b
(resp.

bounded measures Mb). If d� is a bounded measure, we have

T ?
h .d�/D

�Z
Rd

1jx�yj<h�h.B.y; h//
�1 d�.y/

�
d�h: (1-2)

Assume that a particle in Rd is distributed according to a probability measure d�; then T ?
h
.d�/ represents

its distribution after a move according to th.x; dy/, and the distribution after n steps is then given
by .T ?

h
/n.d�/. The existence of a limit distribution is strongly related to the existence of an invariant

measure. In the present context, one can easily see that T ?
h

admits the invariant measure

d�h;1.x/D zZh�h.B.x; h// d�h.x/;

where zZh is chosen so that d�h;1 is a probability. The aim of the present paper will be to prove the
convergence of .T ?

h
/n.d�/ towards d�h;1 when n goes to infinity for any probability measure d�, and

to get precise information on the speed of convergence. Taking d�.y/ D ıx.y/, it turns out that it is
equivalent to study the convergence of tn

h
.x; dy/ towards d�h;1. Note that, in the present setting, proving

pointwise convergence (h being fixed) of tn
h
.x; dy/ towards the invariant measure is an easy consequence

of a general theorem (see [Feller 1971, Theorem 2, p. 272]). The purpose of our approach is to get
convergence in a stronger topology and to obtain precise information on the behavior with respect to the
semiclassical parameter h.

Before going further, let us recall some elementary properties of Th that will be useful in the sequel.
First, we can see easily from its definition that the operator Th can be extended as a bounded operator
both on L1.d�h;1/ and L1.d�h;1/. From the Markov property and the fact that d�h;1 is stationary, it
is clear that

kThkL1.d�h;1/!L1.d�h;1/ D kThkL1.d�h;1/!L1.d�h;1/
D 1:

Hence, by interpolation, Th defines also a bounded operator of norm 1 on L2.Rd ; d�h;1/. Finally,
observe that Th is selfadjoint on L2.d�h;1/ (thanks again to the Markov property).

Let us go back to the study of the sequence .T ?
h
/n and explain the topology we use to study the

convergence of this sequence. Instead of looking at this evolution on the full set of bounded measures,
we restrict the analysis by introducing the stable Hilbert space

Hh DL2.d�h;1/D
˚
f measurable on Rd such that

R
jf .x/j2 d�h;1 <1

	
; (1-3)

for which we have a natural injection with norm 1, J W Hh ,!Mb; when identifying an absolutely
continuous measure d�h D f .x/d�h;1 with its density f . Using (1-2), we can see easily that T ?

h
ıJD

J ıTh. From this identification, T ?
h

(acting on Hh) inherits the properties of Th:

T ?
h WHh!Hh is selfadjoint and continuous with operator norm 1: (1-4)

Hence, its spectrum is contained in the interval Œ�1; 1�. Moreover, we will see later that �1 is sufficiently
far from the spectrum. Since we are interested in the convergence of .T ?

h
/n in the L2 topology, it is then

sufficient for our purpose to give a precise description of the spectrum of Th near 1.
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Convergence of Markov chains to stationary distributions is a wide area of research with many
applications. Knowing that a computable Markov kernel converges to a given distribution may be very
useful in practice. In particular, it is often used to sample a given probability in order to implement Monte
Carlo methods (see [Lelièvre et al. 2010] for numerous algorithms and computational aspects). However,
most results giving a priori bounds on the speed of convergence for such algorithms hold for discrete
state space (we refer to [Diaconis 2009] for a state of the art on Monte Carlo Markov chain methods).

This point of view is also used to track extremal points of any function by simulated annealing procedure.
For example, this was used in [Holley and Stroock 1988] on finite state space and in [Holley et al. 1989;
Miclo 1992] on continuous state space.

Relatedly, let us recall that the study of time-continuous processes is of current interest in statistical
physics (see for instance the work of Bovier, Eckhoff, Gayrard and Klein [Bovier et al. 2004; 2005] on
metastable states).

More recently, Diaconis and Lebeau [2009] obtained first results on discrete time processes on
continuous state space. This approach was then further developed in [Diaconis et al. 2011] to get
convergence results on the Metropolis algorithm on bounded domains of Euclidean space. Similar results
were also obtained in [Lebeau and Michel 2010; Guillarmou and Michel 2011] in various geometric
situations. In all these papers, the probability d�h is independent of h, which leads ultimately to a spectral
gap of order h2. Here, the situation is quite different and somehow “more semiclassical”. This permits us
to exhibit situations with very small spectral gap of order e�c=h. The precise asymptotic of this gap (and
more generally of the eigenvalues close to 1) is driven by the tunnel effect between wells (see [Helffer
and Sjöstrand 1984] for results in the case of Schrödinger operators). In this paper, we shall compute
accurately this quantity under the following assumptions on �:

Hypothesis 1. We suppose that � is a Morse function with nondegenerate critical points and that there
exist c, R> 0 and some constants C˛ > 0, ˛ 2 Nd such that, for all jxj �R, we have

j@˛x�.x/j � C˛; jr�.x/j � c and �.x/� cjxj for all ˛ 2 Nd
n f0g:

In particular, there is a finite number of critical points.

Observe that functions � satisfying this assumption are at most linear at infinity. It may be possible to
relax this assumption to quadratic growth at infinity, and we guess our results hold true also in this context.
However, it doesn’t seem possible to get a complete proof with the class of symbols used in this paper.

Under the above assumption, it is clear that d�h.x/DZhe��.x/=h dx is a probability measure. For
the following, we call U the set of critical points u. We denote by U.0/ the set of minima of � and by
U.1/ the set of saddle points, i.e., the critical points with index 1 (note that this set may be empty). We
also introduce nj D ]U.j/, j D 0, 1, the number of elements of U.j/.

We shall first prove the following result:

Theorem 1.1. There exist ı, h0 > 0 such that the following assertions hold true for h 2 �0; h0�: First,
�.T ?

h
/� Œ�1Cı; 1� and �ess.T

?
h
/� Œ�1Cı; 1�ı�. Moreover, T ?

h
has exactly n0 eigenvalues in Œ1�ıh; 1�,

which are in fact in Œ1� e�ı=h; 1�. Lastly, 1 is a simple eigenvalue for the eigenstate �h;1 2Hh.
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This theorem will be proved in the next section. The goal of this paper is to describe accurately the
eigenvalues close to 1. We will see later that describing the eigenvalues of T ?

h
close to 1 has many

common points with the spectral study of the so-called semiclassical Witten Laplacian (see Section 4).
We introduce the following generic assumptions on the critical points of �:

Hypothesis 2. We suppose that the values �.s/��.m/ are distinct for any s 2U.1/ and m 2U.0/.

Note that this generic assumption could easily be relaxed at the cost of messy notation and less
precise statements, following, e.g., [Hérau et al. 2011], and that we chose to focus in this article on other
particularities of the problem.

Let us recall that, under the above assumptions, there exists a labeling of minima and saddle points,
U.0/ D fmk W k D 1; : : : ; n0g and U.1/ D fsj W j D 2; : : : ; n1 C 1g, which permits us to describe the
low-lying eigenvalues of the Witten Laplacian (see [Helffer et al. 2004; Hérau et al. 2011], for instance).
Observe that the enumeration of U.1/ starts with j D 2, since we will need a fictional saddle point
s1 DC1. We shall recall this labeling procedure in the Appendix.

Let us denote by 1D �?
1
.h/ > �?

2
.h/� � � � � �?n0

.h/ the n0 largest eigenvalues of T ?
h

. The main result
of this paper is the following:

Theorem 1.2. Under Hypotheses 1 and 2, there exists a labeling of minima and saddle points and
constants ˛, h0 > 0 such that, for all k D 2; : : : ; n0 and for any h 2 �0; h0�,

1��?k.h/D
h

.2d C 4/�
�k

sˇ̌̌̌
det�00.mk/

det�00.sk/

ˇ̌̌̌
e�2Sk=h.1CO.h//;

where Sk WD �.sk/��.mk/ (the Arrhenius number) and ��k denotes the unique negative eigenvalue
of �00 at sk .

Remark 1.3. The leading term in the asymptotic of 1��?
k
.h/ above is exactly (up to the factor .2dC4/)

the one of the k-th eigenvalue of the Witten Laplacian on the 0-forms obtained in [Helffer et al. 2004].
This relationship will be transparent from the proof below.

As an immediate consequence of these results and of the spectral theorem, we get that the convergence
to equilibrium holds slowly and that the system has a metastable regime. More precisely, we have the
following result, whose proof can be found at the end of Section 5.

Corollary 1.4. Let d�h be a probability measure in Hh and assume first that � has a unique minimum.
Then, using that �.T ?

h
/� Œ�1C ı; 1� ıh�, it yields

k.T ?
h /

n.d�h/� d�h;1kHh
D O.h/kd�hkHh

(1-5)

for all n& jln hjh�1, which corresponds to the Ehrenfest time. But, if � has several minima, we can write

.T ?
h /

n.d�h/D…d�hCO.h/kd�hkHh
(1-6)

for all h�1jln hj . n . e2Sn0
=h. Here, … can be taken as the orthogonal projector on the n0 functions

�k.x/e
�.�.x/��.mk//=h, where �k is any cutoff function near mk .



TUNNEL EFFECT FOR SEMICLASSICAL RANDOM WALKS 293

On the other hand, we have, for any n 2 N,

k.T ?
h /

n.d�h/� d�h;1kHh
� .�?2.h//

n
kd�hkHh

; (1-7)

where �?
2
.h/ is described in Theorem 1.2. Note that this inequality is optimal. In particular, for

n& jln hjh�1e2S2=h, the right-hand side of (1-7) is of order O.h/kd�hkHh
.

Thus, for a reasonable number of iterations (which guarantees (1-5)), 1 seems to be an eigenvalue of
multiplicity n0; whereas, for a very large number of iterations, the system returns to equilibrium. Then,
(1-6) is a metastable regime.

Since th.x; dy/ is absolutely continuous with respect to d�h;1, then .T ?
h
/n.ıyDx/D tn

h
.x; dy/ belongs

to Hh for any n� 1. Hence, the above estimate and the fact that d�h;1 is invariant show that

ktn
h .x; dy/� d�h;1kHh

� .�?2.h//
n�1
kth.x; dy/kHh

:

Moreover, the prefactor kth.x; dy/kHh
could be easily computed but depends on x and h.

Throughout this paper, we use semiclassical analysis (see [Dimassi and Sjöstrand 1999; Martinez 2002;
Zworski 2012] for expository books on this theory). Let us recall that a function m WRd!RC is an order
function if there exists N0 2N and a constant C > 0 such that, for all x, y 2Rd ; m.x/�C hx�yiN0m.y/.
Here and throughout we use the notation hxi D .1Cjxj2/

1
2 . This definition can be extended to functions

m W Rd �Cd 0! RC by identifying Rd �Cd 0 with RdC2d 0 . Given an order function m on T �Rd ' R2d ,
we will denote by S0.m/ the space of semiclassical functions on T �Rd whose derivatives are all bounded
by m, and by ‰0.m/ the set of corresponding pseudodifferential operators. For any � 2 �0;1� and any
order function m on Rd �Cd , we will denote by S0

� .m/ the set of symbols which are analytic with respect
to � in the strip jIm �j < � and bounded by some constant times m.x; �/ in this strip. We will denote
by S0

1.m/ the union over � >0 of S0
� .m/. We denote by‰0

� .m/ the set of corresponding operators. Lastly,
we say that a symbol p is classical if it admits an asymptotic expansion p.x; �I h/�

P
j�0 hj pj .x; �/.

We will denote by S0
�;cl.m/ and S0

cl.m/ the corresponding classes of symbols.
We will also need some matrix-valued pseudodifferential operators. Let Mp;q denote the set of real-

valued matrices with p rows and q columns, and Mp D Mp;p. Let A W T �Rd ! Mp;q be a smooth
function. We will say that A is a .p; q/-matrix weight if A.x; �/D .ai;j .x; �//i;j and ai;j is an order
function for every i D 1; : : : ;p and j D 1; : : : ; q. If p D q, we will simply say that A is a q-matrix
weight.

Given a .p; q/-matrix weight A, we will denote by S0.A/ the set of symbols p.x; �/D .pi;j .x; �//i;j

defined on T �Rd with values in Mp;q such that, for all i , j , pi;j 2 S0.ai;j /, and by ‰0.Mp;q/ the set of
corresponding pseudodifferential operators. Obvious extensions of these definitions leads to the definition
of matrix-valued symbols analytic w.r.t. to � and the corresponding operators, S0

� .A/ and ‰0
� .A/. In the

following, we shall mainly use the Weyl semiclassical quantization of symbols, defined by

Op.p/u.x/D .2�h/�d

Z
T �Rd

eih�1.x�y/�p
�

1
2
.xCy/; �

�
u.y/ dy d� (1-8)
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for p 2 S0.A/. We shall also use the following notations. Given two pseudodifferential operators A and
B, we shall write AD BC‰k.m/ if the difference A�B belongs to ‰k.m/. At the level of symbols,
we shall write aD bCSk.m/ instead of a� b 2 Sk.m/.

The preceding theorem is close — in the spirit and in the proof — to the ones given for the Witten
Laplacian in [Helffer et al. 2004] and for the Kramers–Fokker–Planck operators in [Hérau et al. 2011]. In
those works, the results are deeply linked with some properties inherited from a so-called supersymmetric
structure, which allow the operators to be written as twisted Hodge Laplacians of the form

P D d��;hAd�;h;

where d is the usual differential, d�;hDhdCd�.x/^De��=hhde�=h is the differential twisted by �, and
A is a constant matrix in Md . Here we are able to recover a supersymmetric-type structure, and the main
ingredients for the study of the exponentially small eigenvalues are therefore available. This is contained
in the following theorem, that we give in rather general context since it may be useful in other situations.

Let us introduce the d-matrix weights „, A W T �Rd ! Md given by Ai;j .x; �/ D .h�iih�j i/
�1,

„i;j D ıi;j h�ii, and observe that .„A/i;j D h�j i
�1. In the following theorem, we state an exact

factorization result, which will be the key point in our approach.

Theorem 1.5. Let p.x; �I h/2S0
1.1/ and let PhDOp.p/. Suppose that p.x; �I h/Dp0.x; �/CS0

1.h/

and that, for all .x; �/ 2 R2d , p.x; �I h/ is real. Let � satisfy Hypotheses 1 and 2 and assume that the
following assumptions hold true:

(i) Ph.e
��=h/D 0;

(ii) for all x 2 Rd , the function � 2 Rd 7! p.x; �I h/ is even;

(iii) for all ı > 0, there exists ˛ > 0 such that, for all .x; �/ 2 T �Rd , d.x;U/2 C j�j2 � ı implies
p0.x; �/� ˛;

(iv) for any critical point u 2U, we have

p0.x; �/D j�j
2
Cjr�.x/j2C r.x; �/

with r.x; �/D O.j.x�u; �/j3/ near .u; 0/.

Then, for h> 0 small enough, there exists a symbol q 2 S0.„A/ satisfying the following properties:
First, Ph D d�

�;h
Q�Qd�;h with QD Op.q/.

Next, q.x; �I h/D q0.x; �/CS0.h„A/ and, for any critical point u 2U, we have

q0.x; �/D IdCO.j.x�u; �/j/:

If we assume additionally that r.x; �/D O.j.x�u; �/j4/, then q0.x; �/D IdCO.j.x�u; �/j2/ near .u; 0/
for any critical point u 2U.

Lastly, if p 2 S0
cl.1/ then q 2 S0

cl.„A/.
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As already mentioned, we decided in this paper not to give results in the most general case so that
technical aspects do not hide the main ideas. Nevertheless, we would like to mention here some possible
generalizations of the preceding result.

First, it should certainly be possible to use more general order functions and to prove factorization
results for symbols in other classes (for instance S0.h.x; �/i2/). This should allow us to see the super-
symmetric structure of the Witten Laplacian as a special case of our result. In other words, the symbol
p.x; �I h/D j�j2Cjr�.x/j2� h��.x/ would satisfy assumptions (i) to (iv) above.

The analyticity of the symbol p with respect to the variable � is certainly not necessary in order to get
a factorization result (it suffices to take a nonanalytic q in the conclusion to see it). Nevertheless, since
our approach consists in conjugating the operator by e��=h, it seems difficult to deal with nonanalytic
symbols. Moreover, using a regularization procedure in the proof the above theorem, it is certainly
possible to prove that the symbol q above can be chosen in a class S0

� .„A/ for some � > 0. Using
this additional property, it may be possible to prove some Agmon estimates, construct more accurate
quasimodes (on the 1-forms), and then to prove a full asymptotic expansion in Theorem 1.2.

A more delicate question should be to get rid of the parity assumption (ii). It is clear that this assumption
is not necessary (take q.x; �/ D h�i�2

�
IdC diag.�i=h�i/

�
in the conclusion), but it seems difficult to

prove a factorization result without it. For instance, if we consider the case � D 0 in dimension 1 (which
doesn’t fit exactly in our framework but enlightens the situation) then Ph D hDx cannot be smoothly
factorized simultaneously on the left and on the right.

As will be seen in the proof below, the operator Q (as well as Q�Q) above is not unique. Trying to
characterize the set of all possible Q should be also a question of interest.

The optimality of assumption (iv) should be questioned. Expanding q0 near .u; 0/, we can see that we
necessarily have

p0.x; �/D jq0.u; 0/.� � ir�/j2CO.j.x�u; �/j3/

near any critical point. In assumption (iv) we consider the case q0.u; 0/ D Id, but it could easily be
relaxed to any invertible matrix q0.u; 0/.

Lastly, we shall mention that, for semiclassical differential operators of order 2, a supersymmetric
structure (in the class of differential operators) was established by Hérau, Hitrik and Sjöstrand [Hérau
et al. 2013]. This result requires fewer assumptions, but doesn’t hold true in any good class of symbols.

The plan of the article is the following. In the next section we analyze the structure of the operator T ?
h

and prove the first results on the spectrum stated in (1-1). In Section 3 we prove Theorem 1.5 and apply
it to the case of the random walk operator. In Section 4, we prove some preliminary spectral results, and
in Section 5 we prove Theorem 1.2.

2. Structure of the operator and first spectral results

In this section, we analyze the structure of the spectrum of the operator T ?
h

on the space HhDL2.d�h;1/

(see (1-3)). But it is more convenient to work with the standard Lebesgue measure than with the
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measure d�h;1. We then introduce the Maxwellian Mh, defined by

d�h;1 DMh.x/ dx; so that Mh D
zZh�h.Bh.x//Zhe��.x/=h; (2-1)

and we make the change of function

Uhu.x/ WDM
�1=2

h
.x/u.x/;

where Uh is unitary from L2.Rd /DL2.Rd ; dx/ to Hh. Letting

Th WDU�hT ?
h Uh; (2-2)

the conjugated operator acting in L2.Rd /, we have

Thu.x/DZhM
�1=2

h
.x/e��.x/=h

Z
Rd

1jx�yj<hM
1=2

h
.y/�h.B.y; h//

�1u.y/ dy

D

�
Zhe��.x/=h

�h.B.x; h//

�1
2
Z
jx�yj<h

u.y/

�
Zhe��.y/=h

�h.B.y; h//

�1
2

dy:

We let

ah.x/D .˛dhd /1=2
�

Zhe��.x/=h

�h.B.x; h//

�1
2

;

and define the operator G by

Gu.x/D
1

˛dhd

Z
jx�yj<h

u.y/ dy (2-3)

where ˛d D vol.B.0; 1// denotes the Euclidean volume of the unit ball, so that, with these notations, the
operator Th is

Th D ahGah; (2-4)

i.e.,

Thu.x/D ah.x/G.ahu/.x/:

We note that

a�2
h .x/D

�h.B.x; h//e
�.x/=h

˛dhdZh

D
1

˛dhd

Z
jx�yj<h

e.�.x/��.y//=h dy D e�.x/=hG.e��=h/.x/: (2-5)

We now collect some properties of G and ah.
One simple but fundamental observation is that G is a semiclassical Fourier multiplier, GDG.hD/D

Op.G/, where

G.�/D
1

˛d

Z
jzj<1

eiz�� dz for all � 2 Rd : (2-6)

Lemma 2.1. The function G is analytic on Cd and enjoys the following properties:

(i) G W Rd ! R.
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(ii) There exists ı > 0 such that G.Rd /� Œ�1C ı; 1�. Near � D 0, we have

G.�/D 1�ˇd j�j
2
CO.j�j4/;

where ˇd D .2d C 4/�1. For any r > 0, supj�j�r jG.�/j< 1 and limj�j!1G.�/D 0.

(iii) For all � 2 Rd , we have G.i�/ 2 R, G.i�/� 1 and, for any r > 0, infj� j�r G.i�/ > 1.

(iv) For all �, � 2 Rd we have jG.�C i�/j �G.i�/.

Proof. The function G is analytic on Cd since it is the Fourier transform of a compactly supported
distribution. The fact that G.Rd /�R is clear using the change of variable z 7! �z. The second item was
shown in [Lebeau and Michel 2010].

We now prove (iii). The fact that G.i�/ is real for any � 2Rd is clear. Moreover, one can see easily that
� 7!G.i�/ is radial, so that there exists a function � W R! R such that, for all � 2 Rd , G.i�/D �.j� j/.
Simple computations show that � enjoys the following properties:

� � is even;

� � is strictly increasing on RC;

� �.0/D 1.

This leads directly to the claimed properties for G.i�/.
Finally, the fact that jG.� C i�/j � G.i�/ for all �, � 2 Rd is trivial, since jeiz�.�Ci�/j D e�z�� for

all z 2 Rd . �

Lemma 2.2. There exist c1, c2 > 0 such that c1 < ah.x/ < c2 for all x 2 Rd and h 2 �0; 1�. Moreover,
the functions ah and a�2

h
belong to S0.1/ and have classical expansions ah D a0 C ha1 C � � � and

a�2
h
D a�2

0
C � � � . In addition,

a0.x/DG.ir�.x//�1=2;

a1.x/DG.ir�.x//�3=2 1

4˛d

Z
jzj<1

e�r�.x/�zh�00.x/z; zi dz:

Lastly, there exist c0, R> 0 such that, for all jxj �R, a�2
h
.x/� 1C c0 for h> 0 small enough.

Proof. By a simple change of variable, we have

a�2
h .x/D

1

˛d

Z
jzj<1

e.�.x/��.xChz//=h dz:

Since there exists C > 0 such that jr�.x/j �C for all x 2Rd , we can find some constants c1, c2> 0 such
that c1 < ah.x/

�2 < c2 for all x 2 Rd and h 2 �0; 1�. Moreover, thanks to the bounds on the derivatives
of �, we get easily that derivatives of a�2

h
are also bounded. This shows that a�2

h
belongs to S0.1/ and,

since it is bounded from below by c1 > 0, we get immediately that ah 2 S0.1/.
On the other hand, by simple Taylor expansion, we get that ah and a�2

h
have classical expansions

and the required expressions for a0 and a1. Since jr�.x/j � c > 0 for x large enough, it follows from
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Lemma 2.1(iii) that there exist c0, R > 0 such that, for all jxj �R, G.ir�.x// � 1C 2c0, and hence
a�2

h
.x/� 1C c0 for h> 0 sufficiently small. �

Since we want to study the spectrum near 1, it will be convenient to introduce

Ph WD 1�Th: (2-7)

Using (2-4) and (2-5), we get
Ph D ah.Vh.x/�G.hDx//ah (2-8)

with Vh.x/D a�2
h
.x/D e�=hG.hDx/.e

��=h/. As a consequence of the previous lemmas, we get the
following proposition for Ph:

Proposition 2.3. The operator Ph is a semiclassical pseudodifferential operator whose symbol p.x; �I h/

in S0
1.1/ admits a classical expansion that reads p D p0C hp1C � � � with

p0.x; �/D 1�G.ir�.x//�1G.�/� 0 and p1.x; �/DG1.x/G.�/;

where

G1.x/D�G.ir�.x//�2 1

2˛d

Z
jzj<1

e�r�.x/�zh�00.x/z; zi dz D�ˇd��.u/CO.jx�uj/;

near any u 2U.

Proof. The fact that p belongs to S0
1.1/ and admits a classical expansion is clear thanks to Lemma 2.1

and Lemma 2.2. From the standard pseudodifferential calculus in Weyl quantization, the symbol p

satisfies

p.x; �I h/D 1� a2
0G � 2a0a1Gh�

h

2i
a0fG; a0g�

h

2i
fa0; a0GgCS0.h2/

D 1� a2
0G � 2a0a1GhCS0.h2/:

Combined with Lemma 2.2, this leads to the required expressions for p0 and p1.
Finally, the nonnegativity of p0 comes from the formula

p0 DG.ir�.x//�1
�
.1�G.�//C

�
G.ir�.x//� 1

��
;

and Lemma 2.1, which implies that 1�G.�/� 0 and G.ir�.x//� 1� 0. �

We finish this section with the following proposition, which is a part of Theorem 1.1.

Proposition 2.4. There exist ı, h0 > 0 such that the following assertions hold true for h 2 �0; h0�:
First, �.Th/ � Œ�1C ı; 1� and �ess.Th/ � Œ�1C ı; 1 � ı�. Second, 1 is a simple eigenvalue for the
eigenfunction M

1=2

h
.

Proof. We start by proving �.Th/ � Œ�1C ı; 1�. From (1-4), we already know that �.Th/ � Œ�1; 1�.
Moreover, Lemma 2.1(ii)–(iii) implies 0� a0.x/� 1 and G.Rd /� Œ�1C�; 1� for some � > 0. Thus, we
deduce that the symbol �h.x; �/ of the pseudodifferential operator Th 2‰

0.1/ satisfies

�h.x; �/� �1C �CO.h/:
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Then, Gårding’s inequality yields
Th � �1C 1

2
�

for h small enough. Summing up, we obtain �.Th/� Œ�1C ı; 1�.
Let us prove the assertion about the essential spectrum. Let �2C1

0
.Rd I Œ0; 1�/ be equal to 1 on B.0;R/,

where R> 0 is as in Lemma 2.2. Since GDG.hD/ 2‰0.1/ and limj�j!1G.�/D 0, the operator

Th� .1��/Th.1��/D �ThCTh���Th�

is compact. Hence, �ess.Th/D �ess..1��/Th.1��//. Now, for all u 2L2.Rd /, we have

h.1��/Th.1��/u;ui D hGah.1��/u; ah.1��/ui

� kah.1��/uk
2
� .1C c0/

�1
kuk2;

since kGkL2!L2 � 1 and jah.1��/j � .1C c0/
�1=2, thanks to Lemma 2.1(iii) and Lemma 2.2. As a

consequence, there exists ı > 0 such that �ess.Th/� Œ�1C ı; 1� ı�.
To finish the proof, it remains to show that 1 is a simple eigenvalue. Let kh.x;y/ denotes the distribution

kernel of Th. From (2-3), (2-4) and Lemma 2.2, there exists " > 0 such that, for all x, y 2 Rd ,

kh.x;y/� "h
�d1jx�yj<h: (2-9)

We now consider zTh D ThC 1. Since kThk D 1, the operator zTh is bounded and nonnegative. Moreover,
M

1=2

h
is clearly an eigenvector associated to the eigenvalue k zThkD 2. On the other hand, (2-9) implies that

zTh is positivity-preserving (this means that u.x/� 0 almost everywhere and u¤ 0 implies zThu.x/� 0

almost everywhere and zThu¤ 0). Furthermore, zTh is ergodic (in the sense that, for any u, v 2L2.Rd /

nonnegative almost everywhere and not the zero function, there exists n � 1 such that hu; zT n
h
vi > 0).

Indeed, let u, v be two such functions. We have hu; zT n
h
vi � hu;T n

h
vi, where, by (2-9), the distribution

kernel of T n
h

satisfies

k
.n/

h
.x;y/� "nh�d1jx�yj<.n�1/h

with "n> 0. Thus, if n� 1 is chosen such that dist.ess-supp.u/; ess-supp.v//< nh, we have hu; zT n
h
vi> 0.

Lastly, the above properties of zTh and the Perron–Frobenius theorem (see Theorem XIII.43 of [Reed and
Simon 1978]) imply that 1 is a simple eigenvalue of Th. �

3. Supersymmetric structure

In this section, we prove that the operator Id�T ?
h

admits a supersymmetric structure and prove Theorem 1.5.
We showed in the preceding section that

Id�T ?
h DUPhU�

and, before proving Theorem 1.5, we state and prove as a corollary the main result on the operator Ph.
Recall here that ˇd D .2d C 4/�1 and „A is the matrix symbol defined by „Ai;j D h�j i

�1 for all
i , j D 1; : : : ; d .
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Corollary 3.1. There exists a classical symbol q 2 S0
cl.„A/ such that the following holds true: First,

Ph D L�
�
L� with L� D Qd�;hah and Q D Op.q/. Second, q D q0 C ‰

0.h„A/ with q0.x; �/ D

ˇ
1=2

d
IdCO.j.x�u; �/j2/ for any critical point u 2U.

Proof. Since we know that Ph D ah.Vh.x/ �G/ah, we only have to prove that ˇ�1
d
zPh satisfies the

assumptions of Theorem 1.5, where

zPh D Vh.x/�G.hD/: (3-1)

Assumption (i) is satisfied by construction.
Observe that, thanks to Proposition 2.3, zPh is a pseudodifferential operator and, since the variables

x and � are separated, its symbol in any quantization is given by Qph.x; �/D Vh.x/�G.�/. Moreover,
Lemma 2.2 and Proposition 2.3 show that Qph admits a classical expansion QpD

P1
jD0 hj Qpj with Qpj , j � 1,

depending only on x, and Qp0.x; �/DG.ir�.x//�G.�/. Hence, it follows from Lemma 2.1 that Qp satisfies
assumptions (ii) and (iii).

Finally, it follows from Lemma 2.1(ii) that, near .u; 0/ (for any u 2U), we have

Qp.x; �/D ˇd .j�j
2
Cjr�.x/j2/CO.j.x�u; �/j4/CS0.h/;

so that we can apply Theorem 1.5 in the case where r D O.j.x � u; �/j4/. Taking into account the
multiplication by ah completes the proof for Ph. �

Proof of Theorem 1.5. Given a symbol p 2S0.1/ we recall first the well-known left and right quantizations

Opl.p/u.x/D .2�h/�d

Z
T �Rd

eih�1.x�y/�p.x; �/u.y/ dy d� (3-2)

and

Opr .p/u.x/D .2�h/�d

Z
T �Rd

eih�1.x�y/�p.y; �/u.y/ dy d�: (3-3)

If p.x;y; �/ belongs to S0.1/, we define zOp.p/, by

zOp.p/.u/.x/D .2�h/�d

Z
T �Rd

eih�1.x�y/�p.x;y; �/u.y/ dy d�; (3-4)

We recall the formula allowing us to pass from one of these quantizations to the other. If p.x;y; �/

belongs to S0.1/, then zOp.p/D Opl.pl/D Opr .pr / with

pl.x; �/D .2�h/�d

Z
T �Rd

eih�1z.�0��/p.x;x� z; � 0/ d� 0 dz; (3-5)

and

pr .y; �/D .2�h/�d

Z
T �Rd

eih�1z.�0��/p.yC z;y; � 0/ d� 0 dz: (3-6)

Recall that we introduced the d-matrix weight A W T �Rd ! Md given by Ai;j .x; �/ D .h�iih�j i/
�1.

Suppose that p satisfies the hypotheses of Theorem 1.5: P D Op.p/ with p 2 S0
1.1/, p.x; �I h/ D

p0.x; �/CS0.h/ such that:
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(i) P .e��=h/D 0;

(ii) for all x 2 Rd , the function � 2 Rd 7! p.x; �I h/ is even;

(iii) for all ı > 0, there exists ˛ > 0 such that, for all .x; �/ 2 T �Rd , d.x;U/2 C j�j2 � ı implies
p0.x; �/� ˛;

(iv) near any critical points u 2U we have

p0.x; �/D j�j
2
Cjr�.x/j2C r.x; �/

with either r D O.j.x�u; �/j3/ (assumption (A2)), or r D O.j.x�u; �/j4/ (assumption (A20)).

The symbol p may depend on h, but we omit this dependence in order to lighten the notations.
The proof goes in several steps. First we prove that there exists a symbol Oq 2 S0

1.A/ such that

Ph D d��;h
yQd�;h; where yQD Op. Oq/:

In a moment we shall prove that the operator yQ can be chosen so that yQDQ�Q for some pseudodifferential
operator Q satisfying some good properties.

Let us start with the first step. For this purpose we need the following lemma:

Lemma 3.2. Let p 2 S0
1.1/ and Ph D Op.p/. Assume that, for all x 2 R, the function � 7! p.x; �I h/ is

even. Suppose also that Ph.e
��=h/D 0. Then, there exists Oq 2 S0

1.A/ such that Ph D d�
�;h
yQd�;h with

yQD Op. Oq/. Moreover, if p has a principal symbol then so does Oq, and if p 2 S0
1;cl then Oq 2 S0

1;cl.

Remark 3.3. Since Ph.e
��=h/D 0, it is quite clear that Ph can be factorized by d�;h on the right. On the

other hand, the fact that Ph can be factorized by d�
�;h

on the left necessarily implies that P�
h
.e��=h/D 0.

At first glance, there is no reason for this identity to hold true, since we don’t suppose in the above lemma
that Ph is selfadjoint. This is actually verified for the following reason. Start from Op.p/.e��=h/D 0;
then, taking the conjugate and using the fact that � is real, we get

Op.p.x;��//.e��=h/D 0:

Hence, the parity assumption on p implies that Op.p/�.e��=h/D 0:

Proof of Lemma 3.2. The fundamental, simple remark is that, if a is a symbol such that a.x; �/Db.x; �/�� ,
then the operator Opl.a/ can be factorized by hDx on the right: Opl.a/D Opl.b/ � hDx , whereas the
right quantization of a can be factorized on the left: Opr .a/D hDx �Opr .b/. We have to implement this
simple idea, dealing with the fact that our operator is twisted by e�=h.

Introduce the operator P�;h D e�=hPhe��=h. Then, for any u 2 S.Rd /,

P�;hu.x/D .2�h/�d

Z
eih�1.x�y/�eh�1.�.x/��.y//p

�
1
2
.xCy/; �

�
u.y/ dy d�:

We now use the Kuranishi trick. Let �.x;y/D
R 1

0 r�.txC .1� t/y/ dt . Then �.x/��.y/D .x�y/ �

�.x;y/ and

P�;hu.x/D .2�h/�d

Z
eih�1.x�y/.��i�.x;y//p

�
1
2
.xCy/; �

�
u.y/ dy d�:
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Since p 2 S0
1, a simple change of integration path shows that P�;h is a bounded pseudodifferential

operator P�;h D zOp. Qp�/ with

Qp�.x;y; �/D p
�

1
2
.xCy/; �C i�.x;y/

�
:

To get the expression of P�;h in left quantization, it suffices then to apply (3-5) to get P�;h D Opl.p�/

with

p�.x; �/D .2�h/�d

Z
R2d

eih�1.�0��/.x�z/p
�

1
2
.xC z/; � 0C i�.x; z/

�
d� 0 dz

D .2�h/�d

Z
R2d

eih�1�0.x�z/p
�

1
2
.xC z/; � 0C �C i�.x; z/

�
d� 0 dz:

Observe that for any smooth function g W Rd ! R we have

g.�/�g.0/D

dX
jD1

Z 1

0

�j@�j g.˙j .s; �// ds (3-7)

with Cj .s; �/D .�1; : : : ; �j�1; s�j ; 0; : : : ; 0/ and �j .s; �/D .0; : : : ; 0; s�j ; �jC1; : : : ; �d /. A very simple
observation is that, for any .x; �/ 2 T �Rd and any s 2 Œ0; 1�, we have x � ˙j .s; �/D 

˙
j .s;x/ � �. This

will be used often in the sequel.
Let us go back to the study of p� . Since Ph.e

��=h/D 0, we have p�.x; 0/D 0 and, by (3-7), we get

p�.x; �/D

dX
jD1

�j Lq
˙
�;j .x; �/D

dX
jD1

�j Lq�;j .x; �/

with Lq�;j D 1
2
. LqC
�;j
C Lq�

�;j
/ and

Lq˙�;j .x; �/D .2�h/�d

Z
R2d

eih�1�0.x�z/

Z 1

0

@�j p
�

1
2
.xC z/; � 0C ˙j .s; �/C i�.x; z/

�
ds dz d� 0;

where the above integral has to be understood as an oscillatory integral. Since @˛
�
p is bounded for any ˛,

integration by parts with respect to � 0 and z shows that Lq˙
�;j
2 S0
1.1/. Moreover, by definition of ˙j we

have

�j Lq
˙
�;j D .2�h/�d

Z
R2d

eih�1�0.x�z/c˙j .x; z; �/ dz d�

with c˙j .x; z; �/D p
�

1
2
.xC z/; � 0C˙j .1; �/C i�.x; z/

�
�p

�
1
2
.xC z/; � 0C˙j .0; �/C i�.x; z/

�
. This

symbol is clearly in S0
1.1/, so that integration by parts as before shows that �j Lq˙�;j 2 S0

1.1/. Since �j
and Lq˙

�;j
are both scalar, this proves that Lq˙

�;j
2 S0
1.h�j i

�1/.
Observe now that

Ph D e��=hP�;he�=h
D e��=h Opl

�
1
2
. LqC
�
C Lq�� /

�
�

�
h

i
rx

�
e�=h

D e��=h zQe�=h
� d�;h
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with zQD 1
2
. zQCC zQ�/ and zQ˙ D Opl. Lq˙

�
/. Let zQ˙

�
D e�2�=h Opl. Lq˙

�
/e2�=h; then zQ˙

�
D zOp. Qq˙

�
/

with Qq˙
�
D . Qq˙

�;1
; : : : ; Qq˙

�;d
/ and

Qq˙�;j .x;y; �/D Lq
˙
�;j .x; � � 2i�.x;y//

D .2�h/�d

Z
R2d

eih�1�0.x�z/

Z 1

0

@�j p
�

1
2
.xCz/; � 0C˙j .s; �/�2i˙j .s; �.x;y//Ci�.x; z/

�
ds dz d� 0;

and it follows from (3-6) that zQ� D Opr . Mq�/ with Mq� D Mq
C

�
C Mq�

�
, Mq˙
�
D . Mq˙

�;1
; : : : ; Mq˙

�;d
/ and

Mq˙�;j .x; �/

D .2�h/�d

Z
R2d

eih�1.�0��/u
Qq˙�;j .xCu;x; � 0/ du d� 0

D .2�h/�2d

Z
R4d

Z 1

0

eih�1Œ.�0��/uC.xCu�z/��

� @�j p
�

1
2
.xCuC z/; �C ˙j .s; �

0/� 2i˙j .s; �.xCu;x//C i�.xCu; z/
�

ds dz du d� 0 d�:

Make the change of variables z D xC v and � D ˙j .s; �
0/C �; the above equation yields

Mq˙�;j .x; �/D .2�h/�2d

Z
R4d

Z 1

0

eih�1Œ.�0��/uC.u�v/.��˙
j
.s;�0//�

� @�j p
�
xC 1

2
.uC v/; �C ˙j .s;x;u; v/

�
ds du dv d� d� 0

with  ˙j .s;x;u; v/D i�.xCu;xC v/� 2i˙j .s; �.xCu;x//.
Define Op2.x; z/D

R
e�iz�p.x; �/ d�, the Fourier transform of p with respect to the second variable,

and observe that, since � 7! p.x; �/ is even, so is z 7! Op2.x; z/. Using the above notations, we have

@�j
p.x; �/D

i

.2�/d

Z
Rd

eiz�zj Op
2.x; z/ dz;

and we get

Mq˙�;j .x; �/D
i

.2�/d .2�h/2d

Z
R4d�Œ0;1��Rd

zj eih�1Œ.u�vChz/�C.�0��/u�.u�v/˙
j
.s;�0/�

� Op2
�
xC 1

2
.uC v/; z

�
eiz ˙

j
.s;x;u;v/ du dv d� 0 d� ds dz:

Let Fh;� 7!v denote the semiclassical Fourier transform with respect to �, and Fh;u 7!� its inverse.
Writing

fs;x;v;z.u/D zj Op
2
�
xC 1

2
.uC v/; z

�
eih�1Œ.�0��/u�.u�v/˙

j
.s;�0/�eiz ˙

j
.s;x;u;v/;
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we get

Mq˙�;j .x; �/D
i

.2�/d .2�h/d

Z
R2d�Œ0;1��Rd

Fh;� 7!vFh;u7!�.fs;x;v;z/.v� hz/ dv d� 0 ds dz

D
i

.2�/d .2�h/d

Z
R2d�Œ0;1��Rd

zj eih�1Œ.�0��/.v�hz/Ch˙
j
.s;z/�0�

� Op2
�
xC v� 1

2
hz; z

�
ei ˙

j
.s;x;v�hz;v/z dv d� 0 ds dz;

where we have used the fact that ˙j .s; �
0/z D ˙j .s; z/�

0. Similarly, integrating with respect to � 0 and v,
we obtain

Mq˙�;j .x; �/D
i

.2�/d

Z
Œ0;1��Rd

zj ei˙
j
.s;z/�

Op2
�
xC h

�
1
2
z� ˙j .s; z/

�
; z
�
e'
˙
j
.s;z/ ds dz

with '˙j .s; z/D iz ˙j
�
s;x;�h˙j .s; z/; h.z� 

˙
j .s; z//

�
. From the definition of  ˙j , we get

'˙j .s; z/D 2z˙j
�
s; �.x� h˙j .s; z/;x/

�
� z�

�
x� h˙j .s; z/;xC h.z� ˙j .s; z//

�
D 2˙j .s; z/�.x� h˙j .s; z/;x/� z�

�
x� h˙j .s; z/;xC h.z� ˙j .s; z//

�
;

and, since � is defined by �.x/��.y/D .x�y/�.x;y/, it follows easily that

'˙j .s; z/D
1

h

�
2�.x/��.x� h˙j .s; z//��

�
xC h.z� ˙j .s; z//

��
:

Let us write �˙j .x; s; z/D Op
2
�
xC h

�
1
2
z� ˙j .s; z/

�
; z
�
; then

Mq˙�;j .x; 0/D
i

.2�/d

Z
Œ0;1��Rd

zj�
˙
j .x; s; z/e

'˙
j
.s;z/ ds dz: (3-8)

Observe now that we have the identities

˙j .1� s;�z/D�.z� 
�

j .s; z//;

1
2
z� ˙j .s; z/D�

1
2
z� 

�

j .1� s;�z/
(3-9)

for all s 2 Œ0; 1�, z 2 Rd . In particular, since Op2 is even with respect to the second variable, we get

�˙j .x; 1� s;�z/e'
˙
j
.1�s;�z/

D �
�

j .x; s; z/e
'
�

j
.s;z/:

As a consequence, by the change of variables .s; z/ 7! .1�s;�z/ in (3-8), we get MqC
�;j
.x; 0/D�Mq�

�;j
.x; 0/,

and hence Mq�.x; 0/D0. Since Mq�;j belongs to S0
1.h�j i

�1/ for all j , we get by the same trick as for the right
factorization that there exists some symbol qD .qj;k/2S0

1.A/ such that Mq�;j .x; �/D
Pd

kD1 �kqj;k.x; �/.
Since we use right quantization, it follows that, for all u 2 S.Rd ;Cd /,

Opr . Mq�/uD
h

i
div Opr .q/uD hD�x Opr .q/u;

where we have used the matrix-valued symbol q D .qj;k/. Consequently, for all u 2 S.Rd /,

PhuD e�=h Opr . Mq�/e
��=hd�;huD d��;he�=h Opr .q/e��=hd�;hu:
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Using again the analyticity of q, there exists Oq 2 S0
1.A/ such that

yQ WD e�=h Opr .q/e��=h
D Op. Oq/;

and the factorization is proved. The fact that Oq admits an expansion in powers of h follows easily from
the above computations, since it is the case for p. �

Let us apply Lemma 3.2 to Ph D Op.p/. Then, there exists a symbol Oq 2 S0
1.A/ such that

Ph D d��;h
yQd�;h;

with yQD Op. Oq/ and Oq D Oq0CS0.h/. Now the strategy is the following: we will modify the operator yQ
so that the new yQ is selfadjoint, nonnegative and yQ can be written as the square of a pseudodifferential
operator, yQDQ�Q.

First observe that, since Ph is selfadjoint,

Ph D
1
2
.PhCP�h /D d��;h

1
2
. yQC yQ�/d�;h;

so that we can assume in the following that yQ is selfadjoint. This means that the partial operators
yQj;k DOp. Oqj ;k/ satisfy yQ�

j;k
D yQk;j (or, at the level of symbols, Oqk;j D Oqj;k/. For k D 1; : : : ; d , let us

write dk
�;h
D h@k C @k�.x/. Then

Ph D

dX
j;kD1

.d
j

�;h
/� yQj;kdk

�;h: (3-10)

We would like to take the square root of yQ and show that it is still a pseudodifferential operator. The
problem is that we don’t even know if yQ is nonnegative. Nevertheless, we can use the nonuniqueness
of operators yQ such that (3-10) holds to go to a situation where yQ is close to a diagonal operator with
nonnegative partial operators on the diagonal. The starting point of this strategy is the commutation
relation

Œd
j

�;h
; dk
�;h�D 0 for all j ; k 2 f1; : : : ; dg; (3-11)

which holds thanks to d
j

�;h
D e��=hh@j e�=h and Schwarz’ theorem. Hence, for any bounded operator B,

we have

Ph D d��;h
yQmod;�d�;h D

dX
j;kD1

.d
j

�;h
/� yQ

mod;�
j;k

dk
�;h; (3-12)

with yQmod;� D yQCB�, � 2 f0;1g for some B� having one of the two following forms:

� (exchange between three coefficients) For any j0, k0, n2f1; : : : ; dg, the operator B1.j0; k0; nIB/D

.B1
j;k
/j;kD1;:::;d is defined by

B1j;k D 0 if .j; k/ … f.n; n/; .j0; k0/; .k0; j0/g;

B1j0;k0
D�.dn

�;h/
�Bdn

�;h and B1k0;j0
D .B1j0;k0

/�;

B1n;n D .d
j0

�;h
/�Bd

k0

�;h
C .d

k0

�;h
/�B�d

j0

�;h
:

(3-13)
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When j0 D k0, we use the convention that B1j0;j0
D �.dn

�;h
/�.BCB�/dn

�;h
. Such modifications

will be used away from the critical points.

� (exchange between four coefficients) For any j0, k0, k12f1; : : : ; dg, the operator B0.j0; k0; k1IB/D

.B0
j;k
/j;kD1;:::;d is defined by

B0
j;k D 0 if .j; k/ … f.j0; k0/; .k0; j0/; .j0; k1/; .k1; j0/g;

B0
j0;k0

D�Bd
k1

�;h
and B0

k0;j0
D .B0

j0;k0
/�;

B0
j0;k1

D Bd
k0

�;h
and B0

k1;j0
D .B0

j0;k1
/�:

(3-14)

Such modifications will be used near the critical points.

Recall that the d-matrix weights A and „A are given by Aj;k D h�j i
�1h�ki

�1 and .„A/j;k D h�ki
�1.

Using the preceding remark, we can prove the following:

Lemma 3.4. Let yQDOp. Oq/, where Oq2S0.A/ is a Hermitian symbol with Oq.x; �I h/D Oq0.x; �/CS0.hA/.
We let P D d�

�;h
yQd�;h and let p.x; �I h/ D p0.x; �/C S0.h/ 2 S0.1/ be its symbol. Assume that the

following assumptions hold:

(A1) For all ı > 0, there exists ˛ > 0 such that, for all .x; �/ 2 T �Rd , j�j2 C d.x;U/2 � ı implies
p0.x; �/� ˛.

(A2) Near .u; 0/, for any critical point u 2U, we have

p0.x; �/D j�j
2
Cjr�.x/j2C r.x; �/ (3-15)

with r.x; �/D O.j.x�u; �/j3/.

Then, for h small enough, there exists a symbol q 2 S0.„A/ such that

Ph D d��;hQ�Qd�;h;

with QD Op.q/ and

q.x; �I h/D IdCO.j.x�u; �/j/CS0.h/ (3-16)

near .u; 0/ for any u 2 U. Moreover, Q D F Op.„�1/ for some F 2 ‰0.1/ that is invertible and
selfadjoint with F�1 2‰0.1/.

If , additionally to the previous assumptions, we suppose:

(A20) the remainder term in (3-15) satisfies r.x; �/D O.j.x�u; �/j4/;

then

q.x; �I h/D IdCO.j.x�u; �/j2/CS0.h/ (3-17)

near .u; 0/.
Finally, if Oq 2 S0

cl.A/ then q 2 S0
cl.„A/.
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Proof. In the following, we assume that � has a unique critical point u and that u D 0. Using some
cutoff in space, we can always make this assumption without loss of generality. Given " > 0, let
w0, w1; : : : ; wd 2 S0.1/ be nonnegative functions such that

w0Cw1C � � �Cwd D 1 (3-18)

whose support satisfies

supp.w0/� fj�j
2
Cjr�.x/j2 � 2"g;

and, for all `� 1,

supp.w`/�
n
j�j2Cjr�.x/j2 � " and j�`j

2
Cj@`�.x/j

2
�

1

2d
.j�j2Cjr�.x/j2/

o
:

Let us decompose yQ according to these truncations:

yQD

dX
`D0

yQ` (3-19)

with yQ` WD Op.w` Oq/ for all ` � 0. We will modify each of the operators yQ` separately, using the
following modifiers. For j0, k0, n 2 f1; : : : ; dg and ˇ 2 S0.h�j0

i�1h�k0
i�1h�ni

�2/ we write for short

B1.j0; k0; nIˇ/ WDB1.j0; k0; nIOp.ˇ//;

where the right-hand side is defined by (3-13). In the same way, given j0; k0; k1 2 f1; : : : ; dg and
ˇ 2 S0.h�j0

i�1h�k0
i�1h�k1

i�1/ we write for short

B0.j0; k0; k1Iˇ/ WDB0.j0; k0; k1IOp.ˇ//;

where the right-hand side is defined by (3-14). Observe that any operator of one of these two forms
belongs to ‰0.A/. Let M.A/�‰0.A/ be the vector space of bounded operators on L2.Rd /d generated
by these operators. Then, (3-12) says exactly that

Ph D d��;h.
yQCM/d�;h for any M 2M.A/: (3-20)

Step 1. We first remove the terms of order 1 near the origin. More precisely, we show that there exists
M0 2M.A/ such that

MQ0
WD yQ0

CM0
D Op. Mq0/C‰0.hA/; (3-21)

where Mq0 2 S0.A/ satisfies, near .0; 0/ 2 T �Rd ,

Mq0.x; �/D w0.x; �/.IdC�.x; �// (3-22)

with � 2 S.A/ such that:

� �.x; �/D O.j.x; �/j/ under the assumption (A2);

� �.x; �/D O.j.x; �/j2/ under the assumption (A20).
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From (3-10), we have

p0.x; �/D

dX
j;kD1

Oq0Ij;k.x; �/.�j C i@j�.x//.�k � i@k�.x//;

where Oq0 D . Oq0Ij;k/j;k denotes the principal symbol of Oq. Expanding Oq0 near the origin, we get

Oq0.x; �/D Oq0.0; 0/C �.x; �/

with �.x; �/D O.j.x; �/j/. Then, we deduce

p0.x; �/D

dX
j;kD1

. Oq0Ij;k.0; 0/C �j;k.x; �//.�j C i@j�.x//.�k � i@k�.x//: (3-23)

Identifying (3-15) and (3-23), we obtain Oq0Ij;k.0; 0/D ıj;k , which establishes (3-21)–(3-22) under the
assumption (A2).

Suppose now that (A20) is satisfied. Identifying (3-15) and (3-23) as before, we obtain

dX
j;kD1

�j;k.x; �/.�j C i@j�.x//.�k � i@k�.x//D O.j.x; �/j4/: (3-24)

Defining A WD Hess.�/.0/, we have @j�.x/D .Ax/j CO.x2/. Then, (3-24) becomes

dX
j;kD1

�j;k.x; �/.�j C i.Ax/j /.�k � i.Ax/k/D O.j.x; �/j4/: (3-25)

Let us introduce the new variables �D �C iAx and �D � � iAx. Then, (3-25) reads

dX
j;kD1

�j;k.x; �/�j�k D O.j.x; �/j4/D O.j.�; �/j4/: (3-26)

On the other hand, since A is invertible, there exist some complex numbers ˛n
j;k

, Q̨n
j;k

for j , k, nD1; : : : ; d

such that

�j;k.x; �/D

dX
nD1

.˛n
j;k�nC Q̨

n
j;k�n/CO.j.�; �/j2/: (3-27)

Combined with (3-26), this yields
Pd

j;k;nD1.˛
n
j;k
�nC Q̨

n
j;k
�n/�j�k DO.j.�; �/j4/ and, since the left-hand

side is a polynomial of degree 3 in .�; �/, it follows that

dX
j;k;nD1

.˛n
j;k�nC Q̨

n
j;k�n/�j�k D 0 (3-28)

for any � 2 Cd . Hence, uniqueness of coefficients of polynomials of .�; �/ implies

˛n
j;k C˛

k
j;n D 0 for all j ; k; n 2 f1; : : : ; dg: (3-29)
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In particular, ˛k
j;k
D 0. On the other hand, Q̨n

j;k
D ˛n

k;j
for all j , k, n since yQ is selfadjoint.

Now, we define

MQ0
WD yQ0

CM0 with M0
WD

dX
j0;k0D1

dX
nDk0C1

˛n
j0;k0

B0.j0; k0; nIw0/:

It follows from symbolic calculus that MQ0 D Op. Mq0/, with Mq0 2 S0.A/ given by

Mq0
j;k D w0

�
Oq0Ij;k �

X
n>k

˛n
j;k.�n� i@n�.x//C

X
n<k

˛k
j;n.�n� i@n�.x//

�

X
n>j

˛n
k;j
.�nC i@n�.x//C

X
n<j

˛
j

k;n
.�nC i@n�.x//

�
CS0.hA/

for any j , k. Moreover, from (3-29) and �nC i@n�.x/D �nCO.jxj2/ near .0; 0/, we get

Mq0
j;k D w0

�
Oq0Ij;k �

dX
nD1

˛n
j;k�n�

dX
nD1

˛n
k;j
�nC Q�j;k

�
CS0.hA/

with Q� 2S0.A/ such that Q�D O.j.x; �/j2/ near the origin. Using the identity Oq0Ij;k D ıj;kC�j;k together
with (3-27), we get

Mq0
j;k D w0.ıj;k C �j;k/CS0.hA/

with � 2 S0.A/ such that � D O.j.x; �/j2/ near the origin. This implies (3-21)–(3-22) under the
assumption (A20), and achieves the proof of Step 1.

Step 2. We now remove the antidiagonal terms away from the origin. More precisely, we show that there
exist some M` 2M.A/ and some diagonal symbols Qq` 2 S0.A/ such that

zQ`
WD yQ`

CM`
D Op.w` Qq

`/C‰0.hA/ (3-30)

for any ` 2 f1; : : : ; dg.
For j0, k0, ` 2 f1; : : : ; dg with j0 ¤ k0, let ǰ0;k0;` be defined by

ǰ0;k0;`.x; �/ WD
w`.x; �/ Oqj0;k0

.x; �/

j�`j
2Cj@`�.x/j

2
:

By the support properties ofw`, we have ǰ0;k0;` 2S0.h�j0
i�1h�k0

i�1h�`i
�2/, so B1.j0; k0; `I ǰ0;k0;`/

belongs to M.A/. Defining
M`
WD

X
j0¤k0

B1.j0; k0; `I ǰ0;k0;`/;

the pseudodifferential calculus gives

.d`�;h/
�Op. ǰ0;k0;`/d

`
�;h D Op.w` Oqj0;k0

/C‰0.hh�j0
i
�1
h�k0
i
�1/;

which implies
yQ`
CM`

D Op.w` Oq/CM`
D Op.w` Qq

`/C‰0.hA/
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with Qq` 2 S0.A/ diagonal. This proves (3-30).

Step 3. Let us now prove that we can modify each zQ` so that its diagonal coefficients are suitably

bounded from below. More precisely, we claim that there exist c > 0 and zM
`
2M.A/ such that

MQ`
WD zQ`

C zM
`
D Op. Mq`/C‰0.hA/ (3-31)

with Mq` diagonal and Mq`i0;i0
.x; �/� cw`.x; �/h�i0

i�2 for all i0 2 f1; : : : ; dg.
For `, i0 2 f1; : : : ; dg, let ˇi0;` be defined by

ˇi0;`.x; �/ WD
w`.x; �/

2.j�`j
2Cj@`�.x/j

2/

�
Qq`i0;i0

.x; �/�


1Cj�i0
j2Cj@i0

�.x/j2

�
;

where  >0 will be specified later. The symbol ˇi0;` belongs to S0.h�i0
i�2h�`i

�2/, so B1.i0; i0; `Iˇi0;`/

is in M.A/. Defining
zM
`
WD

X
i0¤`

B1.i0; i0; `Iˇi0;`/;

the symbolic calculus shows that zQ`C zM
`
D Op. Mq`/C‰0.hA/ with Mq` diagonal and

Mq`i0;i0
.x; �/D

w`.x; �/

1Cj�i0
j2Cj@i0

�.x/j2
for all i0 ¤ `: (3-32)

It remains to prove that we can choose  > 0 above, so that Mq`
`;`
.x; �/� cw`.x; �/h�`i

�2. Thanks to
assumption (A1), there exists ˛ > 0 such that

p0.x; �/� ˛ for all .x; �/ 2 supp.w`/: (3-33)

On the other hand, a simple commutator computation shows that Op.w`/Ph D d�
�;h
yQ`d�;hC‰

0.h/.

Combined with (3-20), (3-30) and the definition of Mq`, this yields

Op.w`/Ph D d��;h
zQ`d�;hC‰

0.h/D d��;h Op. Mq`/d�;hC‰
0.h/;

and then

.w`p0/.x; �/D

dX
i0D1

Mq`i0;i0
.x; �/.j�i0

j
2
Cj@i0

�.x/j2/CS0.h/:

Now, using (3-32), we get

.w`p0/.x; �/D Mq
`
`;`.x; �/.j�`j

2
Cj@`�.x/j

2/C  .d � 1/w`.x; �/CS0.h/:

Combining this relation with (3-33) and choosing  D ˛=.2d/, we obtain

Mq``;`.x; �/�
˛w`.x; �/

2.j�`j
2Cj@`�.x/j

2/
CS0.hh�`i

�2/: (3-34)

Thus, Mq`
`;`

satisfies the required lower bound and (3-31) follows.
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Step 4. Lastly, we take the square root of the modified operator. Let us define

MQ WD

dX
`D0

MQ`
2‰0.A/; (3-35)

with MQ` defined above. Thanks to (3-20), we have Ph D .d�;h/
� yQd�;h D .d�;h/

� MQd�;h and it follows
from the preceding constructions that the principal symbol Mq of MQ satisfies

Mq.x; �/� w0.x; �/.IdCO.j.x; �/j//C c
X
`�1

w`.x; �/ diag.h�j i�2/:

Shrinking c > 0 and the support of w0 if necessary, it follows that

Mq.x; �/� c diag.h�j i�2/:

Letting E D Op.„/ MQ Op.„/, and e 2 S0.1/ be the symbol of E, the pseudodifferential calculus gives
e.x; �I h/D e0.x; �/CS0.h/ with

e0.x; �/� c diag.h�j ih�j i�2
h�j i/D c Id; (3-36)

so that, for h > 0 small enough, e.x; �/ � 1
2
c Id. Hence, we can adapt the proof of Theorem 4.8 of

[Helffer and Nier 2005] to our semiclassical setting to get that F WD E1=2 belongs to ‰0.1/ and that
F�1 2‰0.1/. Then, MQDQ�Q with Q WD F Op.„�1/ and, by construction, Q 2‰0.„A/.

In addition, as in Theorem 4.8 of [Helffer and Nier 2005], we can show that F D Op.e1=2
0
/C‰0.h/,

so that QD Op.q0/C‰
0.h„A/ with q0 D e

1=2
0
„�1. If, moreover, Oq admits a classical expansion, then

Mq 2 S0
cl.A/, and the same argument shows that both e and q admit classical expansions.

Let us now study q0 near .u; 0/. For .x; �/ close to .u; 0/ we have „ D IdCO.j�j2/ and Mq0 D

IdC�.x; �/, so

e0.x; �/D„ Mq0„D IdC�.x; �/CO.j�j2/;

and we get easily q0 D e
1=2
0
„�1 D IdCO.j�j2C �.x; �//, which proves (3-16) and (3-17). �

This completes the proof of Theorem 1.5. �

4. Quasimodes on k-forms and first exponential-type eigenvalue estimates

Pseudodifferential Hodge–Witten Laplacian on the 0-forms. This part is devoted to the rough asymp-
totic of the small eigenvalues of Ph and to the construction of associated quasimodes. From Theorem 1.5,
this operator has the expression

Ph D ahd��;hGd�;hah; (4-1)

where G is the matrix of pseudodifferential operators

G D .Op.gj;k//j;k WDQ�QD Op.„/�1F�F Op.„/�1:
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Using Corollary 3.1 and that G is selfadjoint, we remark that gj;k 2 S0.h�j i
�1h�ki

�1/ and gj;k D gk;j .
Thus, Ph can be viewed as a Hodge–Witten Laplacian on 0-forms (or a Laplace–Beltrami operator) with
the pseudodifferential metric G�1. In the following, we will then use the notation P .0/ WD Ph.

Since ah.u/D 1C O.h/ and g.u; 0/D ˇd IdCO.h/ for all the critical points u 2 U, it is natural to
consider the operator with the coefficients ah and G frozen at 1 and ˇd Id, respectively. For that, let
�p.Rd /, p D 1; : : : ; d , be the space of C1 p-forms on Rd . We then define

PW
D d��;hd�;hC d�;hd��;h; (4-2)

the semiclassical Witten Laplacian on the de Rham complex, and PW ;.p/, its restriction to the p-forms.
This operator has been intensively studied (see, e.g., [Helffer and Sjöstrand 1985; Cycon et al. 2008;
Bovier et al. 2004; 2005; Helffer et al. 2004]), and a lot is known concerning its spectral properties. In
particular, from Lemma 1.6 and Proposition 1.7 of [Helffer and Sjöstrand 1985], we know that there are
n0 exponentially small (real nonnegative) eigenvalues, and that the others are above h=C .

From [Helffer et al. 2004; Hérau et al. 2011], we have good normalized quasimodes for PW ;.0/

associated to all minima of �. For k 2 f1; : : : ; n0g, they are given by

f
W ;.0/

k
.x/D �k;".x/b

.0/

k
.h/e�.�.x/��.mk//=h;

where b
.0/

k
.h/ D .�h/�d=4 det.Hess�.mk//

1=4.1 C O.h//, and where the �k;" are cutoff functions
localized in sufficiently large areas containing mk 2U.0/. In fact, we need large support (associated to
level sets of �) and properties for the cutoff functions �k;", so that the refined analysis of the next section
can be done. We postpone to the Appendix the construction of the cutoff functions, the definition of " > 0,
refined estimates on this family .f W ;.0/

k
/k , and in particular the fact that it is a quasiorthonormal free

family of functions, following closely [Helffer et al. 2004; Hérau et al. 2011].
We now define the quasimodes associated to P .0/ in the following way:

f
.0/

k
.x/ WD ah.x/

�1f
W ;.0/

k
.x/D ah.x/

�1b
.0/

k
.h/�k;".x/e

�.�.x/��.mk//=h (4-3)

for 1� k � n0. We then have:

Lemma 4.1. The system .f
.0/

k
/k is free, and there exists ˛ > 0 independent of " such that

hf
.0/

k
; f

.0/

k0
i D ık;k0 CO.h/ and P .0/f

.0/

k
D O.e�˛=h/:

Remark 4.2. For this result to be true, it would have been sufficient to take truncation functions with
smaller support (say in a small neighborhood of each minimum mk). We emphasize again that the more
complicated construction for the quasimodes is justified by their later use.

Proof. First, observe that

hf
.0/

k
; f

.0/

k0
i D ha�2

h f
W ;.0/

k
; f

W ;.0/

k0
i D ıkk0 Ch.a

�2
h � 1/f

W ;.0/

k
; f

W ;.0/

k0
i:

Moreover, near any minimum mk , a�2
h
� 1D O.hCjx�mk j

2/ and �.x/��.mk/ is quadratic, so

k.a�2
h � 1/f

W ;.0/

k
k D O.h/; (4-4)
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which proves the first statement. For the last statement, it is enough to notice that

P .0/f
.0/

k
D a�hd��;hQ�Qd�;hf

W ;.0/

k

and apply Lemma A.3. �

We now prove a first rough spectral result on P .0/, using the preceding lemma.

Proposition 4.3. The operator P .0/ has exactly n0 exponentially small (real nonnegative) eigenvalues,
and the remaining part of its spectrum is in Œ"0h;C1Œ for some "0 > 0.

Usually, this type of result is a consequence of an IMS formula. It is possible to do that here (with
effort) but we prefer to give a simpler proof using what we know about PW ;.0/. The following proof is
based on the spectral theorem and the maxi-min principle.

Proof. Thanks to Proposition 2.4, the spectrum of P .0/ is discrete in Œ0; ı� and its j -th eigenvalue is given
by

sup
dim EDj�1

inf
u2E?; kukD1

hP .0/u;ui: (4-5)

Lemma 4.1 directly implies

hP .0/f
.0/

k
; f

.0/

k0
i � kP .0/f

.0/

k
kkf

.0/

k0
k D O.e�˛=h/

for some ˛ > 0. Using the almost orthogonality of the f .0/
k

, (4-5) and P .0/ � 0, we deduce that P .0/ has
at least n0 eigenvalues that are exponentially small.

We now want to prove that the remaining part of the spectrum of P .0/ is above "0h for some "0 > 0

small enough. For this, we set

E WD Vectff W ;.0/

k
W k D 1; : : : ; n0g;

and we consider u 2 a�1
h

E? with kuk D 1. We have, again,

hP .0/u;ui D kF Op.„�1/d�;hahuk2 � "0kOp.„�1/d�;hahuk2 (4-6)

for some "0 > 0 independent of h, which may change from line to line. For the last inequality, we have
used that kF�1k is uniformly bounded since F�1 2 ‰0.1/. On the other hand, using 0 � PW ;.1/ D

�h2�˝ IdCO.1/, we notice that

Op.„�1/2 � .�h2�C 1/�1
˝ Id� "0.P

W ;.1/
C 1/�1

for some (other) "0 > 0. Therefore, using the classical intertwining relations

.PW ;.1/
C 1/�1=2d�;h D d�;h.P

W ;.0/
C 1/�1=2;

and the fact that PW ;.0/ D d�
�;h

d�;h on 0-forms, we get

hP .0/u;ui � "0k.P
W ;.1/

C 1/�1=2d�;hahuk2 D "0kd�;h.P
W ;.0/

C 1/�1=2ahuk2

D "0hP
W ;.0/.PW ;.0/

C 1/�1ahu; ahui: (4-7)
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Now, let F be the eigenspace of PW ;.0/ associated to the n0 exponentially small eigenvalues, and let …E

(resp. …F) be the orthogonal projectors onto E (resp. F). Then, from Proposition 1.7 of [Helffer and
Sjöstrand 1985] (see also Theorem 2.4 of [Helffer and Sjöstrand 1984]), we have k…E�…FkDO.e�˛=h/.
Moreover, since the .n0C1/-st eigenvalue of PW ;.0/ is of order h, the spectral theorem gives

PW ;.0/.PW ;.0/
C 1/�1

� "0h.1�…F/CO.e�˛=h/� "0h.1�…E/CO.e�˛=h/:

Then, using ahu 2 E?, kuk D 1 and Lemma 2.2, (4-7) becomes

hP .0/u;ui � "0hkahuk2CO.e�˛=h/� 1
2
c1"0h:

Finally, this estimate and (4-5) imply that P .0/ has at most n0 eigenvalues below 1
2
c1"0h. Taking 1

2
c1"0

as the new value of "0 gives the result. �

Pseudodifferential Hodge–Witten Laplacian on the 1-forms. Since we want to follow a supersymmetric
approach to prove the main theorem of this paper, we have to build an extension P .1/ of P .0/ defined on
1-forms which satisfies properties similar to those of PW ;.1/. To do this, we use the following coordinates
for ! 2�1.Rd / and � 2�2.Rd /:

! D

dX
jD1

!j .x/dxj ; � D
X
j<k

�j;k.x/dxj ^ dxk ;

and we extend the matrix �j;k as a function with values in the space of antisymmetric matrices. Recall
that the exterior derivative satisfies

.d .1/!/j;k D @xj
!k � @xk

!j and .d�.1/�/j D�
X

k

@xk
�k;j : (4-8)

In the previous section, we saw that P .0/ can be viewed as the Hodge–Witten Laplacian on 0-forms
with a pseudodifferential metric G�1. It is then natural to consider the corresponding Hodge–Witten
Laplacian on 1-forms. Thus, mimicking the construction in the standard case, we define

P .1/
WDQd�;ha2

hd��;hQ�C .Q�1/�d��;hMd�;hQ�1; (4-9)

where M is the linear operator acting on �2.Rd / with coefficients

M.j;k/;.a;b/ WD
1
2

Op.a2
h.gj;agk;b �gk;agj;b//: (4-10)

Note that M is well-defined on �2.Rd / (i.e., M� is antisymmetric if � is antisymmetric) since
M.k;j/;.a;b/ DM.j;k/;.b;a/ D�M.j;k/;.a;b/. Furthermore, we deduce from the properties of gj;k that

M.j;k/;.a;b/ 2‰
0.h�j i

�1
h�ki

�1
h�ai
�1
h�bi

�1/: (4-11)

Remark 4.4. When G�1 is a true metric (and not a matrix of pseudodifferential operators), the operator
P .1/ defined in (4-9) is the usual Hodge–Witten Laplacian on 1-forms. Our construction is then an
extension to the pseudodifferential case. Generalizing these structures to p-forms, it should be possible
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to define a Hodge–Witten Laplacian on the total de Rham complex. It could also be possible to define
such an operator using only abstract geometric quantities (and not explicit formulas like (4-10)).

On the other hand, a precise choice for the operator M is not relevant in the present paper. Indeed,
for the study of the small eigenvalues of P .0/, only the first part (in (4-9)) of P .1/ is important (see
Lemma 4.7 below). The second part is only used to make the operator P .1/ elliptic. Thus, any M

satisfying (4-11) and M.j;k/;.a;b/ � "Op.h�j i�2h�ki
�2/˝ Id should probably work.

We first show that P .1/ acts diagonally (at the first order), as is the case for PW ;.1/.

Lemma 4.5. The operator P .1/ 2‰0.1/ is selfadjoint on �1.Rd /. Moreover,

P .1/
D P .0/

˝ IdC‰0.h/: (4-12)

Proof. We begin by estimating the first part of P .1/,

P
.1/
1
WDQd�;ha2

hd��;hQ�:

Let qj;k 2 S0.h�ki
�1/ denote the symbol of the coefficients of Q and let d

j

�;h
D h@j C .@j�/. Using the

composition rules of matrices, a direct computation gives

.P
.1/
1
/j;k D

X
a

Op.qj;a/d
a
�;ha2

h.d
�
�;hQ�/k D

X
a;b

Op.qj;a/d
a
�;ha2

h.d
b
�;h/
�Op.qk;b/: (4-13)

We then deduce that P
.1/
1

is a selfadjoint operator on �1.Rd / with coefficients of class ‰0.1/. Moreover,
this formula implies

.P
.1/
1
/j;k D

X
a;b

Op.a2
hqj;aqk;b/d

a
�;h.d

b
�;h/
�
C‰0.h/: (4-14)

It remains to study

P
.1/
2
WD .Q�1/�d��;hMd�;hQ�1:

Let q�1
j;k
2 S0.h�j i/ denote the symbol of the coefficients of Q�1. The formulas of (4-8), the definition

(4-10) and the composition rules of matrices imply

.P
.1/
2
/j;k D

X
˛

Op.q�1
˛;j /.d

�
�;hMd�;hQ�1/˛;k

D�

X
a;˛

Op.q�1
˛;j /.d

a
�;h/
�.Md�;hQ�1/.a;˛/;k

D�

X
a;b;˛;ˇ

Op.q�1
˛;j /.d

a
�;h/
�M.a;˛/;.b;ˇ/.d�;hQ�1/.b;ˇ/;k

D�

X
a;b;˛;ˇ

Op.q�1
˛;j /.d

a
�;h/
�M.a;˛/;.b;ˇ/.d

b
�;h Op.q�1

ˇ;k/� d
ˇ

�;h
Op.q�1

b;k//

D�2
X

a;b;˛;ˇ

Op.q�1
˛;j /.d

a
�;h/
�M.a;˛/;.b;ˇ/d

b
�;h Op.q�1

ˇ;k/; (4-15)
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where we have used that M.a;˛/;.b;ˇ/ D�M.a;˛/;.ˇ;b/. By (4-11), a typical term of these sums satisfies

Op.q�1
˛;j /.d

a
�;h/
�M.a;˛/;.b;ˇ/d

b
�;h Op.q�1

ˇ;k/ 2‰
0.h�˛ih�aih�ai

�1
h�˛i

�1
h�bi

�1
h�ˇi

�1
h�bih�ˇi/;

and then P
.1/
2
2‰0.1/. On the other hand, using gj;k D gk;j and (4-10), we get

.P
.1/
2
/�j;k D�

X
a;b;˛;ˇ

Op.q�1
ˇ;k
/.db

�;h/
�Op.a2

h
.ga;bg˛;ˇ �g˛;bga;ˇ//d

a
�;h Op.q�1

˛;j /

D�

X
a;b;˛;ˇ

Op.q�1
ˇ;k
/.db

�;h/
�Op.a2

h.gb;agˇ;˛ �gb;˛gˇ;a//d
a
�;h Op.q�1

˛;j /

D�

X
a;b;˛;ˇ

Op.q�1
˛;k
/.da

�;h/
�Op.a2

h.ga;bg˛;ˇ �ga;ˇg˛;b//d
b
�;h Op.q�1

ˇ;j /D .P
.1/
2
/k;j ;

so that P
.1/
2

is selfadjoint on �1.Rd /. Finally, (4-11) and (4-15) yield

.P
.1/
2
/j;k D

X
a;b

Op
�

a2
h

X
˛;ˇ

q�1
˛;j q�1

ˇ;k.ga;bg˛;ˇ �ga;ˇg˛;b/

�
.da
�;h/
�db
�;hC‰

0.h/

D

X
a;b

Op.a2
hga;bıj;k � a2

hqj;bqk;a/.d
a
�;h/
�db
�;hC‰

0.h/; (4-16)

since X
j

ga;j q�1
j;b D qb;aCS0.hh�ai

�1/ and
X

j

qa;j q�1
j;b D ıa;bCS0.h/;

which follow from GQ�1 DQ� and QQ�1 D Id.
Summing up the previous properties of P .1/

�
, the operator P .1/ D P

.1/
1
CP

.1/
2
2‰0.1/ is selfadjoint

on �1.Rd /. Lastly, combining (4-14) and (4-16), we obtain

P .1/
D

X
a;b

.da
�;h/
�Op.a2

hga;b/d
b
�;h˝ IdC‰0.h/D ahd��;hGd�;hah˝ IdC‰0.h/

D P .0/
˝ IdC‰0.h/; (4-17)

and the lemma follows. �

The next result compares P .1/ and PW ;.1/.

Lemma 4.6. There exist some pseudodifferential operators .Rk/kD0;1;2 such that

P .1/
D ˇdPW ;.1/

CR0CR1CR2;

where the remainder terms enjoy the following properties:

(i) R0 is a d � d matrix whose coefficients are finite sums of terms of the form

.da
�;h/
�.Op.r0/C‰

0.h//db
�;h

with a, b 2 f1; : : : ; dg and r0 2 S0.1/ satisfying r0.x; �/D O.j.x�u; �/j2/ near .u; 0/, u 2U;
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(ii) R1 is a matrix whose coefficients are finite sums of terms of the form h Op.r1/d
a
�;h

or h.da
�;h
/�Op.r1/

with a 2 f1; : : : ; dg and r1 2 S0.1/ satisfying r1.x; �/D O.j.x�u; �/j/ near .u; 0/, u 2U;

(iii) R2 2‰
0.h2/.

Proof. As in the proof of Lemma 4.5, we use the decomposition P .1/ D P
.1/
1
CP

.1/
2

. From Corollary 3.1
and Lemma 2.2, the coefficients appearing in these operators satisfy

ah D QaCS0.h/ 2 S0.1/;

qa;b D Qqa;bCS0.hh�bi
�1/ 2 S0.h�bi

�1/;

q�1
a;b D Qq

�1
a;bCS0.hh�ai/ 2 S0.h�ai/;

M.j;k/;.a;b/ D Op. Qm.j;k/;.a;b//C‰
0.hh�j i

�1
h�ki

�1
h�ai
�1
h�bi

�1/

with Qm.j;k/;.a;b/ 2 S0.h�j i
�1h�ki

�1h�ai
�1h�bi

�1/ and

QaD 1CO.j.x�u; �/j2/; Qm.j;k/;.a;b/ D
1
2
ˇ2

d .ıj;aık;b � ık;aıj;b/CO.j.x�u; �/j2/;

Qqa;b D ˇ
1=2

d
ıa;bCO.j.x�u; �/j2/; Qq�1

a;b D ˇ
�1=2

d
ıa;bCO.j.x�u; �/j2/

near .u; 0/, u 2U. Then, making commutations in (4-13) and (4-15), we obtain the desired result. �

We now make the link between the eigenvalues of P .0/ and P .1/. For that, we will use the so-called
intertwining relations, which are a fundamental tool in the supersymmetric approach. Recall that, thanks
to Theorem 1.5, P .0/ can be written as

P .0/
DL��L� with L� DQd�;hah: (4-18)

We obtain the following result:

Lemma 4.7. On 0-forms, we have

L�P .0/
D P .1/L� DL�L��L� : (4-19)

Moreover, for all � 2 R n f0g, the operator L� W ker.P .0/ � �/! ker.P .1/ � �/ is injective. Finally,
L�.ker.P .0///D f0g.

Proof. Let us first prove (4-19). Using (4-9), (4-18) and the usual cohomology rule (i.e., d2
�;h
D 0), we

have
P .1/L� DL�L��L� C .Q

�1/�d��;hMd�;hQ�1Qd�;hah

DL�L��L� C .Q
�1/�d��;hMd�;hd�;hah

DL�L��L� DL�P .0/: (4-20)

Now, let u ¤ 0 be an eigenfunction of P .0/ associated to � 2 R. In particular, kL�uk2 D �kuk2

vanishes if and only if �D 0. Moreover, (4-19) yields

P .1/L�uDL�P .0/uD �L�u:

This implies the second part of the lemma. �
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We shall now study more precisely the small eigenvalues of P .1/. Recall that sj , j D 2; : : : ; n1C 1,
denote the saddle points (of index 1) of �. Again, we will stick to the analysis already made for the
Witten Laplacian on 1-forms PW ;.1/, for which we recall the following properties. From Lemma 1.6
and Proposition 1.7 of [Helffer and Sjöstrand 1985], the operator PW ;.1/ is selfadjoint, positive and has
exactly n1 exponentially small (nonzero) eigenvalues (counted with multiplicities). We next recall the
construction of associated quasimodes made in Definition 4.3 of [Helffer et al. 2004]. Let uj denote a
normalized fundamental state of PW ;.1/ restricted to an appropriate neighborhood of sj with Dirichlet
boundary conditions. The quasimodes f W ;.1/

j are then defined by

f
W ;.1/

j WD k�j ujk
�1�j .x/uj .x/; (4-21)

where � is a well-chosen C1
0

localization function around sj . Since the f W ;.1/
j have disjoint support,

we immediately deduce

hf
W ;.1/

j ; f
W ;.1/

j 0 i D ıj;j 0 : (4-22)

In particular, the family ff W ;.1/
j Wj D2; : : : ; n1C1g is a free family of 1-forms. Furthermore, Theorem 1.4

of [Helffer and Sjöstrand 1985] implies that these quasimodes have a WKB expression,

f
W ;.1/

j .x/D �j .x/b
.1/
j .x; h/e��C;j .x/=h; (4-23)

where b
.1/
j .x; h/ is a normalization 1-form having a semiclassical asymptotic, and �C;j is the phase

associated to the outgoing manifold of �2C jrx�.x/j
2 at .sj ; 0/. Moreover, the phase function �C;j

satisfies the eikonal equation jrx�C;j j
2 D jrx�j

2 and �C;j .x/� jx� sj j
2 near sj . For other properties

of �C;j , we refer to [Helffer and Sjöstrand 1985]. On the other hand, Lemma 1.6 and Proposition 1.7 of
[Helffer and Sjöstrand 1985] imply that there exists ˛ > 0 independent of " such that

PW ;.1/f
W ;.1/

j D O.e�˛=h/: (4-24)

Lastly, we deduce from Proposition 1.7 of [Helffer and Sjöstrand 1985] that there exists � > 0 such that

hPW ;.1/u;ui � �hkuk2 (4-25)

for all u? Vectff W ;.1/
j W j D 2; : : : ; n1C 1g.

Now, let us define the quasimodes associated to P .1/ by

f
.1/

j .x/ WD ˇ
1=2

d
.Q�/�1f

W ;.1/
j (4-26)

for 2 � j � n1C 1. Note that this is possible since .Q�/�1 2 ‰0.h�i/. Using that .Q�/�1 is close to
ˇ
�1=2

d
Id microlocally near .sj ; 0/, we will prove that they form a good, approximately normalized and

orthogonal family of quasimodes for P .1/.

Lemma 4.8. The system .f
.1/

j /j is free and, for all j , j 0 D 2; : : : ; n1C 1, we have

kf
.1/

j �f
W ;.1/

j k D O.h/; hf
.1/

j ; f
.1/

j 0 i D ıj;j 0 CO.h/ and P .1/f
.1/

j D O.h2/:



TUNNEL EFFECT FOR SEMICLASSICAL RANDOM WALKS 319

Proof. From (4-26) and Corollary 3.1, we have

f
.1/

j �f
W ;.1/

j D .ˇ
1=2

d
.Q�/�1

� Id/f W ;.1/
j D Op.r/f W ;.1/

j

with r 2 S0.h�i2/ such that, modulo S0.hh�i2/, r.x; �/D O.j.x�u; �/j2/ near .u; 0/, u 2U. Moreover,
using Taylor expansion and symbolic calculus, we can write

r.x; �/D
X

j˛Cˇj2f0;2g

h1�j˛Cˇj=2r˛;ˇ.x; �/.x� sj /
˛�ˇ

with r˛;ˇ 2 S0.h�i2/. Combined with the WKB form of the f W ;.1/
j given in (4-23) (and, in particular,

with �C;j .x/� jx� sj j
2 near sj ), it shows that

Op.r/f W ;.1/
j D O.h/; (4-27)

which proves the first statement.
The second statement is a direct consequence of the above estimate and (4-22).
For the last estimate, we follow the same strategy. Thanks to Lemma 4.6, we have

P .1/f
.1/

j D ˇdPW ;.1/f
W ;.1/

j CˇdPW ;.1/.f
.1/

j �f
W ;.1/

j /CR0f
.1/

j CR1f
.1/

j CR2f
.1/

j : (4-28)

Proceeding as above, we write

PW ;.1/.f
.1/

j �f
W ;.1/

j /D PW ;.1/.ˇ
1=2

d
.Q�/�1

� Id/f W ;.1/
j ;

where, using (4-2), Corollary 3.1 and the pseudodifferential calculus, the corresponding operator can be
decomposed as

PW ;.1/.ˇ
1=2

d
.Q�/�1

� Id/D Op
� X
j˛Cˇj2f0;2;4g

h2�j˛Cˇj=2
Qr˛;ˇ.x; �I h/.x� sj /

˛�ˇ
�

for some Qr˛;ˇ 2 S0.h�i3/. Thus, as in (4-27), we deduce

ˇdPW ;.1/.f
.1/

j �f
W ;.1/

j /D O.h2/: (4-29)

In the same way, we deduce from Lemma 4.6 that, for any p D 0, 1, 2,

Rpˇ
1=2

d
.Q�/�1

D Op
� X
j˛Cˇj2f0;2;4g

h2�j˛Cˇj=2r
p

˛;ˇ
.x; �I h/.x� sj /

˛�ˇ
�

with r
p

˛;ˇ
2 S0.h�i3/. Thus,

Rpf
.1/

j DRpˇ
1=2

d
.Q�/�1f

W ;.1/
j D O.h2/: (4-30)

Combining (4-28) with the estimates (4-24), (4-29) and (4-30), we obtain P .1/f
.1/

j D O.h2/ and this
concludes the proof of the lemma. �

The following proposition is the analogue of Proposition 4.3.



320 JEAN-FRANÇOIS BONY, FRÉDÉRIC HÉRAU AND LAURENT MICHEL

Proposition 4.9. The operator P .1/ has exactly n1 O.h2/ (real) eigenvalues, and the remaining part of
the spectrum is in Œ"1h;C1Œ for some "1 > 0.

The idea of the proof is to consider separately the regions of the phase space close to the critical
points U and away from this set. In the first one, we approximate P .1/ by PW ;.1/ using that Q' ˇ

1=2

d
Id

microlocally near .u; 0/, u 2U. In the second one, we use that (the symbol of) P .1/ is elliptic by (4-12).
We start this strategy with a pseudodifferential IMS formula. For �>0 fixed, let �02C1

0
.R2d I Œ0; 1�/ be

supported in a neighborhood of size � of U and such that �0D1 near U and �1 WD .1��2
0
/1=22C1.R2d /.

In particular,
�2

0.x; �/C�
2
1.x; �/D 1 for all .x; �/ 2 R2d : (4-31)

In the sequel, the remainder terms may depend on �, but C will denote a positive constant independent
of �, which may change from line to line. Using Lemma 4.5 and the shorthand Op.a/D Op.a/˝ Id, the
pseudodifferential calculus gives

P .1/
D

1
2
.Op.�2

0C�
2
1/P

.1/
CP .1/ Op.�2

0C�
2
1//

D
1
2
.Op.�0/

2P .1/
CP .1/ Op.�0/

2/C 1
2
.Op.�1/2P .1/

CP .1/ Op.�1/2/C‰0.h2/

D Op.�0/P
.1/ Op.�0/COp.�1/P .1/ Op.�1/

C
1
2
ŒOp.�0/; ŒOp.�0/;P

.1/��C 1
2
ŒOp.�1/; ŒOp.�1/;P .1/��CO.h2/

D Op.�0/P
.1/ Op.�0/COp.�1/P .1/ Op.�1/CO.h2/: (4-32)

In the previous estimate, we have crucially used that Op.��/˝ Id are matrices of pseudodifferential
operators collinear to the identity.

Lemma 4.10. There exists ı� > 0, which may depend on �, such that

Op.�1/P .1/ Op.�1/� ı� Op.�1/2CO.h1/: (4-33)

Moreover, there exists C > 0 such that, for all � > 0,

Op.�0/P
.1/ Op.�0/� .ˇd �C�/Op.�0/P

W ;.1/ Op.�0/� .C�hCO.h2//: (4-34)

Proof. We first estimate P .1/ outside of the critical points U. Since �1 vanishes near U, Proposition 2.3
yields that there exist ı� > 0 and Qp� 2 S0.1/ (which may depend on �) such that p D Qp� in a vicinity of
the support of �1 and Qp�.x; �/� 2ı� for all .x; �/ 2 R2d . Then, Lemma 4.5 and the pseudodifferential
calculus (in particular, the Gårding inequality) imply

Op.�1/P .1/ Op.�1/D Op.�1/P .0/ Op.�1/COp.�1/O.h/Op.�1/

D Op.�1/Op. Qp�/Op.�1/COp.�1/O.h/Op.�1/CO.h1/

� Op.�1/.2ı�CO.h//Op.�1/CO.h1/;

which implies (4-33) for h small enough. Here, we have identified as before A with A˝ Id for scalar
operators A.
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We now consider Op.�0/P
.1/ Op.�0/. Thanks to Lemma 4.6, we can write

Op.�0/P
.1/ Op.�0/D ˇd Op.�0/P

W ;.1/ Op.�0/C

2X
kD0

Op.�0/Rk Op.�0/:

Let Q�0 2C1
0
.R2d I Œ0; 1�/ be supported in a neighborhood of size � of .u; 0/, u 2U, and such that Q�0D 1

near the support of �0. Then, for ! 2�1.Rd /, hR0 Op.�0/!;Op.�0/!i is a finite sum of terms of the
form

Qr0 D h.d
a
�;h/
�.Op.r0/C‰

0.h//db
�;h Op.�0/!j ;Op.�0/!ki: (4-35)

Using functional analysis and pseudodifferential calculus, we get

j Qr0j D jh.Op.r0 Q�0/C‰
0.h//db

�;h Op.�0/!j ; d
a
�;h Op.�0/!kijCO.h1/k!k2

� .kOp.r0 Q�0/kCO.h//kdb
�;h Op.�0/!jkkd

a
�;h Op.�0/!kkCO.h1/k!k2

� .kOp.r0 Q�0/kCO.h//hPW ;.0/ Op.�0/!;Op.�0/!iCO.h1/k!k2: (4-36)

Recall now that, for a 2 S0.1/,

kOp.a/kL2.Rd /!L2.Rd / D kakL1.R2d /CO.h/

(see, e.g., [Zworski 2012, Theorem 13.13]). Thus, using that Q�0 is supported in a neighborhood of size �
of .u; 0/ at which r0 vanishes yields kOp.r0 Q�0/k � C�, and (4-36) implies

jhR0 Op.�0/!;Op.�0/!ij � C�hPW ;.0/ Op.�0/!;Op.�0/!iCO.h1/k!k2: (4-37)

As before, hR1 Op.�0/!;Op.�0/!i is a finite sum of terms of the form

Qr1 D h‰
0.h/da

�;h Op.�0/!j ;Op.�0/!ki (4-38)

or its complex conjugate. These terms can be estimated as

j Qr1j � C hkda
�;h Op.�0/!jkk!k

� �kda
�;h Op.�0/!jk

2
CO.h2/k!k2

� �hPW ;.0/ Op.�0/!;Op.�0/!iCO.h2/k!k2;

and then

jhR1 Op.�0/!;Op.�0/!ij � C�hPW ;.0/ Op.�0/!;Op.�0/!iCO.h2/k!k2: (4-39)

Combining Lemma 4.6 with the estimates (4-37), (4-39) and R2 2‰
0.h2/, we obtain

Op.�0/P
.1/ Op.�0/� ˇd Op.�0/P

W ;.1/ Op.�0/�C�Op.�0/P
W ;.0/ Op.�0/�O.h2/:

Since PW ;.1/ D PW ;.0/˝ IdC‰0.h/ (see Equation (1.9) of [Helffer and Sjöstrand 1985], for example),
this inequality gives (4-34). �

Let… denote the orthogonal projection onto Vectff .1/j W j D 2; : : : ; n1C1g. Using the previous lemma
and its proof, we can describe the action of P .1/ on …:
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Lemma 4.11. The rank of … is n1 for h small enough. Moreover,

P .1/…D O.h2/ and …P .1/
D O.h2/: (4-40)

Finally, there exists "1 > 0 such that

.1�…/P .1/.1�…/� "1h.1�…/ (4-41)

for h small enough.

Proof. Since the functions f .1/j are almost orthogonal (i.e., hf .1/j ; f
.1/

j 0 i D ıj;j 0 CO.h/), the rank of …
is n1. Moreover, (4-40) is a direct consequence of Lemma 4.8.

We now give the lower bound for P .1/ on the range of 1�…. Let E.1/ denote the space spanned by
the f W ;.1/

k
, k D 2; : : : ; n1C 1 and F.1/ the eigenspace associated to the n1 first eigenvalues of PW ;.1/.

Let …E.1/ , …F.1/ denote the corresponding orthogonal projectors. It follows from [Helffer and Sjöstrand
1985] that k…E.1/ �…F.1/k D O.e�c=h/ for some c > 0. On the other hand, it follows from the first
estimate of Lemma 4.8 that k…�…E.1/k D O.h/. Combining these two estimates, we get

k…�…F.1/k D O.h/:

Using this bound and the spectral properties of PW ;.1/, we get

PW ;.1/
� �h� �h…F.1/ � �h� �h…CO.h2/ (4-42)

for some � > 0. From (4-23) and integration by parts, we also have Op.�0/…D…CO.h1/. Estimate
(4-42) together with (4-31), (4-32), (4-33) and (4-34) give

P .1/
D Op.�0/P

.1/ Op.�0/COp.�1/P .1/ Op.�1/CO.h2/

� .ˇd �C�/Op.�0/P
W ;.1/ Op.�0/C ı� Op.�1/2� .C�hCO.h2//

� �h.ˇd �C�/Op.�0/
2
� �h.ˇd �C�/…C ı� Op.�1/2� .C�hCO.h2//

� �h.ˇd �C�/� �h.ˇd �C�/…� .C�hCO.h2//: (4-43)

Thus, taking � > 0 small enough and applying 1�…, we finally obtain (4-41) for some "1 > 0. �

Proof of Proposition 4.9. From Proposition 2.4 and Lemma 4.5, the operator P .1/ is bounded and its
essential spectrum is above some positive constant independent of h. Next, the maxi-min principle
together with (4-40) implies that P .1/ has at least rank.…/D n1 eigenvalues below C h2. In the same
way, (4-41) yields that P .1/ has at most n1 eigenvalues below "1h. Finally,

P .1/
D .1�…/P .1/.1�…/C…P .1/.1�…/C .1�…/P .1/…C…P .1/…� �C h2

proves that all the spectrum of P .1/ is above �C h2. �
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5. Eigenspace analysis and proof of the main theorem

Now we want to project the preceding quasimodes onto the generalized eigenspaces associated to
exponentially small eigenvalues, and prove the main theorem. Recall that we have built in the preceding
section quasimodes f .0/

k
, k D 1; : : : ; n0, for P .0/ with good support properties. To each quasimode we

will associate a function in E.0/, the eigenspace associated to the O.h2/ eigenvalues. For this, we first
define the spectral projector

….0/ D
1

2� i

Z


.z�P .0//�1 dz; (5-1)

where  D @B
�
0; 1

2
"0h

�
and "0 > 0 is defined in Proposition 4.3. From the fact that P .0/ is selfadjoint,

we get that
….0/ D O.1/:

For the following, we denote the corresponding projection by

e
.0/

k
D….0/.f

.0/

k
/:

Lemma 5.1. The system .e
.0/

k
/k is free and spans E.0/. Further, there exists ˛ > 0 independent of " such

that
e
.0/

k
D f

.0/

k
CO.e�˛=h/ and he

.0/

k
; e
.0/

k0
i D ık;k0 CO.h/:

Proof. The proof follows [Helffer and Sjöstrand 1985] (see also [Dimassi and Sjöstrand 1999]). We
sketch it for the sake of completeness and to give the necessary modifications. Using (5-1) and the Cauchy
formula, we get

e
.0/

k
�f

.0/

k
D….0/f

.0/

k
�f

.0/

k
D

1

2� i

Z


.z�P .0//�1f
.0/

k
dz�

1

2� i

Z


z�1f
.0/

k
dz

D
1

2� i

Z


.z�P .0//�1z�1P .0/f
.0/

k
dz:

Since P .0/ is selfadjoint and according to Proposition 4.3, we have

k.z�P .0//�1
k D O.h�1/

uniformly for z 2  . Using also the second estimate in Lemma 4.1, this yields

k.z�P .0//�1z�1P .0/f
.0/

k
k D O.h�2e�˛=h/;

and, after integration,
ke
.0/

k
�f

.0/

k
k D O.h�1e�˛=h/:

Decreasing ˛, we obtain the first estimate of the lemma. In particular, this implies that the family .e.0/
k
/k

is free. Using that E.0/ is of dimension n0, the family .e.0/
k
/k spans E.0/.

For the last equality of the lemma, we just have to notice that

he
.0/

k
; e
.0/

k0
i D hf

.0/

k
; f

.0/

k0
iCO.e�˛=h/D ık;k0 CO.h/CO.e�˛=h/D ık;k0 CO.h/;
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according to Lemma 4.1. The proof is complete. �

We can do a similar study for the analysis of P .1/, for which we know that exactly n1 (real) eigenvalues
are O.h2/, and among them at least n0� 1 are exponentially small. Note that there is no particular reason
for the remaining ones to also be exponentially small.

To the family of quasimodes .f .1/j /j , we now associate a family of functions in E.1/, the eigenspace
associated to the O.h2/ eigenvalues for P .1/. By the spectral properties of the selfadjoint operator P .1/,
its spectral projector onto E.1/ is given by

….1/ D
1

2� i

Z


.z�P .1//�1 dz; (5-2)

where  D @B
�
0; 1

2
"1h

�
, with "1 defined in Proposition 4.9. In the sequel, we write

e
.1/
j D….1/.f

.1/
j /:

Mimicking the proof of Lemma 5.1, one can show that the family .e.1/j /j satisfies the following estimates:

Lemma 5.2. The system .e
.1/
j /j is free and spans E.1/. Further, we have

e
.1/
j D f

.1/
j CO.h/ and he

.1/
j ; e

.1/
j 0 i D ıj;j 0 CO.h/:

Thanks to the preceding lemmas, the families .e.0/
k
/k and .e.1/j /j are orthonormal, apart from an O.h/

factor. To accurately compute the eigenvalues of P .0/ and prove the main theorem, we need more precise
estimates of exponential type. For this, we will use the intertwining relation L�P .0/ D P .1/L� .

More precisely, we denote by L the n1 � n0 matrix of this restriction of L� with respect to the bases
.e
.1/
j /j and .e.0/

k
/k :

Lj;k WD he
.1/
j ;L�e

.0/

k
i: (5-3)

The classical way (e.g., [Helffer et al. 2004; Helffer and Sjöstrand 1985]) to compute the exponentially
small eigenvalues of P .0/ is to then accurately compute the singular values of L. For this, we first state a
refined lemma about exponential estimates.

Lemma 5.3. There exists ˛ > 0 independent of " such that

L�L��f
.1/

j D O.e�˛=h/; (5-4)

and also a smooth 1-form r
.1/
j such that

L��.e
.1/
j �f

.1/
j /DL��r

.1/
j and r

.1/
j D O.e�˛=h/:

Proof. We first note that

L�L��f
.1/

j D ˇ
1=2

d
L�ahd��;hQ�.Q�/�1f

W ;.1/
j

D ˇ
1=2

d
L�ah.d

�
�;hf

W ;.1/
j /: (5-5)
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On the other hand, (4-2) and (4-24) give

kd��;hf
W ;.1/

j k
2
� kd��;hf

W ;.1/
j k

2
Ckd�;hf

W ;.1/
j k

2
D hPW ;.1/f

W ;.1/
j ; f

W ;.1/
j i D O.e�˛=h/

for some ˛ > 0 independent of ". Since ah and L� are uniformly bounded operators, (5-5) provides the
required estimate.

Now we show the second and third equalities, following closely the proof of Lemma 5.1. Using (5-1),
the intertwining relation (see Lemma 4.7) and the Cauchy formula, we have

L��.e
.1/
j �f

.1/
j /DL��…

.1/f
.1/

j �L��f
.1/

j

D….0/L��f
.1/

j �L��f
.1/

j

D
1

2� i

Z


.z�P .0//�1L��f
.1/

j dz�
1

2� i

Z


z�1L��f
.1/

j dz

D
1

2� i

Z


.z�P .0//�1z�1P .0/L��f
.1/

j dz; (5-6)

where  D @B
�
0; 1

2
min."0; "1/h

�
. Using again Lemma 4.7, this becomes

L��.e
.1/
j �f

.1/
j /D

1

2� i

Z


.z�P .0//�1z�1L��L�L��f
.1/

j dz

DL��
1

2� i

Z


.z�P .1//�1z�1L�L��f
.1/

j dz:

We then let

r
.1/
j D

�
1

2� i

Z


.z�P .1//�1z�1 dz

�
L�L��f

.1/
j ; (5-7)

and the preceding equality reads

L��.e
.1/
j �f

.1/
j /DL��r

.1/
j : (5-8)

Moreover, as in proof of Lemma 5.1, we have

1

2� i

Z


.z�P .1//�1z�1 dz D O.h�1/:

Combining with (5-4), this shows that r
.1/
j D O.e�˛=h/ for some (new) ˛ > 0. �

We begin the study of the matrix L with the following lemma:

Lemma 5.4. There exists ˛0 > 0 such that, if " > 0 is sufficiently small and fixed, we have, for all
2� j � n1C 1 and 2� k � n0,

Lj;k D hf
.1/

j ;L�f
.0/

k
iCO.e�.SkC˛

0/=h/:

Moreover, Lj;1 D 0 for all 2� j � n1C 1.
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Proof. We first treat the case k D 1. Since f .0/
1

is collinear to a�1
h

e��=h, it belongs to ker.P .0//.
Then, e

.0/
1
D ….0/f

.0/
1
D f

.0/
1

satisfies L�e
.0/
1
D 0 from Lemma 4.7. In particular, Lj;1 D 0 for all

2� j � n1C 1.
We now assume 2� k � n0. Using Lemma 4.7 and the definition of e.?/

�
, we can write

Lj;k D he
.1/
j ;L�e

.0/

k
i D he

.1/
j ;L�…

.0/f
.0/

k
i D he

.1/
j ;….1/L�f

.0/

k
i

D h….1/e
.1/
j ;L�f

.0/

k
i D he

.1/
j ;L�f

.0/

k
i D hf

.1/
j ;L�f

.0/

k
iC he

.1/
j �f

.1/
j ;L�f

.0/

k
i

D hf
.1/

j ;L�f
.0/

k
iC hL��.e

.1/
j �f

.1/
j /; f

.0/

k
i:

From Lemma 5.3, this becomes

Lj;k D hf
.1/

j ;L�f
.0/

k
iC hL��r

.1/
j ; f

.0/

k
i

D hf
.1/

j ;L�f
.0/

k
iC hr

.1/
j ;L�f

.0/

k
i: (5-9)

Now, since Q is bounded and according to Lemma A.3, we have

L�f
.0/

k
DQd�;hf

W ;.0/
D O.e�.Sk�C"/=h/:

Using Lemma 5.3 again, this yields

hr
.1/
j ;L�f

.0/

k
i D O.e�.SkC˛�C"/=h/ (5-10)

with ˛ > 0 independent of ". Taking " > 0 small enough, the lemma follows from (5-9) and (5-10). �

Now we recall the explicit computation of the matrix L. This is just a consequence of the study of the
corresponding Witten Laplacian.

Lemma 5.5. For all 2� j � n1C 1 and 2� k � n0, we have

Lk;k D

�
h

.2d C 4/�

�1=2

�
1=2

k

ˇ̌̌̌
det�00.mk/

det�00.sk/

ˇ̌̌̌1=4
e�Sk=h.1CO.h//DW h1=2`k.h/e

�Sk=h

and
Lj;k D O.e�.SkC˛

0/=h/ for all j ¤ k;

where Sk WD �.sk/��.mk/ and ��k denotes the unique negative eigenvalue of �00 at sk .

Proof. First, we note that

hf
.1/

j ;L�f
.0/

k
i D ˇ

1=2

d
hf

W ;.1/
j ; d�;hf

W ;.0/

k
i;

by (4-3), (4-26) and L� DQd�;hah. Thus, Lemma 5.4 implies

Lj;k D ˇ
1=2

d
hf

W ;.1/
j ; d�;hf

W ;.0/

k
iCO.e�.SkC˛

0/=h/:

The first term is exactly the approximate singular value of d�;h computed in [Helffer et al. 2004]. The
result is then a direct consequence of Proposition 6.4 of [Helffer et al. 2004]. �

Now we are able to compute the singular values of L (i.e., the eigenvalues of .L�L/1=2).
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Lemma 5.6. There exists ˛0 > 0 such that the singular values �k.L/ of L, enumerated in a suitable order,
satisfy

�k.L/D jLk;k j.1CO.e�˛
0=h// for all 1� k � n0:

Proof. Since the first column of L consists of zeros, we get �1 D 0. Moreover, the other singular
values of L are those of the reduced matrix L0 with entries L0

j;k
D LjC1;kC1 for 1 � j � n1 and

1 � k � n0 � 1. We shall now use that the dominant term in each column of L0 lies on the diagonal.
Define the .n0� 1/� .n0� 1/ diagonal matrix D by

D WD diag.LkC1;kC1 W k D 1; : : : ; n0� 1/:

Notice that D is invertible, thanks to the ellipticity of `kC1.h/, and that �k.D/D jLkC1;kC1j. We also
define the n1 � .n0� 1/ characteristic matrix of L0

U D .ıj;k/j;k :

From Lemma 5.5, there is a constant ˛0 > 0 such that

L0 D .U CO.e�˛
0=h//D: (5-11)

The Fan inequalities (see, for example, Theorem 1.6 of [Simon 1979]) therefore give

�k.L
0/� .1CO.e�˛

0=h//�k.D/: (5-12)

To get the opposite estimate, we remark that U �U D Idn0�1. Then, (5-11) implies

D D .1CO.e�˛
0=h//U �L0;

and, as before,
�k.D/� .1CO.e�˛

0=h//�k.L
0/: (5-13)

The lemma follows from �kC1.L/D �k.L
0/, (5-12), (5-13) and �k.D/D jLkC1;kC1j. �

Now, Theorem 1.2 is a direct consequence of the explicit computations of Lemma 5.5 and of the
following equivalent formulation:

Lemma 5.7. The nonzero exponentially small eigenvalues of Ph are of the form

h.`2
k.h/CO.h//e�2Sk=h for 2� k � n0:

Proof. According to Lemma 5.1 and Lemma 5.2, the bases .e.0/
k
/k and .e.1/j /j of E.0/ and E.1/

respectively are orthonormal up to O.h/ small errors. Let . Qe.0/
k
/k and . Qe.1/j /j be the corresponding

orthonormalizations (obtained by taking square roots of the Gramians), which differ from the original
bases by O.h/ small recombinations. Then, with respect to the new bases, the matrix of L� takes the
form zLD .1CO.h//L.1CO.h//. Using the Fan inequalities, we see that the conclusion of Lemma 5.6
is also valid for zL (note that there is no need to have exponentially small errors here). Since the matrix of
the restriction of P .0/ to E.0/ with respect to the basis . Qe.0/

k
/k is given by zL� zL, the lemma follows. �
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We end this section by showing that the main theorems stated in Section 1 imply the metastability of
the system.

Proof of Corollary 1.4. We first prove (1-5) and (1-7). If � has a unique minimum, Theorem 1.1 gives

k.T ?
h /

n.d�h/� d�h;1kHh
� .1� ıh/nkd�hkHh

D en ln.1�ıh/Cjln hjhkd�hkHh
:

Using that n ln.1� ıh/��ıhn, this estimate yields

k.T ?
h /

n.d�h/� d�h;1kHh
� hkd�hkHh

for n& jln hjh�1. In the same way, if � has several minima, Theorem 1.2 implies

k.T ?
h /

n.d�h/� d�h;1kHh
� .�?2.h//

n
kd�hkHh

D en ln.�?
2
.h//Cjln hjhkd�hkHh

:

Using now that n ln.�?
2
.h//� n.�?

2
.h/� 1/��C nhe�S2=h for some C > 0, this estimate yields

k.T ?
h /

n.d�h/� d�h;1kHh
� hkd�hkHh

for n& jln hjh�1eS2=h.
It remains to show (1-6). From Theorem 1.1, Theorem 1.2 and the proof of (1-5), we can write

.T ?
h /

n.d�h/D

n0X
kD1

.�?k.h//
n…kd�hCO.h/kd�hkHh

;

for n & jln hjh�1. Here, …k is the spectral projector of T ?
h

associated to the eigenvalue �?
k
.h/. If we

assume in addition that n. e2Sn0
=h, then .�?

k
.h//nD 1CO.h/ for any k D 1; : : : ; n0. Thus, the previous

equation becomes
.T ?

h /
n.d�h/D…

.0/d�hCO.h/kd�hkHh
; (5-14)

since ….0/ D…1C � � �C…n0
. Let

gk.x/ WD
�k.x/e

�.�.x/��.mk//=h

k�ke�.���.mk//=hk
:

From (A-1), we immediately get gk D f
W ;.0/

k
CO.h/. Moreover, as in (4-4), we have

kf
.0/

k
�f

W ;.0/

k
k D k.a�1

h � 1/f
W ;.0/

k
k D O.h/:

Combining with Lemma 5.1, we deduce

gk D e
.0/

k
CO.h/: (5-15)

Using Lemma 5.1 one more time, the bases .e.0/
k
/k and .gk/k of Im….0/ and Im…, respectively, are

almost orthogonal, in the sense that

he
.0/

k
; e
.0/

k0
i D ık;k0 CO.h/ and hgk ;gk0i D ık;k0 CO.h/:

This then yields
…D….0/CO.h/; (5-16)
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and (1-6) follows from (5-14). �

Appendix: Quasimodes, truncation procedure and labeling

In this appendix, we gather from [Helffer et al. 2004; Hérau et al. 2011] the refined construction of
quasimodes on 0-forms for the Witten Laplacian, and the labeling procedure linking each minima with a
saddle point of index 1. We recall briefly the construction proposed in [Hérau et al. 2011] (which was in
the Fokker–Planck case there) but in a generic situation where all �.s/��.m/ are distinct for m in the
set of minima and s in the set of saddle points of �.

In the following, we will denote by L.�/ D fx 2 Rn W �.x/ < �g the sublevel set associated to the
value � 2 R. Let s be a saddle point of � and B.s; r/D fx 2 Rn W jx � sj < rg. Then, for r > 0 small
enough, the set

B.s; r/\L.�.s//D fx 2 B.s; r/ W �.x/ < �.s/g

has precisely 2 connected components, Cj .s; r/ with j D 1, 2.

Definition A.1. We say that s 2 Rn is a separating saddle point (ssp) if it is either 1 or it is a usual
saddle point such that C1.s; r/ and C2.s; r/ are contained in different connected components of the set
fx 2 Rn W �.x/ < �.s/g. We denote by SSP the set of ssps.

We also introduce the set of separating saddle values (ssv), SSVDf�.s/ W s 2 SSPg with the convention
that �.1/DC1.

A connected component E of the sublevel set L.�/ will be called a critical component if either
@E \SSP¤∅ or E D Rn.

Let us now explain the way we label the critical points. We first order the saddle points in the following
way. We recall from [Helffer et al. 2004] that ]SSVD n0 and then enumerate the ssvs in a decreasing
way: 1D �1 > �2 > � � �> �n0

. To each ssv �j we can associate a unique ssp: we define s1 D1 and,
for any j D 2; : : : ; n0, we let sj be the unique ssp such that �.sj /D �j (note that this sj is unique thanks
to Hypothesis 2).

Then we can proceed to the labeling of minima. We denote by m1 the global minimum of �, E1DRd

and by S1 D �.s1/��.m1/DC1 the critical Arrhenius value.
Next we observe that the sublevel set L.�2/ D fx 2 Rn W �.x/ < �2g is the union of two critical

components, with one containing m1. The remaining connected component of the sublevel set L.�2/

will be denoted by E2 and its minimum by m2. To the pair .m2; s2/ of critical points we associate the
Arrhenius value S2 D �.s2/��.m2/.

Continuing the labeling procedure, we decompose the sublevel set L.�3/ into its connected components
and perform the labeling as follows: we omit all those components that contain the already labeled minima
m1 and m2. Some of these components may be noncritical. There is only one critical one remaining, and
we denote it by E3. We then let m3 be the point of global minimum of the restriction of � to E3 and
S3 D �.s3/��.m3/.

We go on with this procedure, proceeding in the order dictated by the elements of the set SSV,
arranged in the decreasing order, until all n0 local minima m have been enumerated. In this way we have
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associated each local minima to one ssp: to each local minimum mk , there is one critical component Ek

containing mk , and one ssp sk . We emphasize that in this procedure some of the saddle points (the
noncritical ones) may not have been enumerated. For convenience, we enumerate these remaining saddle
points from n0C 1 to n1C 1. Note that, with this labeling, U.1/ D fs2; : : : ; sn1C1g. We then have

minimaD fm1; : : : ;mn0
g; SSPD fs1 D1; s2; : : : ; sn0

g:

We summarize the preceding discussion in the following proposition:

Proposition A.2. The families of minima U.0/ D fmk W k D 1; : : : ; n0g, separating saddle points fsk W

k D 1; : : : ; n0g and connected sets fEk W k D 1; : : : ; n0g satisfy:

(i) s1 D1, E1 D Rn and m1 is the global minimum of �.

(ii) For every k � 2, Ek is compact, Ek is the connected component containing mk in

fx 2 Rn
W �.x/ < �.sk/g

and �.mk/DminEk
�.

(iii) If sk0 2Ek for some k, k 0 2 f1; : : : ; n0g, then k 0 > k.

To ensure that the eigenvalues �?
k

are decreasing, if necessary we relabel the pairs of minima and
critical saddle points so that the sequence Sk is decreasing.

Using [Helffer et al. 2004; Hérau et al. 2011], we shall now introduce suitable refined quasimodes,
adapted to the local minima of � and the simplified labeling, described in Proposition A.2. Let "0 > 0

be such that the distance between critical points is larger than 10"0 and such that, for every critical
point u and k 2 f1; : : : ; n0g, we have either u 2Ek or dist.u;Ek/� 10"0. Also let C0 > 1, to be defined
later, and note that "0 may also be taken smaller later. For 0 < " < "0 we build a family of functions
�k;", k 2 f1; : : : ; n0g as follows: for k D 1, we let �1;" D 1 and, for k � 2, we consider the open set
Ek;" DEk nB.sk ; "/, and let �k;" be a C1

0
-cutoff function supported in Ek;"CB.0; "=C0/ and equal

to 1 in Ek;"CB.0; "=.2C0//. Then, we define the quasimodes for 1� k � n0 by

f
W ;.0/

k
D bk.h/�k;".x/e

�.�.x/��.mk//=h; (A-1)

where bk is a normalization constant, given thanks to the stationary phase theorem by

bk.h/D .�h/�d=4 det.Hess�.mk//
1=4.bk;0C hbk;1C � � � /; bk;0 D 1:

Then, for "0 small enough and C0 large enough, there exists C > 0 such that, for all 0< " < "0, we have
the following lemma:

Lemma A.3. The system .f
W ;.0/

k
/ is free and there exists ˛ > 0 uniform in " < "0 such that

hf
W ;.0/

k
; f

W ;.0/

k0
i D ık;k0 CO.e�˛=h/; d�;hf

W ;.0/

k
D O.e�.Sk�C"/=h/;

and, in particular,
PW ;.0/f

W ;.0/

k
D O.e�˛=h/:

Proof. This is a direct consequence of the statement and proof of Proposition 5.3 in [Hérau et al. 2011]. �
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