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Abstract. The low-lying eigenvalues of the generator of a Langevin process are known to
satisfy the Eyring–Kramers law in the low temperature regime under suitable assumptions.
These eigenvalues are generically real. We construct generators whose spectral gap is given
by non-real eigenvalues or by a real eigenvalue having a Jordan block.

1. Introduction

The generator of a diffusion process is generally a differential operator of order two with
real coefficients. In the last decades, the asymptotic of its low-lying eigenvalues has been
obtained [3, 4, 9, 10, 13, 14, 16, 17] in the low temperature regime (Eyring–Kramers law), see
[2] for a general presentation. These results provide sharp informations on metastability or
on return to equilibrium. For reversible processes, the generator is a self-adjoint operator on
an appropriate Hilbert space and then its spectrum is always real. For irreversible processes,
the generator is no longer self-adjoint on the natural Hilbert space and one can hope to
observe non-real eigenvalues or Jordan’s blocks. But, as recalled at the end of this part, there
are strong constrains on the low-lying spectrum of generators which make such phenomena
unlikely and explain why non-real spectra have not been obtained up to now. The goal of
this paper is to construct generators with pathologic spectral gap.

We first discuss spectral properties of generators in the general setting of [3] and send the
reader to this paper for precise statements and to the references of the previous paragraph
for slightly different settings. In [3], we consider the operator on L2(Rd)

(1.1) P = −hdiv ◦A ◦ h∇+
1

2

(
b · h∇+ hdiv ◦b

)
+ c,

where the symmetric matrix A = (aj,k(x, h))j,k, the vector field b = (bj(x, h))j and the
function c(x, h) are smooth and real-valued. Moreover, these functions are symbols and
have an asymptotic expansion in power of the parameter h, which is proportional to the
temperature. We assume that P has an invariant distribution which has a Gibbs form. More
precisely, there exists a confining smooth Morse function f such that

P (e−f/h) = P ∗(e−f/h) = 0.

Let 1 ≤ n0 < +∞ denote the number of minima of f . Hypoelliptic and hypocoercive
assumptions are also made. Under these assumptions, P is maximal accretive and has domain

D(P ) = {u ∈ L2(Rd); Pu ∈ L2(Rd)},
1
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as proved in Section 3 of [13]. The evolution equation naturally associated to P is the heat
(or Fokker–Planck) equation

(1.2)

{
h∂tu(t, x) = −Pu(t, x),
u(0, x) = u0(x),

where u0(x) ∈ L2(R2) is the initial data. The low-lying spectrum of P is given by the following
result (see Theorem 3 of [3]).

Theorem 1.1 (Eyring–Kramers law). There exists λ∗ > 0 such that, for h small enough,
P has exactly n0 eigenvalues counted with their algebraic multiplicity λ1(h), . . . , λn0(h) in

{z ∈ C; Re z ≤ λ∗h}. Moreover, λ1(h) = 0 is simple with KerP = e−f/hC. For n = 2, . . . , n0,
the eigenvalue λn(h) satisfies the asymptotic

λn(h) = an(h)he
−2Sn/h with an(h) ≃

∑

j≥0

ajnh
j ,

Sn = f(sn) − f(mn) > 0 for some particular saddle point sn and minimum mn, a
0
n 6= 0

explicitly known and ajn ∈ R for all j 6= 0.

Note that the first eigenvalue λ1 = 0 is always real. Since all the coefficients ajn are real, it
is not possible to use the Eyring–Kramers law to construct an operator with non-real small
eigenvalues. Moreover, the imaginary part of λn is always extremely small. More precisely,

Remark 1.2. For all n = 1, . . . , n0, we have

(1.3) | Imλn| = O(h∞)Reλn.

On the other hand, the particular form (1.1) of the generator P induces symmetries on
its spectrum, as remarked on page 15 of [17]. More precisely, since the coefficients of P are
real-valued and the domain of P is stable by complex conjugation, we get

(1.4) (P − λ)u = (P − λ)u,

for all λ ∈ C and u ∈ D(P ). This implies the following property which is also satisfied for
PT -symmetric operators (see for instance [1] for the bifurcation of eigenvalues from the real
axis to the complex plane).

Remark 1.3. The spectrum of P is invariant by complex conjugation.

In particular, when f has exactly two minima, P has two small eigenvalues λ1 = 0 and λ2
by Theorem 1.1. Since λ2 = λ2 by Remark 1.3, these two small eigenvalues are always real
and simple for h small enough (see Remark 1.10 of [17]).

More generally, if the asymptotic expansion of λn given by the Eyring–Kramers law is
different from that of the other eigenvalues, then λn is real and simple for h small enough.
As an example, if the (Arrhenius) exponential factors Sn are all different, then all the small
eigenvalues λn are real and simple for h small enough. This shows that the exponentially
small eigenvalues of the generator of a diffusion as in (1.1) are generically real.

We now construct operators of the form (1.1) with non-real small eigenvalues or Jordan
blocks. From the two previous paragraphs, the associated Morse function f must have at
least 3 minima and some of exponential factors Sn = f(sn)− f(mn) must coincide.
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Figure 1. The structure of the critical points of f and an example of such a
Morse function.

2. Statement of the results

On R2, we consider a smooth Morse function f with f(x) = x2 outside a compact set
and which is invariant under R, the rotation of angle 2π/3 around 0. Moreover, we assume
that the set of critical points of f consists of 3 (global) minima m1,m2,m3, 3 saddle points
s1, s2, s3 and 1 (local) maximumM as in Figure 1. Let P0 be the Witten Laplacian associated
to the function f , that is

(2.1) P0 = d∗f ◦ df with df = e−f/h ◦ h∇ ◦ ef/h =

(
h∂x1 + ∂x1f
h∂x2 + ∂x2f

)
.

A classical computation shows that this operator has the form

P0 = −h2∆+ |∇f |2 − h∆f.

Since f is a compactly supported perturbation of x2, P0 is self-adjoint on the domain of the
harmonic oscillator D(P0) = H2(R2) ∩ 〈x〉−2L2(R2), has a compact resolvent, P0 ≥ 0 and

KerP0 = e−f/hC.

The spectrum of Witten Laplacians in such a geometric configuration has been studied in
[14, Section 7.4], [19, Section 7C3] and [18, Section 9.3]. We send the reader to [12] or to the
second edition of the book [8] for details on Witten Laplacians.

Throughout the paper, we set S = f(s) − f(m) > 0 and µ(s) < 0 denotes the unique
negative eigenvalue of Hess f(s). Since f is invariant by rotation, these quantities do not
depend on the minimum m and the saddle point s where they are computed. The bottom of
the spectrum of P0 is given by the following result.

Proposition 2.1 (low eigenvalues of P0). There exists λ∗ > 0 such that, for h small enough,
P0 has exactly three eigenvalues counted with multiplicity λ1(h), λ2(h), λ3(h) in ]−∞, λ∗h].
Moreover,

λ1 = 0, λ2 = λ3 and λ2 ∼
3|µ(s)|| detHess f(m)|1/2

π| detHess f(s)|1/2 he−2S/h.

This Proposition is mainly a consequence of previous results (see [14, 19]). The unique
novelty is that λ2 has multiplicity two. This point and other spectral properties of P0 are
proved in Section 3. Since f is invariant under R, so are P0 and all its eigenspaces.
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Figure 2. The low-lying eigenvalues of P0 and Pcom.

We now construct an operator having a non-real spectral gap. For that, we perturb the
operator P0 by an anti-adjoint differential operator of order one. More precisely, we consider
the operator

(2.2) Pcom = P0 +B with B =
1

2

(
b · h∇+ hdiv ◦b

)
.

We require that the vector-valued function b(x, h) ∈ C∞
0 (R2;R2) is a compactly supported

real symbol of class S(h∞), where

S(r) =
{
b(x, h) ∈ C∞(R2); ∀α ∈ N2, ∃Cα > 0, ∀x ∈ R2, ∀h ∈]0, 1], |∂αx b(x, h)| ≤ Cαr(h)},

and b ∈ S(h∞) means that b ∈ S(hj) for all j ∈ N. In particular, Pcom is closed on the domain
D(P0). We also assume that

(2.3) B(e−f/h) = 0.

Then, the operator Pcom enters into the setting of (1.1).

Theorem 2.2 (Non-real eigenvalues). Let r(h) = O(h∞) be a positive function. There exists
a function b(x, h) ∈ C∞

0 (R2;R2) ∩ S(r) with (2.3) such that the spectrum of Pcom satisfies

σ(Pcom) ∩ {z ∈ C; Re z < λ∗h/2} =
{
µ1(h), µ2(h), µ3(h)

}
,

for h small enough, with µ1 = 0, µ2 = λ2 +O(r), µ3 = µ2 and

(2.4) Imµ2 6= 0.

Here and in the sequel, σ(T ) denotes the spectrum of the operator T and the eigenvalues
µ•(h) are simple for h small enough. The setting of Theorem 2.2 is illustrated in Figure 2.
The symbol b(x, h) is only partially explicit (see Lemma 4.1, (4.6) and (5.3)). In particular,
its size may be way more smaller than r. Then, the imaginary part of µ2 and µ3 is very small.
But, as explained in (1.3), it is always the case in the general setting.

Theorem 2.2 is proved using the perturbation theory at fixed h small enough. In particular,
its proof shows that operators as in (2.2) with a small enough anti-adjoint part B have a non-
real spectral gap as soon as the leading term coming from the perturbation theory does not
vanish (see Lemma 4.4). In this sense, the situation of Theorem 2.2 is generic.

For h small enough, let Πµj
denote the spectral projection of Pcom associated to the eigen-

value µj . Using the Cauchy formula, it can be written

Πµj
=

1

2iπ

∮

γ
(z − Pcom)

−1dz,
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where γ is a sufficiently small loop around µj positively oriented. The relations (1.1) and
(2.3) give

(2.5) Πµ1 =
e−f(x)/h

‖e−f/h‖2
〈
e−f/h, ·

〉
and Πµ2u = Πµ3u.

Let u(x, h) be an eigenvector of Pcom associated to the eigenvalue µ2. From (2.5), u is an
eigenvector associated to the eigenvalue µ3. Then, (Reu, Imu) is a basis of ImΠµ2⊕ImΠµ3 =
Ker(Pcom − µ2) ⊕ Ker(Pcom − µ3). In particular, u cannot be a real (or purely imaginary)
function. From Corollary 1.5 of [3] and Theorem 2.2, the solution of the evolution equation
(1.2) associated to Pcom satisfies the following metastable behavior.

Corollary 2.3. Consider Pcom as in Theorem 2.2 with h small enough. For all u0 ∈ L2(R2),

the solution u = e−tPcom/hu0 of (1.2) can be written

e−tPcom/hu0 = u1 + e−tµ2/hu2 + e−tµ3/hu3 + ε(t)

= u1 + e−tReµ2/h
(
cos(t Imµ2/h)uc + sin(t Imµ2/h)us

)
+ ε(t),(2.6)

with uj = Πµj
u0 for j = 1, 2, 3, uc = u2 + u3, us = iu3 − iu2 and

‖ε(t)‖L2(R2) ≤ Ce−t/C‖u0‖L2(R2),

for some constant C > 0 independent of t, h, u0.

If the function u0 is real-valued, (2.5) implies that u2 = u3 and then uc and us are also
real-valued. If in addition u2, u3, uc or us does not vanish identically, the discussion below
(2.5) shows that (uc, us) is a basis of ImΠµ2 ⊕ ImΠµ3 . In that case,

t 7−→ cos(t Imµ2/h)uc + sin(t Imµ2/h)us,

is a non-vanishing periodic function of period 2πh| Imµ2|−1 which reaches all the directions of
ImΠµ2 ⊕ ImΠµ3 . Then, the subprincipal term in (2.6), which measures the return to equilib-
rium, is oscillating. Nevertheless, this phenomenon may be difficult to see in the applications
since (1.3) implies that this subprincipal term decays more quickly than it oscillates.

We now construct an operator having a spectral gap with a Jordan block. For that, we
consider perturbations of P0 of the form

PJor = d∗f ◦
(
1 + χ(x, h)

)
Id ◦ df +B where B =

1

2

(
b · h∇+ hdiv ◦b

)
,

Id denotes the 2× 2 identity matrix, χ ∈ C∞
0 (R2;R) ∩ S(h∞) and b ∈ C∞

0 (R2;R2) ∩ S(h∞).
For h small enough, such an operator falls within the general framework of (1.1).

Theorem 2.4 (Jordan block). Let r(h) = O(h∞) be a positive function. There exist functions
χ(x, h) ∈ C∞

0 (R2;R)∩S(r) and b(x, h) ∈ C∞
0 (R2;R2)∩S(r) with (2.3) such that, for h small

enough,

σ(PJor) ∩ {z ∈ C; Re z < λ∗h/2} =
{
λ1, λ2

}
of multiplicity 1 and 2 respectively,

and PJor has a non-trivial Jordan block associated with the eigenvalue λ2.

Let Πλ1 and Πλ2 be the spectral projectors of PJor associated to λ1 and λ2 respectively.
From Theorem 2.4 and (1.4), there exists an orthonormal basis of real-valued functions,
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denoted (e1, e2), of ImΠλ2 such that Πλ2PJorΠλ2 expressed in the basis (e1, e2) writes

(2.7)

(
λ2 ρ
0 λ2

)
,

for some ρ(h) ∈ R \ {0} (see (6.26)). Note that e1 and e2 are unique modulo multiplication
by ±1. By construction, the constant ρ is very small. More precisely,

(2.8) |ρ(h)| = O(h∞λ2) = O(h∞e−2S/h).

But, as for the imaginary part of the eigenvalues (1.3), this is a general fact: any Jordan
block associated with a small eigenvalue of an operator of the form (1.1) satisfies an estimate
similar to (2.8). Indeed, all the terms in the asymptotic expansion of the interaction matrices
are self-adjoint (see Section 6 of [3]).

It is difficult to construct by perturbation theory an operator of the form (2.2) satisfying
Theorem 2.4. Indeed, Lemma 4.4 shows that such operators enter into the setting of Theorem
2.2 as soon as the leading term in the perturbation theory does not vanish. This is why we
consider here more general perturbations which allow to “generate all the possible” leading
terms (see Section 4 of [20] for similar ideas in resonances theory).

Contrary to Theorem 2.2, the spectral situation of Theorem 2.4 is unstable. Generically,
a small perturbation (in the setting of (1.1)) splits the double eigenvalue λ2 into two non-
real conjugate eigenvalues. This is general fact concerning the Jordan blocks. Moreover, the
second eigenvalue of P0 and PJor is the same. The proof of Theorem 2.4 allows to change
slightly the second eigenvalue of PJor, but the actual statement simplifies the result.

Combining with Corollary 1.5 of [3], the time evolution equation associated to PJor satisfies

Corollary 2.5. Consider PJor as in Theorem 2.4 with h small enough. For all u0 ∈ L2(R2),

the solution u = e−tPJor/hu0 of (1.2) can be written

(2.9) e−tPJor/hu0 = u1 + te−tλ2/hu2 + e−tλ2/hu3 + ε(t),

with u1 = Πλ1u0, u2 = −ρ〈e2,Πλ2u0〉e1, u3 = Πλ2u0 and

‖ε(t)‖L2(R2) ≤ Ce−t/C‖u0‖L2(R2),

for some constant C > 0 independent of t, h, u0.

In particular, we have the sharp return to equilibrium result

(2.10)
∥∥e−tPJor/h −Πλ1

∥∥ ∼ αte−tλ2/h,

in the limit t→ +∞ for h small enough and some positive constant α(h) > 0. This estimate
shows that the return to equilibrium is not purely exponentially decreasing in general and
that some powers of t may appear.

Until now, we have only considered the spectral gap given by exponentially small eigenval-
ues, corresponding to several minima. But, if we study higher eigenvalues, it is more simple
to have non-real spectrum. For ε ∈ R, consider the operator

P = −h2∆+ x2 − 2h+ ε
(
x1h∂x2 − x2h∂x1

)
.

It enters in the setting of (1.1) with the Morse function f(x) = x2/2 which has a unique
minimum at x = 0. The bottom of its spectrum is given by
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Proposition 2.6. For h > 0 and ε 6= 0, we have

σ(P) ∩ {z ∈ C; Re z < 4h} =
{
0, 2h+ iεh, 2h− iεh

}
,

and these eigenvalues are simple.

Then, this operator has a non-real spectral gap. Nevertheless, it is not given by exponen-
tially small eigenvalues responsible of metastable dynamics. In this simple well situation, the
Eyring–Kramers law only provides the asymptotic of 0, the first eigenvalue of P. Note also
that, for ε 6= 0 fixed, these eigenvalues do no longer satisfy (1.3).

The rest of the paper is organized as follows. In the next section, we collect some properties
of the reference operator P0 used in the sequel. Section 4 is devoted to the construction of
the anti-adjoint perturbation B based on properties of nodal sets. This construction allows
to prove Theorem 2.2 (resp. Theorem 2.4) in Section 5 (resp. Section 6) combining the
perturbation theory and previous results of [3]. Lastly, Proposition 2.6 is obtained in Section
7 by direct computations.

3. Spectral properties of P0

This part is devoted to the proof of Proposition 2.1 and to other technical results on P0.
From Theorem 1.1, there exists λ∗ > 0 such that, for h small enough, P0 has exactly three
eigenvalues counted with multiplicity 0 = λ1(h) < λ2(h) ≤ λ3(h) in ] − ∞, λ∗h]. Moreover,
λ2 and λ3 are exponentially small. Eventually, the asymptotic

λ2, λ3 ∼
3|µ(s)|| detHess f(m)|1/2

π| detHess f(s)|1/2 he−2S/h,

is a direct consequence of Section 7C3 of [19] (see also [3, 14]). We denote

Π = 1[λ1,λ3](P0), Π1 = 1{λ1}(P0) and Π23 = 1[λ2,λ3](P0),

the spectral projectors of P0. They satisfy Π = Π1 +Π23,

(3.1) Π•u = Π•u and RΠ• = Π•R,

since P0 commutes with R and the complex conjugation. Here, R is viewed as the rotation
acting on functions (i.e. R(f) = f ◦R for f ∈ L2(Rd)).

Let χ ∈ C∞
0 (R2; [0, 1]) be supported near m1 with χ = 1 near m1. We set

(3.2) ψ1 =
χ(x)e−f(x)/h

‖χe−f/h‖ , ψ2 = ψ1 ◦R and ψ3 = ψ1 ◦R2,

with the estimates

(3.3)
∥∥χe−f/h

∥∥ ∼
√
πh(detHess f(m))−1/4 and

∥∥e−f/h
∥∥ ∼

√
3πh(detHess f(m))−1/4.

Since f is invariant by rotation, these quantities do not depend on the minimum m where
they are computed. The function ψj is localized near mj from Figure 1, and the family (ψj)j
is orthonormal. We then set

ϕj = Πψj .

We have ψj ∈ C∞
0 (R2) and ϕj ∈ S(R2). A classical result (see the proof of Proposition 2.5 of

[11]) yields

(3.4) ϕj = ψj +O(e−δ/h),
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showing that the family (ϕj)j is an almost orthonormal basis of ImΠ. Furthermore, (3.1)
implies that

(3.5) the function ϕj is real for all j and ϕj = ϕkR
j−k for all j, k.

Eventually (3.2), (3.3) and (3.4) give

(3.6)

√
3

‖e−f/h‖e
−f/h = ϕ1 + ϕ2 + ϕ3 +O(e−δ/h).

We can now show that λ2 = λ3.

Lemma 3.1. For h small enough, the second eigenvalue λ2 of P0 has multiplicity 2.

Proof. We prove this result by contradiction. Assume that λ2 has multiplicity one and let u
be a normalized eigenvector. From (1.4), we can always choose u real-valued. In the basis
(ϕj)j of ImΠ, this function can be written

(3.7) u = u1ϕ1 + u2ϕ2 + u3ϕ3,

for some uj ∈ R. Since (ϕj)j is almost orthonormal,

(3.8) 1 = ‖u‖2 = u21 + u22 + u23 +O(e−δ/h).

Applying the rotation R, (3.5) and (3.7) gives

u ◦R = u1ϕ2 + u2ϕ3 + u3ϕ1.

On the other hand, we have P (u ◦R) = (Pu) ◦R = λ2u ◦R. Since λ2 is simple, there exists
α ∈ C such that u ◦R = αu, that is

(3.9) u1 = αu2, u2 = αu3 and u3 = αu1.

Since u and u ◦ R are real valued, we necessarily have α ∈ R. The relation (3.9) implies
uj = α3uj for j = 1, 2, 3. Since at least one of the uj is non-zero from (3.8), we get α3 = 1

and then α = 1. Thus, u1 = u2 = u3 and |u1| = 3−1/2 + O(e−δ/h). On the other hand,

u and e−f/h are orthogonal since they belong to two different eigenspaces of the self-adjoint
operator P0. Combining the previous properties with (3.6), it comes

0 =
∣∣〈√3‖e−f/h‖−1e−f/h, u

〉∣∣

= |u1|
∣∣〈ϕ1 + ϕ2 + ϕ3, ϕ1 + ϕ2 + ϕ3

〉∣∣+O(e−δ/h)

=
√
3 +O(e−δ/h),

which provides a contradiction for h small enough. We have just proved that λ2 has multi-
plicity at least two. Since this multiplicity can not be larger than two, we get the lemma. �

4. Construction of the anti-adjoint perturbation B

The anti-adjoint part of P is chosen of the form B = εB with

(4.1) B = d∗f ◦G ◦ df with G =

(
0 g
−g 0

)
,

with df defined in (2.1), for some constant ε(h) ∈]0,+∞[ and some function g(x, h) ∈
C∞
0 (R2;R) fixed in the sequel.
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Lemma 4.1. The operator B is formally anti-adjoint, Be−f/h = 0 and

B =
1

2

(
b · h∇+ hdiv ◦b

)
with b(x, h) =

(
h∂x2g − 2g∂x2f
−h∂x1g + 2g∂x1f

)
∈ C∞

0 (R2;R2).

Proof. The definition (4.1) of B immediately implies that B is formally anti-adjoint and that

Be−f/h = 0. Moreover, a direct computation gives

B =
(
− h∂x1 + ∂x1f,−h∂x2 + ∂x2f

)( 0 g
−g 0

)(
h∂x1 + ∂x1f
h∂x2 + ∂x2f

)

= (−h∂x1 + ∂x1f)g(h∂x2 + ∂x2f)− (−h∂x2 + ∂x2f)g(h∂x1 + ∂x1f)

= (∂x1f)g(h∂x2) + (h∂x2)g(∂x1f)− (∂x2f)g(h∂x1)− (h∂x1)g(∂x2f)

− (h∂x1)g(h∂x2) + (h∂x2)g(h∂x1)

=
1

2

(
b · h∇+ hdiv b

)
,

and the lemma follows. �

Since we see B as a perturbation of P0 and want to use the Kato’s theory, we seek the func-
tion g ∈ C∞

0 (R2;R) such that Π23BΠ23 6= 0. For that, let (u, v) be a real-valued orthonormal
basis of ImΠ23. From (4.1), we have

〈Bu, v〉 =
∫

R2

Ge−f/hh∇ef/hu · e−f/hh∇ef/hv dx

=

∫

R2

g̃
(
∂x2 ũ∂x1 ṽ − ∂x1 ũ∂x2 ṽ

)
dx,(4.2)

with

(4.3) ũ = ef/hu, ṽ = ef/hv and g̃ = h2e−2f/hg.

Thus, if ∂x2 ũ∂x1 ṽ − ∂x1 ũ∂x2 ṽ does not vanish identically, it is possible to find g such that
〈Bu, v〉 6= 0. This justify the next intermediate result.

Lemma 4.2. For h small enough, we have ∂x2 ũ∂x1 ṽ − ∂x1 ũ∂x2 ṽ ≡/ 0.

Proof. We prove this lemma by contradiction. If it does not hold true, we have

(4.4) ∂x2 ũ∂x1 ṽ − ∂x1 ũ∂x2 ṽ ≡ 0,

for a sequence of positive h which goes to 0. Roughly speaking, this equation means that the
level sets of ũ and ṽ are the same. This leads to consider the nodal sets of u and v whose we
recall now the general properties.

Proposition 4.3. Let w be a real-valued eigenvector of P0 associated to the eigenvalue λ2
(in particular, w ∈ S(R2;R) and w ≡/ 0). Then,

1) the open set R2 \w−1(0) has precisely two connected components Ωw
± on which ±w > 0,

2) the nodal set w−1(0) is a (unique) smooth curve without crossing on which ∇w 6= 0,

3) if w1 and w2 are two of such eigenvectors, then w−1
1 (0) ∩ w−1

2 (0) 6= ∅.
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Proof of Proposition 4.3. This result collects classical properties of nodal sets and we send the
reader to the corresponding papers for the proofs. First, Section VI.6 of [7] (see also [6]) shows
that R2 \ w−1(0) has at most two connected components. This result, originally stated in
domains, extends to our setting since the potential V is confining. Moreover, if R2\w−1(0) has
only one connected component, this function has a constant sign and cannot be orthogonal to
the positive function e−f/h, an eigenvector of P0 associated to its first eigenvalue λ1. Summing
up, R2 \ w−1(0) has precisely two connected components.

The structure of the nodal set w−1(0) is described in Theorem 2.5 of [5] in the present
two dimensional case (see also Theorem 2.2 in the general case). Outside of isolated critical
points, w−1(0) is the reunion of smooth curves without crossing on which ∇w 6= 0. At the
critical points, a finite number of nodal curves cross and form an equiangular system. If such
a critical point exists, then there will be more than two connected components in R2 \w−1(0).
Thus, there is no critical point and w−1(0) is the reunion of smooth curves without crossing.
Since such a curve is either periodical or goes to infinity, each curve in w−1(0) generates a
connected component in R2 \w−1(0). Since this set has precisely two connected components,
w−1(0) must be composed of an unique curve on which ∇w 6= 0. Since w changes sign across
w−1(0), the connected components of R2 \ w−1(0) can be labeled Ωw

± in a such way that
±w > 0 on Ωw

±. This proves 1) and 2).

It remains to show 3). For that, we follow the proof of Lemma 4.2 of [5]. Assume that
w−1
1 (0)∩w−1

2 (0) = ∅. Since w−1
1 (0) is a single curve, we have w−1

1 (0) ⊂ Ωw2
− or w−1

1 (0) ⊂ Ωw2
+ .

We can suppose that w−1
1 (0) ⊂ Ωw2

− . Then, Ωw1
−  Ωw2

− or Ωw1
+  Ωw2

− . We can suppose that
Ωw1
−  Ωw2

− . Eventually, by Courant’s minimum principle, the first eigenvalue of the operator
P0 restricted to Ωw1

− with Dirichlet boundary condition is greater than the first eigenvalue
of the operator P0 restricted to Ωw2

− with Dirichlet boundary condition, whereas these two
quantity are equal to λ2. This is a contradiction and 3) follows. �

We now come back to the proof of Lemma 4.2. From (4.3), the zeros of ũ (resp. ṽ) are
those of u (resp. v). Moreover, Lemma 4.3 2) shows that

(4.5) ∇ũ = ef/h∇u+ u∇ef/h = ef/h∇u 6= 0,

on ũ−1(0). Let x0 be a point of ũ−1(0) ∩ ṽ−1(0) which is not empty from Lemma 4.3 3), and
consider the curve x(t) ∈ R2 solution of




∂tx(t) =

(
∂x2 ũ(x(t))
−∂x1 ũ(x(t))

)
,

x(0) = x0.

The definition of x(t) gives ∂tũ(x(t)) = (∂x1 ũ∂x2 ũ − ∂x2 ũ∂x1 ũ)(x(t)) = 0, showing that
ũ(x(t)) = 0 for all t ∈ R. Combined with Lemma 4.3 2) and (4.5), it implies that x(t)
is a parametrization of ũ−1(0). On the other hand, (4.4) yields

∂tṽ(x(t)) = (∂x1 ṽ∂x2 ũ− ∂x2 ṽ∂x1 ũ)(x(t)) = 0,

showing as before that ṽ(x(t)) = ṽ(x0) = 0 for all t ∈ R. This proves u−1(0) = v−1(0) from
Proposition 4.3 2). Using Proposition 4.3 1), we deduce Ωu

± = Ωv
± or Ωu

± = Ωv
∓. It implies

〈u, v〉 > 0 or 〈u, v〉 < 0 respectively. On the other hand, 〈u, v〉 = 0 since (u, v) is orthogonal.
This contradiction finishes the proof of Lemma 4.2. �
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Let χ ∈ C∞
0 (R2; [0, 1]) with suppχ ⊂ B(0, 1) and χ = 1 on B(0, 1/2). From Lemma 4.2,

there exists x0 = x0(h) ∈ R2 for h small enough such that (∂x2 ũ∂x1 ṽ − ∂x1 ũ∂x2 ṽ)(x0) 6= 0.
By continuity (ũ, ṽ ∈ C∞(R2)), there exists ν = ν(h) ∈]0, 1] such that ∂x2 ũ∂x1 ṽ − ∂x1 ũ∂x2 ṽ
does not change it sign in B(x0, ν). We then set

(4.6) g(x, h) = 〈x0〉−1e−1/νχ
(x− x0

ν

)
∈ C∞

0 (R2;R),

which satisfies, for h small enough and α ∈ N2,

(4.7) ∀x ∈ R2, |∂αx g(x, h)| = 〈x0〉−1ν−|α|e−1/ν
∣∣∣χ(α)

(x− x0
ν

)∣∣∣ ≤Mα〈x0〉−1,

for some constant Mα > 0. Combining with Lemma 4.1 and f = x2 outside a compact set,
it shows that b(x, h) is a symbol of class S(1). Moreover, using g̃ = h2e−2f/hg and (4.2), this
construction yields

(4.8) 〈Bu, v〉 = β,

for h small enough and some constant β(h) 6= 0.

Lemma 4.4. In any real-valued orthonormal basis of ImΠ23, the operator Π23BΠ23 writes

Π23BΠ23 =

(
0 γ
−γ 0

)
,

for h small enough and some constant γ(h) ∈ R \ {0}.

Proof. In a real-valued orthonormal basis (e1, e2) of ImΠ23, we have

Π23BΠ23 =

(
〈e1,Be1〉 〈e1,Be2〉
〈e2,Be1〉 〈e2,Be2〉

)
.

Since e1, e2 are real-valued, (4.1) gives 〈e1,Be1〉 = 〈e2,Be2〉 = 0 and 〈e2,Be1〉 = −〈e1,Be2〉.
Let us assume that 〈e1,Be2〉 = 0 for a sequence of positive h which goes to 0. In that case,
the previous relations imply 〈ej ,Bek〉 = 0 for all j, k ∈ {1, 2}. Since (e1, e2) is a basis of
ImΠ23, it yields 〈Bu, v〉 = 0 in contradiction with (4.8). Summing up, γ(h) := 〈e1,Be2〉 6= 0
for h small enough. �

5. Proof of Theorem 2.2

We now apply the perturbation theory for all h fixed small enough. Let Pcom = P0 + B
with

(5.1) B = εB,

where B has been constructed in Section 4.

Proposition 5.1. The operator Pcom is closed on the domain of P0. Moreover, for h small
enough, there exist ε0(h) > 0 and three analytic functions ε 7−→ λ1(ε, h), λ2(ε, h), λ3(ε, h)
defined for ε ∈ [−ε0, ε0] with λ1(ε, h) = 0,

{
λ2(ε, h) = λ2(h) + iγ(h)ε+Oh(ε

2),

λ3(ε, h) = λ2(h)− iγ(h)ε+Oh(ε
2),

such that
σ(Pcom) ∩ {z ∈ C; Re z < hλ∗/2} = {λ1, λ2, λ3},
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for h small enough and ε ∈ [−ε0, ε0].

In this statement, the notation Oh(1) designs a function bounded by a constant which may
depend on h, and the eigenvalues are counted with multiplicity. The constant γ(h) ∈ R \ {0}
is whose of Lemma 4.4.

Proof of Proposition 5.1. Since B is a relatively compact perturbation of P0 from Lemma
4.1, the operator Pcom is well-defined and closed on the domain of P0 (see Theorem IV.1.11
of [15]). Moreover, ε 7−→ P0 + εB is a holomorphic family of unbounded operators in the
sense of Section VII of [15]. Recall that λ1 = 0 is a simple eigenvalue of P0. From Lemma
3.1, λ2 is a double eigenvalue which is semisimple since P0 is self-adjoint. On the other
hand, Lemma 4.4 shows that the eigenvalues of Π23BΠ23 are ±iγ. Since γ 6= 0, these
eigenvalues are different. Then, by the perturbation theory of spectrum, more precisely the
perturbation theory of finite systems of eigenvalues (see Section VII.1.3 of [15]) and the
reduction process for semisimple eigenvalues (see Section II.2.3 of [15]), there exist analytic
functions ε 7−→ λ1(ε, h), λ2(ε, h), λ3(ε, h) defined for ε ∈ [−ε0, ε0] with ε0(h) > 0 such that





λ1(0, h) = 0,

λ2(ε, h) = λ2(h) + iγ(h)ε+Oh(ε
2),

λ3(ε, h) = λ2(h)− iγ(h)ε+Oh(ε
2),

and σ(Pcom) ∩ {z ∈ C; Re z < hλ∗/2} = {λ1, λ2, λ3}. Since 0 is always an eigenvalue of Pcom

by Lemma 4.1, we have λ1(ε, h) = 0 for all ε ∈ [−ε0, ε0] after a possible shrinking of ε0. �

The asymptotic expansions in Proposition 5.1 and γ(h) ∈ R \ {0} yield that

(5.2) Imλ2(ε, h) 6= 0 and Imλ3(ε, h) 6= 0,

for all ε ∈ [−ε1, ε1] \ {0} with ε1(h) > 0 small enough. We eventually choose

(5.3) ε(h) = min
(
ε0(h), ε1(h), r(h)

)
.

Thus, b(x, h) is a symbol of order at most r(h) from Lemma 4.1 and (4.7). In the domain
{z ∈ C; Re z < λ∗h/2}, Pcom has three eigenvalues µ1(h) = 0, µ2(h) = λ2(ε(h), h) and
µ3(h) = λ3(ε(h), h) with Imµ2 6= 0 and Imµ3 6= 0. From (1.4), we automatically have
µ3 = µ2. Finally, we can write

Pcom − z = (B(P0 − z)−1 − 1)(P0 − z),

for z ∈ B(0, 1) \ σ(P0) with

B(P0 − z)−1 = B(P0 + i)−1
(
1 + (z + i)(P0 − z)−1

)
= O

(
r dist(z, σ(P0))

−1
)
,

from Lemma 4.1. By a classical argument, it implies that µ2 = λ2 + O(r) and finishes the
proof of Theorem 2.2.

6. Proof of Theorem 2.4

To find a setting with a Jordan block, we consider operators of the form

(6.1) Pτ = P0 + τ1P1 + τ2P2 + τ3P3 + τ4B,
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where τ = (τ1, τ2, τ3, τ4) ∈ R4, B has been constructed in Section 4 and Pν is as follows. For
ν = 1, 2, 3, let χν ∈ C∞

0 (R2;R) be supported near sν and equal to 1 in a neighborhood of sν .
We also assume that χ2 = χ1 ◦R and χ3 = χ1 ◦R2 (see Figure 1). Then, Pν is defined by

(6.2) Pν = d∗f ◦ χν ◦ df .
Summing up, Pτ can be written

Pτ = d∗f ◦ χ ◦ df + τ4B,

with χ = 1+ τ1χ1+ τ2χ2+ τ3χ3. Thus, for τ small enough, Pτ enters into the setting of (1.1).

For j = 1, 2, 3, let φj(x) denote the global quasimode of P0 supported near the connected
component of {f < f(s)} containing mj constructed in Section 4 of [3] (see also [17]). More
precisely, this real-valued function can be written

(6.3) φj(x) = θj(x)
(
vj(x) + 1

)
e−f(x)/h = ṽj(x)e

−f(x)/h,

where θj ∈ C∞
0 (R2) is a plateau function near the connected component of {f < f(s)}

containing mj and vj ∈ C∞(R2) is given near the support of θj by

(6.4) vj(x) =




C−1
0

∫ ℓjs(x,h)

0
ζ(r)e−r2/2hdr

near s, one of the two

saddle points close to mj ,

1 outside,

Here, we say that “a saddle point s is close to a minimum m” iff s is in the closure of
the connected component of {f < f(s)} containing m (see Figure 1). The function ζ ∈
C∞
0 (R; [0, 1]) is even and satisfies ζ(r) = 1 for r near 0,

C0 =

∫ +∞

0
ζ(r)e−r2/2hdr =

√
πh

2

(
1 +O(e−δ/h)

)
.

The function ℓjs(x, h) ≃ ℓjs,0(x) + ℓjs,1(x)h + · · · is smooth with ℓjs,0(s) = 0 and ∇ℓjs,0(s) 6= 0.

As in (3.2), we can make these constructions so that

(6.5) φ2 = φ1 ◦R and φ3 = φ1 ◦R2.

We choose χν in (6.2) such that χν = 1 near the support of θj∇vj if sν is close to mj . By

comparison with Section 3, we have φj = 2ψj +O(e−δ/h) for some δ > 0, but φj is a better
quasimode than ψj (see Lemma 6.1 below).

We define the geometric quantities S = f(s)− f(m) and

C1 =
2|µ(s)|

| detHess f(s)|1/2 ,

where µ(s) is given above Proposition 2.1. The quasimodes φj ’s satisfy

Lemma 6.1. For all ν, j, k ∈ {1, 2, 3}, we have

〈Pνφj , φk〉 ∼





C1h
2e−2S/h if sν is close to mj = mk,

− C1h
2e−2S/h if sν is close to mj 6= mk,

0 otherwise,

(6.6)

‖P0φj‖2 = O(h∞)e−2S/h and ‖Pνφj‖2 = O(h∞)e−2S/h.(6.7)
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Here, the notation “sν is close to mj 6= mk” means that j 6= k and that sν is close to mj

and mk. Roughly speaking, it means that sν is between mj and mk (see Figure 1).

Proof. This result is similar to Proposition 5.1 of [3] (see also Section 4B of [17]). We only
explain here the ideas of the proof and the necessary changes, and we send the reader to [3]
for the details.

Combining (6.2) and (6.3) leads to

(6.8)
〈
Pνφj , φk

〉
=

〈
χνdfφj , dfφk

〉
=

〈
χνe

−f/hh∇ṽj , e−f/hh∇ṽk
〉
.

Using ∇ṽj = (vj + 1)∇θj + θj∇vj and e−f/h = O(e−(S+δ)/h) on the support of (vj + 1)∇θj ,
the previous equation becomes

(6.9)
〈
Pνφj , φk

〉
= h2

∫
χνθjθk∇vj · ∇vke−2f/hdx+O

(
e−2(S+δ)/h

)
.

From (6.4), we have on the support of θj

∇vj =
∑

s close to mj

C−1
0 ζ(ℓjs)e

−(ℓjs)
2/2h∇ℓjs.

If sν is close to mj = mk, (6.9) writes

〈
Pνφj , φk

〉
= h2C−2

0

∫
θ2j ζ(ℓ

j
sν )

2|∇ℓjsν |2e
−2
(
f+

(ℓ
j
sν )2

2

)
/hdx+O

(
e−2(S+δ)/h

)
.

The asymptotic of such an integral has been obtained in Equation (5.4) of [3] using the
Laplace method. This computation gives

(6.10)
〈
Pνφj , φk

〉
∼ C1h

2e−2S/h,

when sν is close to mj = mk. Assume now that sν is close to mj and mk with mj 6= mk.

In that case, we have ℓjsν = −ℓksν (see the discussion below (4.6) of [3]). Then, (6.9) and the
parity of ζ give

〈
Pνφj , φk

〉
= −h2C−2

0

∫
θjθkζ(ℓ

j
sν )

2|∇ℓjsν |2e
−2
(
f+

(ℓ
j
sν )2

2

)
/hdx+O

(
e−2(S+δ)/h

)
.

As before, the Laplace method implies

(6.11)
〈
Pνφj , φk

〉
∼ −C1h

2e−2S/h,

when sν is close to mj 6= mk. Finally, if sν is not close to mj or mk, we directly get from
(6.8) and the support properties of χν , θj and θk that

(6.12)
〈
Pνφj , φk

〉
= 0,

in that case. Summing up, (6.6) follows from (6.10), (6.11) and (6.12).

It remains to show (6.7). The first estimate is a direct consequence of Proposition 5.1 ii)

and iii) of [3]. On the other hand, using (6.3) and Pνe
−f/h = 0, we deduce

Pνφj = [Pν , θj ](vj + 1)e−f/h + θjPν

(
vje

−f/h
)
.

Since e−f/h = O(e−(S+δ)/h) on the support of (vj+1)∇θj , the first term is O(e−(S+δ)/h) in L2

norm. Concerning the second term, we remark that χν is constant (equal to 0 or 1) near each
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connected component of the support of θj∇vj if the support of θj has been chosen sufficiently
close to the connected component of {f < f(s)} containing mj . Then, (6.2) and (6.4) lead to

θjPν

(
vje

−f/h
)
= θjd

∗
fχνdfvje

−f/h = θjd
∗
fχνe

−f/hh∇vj
= χνθjd

∗
fe

−f/hh∇vj = χνθjP0

(
vje

−f/h
)
.

It is proved below (5.5) of [3] that θjP0(vje
−f/h) = O(h∞)e−S/h. Summing up,

Pνφj = O(h∞)e−S/h,

and (6.7) follows. �

We construct a basis of the 2-dimensional spectral space of Pτ associated to the eigenvalues
close to λ2. We set

(6.13)





ẽ1(x) =
1√

8‖e−f/h‖
(
2φ1(x)− φ2(x)− φ3(x)

)
,

ẽ2(x) =

√
3√

8‖e−f/h‖
(
φ2(x)− φ3(x)

)
,

with ‖e−f/h‖ estimated in (3.3). The idea behind this choice of functions is that

(6.14)
1√
3



1
1
1


 ,

1√
6




2
−1
−1


 ,

1√
2




0
1
−1


 ,

form an orthonormal basis of R3 (the first vector corresponding to ‖e−f/h‖−1e−f/h). For

ν ∈ {1, 2, 3}, let P̃ν ∈M2×2(R) be the matrix of coefficients

(P̃ν)j,k = C−1
2 h−1e2S/h〈Pν ẽj , ẽk〉 with C2 =

|µ(s)|| detHess f(m)|1/2
4π| detHess f(s)|1/2 .

The asymptotic of these matrices are provided by the next result.

Lemma 6.2. For all j, k ∈ {1, 2}, we have

(6.15) 〈ẽj , ẽk〉 = δj,k +O(e−δ/h).

Moreover, the matrices P̃ν satisfy modulo o(1) terms

(6.16) P̃1 =

(
3 −

√
3

−
√
3 1

)
, P̃2 =

(
0 0
0 4

)
and P̃3 =

(
3

√
3√

3 1

)
.

Proof. From (6.3), we have φν = 2e−f/h near mν and φν = O(e−δ/h) outside. It implies

‖e−f/h‖−2〈φj , φk〉 =
4

3
δj,k +O(e−δ/h),

thanks to (3.3). Combining this relation with (6.13), we get (6.15).
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To show (6.16), it is enough to combine (6.6) and (6.13). For instance

〈P3ẽ1, ẽ2〉 =
√
3

8‖e−f/h‖2
〈
P3(2φ1 − φ2 − φ3), (φ2 − φ3)

〉

=

√
3

8‖e−f/h‖2
(
2〈P3φ1, φ2〉 − 2〈P3φ1, φ3〉 − 〈P3φ2, φ2〉

+ 〈P3φ2, φ3〉 − 〈P3φ3, φ2〉+ 〈P3φ3, φ3〉
)

=

√
3C1h

2e−2S/h

8‖e−f/h‖2 (0 + 2 + 0 + 0 + 0 + 1) + o
(
he−2S/h

)

=
√
3C2he

−2S/h + o
(
he−2S/h

)
,

thanks to (3.3) and

C2 =
C1| detHess f(m)|1/2

8π
.

This provides the desired asymptotic of (P̃3)1,2. The other coefficients can be computed the
same way. �

We now apply the perturbation theory for h fixed small enough. For τ small enough
(depending on h), Pτ has 3 small eigenvalues counted with multiplicity: λτ1 = 0 associated to

the eigenspace ef/hC and λτ2 , λ
τ
3 such that λτj → λ2 as τ → 0 for j = 2, 3. Mimicking Section

3, we introduce the spectral projectors

Πτ = 1{λ1,λ2,λ3}(Pτ ), Πτ
1 = 1{λ1}(Pτ ) and Πτ

23 = 1{λ2,λ3}(Pτ ),

which satisfy Πτ = Πτ
1 + Πτ

23, Π
τ
1 = Π1 and Πτ

•u = Πτ
•u as in (3.1). Moreover, τ → Πτ

• is
analytic in a real neighborhood of 0 which may depend on h. We define

êτ1 = Πτ
23ẽ1 and êτ2 = Πτ

23ẽ2.

for j = 1, 2. These real-valued functions satisfy

Lemma 6.3. For j = 1, 2 and τ small enough (depending on h), we have

êτj = ẽj +O(h∞)e−S/h,

in H2(R2).

Proof. Using the Cauchy formula, we can write

êτj = Π23ẽj −
1

2iπ

∮

γ
(Pτ − z)−1 dz ẽj +

1

2iπ

∮

γ
(P0 − z)−1 dz ẽj

= Π23ẽj +
1

2iπ

∮

γ
(Pτ − z)−1(Pτ − P0)(P0 − z)−1 dz ẽj ,

where γ is a simple loop around λ2, oriented counterclockwise, which depends on h but not
on τ . This implies

(6.17) êτj = Π23ẽj +Oh(τ) = Π23ẽj +O(h∞)e−S/h,

in H2(R2) for τ small enough.

Since Π23 = Π−Π1, (6.17) gives

êτj = Πẽj −Π1ẽj +O(h∞)e−S/h.
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Using (6.5) and that f is invariant under R, we get

Π1ẽ1 = e−f/h 1√
8‖e−f/h‖3

〈
e−f/h, 2φ1 − φ2 − φ3

〉

= e−f/h 1√
8‖e−f/h‖3

〈
e−f/h, 2φ1 − φ1R− φ1R

2
〉

= e−f/h 1√
8‖e−f/h‖3

〈
e−f/h, 2φ1 − φ1 − φ1

〉

= 0.

The same way, Π1ẽ2 = 0. These relations follow in fact from (6.14). Summing up,

(6.18) êτj = Πẽj +O(h∞)e−S/h,

in H2(R2) for τ small enough.

Finally, we work as in [17, Lemma 4.9] to remove the projector Π (see also [3, (5.12)]). The
Cauchy formula gives

Πẽj = ẽj −
1

2iπ

∮

∂B(0,λ∗h/2)
(P0 − z)−1 dz ẽj −

1

2iπ

∮

∂B(0,λ∗h/2)
z−1 dz ẽj

= ẽj −
1

2iπ

∮

∂B(0,λ∗h/2)
z(P0 − z)−1 dz P0ẽj .

Combining with (6.7), (6.13) and (6.18), the lemma follows. �

From (6.13), (6.14) and Lemma 6.3, (êτ1 , ê
τ
2) is almost orthonormal and then is a basis of

ImΠτ
23. We orthonormalize (êτ1 , ê

τ
2) into (eτ1 , e

τ
2) by the Gram–Schmidt process. It means

(6.19) eτ1 = ‖êτ1‖−1êτ1 and eτ2 =
∥∥êτ2 − 〈eτ1 , êτ2〉eτ1

∥∥−1(
êτ2 − 〈eτ1 , êτ2〉eτ1

)
.

In particular, (eτ1 , e
τ
2) is a orthonormal basis of ImΠτ

23, e
τ
j is real-valued and τ → eτj is analytic

for j = 1, 2 and τ near 0. We now define the interaction matrix Q(τ). More precisely,

let Q(τ) be the matrix of the operator Πτ
23PτΠ

τ
23 expressed in the basis (eτ1 , e

τ
2).

More prosaically, it means that Qj,k(τ) = 〈eτj , Pτe
τ
k〉. From the previous discussion, Q(τ) is

well-defined for τ small,

(6.20) Q ∈ C∞(R4;M2×2(R)),

and Q(0) = λ2Id. Moreover, its partial derivates satisfy

Lemma 6.4. We have

(6.21) ∂τνQ(0) = C2he
−2S/h

(
P̃ν + o(1)

)
,

for ν = 1, 2, 3 and

(6.22) ∂τ4Q(0) =

(
0 γ
−γ 0

)
,

where the P̃ν ’s are defined in Lemma 6.2 and γ(h) ∈ R \ {0} is the constant given by Lemma
4.4 and associated to the basis (e01, e

0
2) of ImΠ23.
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Proof. We compute these derivates using the classical trick in the reduction process (see
Section II.2.3 of [15]). We can write

∂τνQj,k(0) = ∂τν
(
Qj,k − δj,kλ2

)
(0) = ∂τν

〈
eτj , (Pτ − λ2)e

τ
k

〉
(0)

=
〈
(∂τνe

0
j ), (P0 − λ2)e

0
k

〉
+
〈
e0j , (∂τνPτ )(0)e

0
k

〉
+
〈
e0j , (P0 − λ2)(∂τνe

0
k)
〉

=
〈
e0j , (∂τνPτ )(0)e

0
k

〉
,(6.23)

since (P0 − λ2)e
0
j = (P0 − λ2)e

0
k = 0. For ν = 1, 2, 3, (6.23) gives

(6.24) ∂τνQj,k(0) =
〈
e0j , Pνe

0
k

〉
,

with Pν defined in (6.2).

From (6.15) and Lemma 6.3, we have

‖êτ1‖ = 1 +O(e−δ/h) and
∥∥êτ2 − 〈eτ1 , êτ2〉eτ1

∥∥ = 1 +O(e−δ/h).

Using again Lemma 6.3, (6.19) becomes

(6.25)

{
eτ1 = ẽ1 +O(e−δ/h)ẽ1 +O(h∞)e−S/h,

eτ2 = ẽ2 +O(e−δ/h)ẽ1 +O(e−δ/h)ẽ2 +O(h∞)e−S/h,

where the O(e−δ/h)’s are constants. Then, (6.21) follows from (6.16), (6.24) and (6.25).

On the other hand, (6.24) gives ∂τ4Qj,k(0) =
〈
e0j ,Be0k

〉
. In other words, ∂τ4Q(0) is the

operator Π23BΠ23 expressed in the basis (e01, e
0
2) of ImΠ23. Then, (6.22) follows directly

from Lemma 4.4. �

Proof of Theorem 2.4. From Lemma 6.4 and (6.16), (∂τνQ(0))ν=1,2,3,4 is a basis of M2×2(R).
Thus,

d0Q : R4 ≃ T0R
4 −→ Tλ2IdM2×2(R) ≃M2×2(R),

is an isomorphism. By the inverse function theorem, τ 7→ Q(τ) is a local diffeomorphism
from a neighborhood of 0 to a neighborhood of λ2Id, for h small enough. Note that the
neighborhoods may depend on h. Then, there exists τ(h) ∈ R4 with |τ | < r such that

(6.26) Q(τ) =

(
λ2 ρ
0 λ2

)
,

for some ρ(h) 6= 0. Since Q is the operator Pτ restricted to its stable eigenspace ImΠτ
23 in

the basis (eτ1 , e
τ
2), (6.26) shows that PJor := Pτ has a non-trivial Jordan block associated with

the eigenvalue λ2 and Theorem 2.4 follows. �

7. Proof of Proposition 2.6

We write P = P0 + εB with

P0 = −h2∆+ x2 − 2 and B = x1h∂x2 − x2h∂x1 .

The operator P0 is the harmonic oscillator

P0 = d∗f ◦ df = a∗1 ◦ a1 + a∗2 ◦ a2 − 2,

with the creation operators a∗j = −h∂xj
+ xj and annihilation operators aj = h∂xj

+ xj . The

spectrum of P0 is 2hN and the eigenspace associated to 2nh is the (n+ 1)-dimensional space

En = Vect
{
a∗1

ka∗2
n−ke−f/h; k = 0, . . . , n

}
.
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A direct computation gives

[B, a∗1] = −ha∗2 and [B, a∗2] = ha∗1,

showing that En is stable by B. Let Bn denote the restriction of B to En. Summing up the
previous arguments, we deduce

(7.1) σ(P) =

+∞⋃

n=0

2nh+ εσ(Bn),

where σ(Bn) ⊂ iR since Bn is anti-adjoint as B.

To get the spectral gap of P, it remains to compute σ(B1). In the basis (x1e
−f/h, x2e

−f/h)
of E1, the matrix of B1 takes the form

B1 =

(
0 h
−h 0

)
.

Thus, σ(B1) = {ih,−ih} and Proposition 2.6 follows from (7.1).
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