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Abstract. We study the low lying eigenvalues of the semiclassical Witten Laplacian ∆φ

associated with a Morse function φ. We consider the case where the sequence of Arrhenius
numbers S1 ≤ . . . ≤ Sn associated with φ is degenerated, that is the preceding inequalities
are not necessarily strict.
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1. Introduction

1.1. Motivations. Introduced in the early eighties by E. Witten to give an analytical
proof of Morse inequalities [21], Witten’s Laplacian appeared recently as the cornerstone
of many quantitative studies of metastability for kinetic equations (see e.g. [12, 8, 11, 5]).
One of the simplest examples of metastable dynamics is given by the movement of particle
evolving in an energy landscape φ and submitted to random forces. The position Xt of
such a particle at time t satisfies the over-damped Langevin equation

(1.1) Ẋt = −2∇φ(Xt) +
√

2hḂt

where h stands for the temperature of the system and Bt is a Brownian force.1 Assuming
that the potential φ has several wells a particle starting from a local minimum of the
function φ can use the random force to jump over a saddle point and reach another energy
well. The famous Eyring-Kramers law describes the average time to escape from a well in
the regime of low temperature h→ 0. In his pioneering work [14], Kramers predicted in the
simplified one dimensional setting that the average transition time τφ from a local minimum
m to the nearest saddle point s is exponentially large with respect to h−1, τφ ≃ aφeκφ/h and
he gave additionally formulae for the positive coefficient κφ and the prefactor aφ in terms
of the second derivatives of φ in points m and s. Observe that when h → 0, this average
transition time becomes extremely large, which justifies the terminology of metastable
state given to the position m.

In practice, Eyring -Kramers law has very important applications in many domains of
science where the trajectory (1.1) is used to implement computational algorithms. In order
to compute some thermodynamical quantities

(1.2) Eµ(f) = ∫
Rd
f(x)dµ(x)

associated with a measure µ and an observable f , one can introduce any random dynamics
Xt ergodic with respect to µ and use Monte Carlo method to approximate Eµ(f) by the
long time average of f along any trajectory (see [17] for introduction to these questions).
In many situations one has dµ(x) = Zhe−φ(x)/h for some potential φ and the over-damped
Langevin dynamics (1.1) fulfills the necessary assumptions. The time needed by the process
Xt to explore the whole space Rd (which insures the validity of the above approximation),
is directly linked to the metastable properties discussed previously. Understanding this
metastable behavior is then of crucial interest if one needs to evaluate some stopping time
or accelerate the convergence for instance.

The first mathematical proof of Eyring-Kramers law in a general setting was obtained
recently by a potential theory approach [2] and next by semiclassical methods [8]. This
later approach and the link with the Witten Laplacian, can be understood easily by looking
at Langevin equation (1.1) at the macroscopic level. Indeed, the evolution of any statistical

1This equation appears for instance in physics to describe the microscopic evolution of a charged gas
assuming the mass of the particles is negligible.
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distribution ρ(t, x) of particles is governed by the Kramers-Smoluchowski equation

(1.3) ∂tρ − h∆ρ − 2 div(ρ∇φ) = 0.

Writing ρ = e−φ/hρ̃, the above equation is equivalent to h∂tρ̃ +∆φρ̃ = 0, where

∆φ = −h2∆ + ∣∇φ∣2 − h∆φ

is the semiclassical Witten Laplacian associated to φ. This operator is known to be non-
negative and under confining assumptions on the function φ it has a non-trivial kernel
corresponding to the global equilibrium of (1.3). As a consequence, the behavior of ρ̃ when
t → ∞ is driven by the small eigenvalues of ∆φ. In particular, any state associated to a
small eigenvalue looks stable during very long times. These are the metastable states and
the inverses of the corresponding eigenvalues yield their lifetimes. In [8], Helffer-Klein-Nier
obtained a full description of the small eigenvalues of the Witten Laplacian in a quite
general setting. In terms of Kramers-Smoluchovski equation, their result implies that if
the initial probability distribution ρ0 belongs to L2(e2φ/hdx), then the solution ρ of (1.3)
converges exponentially fast to the equilibrium probability distribution c−2

h e
−2φ/h (where ch

is a normalizing factor)

(1.4) ∥ρ(t) − 1

c2
h

e−2φ/h∥L2(e2φ/hdx) ≤ e−λht∥ρ0∥L2(e2φ/hdx).

Moreover, the rate of convergence λh = hb(h)e−2S/h is described by the Eyring-Kramers
law, that is:

- S is the biggest height a particle has to pass in order to reach the unique global
minimum.

- the prefactor b(h) has an asymptotic expansion with respect to the parameter h,
b(h) ∼ ∑k bkh

k and its leading term is given by an explicit formula in terms of the
Hessian of φ.

More precisely, the assumptions made in [8] imply that there exist a unique minimum m
and a unique saddle point s of φ such that S = φ(s) − φ(m). Then, the leading term of
b(h) is

(1.5) b0 =
∣µ1(s)∣
π

¿
ÁÁÀdet Hess(φ)(m)

det Hess(φ)(s)
where µ1(s) denotes the negative eigenvalue of Hess(φ)(s). In the case of a double well,
this formula is exactly the one predicted by Kramers in his paper [14]. Later on, the
method developed in [8] to compute the small eigenvalues of the Witten Laplacian was
successfully used on bounded domains [9], [16] and in the study of semiclassical random
walks [1].

However, the range of potential φ covered by these papers doesn’t include many cases
which are very important in practice. Roughly speaking, in [8], the author make an as-
sumption on the relative position of minima and saddle points that insures in fine that the
small eigenvalues are all of different size. Among the limitations of this assumption, the
potential φ may not have too much saddle points or minima at the same level.
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It turns out that in many physical applications, the energy landscape may not satisfy the
above assumption. In chemical physics, the energy potential of the reaction may have some
symmetries in numerous situations. This is for instance the case when looking at some
homogenous systems such as Lennard-Jones clusters (see [20] for example and discussions
on this topics).

The aim of this paper is to study the spectral properties of ∆φ in the case where φ is a
general Morse function without restriction on the relative position of its minima.

1.2. Heuristics on a simple example. A typical example we have in mind is the follow-
ing. Suppose that φ ∶ Rd → R has n0 minima all at the same level and n1 saddle points all
at the same level (see Figure 1.1, where the x represent minima and the o local maxima).
Denote by S = φ(s) − φ(m) the difference of height between any minimum and any saddle
point. In order to simplify the situation assume also that the function Hess(φ)(x) has
eigenvalues ±1 when x belongs to the set of minima and saddle points.

O

O

OX

X

X X

X

X

X

Figure 1.1. Left: The sublevel set {φ < σ} (dashed region) associated to a
potential φ having a unique saddle value σ. The x’s represent local minima,
the o’s, local maxima. Right: The graph associated to the potential on the

left.

Such an example doesn’t enter in the framework of [8], however it develops some very
interesting behavior. More precisely, in the very simplified case discussed in this section,
a consequence of Theorem 7.1 below is the following

Theorem 1.1. There exists ε0 > 0 and h0 > 0 such that for all h ∈]0, h0], ∆φ has exactly
n0 eigenvalues λk, k = 1, . . . , n0 in the interval [0, ε0h]. The lowest eigenvalue is λ1 = 0 and
the other ones have the form

λk = hbk(h)e−2S/h

for all k = 2, . . . , n0. Moreover, the prefactors bk(h) have an classical expansion bk(h) ∼
∑∞
j=0 h

jbk,j and the leading terms bk,0 are exactly the non zero eigenvalues of the graph
G whose vertices are the minima of φ and whose edges are the saddle points joining two
minima (see Figure 1.1).
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In terms of Kramers-Smoluchovski equation, this theorem exhibits some metastable
states whose lifetimes (given by the inverse of the above eigenvalues) are quantified by the
graph G. At the level of particle, these new rules of computation can be understood as
follows. Since all the minima are at the same level, the equilibrium state is equidistributed
among all the minima. Moreover, since all the saddle points are at the same level, an
ergodic trajectory of (1.1) will visit all the minima in the same time scale, by traveling
along the edges of the graph G. The same graph Laplacian was constructed by Landim et
al [15] in a discrete setting.

It could look surprising that the coefficients bk do not depend on the second derivative
of φ as in the usual case of Eyring-Kramers formula. This is actually due to the normal-
ization assumption made at the beginning of this section. In the case where the Hessian
is arbitrary, the above result is still available with a weighted graph instead of G. The
weights depend explicitly on the Hessian of φ (see Theorem 7.1).
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Figure 1.2. Left: The sublevel set {φ < σ} (dashed region) associated to a
potential φ having a unique saddle value σ. The x’s represent local minima,

the o’s, local maxima. Right: The two hypergraphs associated to the
potential on the left (the missing vertex corresponds to the minimum A)

To go further and motivate the object introduced in the next section, let us discuss now
what happens if we modify slightly the potential φ in the following way. Suppose that
φ is still like in Figure 1.1 excepted that we modify one of the minimal values (higher or
lower). In Figure 1.2, the modified minimum is denoted by A. Then, we can associate
to this potential the two hypergraphs corresponding to minima at the same level and
linked by a saddle value (see figure 1.2). If A is an absolute minimum, then equilibrium
distribution is concentrated in A and the prefactor bk(h) will be given by the smallest non
zero eigenvalue of the two hypergraphs introduced above (roughly speaking this represents
the maximum time needed to reach A). In the contrary, if A is not a global minimum
anymore, the equilibrium state is uniformly distributed among all the minima excepted A.
In order to visit each site of the equilibrium state, an arbitrary particle will necessarily
pass through the point A. This heuristics explains why the computation of the prefactor
bk(h) will involve a more complicated procedure describing the interaction between the
two hypergraphs via the well A.
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The main contribution of this paper is to describe quantitatively this phenomena.

2. Framework and results

Let X be either Rd or a compact manifold of dimension d without boundary and let
φ ∶ X → R be a smooth Morse function. Consider the semiclassical Witten Laplacian
associated to φ:

(2.1) ∆φ = −h2∆ + ∣∇φ∣2 − h∆φ

where h ∈]0,1] denotes the semiclassical parameter.
If X is a compact manifold, the operator ∆φ is selfadjoint with domain H2(X) and its

resolvent is compact. In the case X = Rd we make the additional assumption that there
exist C > 0 and a compact K ⊂ Rd such that for all x ∈ Rd ∖K, one has

(2.2) ∣∇φ(x)∣ ≥ 1

C
, ∣Hess(φ(x))∣ ≤ C ∣∇φ∣2, and φ(x) ≥ C ∣x∣.

Then, ∆φ is essentially selfadjoint on C∞c (Rd) and thanks to (2.2), there exist h0 > 0 and
c0 > 0 such that for all h ∈]0, h0], we have

σess(∆φ) ⊂ [c0,∞[.
In both situations X compact or X = Rd, it is well-known that ∆φ is non-negative. Hence
σ(∆φ) ⊂ [0,∞[ and it follows from the above remarks that σ(∆φ) ∩ [0, c0[ is made of
eigenvalues with no accumulation point excepted maybe c0. Moreover e−φ/h is clearly in
the kernel of ∆φ and belongs to L2(Rd) thanks to (2.2), so that the lowest eigenvalue of
∆φ is clearly 0.

Since φ is a Morse function (and thanks to assumption (2.2) in the case X = Rd), the
set U of critical points is finite. In the following, for p = 0, . . . , d, we will denote by U (p)

the set of critical points of φ of index p. Hence, U (0) is the set of minima and U (1) the set
of saddle points of φ. Throughout the paper, we will denote nj = ♯U (j).

From the pioneer work by Witten [21], it is well-known that for small h, there is a
correspondance between the small eigenvalues of ∆φ and the critical points of φ. More
precisely, by standard localization arguments one can show that there exists ε0 > 0 such
that for h > 0 small enough, ∆φ has exactly n0 eigenvalues in the interval [0, ε0h] that
we denote 0 = λ1 ≤ λ2 ≤ . . . ≤ λn0 . This result is easily proved in [4] with ε0h replaced by
h3/2. The proof with ε0h can be found in [10], Prop. 1.7 (see also Prop. 1 of [18] for a
self-contained proof). Moreover, these eigenvalues are actually exponentially small, that
is live in an interval [0, e−C/h] for some C > 0 (see [7] for a proof). From a topological
point of view, these informations (together with the equivalent estimates for the Witten

Laplacian ∆
(p)
φ acting on p-forms) are sufficient to establish a correspondance between the

small eigenvalues of ∆
(p)
φ and the critical points of φ of index p (this was the key point

in the Witten’s proof of Morse inequalities). However, for applications to the description
of metastable dynamics, it is important to get some accurate description of the λj’s. Our
main theorem will give some asymptotic of these eigenvalues for any Morse function φ,
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without any assumption on the relative position of minimal and saddle values of φ.

Before going further, let us introduce few notations that we use in this paper. For x0 ∈X
and r > 0, introduce the geodesic ball B(x0, r) = {x ∈X, d(x,x0) < r}.

Throughout, we will say that s is a saddle point if it is a critical point of index 1.
Given a(h), b(h) > 0, two functions of the semiclassical parameter, we say that a(h) ≍

b(h) if there exists some constant c1, c2 > 0 such that for all h > 0 small one has c1b(h) ≤
a(h) ≤ c2b(h). We say that a family of vectors (a(h))h∈]0,1] in a normed vector space V
admits a classical expansion if there exists a sequence of vectors (an)n∈N independent of h
and such that for all N ∈ N, there exists some constants CN > 0 such that

∥a(h) −
N

∑
n=0

hnan∥V ≤ CNhN+1, ∀h ∈]0,1].

We denote a(h) ∼ ∑∞
n=0 h

nan.
As we shall see later, we will have to analyze carefully some finite dimensional matrices

which are strongly related to the critical points of φ. Given any subsets B1,B2 of U , it
will be convenient to introduce the finite dimensional vector space F (Bj) of real valued
functions on Bj. We shall then denote by M (B1,B2) the vector space of linear operators
from F (B1) into F (B2).

2.1. Labelling of minima. Let us now recall the general labelling of minima introduced
in [8] and generalized in [11]. The main ingredient is the notion of separating saddle point
which is defined as follows. Given a saddle point s of φ, and r > 0 small enough, the set

{x ∈ B(s, r), φ(x) < φ(s)}

has exactly two connected components Cj(s, r), j = 1,2. The following definition is taken
from [11], Definition 4.1.

Definition 2.1. We say that s ∈ X is a separating saddle point (ssp) if it is a saddle
point and if C1(s, r) and C2(s, r) are contained in two different connected components of
{x ∈X, φ(x) < φ(s)}. We will denote by V(1) the set of ssp.

We say that σ ∈ R is a separating saddle value (ssv) if it is of the form σ = φ(s) with
s ∈ V(1). We denote Σ = φ(V(1)) the set of ssv.

We say that E ⊂X is a critical component if there exists σ ∈ Σ such that E is a connected
component of {φ < σ} and if ∂E ∩V(1) ≠ ∅. We denote by C the set of critical components.

Let us now describe the labelling procedure of [11]. Since φ is a Morse function, it has
finitely many critical points and so Σ is finite. We denote σ2 > σ3 > . . . > σN its elements
and for convenience we also introduce a fictive infinite saddle value σ1 = +∞ and denote
Σ = Σ ∪ {σ1}. Starting from σ1, we will recursively associate to each σi a finite family of
local minima (mi,j)j and a finite family of critical components (Ei,j)j (see Figure 2.1).

- Let Xσ1 = {x ∈ X, φ(x) < σ1 = ∞} = X. We let m1,1 be any global minimum of φ
(not necessarily unique) and E1,1 =X.
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E1,1

m1,1

E2,1 E2,3E2,2

m2,1

m2,2

m2,3

E3,1 E3,2 E3,3

E4,1

m4,1

m3,2m3,1

m3,3

σ2

σ3

σ4

σ1 =∞

E3,4

m3,4

Figure 2.1. Labelling procedure

- Next we consider Xσ2 = {x ∈ X, φ(x) < σ2}. This is the union of its finitely many
connected components. Exactly one of these components contains m1,1 and the
other components are denoted by E2,1, . . . ,E2,N2 . In each component E2,j, we pick
up a point m2,j which is a global minimum of φ∣E2,j

.
- Suppose now that the families (mk,j)j and (Ek,j)j have been constructed until

rank k = i − 1. The set Xσi = {x ∈ X,φ(x) < σi} has again finitely many connected
components and we label Ei,j, j = 1, . . . ,Ni those of these components that do not
contain any mk,l with k < i. In each Ei,j we pick up a point mi,j which is a global
minimum of φ∣Ei,j . Observe that for all i ≥ 2, the components Ei,j are all critical.

We run the procedure until all the minima have been labelled.

Remark 2.2. The above labelling satisfies the following property. For any σi ∈ Σ and
any connected component Ai of {φ < σi}, there exists a unique (k, l) such that k ≤ i and
mk,l ∈ Ai.

Proof. Let us start with the existence part of the result. If Ai is one of the Ei,j for some
j, then take k = i and l = j. Otherwise, this means that in the labelling procedure, Ai
already contained a minimum mk,l with k < i.

Let us prove the uniqueness part. Assume that mk,l,mk′,l′ ∈ Ai with k ≤ k′ ≤ i. Then
Ai ∩ Ek′,l′ ≠ ∅ and since Ai is a connected component of {φ < σi} with σi ≤ σk′ it follows
that Ai ⊂ Ek′,l′ . Since mk,l ∈ Ai, it follows that mk,l ∈ Ek′,l′ which is impossible unless
(k, l) = (k′, l′). ◻

Using the above labelling, Hérau-Hitrik-Sjöstrand made some significative progress in
[11] (in the more general situation of Kramers-Fokker-Planck operators, but this ap-
plies to Witten Laplacian). First, they showed in Theorem 7.1 that the exponentially
small eigenvalues (λm(h))m∈U(0) of ∆φ (indexed by the sequence of local minima) sat-
isfy λm(h) ≍ he−2S(m)/h for the sequence of Arrhenius numbers (S(m))m∈U(0) defined by
S(mi,j) = σi−f(mi,j) with the above notations. However, their method does not permit to
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prove that h−1λm(h)e2S(m)/h admits a limit when h → 0. In order to compute the asymp-
totic expansion of the eigenvalues λm(h), they need to make some additional assumption
on the interaction between minima and saddle points (see Assumption 5.1 in [11]). This
hypothesis, which is a generalization of the one made in [8], can be formulated as follows
with the notations of the preceding section:

Generic Assumption: For all i = 1, . . . ,N , j = 1, . . . ,Ni, the following hold true:

i) mi,j is the unique global minimum of the application φ∣Ei,j .

ii) if E is a connected component of {φ < σi} such that E ∩ V(1) ≠ ∅, there exists a
unique s ∈ V(1) such that φ(s) = supφ(E∩V(1)). In particular, φ−1(]−∞, φ(s)[)∩E
is the union of exactly two different connected components.

Throughout the paper, we denote by (GA) this assumption.

Under this assumption, there exists a bijection between U (0) and V(1)∪{s1} where s1 is a
fictive saddle point associated to σ1 =∞ and for which by convention φ(s1) =∞. Using this
one to one correspondence, the authors exhibit some labelling U (0) = {m1, . . . ,mn0} and
V(1)∪{s1} = {s1, . . . , sn0} such that the small eigenvalues λi(h) are of the form hbi(h)e−2Si/h

with Si = φ(si) − φ(mi). Moreover, they prove that the bi(h) have a classical expansion
and compute the leading term of this expansion (see Theorem 5.10 in [11]).

As it is stated above, (GA) is not exactly Assumption 5.1 stated in [11]. Indeed, it is
supposed in [11] that ii) holds true only for E being a critical component. However, as
indicated by the anonymous referee, we can easily construct some function φ satisfying
this assumption, for which there is no bijection between U (0) and V(1). To see this, first
consider in dimension 1 a potential φ with 4 minima mj, j = 1, . . . ,4 and 3 saddle points
sj, j = 1, . . . ,3 such that m1 < s1 <m2 < s2 <m3 < s3 <m4 and such that φ(m1) < φ(m4) <
φ(m2) = φ(m3) and φ(s1) = φ(s2) < φ(s3). Since the component of {φ < φ(s3)} containing
m1 is not critical, this function satisfies Assumption 5.1 in [11]. It doesn’t satisfy (GA)
as stated above. In higher dimension, one can easily generalize this construction to obtain
potentials satisfying Assumption 5.1 in [11], with a fixed number of minima and an arbitrary
large number of separating saddle points (think for instance to many saddle points between
the well containing m1 and the well containing m2). This shows that Assumption 5.1 is
not sufficient to insure a bijection between minima and separating saddle points.

Let us emphasize that the above remark doesn’t affect the rest of the work done in [11],
where we can easily use the above corrected version of Assumption 5.1 .

Let us observe that the Generic Assumption allows some degeneracy in the sequence
(Sj), that is there may exists j such that Sj = Sj+1. However, (GA) remains restrictive for
the following reasons:

- It permits only potentials φ for which U (0) and V(1) ∪ {s1} have the same cardinal.
- The eventual degenerate heights are associated to weakly interacting eigenstates in

the following sense. Assume for instance that Sj = Sj+1 for some j = 1, . . . , n0 − 1
and modify slightly the function φ near the minimum mj. Then the coefficients bj
is modified whereas the classical expansion of bj+1 remains unchanged.
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Figures 2.3, 2.4 below present some examples of potentials where (GA) is not satisfied.
These examples as well as an example in higher dimension are discussed in detail in section
7.3.

In the present paper, we obtain an asymptotic expansion for the λi(h) for general Morse
functions φ without any additional assumptions on the relative position of minima and
ssp’s.

2.2. Main result. In order to state our main result, we introduce few notations that will
be used throughout the paper. First, using the above labelling, we define σ ∶ U (0) → Σ by
σ(mi,j) = σi and S ∶ U (0) →]0,+∞] by S(m) = σ(m) − φ(m). We let S = S(U (0)), then
with the notations of the preceding section, we have

(2.3) S = {σi − φ(mi,j), i = 1, . . . ,N, j = 1, . . . ,Ni}.
In all the paper, we denote by m = m1,1 the (non necessarily unique) absolute minimum
of φ that was chosen at the first step of the labelling procedure, and we let

(2.4) U (0) = U (0) ∖ {m}.
Using again the above labelling, we can associate a critical component to any local mini-
mum. More precisely, we define

(2.5) E ∶ U (0) → C ∪ {X}
by E(mi,j) = Ei,j. Observe that by definition, this application is injective. Using this map,
we can associate to each minimum m ∈ U (0) a boundary set given by Γ(m) = ∂E(m).
Thanks to the fact that φ is a smooth Morse function, for any m ∈ U (0), the set Γ(m) is
a finite union of compact sub-manifold of X of dimension d − 1 with conic singularities at
the saddle points. For our construction of quasimodes, we also need to introduce the set

(2.6) H(m) ∶= {m′ ∈ E(m) ∩ U (0), φ(m′) = φ(m)}.

Given m ∈ U (0), one has σ(m) = σi for some i ≥ 2. Moreover, since σi−1 > σi, there exists a
unique connected component of {φ < σi−1} that contains m (observe that this component
is not necessarily critical). We denote that component by E−(m), and by

(2.7) E− ∶ U (0) → Ω(X)
the corresponding application, where Ω(X) is the collection of connected open subsets

of X. Thanks to Remark 2.2, we know that for any m ∈ U (0), there exists a unique
m′ ∈ E−(m) ∩ U (0), denoted by m̂(m), such that σ(m′) > σ(m). In particular,

(2.8) ∀m ∈ U (0), φ(m̂(m)) ≤ φ(m),

and we denote by Ê(m) the connected component of {φ < σ(m)} containing m̂(m). It

holds additionally Ê(m) ⊂ E−(m) and we can easily see that Ê(m) is always a critical
component. Throughout, we denote by

(2.9) Ê ∶ U (0) → C
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and

(2.10) m̂ ∶ U (0) → U (0)

the corresponding applications. The fact that the inequality in (2.8) is large or strict plays
an important role in our analysis.

Definition 2.3. Let m ∈ U (0). We say that m is of type I if φ(m̂(m)) < φ(m). If
φ(m̂(m)) = φ(m), we say that m is of type II. We will denote

U (0),I = {m ∈ U (0), m is of type I}

U (0),II = {m ∈ U (0), m is of type II}
We have clearly the following disjoint union U (0) = U (0),I ∪ U (0),II .

Example 2.4. Let us compute the preceding object in the case of the potential φ represented
in Figure 2.1. The results are presented in Figure 2.2.
● Let us start with the object associated to σ2. By definition, Ê(m2,1) = Ê(m2,2) =

Ê(m2,3) = Ẽ2, where Ẽ2 is the connected component of {φ < σ2} that contains m1,1. Then
we have m̂(m2,1) = m̂(m2,2) = m̂(m2,3) = m1,1.

Since φ(m1,1) = φ(m2,1) < φ(m2,3) < φ(m2,2), then m2,1 is of type II, whereas m2,2 and
m2,3 are of type I.

● Consider now the level σ3. One has E−(m3,1) = E−(m3,2) = Ẽ2 and E−(m3,3) =
E−(m3,4) = E2,3. Therefore, Ê(m3,1) = Ê(m3,2) = Ẽ3 where Ẽ3 is the connected component

of {φ < σ3} that contains m1,1. Similarly, one has Ê(m3,3) = Ê(m3,4) = Ẽ′
3 where Ẽ′

3 is the
connected component of {φ < σ3} that contains m2,3. From this computations, it follows
that m̂(m3,1) = m̂(m3,2) = m1,1 and since φ(m1,1) < φ(m3,1) = φ(m3,2) it follows that
m3,1 and m3,2 are both of type I. On the other hand, m̂(m3,3) = m̂(m3,4) = m2,3 and since
φ(m2,3) = φ(m3,3) < φ(m3,4) it follows that m3,3 is of type II and m3,4 of type I.

● Finally, E−(m4,1) = Ẽ3, Ê(m4,1) = Ẽ4 as represented on Figure 2.2 and m̂(m4,1) =
m1,1. Since φ(m1,1) = φ(m4,1), it follows that m4,1 is of type II.

The points of type II play an important role in our analysis. Given σ ∈ Σ, let Ωσ = Ω0
σ∪Ω̂σ

with

(2.11) Ω0
σ = {E(m),m ∈ σ−1(σ)}

and Ω̂σ defined by Ω̂σ = ∅ if σ = σ1 and

(2.12) Ω̂σ = {Ê(m), m ∈ σ−1(σ) ∩ U (0),II}
if σ ∈ Σ.

Definition 2.5. We define an equivalence relation R on U (0) by mRm′ if and only if

(2.13) { σ(m) = σ(m′) = σ
∃ω1, . . . ωK ∈ Ωσ s.t. m ∈ ω1,m′ ∈ ωK and ∀k = 1, . . .K − 1, ωk ∩ ωk+1 ≠ ∅
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E1,1

m1,1

E2,1 E2,3E2,2

m2,1

m2,2

m2,3

E3,1 E3,2 E3,3

E4,1

m4,1

m3,2m3,1

m3,3

σ2

σ3

σ4

σ1 =∞

E3,4

m3,4

Ẽ3

Ẽ2

Ẽ′
3

Ẽ4

Figure 2.2. Computations of Example 2.4

Throughout the paper, we denote by Cl(m) the equivalence class of m for the relation
R. Observe that since m is the only minimum such that σ(m) =∞, then Cl(m) = {m}.

Let us denote by (U (0)
α )α∈A the equivalence classes of R with A a finite set. We have

evidently

(2.14) U (0) = ⊔
α∈A
U (0)
α .

We need also to consider the set A defined by A = A ∖ {α} where U (0)
α = {m} is the

equivalence class of the absolute minimum chosen for φ. Throughout, we will denote

qα = ♯U (0)
α . We will also use the following partition of U (0)

α for any α ∈ A:

(2.15) U (0),I
α ∶= U (0)

α ∩ U (0),I , U (0),II
α ∶= U (0)

α ∩ U (0),II .

Proposition 2.6. Let α ∈ A. The applications σ,E−, Ê and m̂ are constant on U (0)
α .

Proof. For σ, it is a direct consequence of the definition. Suppose now that m,m′ ∈ U (0)

satisfy mRm′ and m ≠ m′. Then, m and m′ belong to the same connected compo-
nent of {φ ≤ σ(m)}. Hence, the uniqueness part in the definition of E− shows that
E−(m) = E−(m′). Since E−(m) = E−(m′), then the identity m̂(m) = m̂(m′) follows

directly from the definition of m̂. This implies automatically Ê(m) = Ê(m′). ◻

Thanks to the above proposition, given α ∈ A, we will denote respectively σ(α),E−(α), Ê(α)
and m̂(α) instead of σ(m),E−(m), Ê(m), m̂(m) for some m ∈ U (0)

α .

Definition 2.7. We say that

- α is of type I, if φ(m̂(α)) < φ(m) for all m ∈ U (0)
α

- α is of type II, if there exists m ∈ U (0)
α such that φ(m̂(α)) = φ(m).
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Recall that the height function S ∶ U (0) → R and the set of heights S = S(U (0)) were
defined by (2.3) and above. For any α ∈ A, we let

(2.16) Sα = S(U (0)
α ) and p(α) = ♯Sα

There exists some integers να1 < να2 < . . . < να
p(α) such that

Sα = {Sνα1 , . . . , Sναp(α)}

In the theorem below we sum up in a rather vague way the description of these eigenvalues
that we obtained in Sections 5 and 6.

Theorem 2.8. There exist c > 0 and some symmetric positive definite matricesMα, α ∈ A
such that counted with multiplicity, on has σ(∆φ) = ⋃α∈A σ(Mα)(1 +O(e−c/h)) with

σ(Mα) =
p(α)
⋃
j=1

he
−2h−1Sνα

j σ(Mα,j)

for some symmetric positive definite matrices Mα,j having a classical expansion with in-
vertible leading term given in Theorem 5.8.

Let us make a few comments on this theorem.
First, observe that since Mα,j has a classical expansion with invertible leading term

Mα,j
0 , then its eigenvalues ζα,jr , r = 1, . . . , rα,j have a classical expansion

ζα,jr (h) ∼∑
k

hkζα,jr,k

with ζα,jr,0 eigenvalue of the matrix Mα,j
0 .

Compared to previous results obtained under the Generic Assumption, the main differ-
ence is that the prefactor ζα,jr,k are more difficult to compute since they are obtained as

the eigenvalues of the matrices Mα,j. When (GA) is satisfied, the Mα,j are 1 × 1 matrices
whose spectrum is direct to obtain. In the general case, this is not true anymore and the
construction of the matrices Mα,j is more involved. In particular, it depends dramatically

on the number p(α) = ♯S(U (0)
α ). Observe that this number is also equal to the number of

different values taken by φ on the equivalence class U (0)
α .

If p(α) = 1, the coefficients of Mα,j depend only on the couples (m, s) for which φ(s) −
φ(m) = Sναj . Excepted the fact that the different eigenvalues ζα,jr , r = 1, . . . , rα,j are linked

together, the situation is similar to that encountered in the generic case. Actually, we
prove in appendix that if (GA) is satisfied then Cl(m) is reduced to one point for any m,
and in particular p(α) = 1 for all α.

In the case where p(α) ≥ 2, the matrix is more difficult to compute. It comes from an
application of Schur complement’s method and it depends on some couples (m, s) for which
the height φ(s) − φ(m) is smaller than Sναj . In other words, the lifetime of the metastable

state m is not entirely described by the height that is needed to jump over in order to
reach the nearest lower energy position. It depends also on some interactions with some
higher energy states that are not present in the classical Eyring-Kramers formula. To our
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m1,1 = m̂

m2,1 m2,2

m2,3

σ2

σ1 =∞

φ(m2,3)

φ(m2,1) = φ(m2,2)

φ(m̂)

E2,1
E2,2 Ẽ2 E2,3

Figure 2.3. A potential with p(α) = 1

m1,1 = m̂

m2,1 m2,2

m2,3

σ2

σ1 =∞

φ(m2,3)

φ(m2,1) = φ(m2,2)

φ(m̂)

E2,1
E2,2 Ẽ2E2,3

Figure 2.4. A potential with p(α) = 2

knowledge, this is is the first time that such a phenomena is exhibited.

Let us now compute p(α) on explicit examples. Let us fix n = 2 and consider the
potentials φ given respectively by Figures 2.3, 2.4. In both cases m̂(m2,1) = m̂(m2,2) =
m̂(m2,3) = m1,1 that we denote by m̂ for short. Since φ(m̂) < φ(m2,j) for all j, then there
is no point of type II, U (0),II = ∅ and hence Ωσ2 = {E2,1,E2,2,E2,3}. Therefore, one can
compute easily the equivalence classes of R in both cases:

- in the case of Figure 2.3, we have 3 equivalence classes: c1 = {m1,1}, c2 = {m2,1,m2,2}
and c3 = {m2,3}. The potential φ is constant on each equivalence class, and hence
p(c1) = p(c2) = p(c3) = 1.

- in the case of Figure 2.4, we have 2 equivalence classes: c1 = {m1,1}, c2 = {m2,1,m2,2,
m2,3}. The potential φ takes two different values on c2: p(c2) = 2.

We will come back to these examples at the end of the paper and compute explicitly the
spectrum of ∆φ in both cases.
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m1,1 = m̂m2,1 m2,2

m2,3

σ2

σ1 =∞

φ(m2,3)

φ(m1,1 = φ(m2,1) = φ(m2,2)

E2,1
E2,2 Ẽ2 E2,3

Figure 2.5. An example with points of type II

Let us finish this discussion by an example where U (0),II ≠ ∅. Consider the potential
given by Figure 2.5. In that case m̂(m2,1) = m̂(m2,2) = m̂(m2,2) = m1,1 that we denote by
m̂ for short. Since φ(m̂) = φ(m2,1) = φ(m2,2) < φ(m2,3), then m2,1 and m2,2 are of type
II and m2,3 is of type I. We still have Ω0

σ2 = {E2,1,E2,2,E2,3} but contrary to the previous

case Ω̂σ2 = {Ẽ2} is non empty. It follows that Ωσ2 = {E2,1,E2,2,E2,3, Ẽ2} and R admits
two equivalence classes: c1 = {m1,1}, c2 = {m2,1,m2,2,m2,3}. The potential φ takes two
different values on c2 and hence p(c2) = 2.

2.3. General strategy of the proof. Let us recall the general strategy followed in [8].
The starting point is to use the supersymmetric structure of the Witten Laplacian. For
0 ≤ k ≤ n, let Ωk(X) = C∞(X,ΛkT ∗X) be the space of k-differential forms and denote
d ∶ Ωk(X) → Ωk+1(X) the exterior derivative and d∗ ∶ Ωk(X) → Ωk−1(X) its adjoint for
the natural pairing. The Witten complex associated to the function φ is defined by the
semiclassical weighted de Rham differentiation

dφ,h = e−φ/h ○ hd ○ eφ/h = hd + dφ∧

and its adjoint
d∗φ,h = eφ/h ○ hd∗ ○ e−φ/h = hd∗ + dφ⌟.

Then the semiclassical Witten Laplacian is defined on the forms of any degree by

(2.17) ∆φ = d∗φ,h ○ dφ,h + dφ,h ○ d∗φ,h.

When restricted to the space of p-forms we denote this operator by ∆
(p)
φ (observe that

in the case p = 0, the above formula yields easily (2.1)). Then, we have the following
intertwining relation

(2.18) dφ,h∆
(p)
φ = ∆

(p+1)
φ dφ,h

and its analogous for the coderivative

(2.19) d∗φ,h∆
(p+1)
φ = ∆

(p)
φ d∗φ,h.

For any p = 0, . . . , d, it follows from (2.2) that ∆
(p)
φ (as an unbounded operator on L2)

is essentially self-adjoint on the space of compactly supported smooth forms. We still

denote by ∆
(p)
φ its unique self-adjoint extension. Then ∆

(p)
φ is non-negative and thanks to
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(2.2), there exists c0 > 0 such that σess(∆(p)
φ ) ⊂ [c0,+∞[ for any h > 0 small enough (in

the case where X is a compact manifold, ∆
(p)
φ has actually compact resolvent). Moreover,

there exists εp > 0 such that for h > 0 small enough, it has exactly np eigenvalues in the
interval [0, εph] where np denotes the number of critical points of index p of φ. We shall

denote by E(p) the spectral subspace associated to these small eigenvalues of ∆
(p)
φ . Then

dimE(p) = np and relations (2.18), (2.19) show that

(2.20) dφ,h(E(p)) ⊂ E(p+1) and d∗φ,h(E(p+1)) ⊂ E(p).

This shows in particular that dφ,h acts from E(0) into E(1) and we shall denote by L this

operator. Similarly ∆
(0)
φ acts on E(0) and we denote by M this operator. By (2.17), we

get

M = L∗L.
The general strategy used in [8] (that we will follow in the present work), is to construct
appropriate bases of E(0) and E(1) in which one can compute handily the singular values
of L. The main idea to construct such bases is to build accurate quasimodes for ∆φ and
to project them on the spaces E(j). The construction of the quasimodes is performed
in Section 3. The quasimodes for 1-forms are the ones constructed in [10]. The main
properties of these quasimodes will be recalled in Section 3.3. Concerning the quasimodes
on 0-forms, one can not use the ones constructed in [8] since many important properties
that are required for our analysis fail to be true in the present situation (for instance, the
quasi-orthogonality). In Section 3.2, we use the partition of U (0) into equivalence classes of
R to construct a family of quasimodes on 0-forms adapted to our setting. Each quasimode
will be associated to a minimum m ∈ U (0).

In Section 4, we compute the matrix L in the above basis. One arrives to a block diagonal
matrix diag(Lα, α ∈ A) whose singular values are the singular values of each block.

Section 5 is devoted to the computation of singular values of the above blocks. The
main difficulty is that given two minima m,m′ in the same equivalence class, one has
not necessarily S(m) = S(m′). For equivalence classes satisfying this property (that is
p(α) = 1), each block Lα of the matrix L has a typical size e−S(α)/h and the situation could
be handled quite easily. But more complicated cases may arise where quasimodes yielding
different heights S(m) are interacting. In order to treat the full general case, we use Schur
complement method combined with an induction on p(α). Running the induction step
requires to exhibit a specific structure of the matrices under consideration (see Sections
5.1 and 5.2). In Section 5.3, we prove a general result for such matrices that we use to
conclude in Section 5.4.

In Section 6, we prove Theorem 2.8.
In a separate appendix, we collect several result in linear algebra. We also provide a list

of notations used in the paper.
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3. Construction of adapted quasimodes

3.1. Gathering minima by equivalence class. Let us start this section with a propo-
sition collecting some elementary facts about E,E− and Ê.

Proposition 3.1. Let m,m′ ∈ U (0) such that m ≠ m′. Then, we have the following

i) If σ(m) = σ(m′), then:
i.a) E(m) ∩E(m′) = ∅
i.b) either E−(m) = E−(m′) or E−(m) ∩E−(m′) = ∅
i.c) if E−(m) = E−(m′) then Ê(m) = Ê(m′) otherwise Ê(m) ∩ Ê(m′) = ∅

ii) If σ(m) > σ(m′), then
ii.a) either E(m) ∩E(m′) = ∅ or E−(m′) ⊂ E(m)
ii.b) either E−(m) ∩E−(m′) = ∅ or E−(m′) ⊂ E−(m)

Proof. Let m ≠ m′ be two minima. Assume first that σ(m) = σ(m′) = σ. Since m ≠ m′

and σ−1(∞) = {m}, then one has necessarily m,m′ ∈ U (0). In particular, E−(ν), Ê(ν),
ν = m,m′ are well-defined. Moreover, E(m) and E(m′) being two connected components
of {φ < σ}, one has either E(m) = E(m′) or E(m) ∩E(m′) = ∅. Since m ≠ m′ and E is
injective, then E(m) ∩E(m′) = ∅, which proves i.a).

Since E−(m) and E−(m′) are two connected component of the same set {φ < τ} for some
τ > σ(m), then i.b) is obvious.

Suppose now that E−(m) = E−(m′). Since σ(m) = σ(m′) then m̂(m) = m̂(m′). More-

over, Ê(m) being the unique connected component of {φ < σ(m)} containing m̂(m), we

get Ê(m) = Ê(m′). If E−(m) and E−(m′) are disjoint, then Ê(m) and Ê(m′) are also

disjoint since Ê(m) ⊂ E−(m) and Ê(m′) ⊂ E−(m′). This completes the proof of i.c).
Let us now prove ii) and assume that σ(m) > σ(m′). Once again, since σ−1(∞) = {m},

then m′ ∈ U (0). If E(m′) ∩E(m) ≠ ∅, then E−(m′) ∩E(m) ≠ ∅. Moreover, E−(m′) is a
connected component of {φ < τ} for some τ ≤ σ(m). Since E(m) is a connected component
of {φ < σ(m)} ⊃ {φ < τ}, then E−(m′) ⊂ E(m) which proves ii.a).

The point ii.b) is proved by similar arguments. ◻

Let us now decompose the set of separating saddle points according to the equivalence
classes. Given α ∈ A, introduce the closed set

(3.1) G(α) = ⋃
m∈U(0)α

E(m)

and for any α ∈ A let

(3.2) V(1)
α = {s ∈ V(1), φ(s) = σ(α)} ∩G(α).
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For any α ∈ A, let

(3.3) ÌU (0)
α = U (0)

α ∪ {m̂(α)}

and define an application Γα from ÌU (0)
α into the closed subsets of X by

(3.4) { Γα(m) = Γ(m) if m ∈ U (0)
α

Γα(m̂(α)) = ∂Ê(α).
where Γ is defined below (2.5).

Remark 3.2. Since Ê(m) ⊊ E(m̂), then the application Γα is slightly different from the

application Γ defined in below (2.5). Observe also that for all m ∈ ÌU (0)
α , Γα(m) is the

boundary of the connected component of {φ < φ(s)} that contains m.

Lemma 3.3. The collection (V(1)
α )α∈A is a partition of V(1). Moreover, for all α ∈ A and

s ∈ V(1)
α , there exists m1(s) ∈ U (0)

α and m2(s) ∈ ÌU (0)
α such that

(3.5) s ∈ Γα(m1) ∩ Γα(m2)
One can chose m1,m2 in order that S(m1) ≤ S(m2) (that is φ(m1) ≥ φ(m2)). Up to
permutation, the couple (m1(s),m2(s)) is unique.

Proof. Let s ∈ V(1), then φ(s) ∈ Σ and there exists k ≥ 2 such that φ(s) = σk. By
definition, there exists two different connected components E1,E2 of {φ < σk} such that
s ∈ E1∩E2. From the existence part of Remark 2.2 there exist ml,i ∈ E1 and ml′,i′ ∈ E2 with

l′ ≤ l ≤ k. Moreover, one has necessarily l = k. Otherwise σ(ml,i) > σk and since E1∩E2 ≠ ∅,
this would imply that ml′,i′ ∈ E(ml,i) which is impossible since l′ ≤ l. Hence we have l = k.

Therefore E1 is equal to E(ml,i) with ml,i ∈ U (0)
α , which proves that s ∈ V(1)

α . Moreover, E2

is either of the form E2 = E(ml′,i′) with ml′,i′ ∈ U (0)
α (if l′ = k) or E2 = Ê(ml,i) (if l′ < k).

Setting m1(s) = ml,i ∈ U (0)
α and m2(s) = ml′,i′ ∈ ÌU (0)

α , one has s ∈ Γα(m1) ∩ Γα(m2) and
since l ≥ l′ one has also φ(m1) ≥ φ(m2).

Let us now prove that the union of the V(1)
α for α ∈ A is disjoint. Suppose that s ∈

V(1)
α ∩ V(1)

β . Then σ(α) = φ(s) = σ(β). Moreover, there exists m ∈ U (0)
α and m′ ∈ U (0)

β such

that s ∈ E(m) ∩E(m′). This proves that mRm′ and hence α = β.
The uniqueness of (m1,m2) up to permutation is obvious. ◻

Let us now introduce an extra partition that will be useful in the sequel.

Lemma 3.4. For all α ∈ A there exists a partition V(1)
α = V(1),b

α ⊔ V(1),i
α such that the

following hold true:

i) for any s ∈ V(1),i
α , m1(s) and m2(s) belong to U (0)

α .

ii) the set V(1),b
α is non-empty and for all s ∈ V(1),b

α one has m1(s) ∈ U (0)
α , m2(s) = m̂(α)

and

s ∈ Γα(m1(s)) ∩ Γα(m̂(α)).
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Proof. Define V(1),i
α = {s ∈ V(1)

α , m1(s),m2(s) ∈ U (0)
α }. Then i) is true by definition.

Moreover, defining V(1),b
α = V(1)

α ∖ V(1),i
α , one has automatically the partition property and

it remains to prove ii).

Since α ∈ A, the set Ê(α) ∩ (∪
m∈U(0)α

E(m)) is non-empty and contained in V(1),b
α . This

proves that V(1),b
α is not empty. Suppose now that s ∈ V(1),b

α . It follows from Lemma 3.3

that m1(s) ∈ U (0)
α and m2(s) ∈ Û (0)

α . But by definition of V(1),b
α , m2(s) can not belong to

U (0)
α , which implies by definition that m2(s) = m̂(α). This completes the proof of ii). ◻

3.2. Quasimodes for 0-forms. In this section we construct a family of quasimodes of

∆
(0)
φ associated to the minima of φ. Each of these quasimodes will be of the form x ↦

h−
d
4χm(x)e−(φ(x)−φ(m))/h with some suitable cut-off functions χm associated to a minimum

m ∈ U (0).
Following [8], we can associate to each minimum m ∈ U (0) a cut-off function χm in the

following way. For m = m, we simply take χm = 1. For m ∈ U (0) we introduce some small
parameters ε, ε̃, δ > 0 with ε̃ < ε and we define

(3.6) Eε,ε̃,δ(m) =
⎛
⎝
(E(m) ∖ ⋃

s∈V(1)∩Γ(m)
B(s, ε)) +B(0, ε̃)

⎞
⎠⋃

⎛
⎝ ⋃
s∈(U(1)∖V(1))∩Γ(m)

B(s, δ)
⎞
⎠

Proposition 3.5. Let χm be any function in C∞
c (Eε,2ε̃,2δ(m)) such that χm = 1 on

Eε,ε̃,δ(m). There exists ε0 > 0, δ0 > 0 and C > 0 such that for all 0 < δ < δ0, all 0 < ε < ε0
and all 0 < ε̃ < ε/4, the following hold true:

a) if x ∈ supp(χm) and φ(x) < σ(m), then x ∈ E(m)
b) there exists cε > 0 such that for all x ∈ supp(∇χm), we have

- either x ∉ ∪s∈V(1)∩Γ(m)B(s, ε) and

σ(m) + c−1
ε < φ(x) < σ(m) + cε

- or x ∈ ∪s∈V(1)∩Γ(m)B(s, ε) and

∣φ(x) − σ(m)∣ ≤ Cε.
c) for all s ∈ U (1) ∖ (V(1) ∩ Γ(m)), one has dist(s, supp∇χm) ≥ δ. If moreover s ∈

supp(χm) then s ∈ E(m) (in particular χm(s) = 1).

d) suppose that m ∈ U (0)
α , α ∈ A and let s ∈ V(1) ∩ supp(χm). Then, there exists β ∈ A

such that σ(β) < σ(α), s ∈ V(1)
β and ∪

m′∈U(0)
β

E(m′) ⊂ {x ∈X, χm(x) = 1}.

Proof. Observe that the construction of the cut-off functions χm is slightly different to
that of the χk,ε in Proposition 4.2 in [8] (in particular because there can exist more than
one separating saddle point on ∂E(m)).

Let δ1 = min{∣s − s′∣, s, s′ ∈ U (1), s ≠ s′} and δ2 = min{dist(s,Γ(m)), s ∈ E(m) ∩ U (1)}.
Let 0 < δ < 1

4 min(δ1, δ2) and ε0 > 0 such that there exists C > 0 such that for all 0 < ε < ε0
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and all s ∈ V(1), one has

∣φ(x) − φ(s)∣ < Cε, ∀x ∈ B(s, ε).
This is possible since φ is a smooth function. Then a) and b) above can be proved in a
similar way as in Proposition 4.2 in [8] and c) is a direct consequence of our choice of δ.

Let us now prove d). By definition, if s ∈ V(1) ∩ supp(χm), then s ∈ E(m) (here

we use the condition 0 < ε̃ < ε/4). Hence, there exists β ≠ α such that s ∈ V(1)
β and

one has additionally σ(β) < σ(α). By definition of the sets E(m), this implies that
∪
m′∈U(0)

β

E(m′) ⊂ E(m) ∖ ∪s′∈V(1)∩Γ(m)B(s′, ε) for any ε ∈]0, ε0[ with ε0 > 0 small enough

independent of δ. This implies the results. ◻

We are now in position to define the quasimodes in a recursive way on the values of
σ(α).

- We start with the quasimode associated to m. We set

(3.7) f
(0)
m (x) = c(m, h)h−d/4e(φ(m)−φ(x))/h

where c(m, h) is a normalizing constant such that ∥fm∥L2 = 1. Due to the fact that

φ may have several global minima, the function f
(0)
m does not concentrate only on

m but on the reunion of all global minima. Hence the normalizing factor c(m, h)
is computed by adding the contributions coming from each of these minima via
quadratic approximation. More precisely, it follows from the Laplace method that
c(m, h) ∼ ∑∞

k=0 h
kγk(m) with the function γ0 given by

(3.8) γ0(m)−2 = π d
2 ∑
m′∈H(m)

∣det Hessφ(m′)∣− 1
2

where by definition (2.6) one has

H(m) ∶= {m′ ∈ E(m) ∩ U (0), φ(m′) = φ(m)}.

Eventually, observe that f
(0)
m is an exact quasimode: ∆φf

(0)
m = 0.

- Suppose now that k ∈ {2, . . . ,K} and that the quasimodes f
(0)
m have been con-

structed for m ∈ ⋃α′∈A,σ(α′)≤σk−1 U
(0)
α , and let us define f

(0)
m for m ∈ U (0)

α with
σ(α) = σk. The form of the quasimode associated to m depends on the type
of m as introduced in Definition 2.3.
⋆ If m is of type I, then we define the f

(0)
m as in [8] by

(3.9) f
(0)
m (x) = c(m, h)h−d/4χm(x)e(φ(m)−φ(x))/h

where χm is the cut-off function associated to m defined in Proposition 3.5

and c(m, h) is again a normalizing constant such that ∥f (0)
m ∥L2 = 1. As before,

we have to add all the contributions of minima in E(m) at the same height as
m. We get c(m, h) ∼ ∑∞

k=0 h
kγk(m) with γ0(m) given by (3.8).
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⋆ Let us now construct quasimodes associated to minima m of type II. We assume
here that U (0),II ≠ ∅ and we define

(3.10) Û (0),II
α = U (0),II

α ∪ {m̂}.

where for short, we denote m̂ = m̂(α) and qIIα = ♯U (0),II
α .

Let us introduce an additional cut-off function around m̂ that we define as fol-
lows. Recall that Ê(α) denotes the connected component of {x ∈ E−(m), φ(x) <
σ(m)} that contains m̂. As before, we introduce some parameters ε, ε̃, δ > 0
with ε̃ < ε and we define

Êε,ε̃,δ(α) =
⎛
⎝
(Ê(α) ∖ ⋃

s∈V(1)∩∂Ê(α)
B(s, ε)) +B(0, ε̃)

⎞
⎠⋃

⎛
⎝ ⋃
s∈(U(1)∖V(1))∩∂Ê(α)

B(s, δ)
⎞
⎠

Then, we let χ̂m̂ be any function in C∞
c (Êε,2ε̃,2δ(α)) such that χ̂m̂ = 1 on

Êε,ε̃,δ(α). For m ∈ U (0),II
α , we let χ̂m = χm, with χm defined in Proposition 3.5.

We want to construct the quasimode as linear combination of the χ̂me−φ/h, m ∈
Û (0),II
α . In order to chose the coefficients, let us introduce Fα = F (Û (0),II

α ) the

finite vector space of functions from Û (0),II
α into R. This space has dimension

qIIα + 1 and is endowed with the usual euclidean structure

⟨θ, θ′⟩Fα = ∑
m∈Û(0),IIα

θ(m)θ′(m).

We denote by N the associated norm. Eventually, we define θα0 ∈ Fα by

(3.11) θα0 (m) = cα0 (h)
c(m, h)

where c(m, h) is the unique positive constant such that the function

f̃m ∶= c(m, h)h− d4 χ̂me
(φ(m)−φ(x))/h

satisfies ∥f̃m∥L2 = 1 and cα0 (h) is defined by N(θα0 ) = 1. Let us now extend the

definition of the set H(m) in the following way. Given α ∈ A and m ∈ Û (0),II
α

we define

(3.12) Ĥα(m) = { H(m) if m ∈ U (0)
α

{m′ ∈ Ê(α) ∩ U (0), φ(m′) = φ(m̂)} if m ∈ Û (0),II
α ∖ U (0)

α .

Observe that if α is of type II, since E(m̂(α)) is larger than Ê(α), then

H(m̂(α)) and Ĥα((m̂(α)) may be different. From the preceding definition, it

follows that for all m ∈ Û (0),II
α , c(m, h) admits a classical expansion c(m, h) =

∑k h
kγk(m) with

(3.13) γ0(m)−2 = π d
2 ∑
m′∈Ĥα(m)

∣det Hessφ(m′)∣− 1
2 .
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Therefore, we can compute the constant cα0 (h), and we get

cα0 (h) = π−
d
4 ( ∑

ν∈Û(0),IIα

∑
m′∈Ĥα(ν)

∣det Hessφ(m′)∣− 1
2 )−

1
2 +O(h).

Here the index α is used to indicate that the function is associated to U (0),II
α .

Lemma 3.6. There exist some functions θα1 , . . . , θ
α
qIIα

∈ Fα such that the following hold true:

i) {θαj , j = 0, . . . , qIIα } is an orthonormal basis of Fα
ii) the functions θαj admit a classical expansion

θαj =∑
k≥0

hkθα,kj

and for all j ≥ 1, the leading terms θα,0j are orthogonal to the function θα,00 (m) =
cα0 (0)
γ0(m) .

Proof. First observe that θα0 admits a classical expansion θα0 ∼ ∑j≥0 h
jθα,j0 with θα,00 (m) =

cα0 (0)
γ0(m) . Since (θα,00 )� is a qIIα dimensional subspace of Fα, it admits an orthonormal basis

(θ̃α,0j ) independent of h. Then the function θ̃αj defined by

θ̃αj ∶= θ̃α,0j − ⟨θ̃α,0j , θα0 ⟩θα0
form a basis of (θα0 )�. Moreover, the θ̃αj admit a classical expansion and since ⟨θ̃α,0j , θα0 ⟩ =
O(h) for any j, they satisfy

⟨θ̃αj , θ̃αk ⟩ = δjk +O(h2).
Defining the (θαj ) as the Graam-Schmidt orthonormalization of the (θ̃αj ), we get the an-
nounced result. ◻

Observe that since U (0),II
α has qIIα elements, the functions θα1 , . . . , θ

α
qIIα

can also be indexed

by U (0),II
α using any arbitrary bijection. We end up with a family of functions (θαm)

m∈U(0),IIα

and for convenience we will also denote θαm̂ = θα0 . Then, we define the qIIα quasimodes

associated to the m ∈ U (0),II
α by

(3.14) f
(0)
m (x) = h− d4 ∑

m′∈Û(0),IIα

θαm(m′)c(m′, h)χ̂m′(x)e(φ(m)−φ(x))/h

where the normalization factor c(m′, h) is defined above and insures that

∥c(m′, h)h− d4 χ̂m′(x)e(φ(m)−φ(x))/h∥L2 = 1.

Before going further and as a preparation for the final analysis we would like to write
the quasimode given by (3.9) and (3.14) in the same fashion. For this purpose, we define

Û (0)
α by

(3.15) Û (0)
α = U (0),I

α ∪ Û (0),II
α
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with the convention that Û (0),II
α = ∅ if U (0),II

α = ∅ (observe that Û (0)
α is equal to the set ÌU (0)

α

defined in 3.3 if and only if U (0),II
α ≠ ∅). Then, we define θαm(m′) for any m ∈ U (0)

α ,m′ ∈ Û (0)
α

in the following way:

- if m ∈ U (0),II
α and m′ ∈ Û (0),II

α , we keep the above definition.
- otherwise, we set

(3.16) θαm(m′) = δm,m′ .

Then formula (3.9) and (3.14) can be summarized in

(3.17) f
(0)
m (x) = h− d4 ∑

m′∈Û(0)α

θαm(m′)c(m′, h)χ̂m′(x)e(φ(m)−φ(x))/h

with Û (0)
α and θα as above.

Definition 3.7. For any α ∈ A, let us denote by T α ∈ M (U (0)
α , Û (0)

α ) the matrix given by

T α = (θαm(m′)))
m′∈Û(0)α ,m∈U(0)α

Let us remark that if all points of U (0)
α are of type I, then T α is just the qα × qα identity

matrix, whereas if U (0),II
α ≠ ∅ it is a (qα + 1) × qα matrix. Observe also that the partitions

U (0)
α = U (0),I

α ⊔U (0),II
α and Û (0)

α = U (0),I
α ⊔ Û (0),II

α induce decompositions of the corresponding
vector spaces

(3.18) F (U (0)
α ) = F (U (0),I

α )⊕F (U (0),II
α )

and

(3.19) F (Û (0)
α ) = F (U (0),I

α )⊕F (Û (0),II
α ).

From the above construction, one deduces that in a suitable basis the matrix T α is block
diagonal with Id on the upper-left corner and a certain orthogonal matrix in the lower-

right corner. More precisely, there exists an orthogonal matrix ÍT α ∈ M (U (0),II
α , Û (0),II

α )
such that for any f = f I + f II with f I ∈ F (U (0),I

α ) and f II ∈ F (Û (0),II
α ), one has

(3.20) T f(m) = f I(m) + ( ÍT αf II)(m).
Moreover, the matrix ÍT α is just the matrix (θαm(m′))

m∈U(0),IIα ,m′∈Û(0),IIα
whose coefficients

are given by Lemma 3.6. In particular, Ran ÍT α = (Rθα0 )� where θα0 is defined by (3.11).

For any m ∈ U (0), let us introduce the set F (m) defined as follows. If m = m, let

F (m) =X. If m ∈ U (0),I ∶= U (0)∩U (0),I , let F (m) = E(m) and if m ∈ U (0),II ∶= U (0)∩U (0),II

let

(3.21) F (m) = ( ⋃
m′∈U(0),IIα

E(m′)) ∪ Ê(m)

where α is such that m ∈ U (0)
α . Observe that we always have E(m) ⊂ F (m).

Proposition 3.8. Let m,m′ ∈ U (0) be such that m ≠ m′. The following hold true
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i) if mRm′ then
i.a) if m or m′ is of type I, then F (m) ∩ F (m′) ⊂ V(1).
i.b) if m and m′ are both of type II, then F (m) = F (m′).

ii) If m′ ∉ Cl(m), then
ii.a) if σ(m) = σ(m′), then F (m) ∩ F (m′) = ∅.

ii.b) if σ(m) > σ(m′), then either F (m) ∩ F (m′) = ∅ or F (m′) ⊂ F̊ (m)

Proof. Let mRm′ with m ≠ m′. As in the proof of Proposition 3.1, one has necessarily

m,m′ ≠ m. Assume first that m is of type I. Then F (m) = E(m). If m′ is also of type I,

then F (m′) = E(m′). Moreover since m ≠ m′, it follows from i.a) of Proposition 3.1 that
E(m) ∩E(m′) = ∅. Therefore, F (m) ∩ F (m′) is either empty or is reduced to a union of
saddle points which are separating by definition. If m′ is of type II, the same proof works.
This completes the proof of i.a).

Suppose now that m and m′ are both of type II. Since mRm′, it follows that Ê(m) =
Ê(m′) and hence F (m) = F (m′) which shows i.b).

Suppose now that m′ ∉ Cl(m). Consider first the case where σ(m) = σ(m′). Then, one
has necessarily F (m) ∩ F (m′) = ∅ otherwise we would have mRm′.

Suppose now that σ(m) > σ(m′) and that F (m)∩F (m′) ≠ ∅. If m = m, then F (m) =X
and the conclusion is obvious. Suppose now that m ∈ U (0) and consider first the case where

m and m′ are of type I. Then F (m) = E(m) and F (m′) = E(m′) and since σ(m) > σ(m′)
it follows that E(m)∩E(m′) ≠ ∅. Hence ii.a) of Proposition 3.1 shows that E−(m′) ⊂ E(m)
which yields F (m′) ⊂ E(m) = F̊ (m). If m is of type I and m′ of type II, then one has

E(m) ∩ Ẽ ≠ ∅ with either Ẽ = E(m′′) for some m′′ ∈ Cl(m′) or Ẽ = Ê(m′). As before,
E(m) contains the connected component of {φ < σ(m)} that contains Ẽ and the same
proof works.

Let us now suppose that m is of type II and m′ is of type I. Then E(m′) ∩ Ẽ ≠ ∅ with

either Ẽ = E(m′′) for some m′′ ∈ Cl(m) or Ẽ = Ê(m). In both cases one sees easily that
E−(m′) ⊂ Ẽ which proves the result.

The case where both m and m′ are of type II is left to the reader. ◻

Let us now give some informations on the support of the quasimodes. For m ∈ U (0), let
us introduce the set

(3.22) Fε,ε̃,δ(m) =
⎛
⎝
(F (m) ∖ ⋃

s∈V(1)∩∂F (m)
B(s, ε)) +B(0, ε̃)

⎞
⎠⋃

⎛
⎝ ⋃
s∈(U(1)∖V(1))∩∂F (m)

B(s, δ)
⎞
⎠

If m is of type I, it is clear that Fε,ε̃,δ(m) = Eε,ε̃,δ(m) and if m is of type II, one has

Fε,ε̃,δ(m) = Êε,ε̃,δ(α) ∪ ( ∪
m′∈U(0),IIα

Eε,ε̃,δ(m))

From the above construction one deduces the following proposition.

Proposition 3.9. There exists ε0, δ0 > 0 such that for all 0 < δ < δ0 and all 0 < ε̃ < ε/4 < ε0/4,
the following hold true:
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i) for any m,m′ ∈ U (0)

F (m) ∩ F (m′) = ∅Ô⇒ Fε,ε̃,δ(m) ∩ Fε,ε̃,δ(m′) = ∅

ii) for any α ∈ A and m ∈ U (0)
α , one has supp(f (0)

m ) ⊂ Fε,2ε̃,2δ(m) and

∀s ∈ U (1) ∖ (V(1) ∩ ∂F (m)), dφf (0)
m = 0 in B(s, δ).

Proof. Observe that

Fε,2ε̃,2δ(m) ⊂ F (m) +B(0,2 max(δ, ε̃))
Since F (m) and F (m′) are compact, the first point of the proposition immediately fol-
lows. The second point of the proposition is a direct consequence of c) of Proposition 3.5. ◻

Recall that the functions f
(0)
m , m ∈ U (0) depend on ε, ε̃, δ via the definition of the cut-off

function χm. This family is quasi-orthonormal in the following sense.

Proposition 3.10. There exists ε0, δ0, β > 0 such that for all 0 < δ < δ0, 0 < ε̃ < ε/4 < ε0/4
and all m,m′ ∈ U (0), one has

⟨f (0)
m , f

(0)
m′ ⟩ = δm,m′ +O(e−β/h).

Proof. Throughout the proof, we assume that 0 < δ < δ0 and 0 < ε̃ < ε/4 < ε0/4 as in
Proposition 3.5 and we decrease ε0, δ0 if necessary.

Let m,m′ be two minima.
● Consider first the case where mRm′. If m = m, one has necessarily m′ = m and hence

⟨f (0)
m , f

(0)
m′ ⟩ = ∥f (0)

m ∥2 = 1 by construction. Consider now the case where m,m′ ≠ m and
suppose first that m or m′ is of type I. If m = m′, the definition of c(m, h) shows that

∥fm∥ = 1. If m ≠ m′, it follows from ii) of Proposition 3.9 that f
(0)
m and f

(0)
m′ are supported

in Fε,2ε̃,2δ(m) and Fε,2ε̃,2δ(m′) respectively. Moreover, thanks to i) of Proposition 3.8, one
has F (m) ∩ F (m′) ⊂ V(1) ∩ ∂F (m). Hence, one can chose ε0 sufficiently small, so that

Fε,2ε̃,2δ(m) ∩ Fε,2ε̃,2δ(m′) = ∅. Therefore, supp(f (0)
m ) ∩ supp(f (0)

m′ ) = ∅ and hence f
(0)
m and

f
(0)
m′ are orthogonal.
Suppose now that m and m′ are both of type II. Then, we can write

f
(0)
m (x) = h− d4 ∑

ν1∈Û(0)α

θm(ν1)c(ν1, h)χ̂ν1(x)e(φ(m̂(m))−φ(x))/h

f
(0)
m′ (x) = h−

d
4 ∑
ν2∈Û(0)α

θm′(ν2)c(ν2, h)χ̂ν2(x)e(φ(m̂(m))−φ(x))/h.

Since for ν2 ≠ ν1, χ̂ν1 and χ̂ν2 have again disjoint support for ε0, δ0 > 0 small enough, we get

⟨f (0)
m , f

(0)
m′ ⟩ = h−

d
2 ∑
ν∈Û(0)α

θm(ν)θm′(ν)∣c(ν, h)∣2∫
X
∣χ̂ν(x)∣2e2(φ(m̂(m))−φ(x))/hdx

= ⟨θm, θm′⟩Fα = δm,m′

This shows in particular that ∥f (0)
m ∥L2 = 1 for all m ∈ U (0).



26 L. MICHEL

● Suppose now, that m′ ∉ Cl(m) (in particular m ≠ m′). If σ(m′) = σ(m) then
F (m) ∩ F (m′) = ∅ thanks to ii.a) of Proposition 3.8 and i) of Proposition 3.9 implies
that Fε,2ε̃,2δ(m)∩Fε,2ε̃,2δ(m′) = ∅. Then, the first part of ii) of Proposition 3.9 proves that

f
(0)
m and f

(0)
m′ are orthogonal.

Consider now the case where σ(m) ≠ σ(m′), let say σ(m) > σ(m′). From ii.b) of

Proposition 3.8, we know that either F (m′) is disjoint from F (m) or F (m′) ⊂ F̊ (m). In the

first case, we get immediately ⟨f (0)
m , f

(0)
m′ ⟩ = 0 by the same argument as before. Suppose we

are in the second situation, that is F (m′) ⊂ F̊ (m). By definition, we have φ(m) ≤ φ(m′),
and by taking ε0, δ0 > 0 small enough we can insure that Fε,2ε̃,2δ(m′) ⊂ F̊ε,2ε̃,2δ(m).

Suppose first that φ(m) < φ(m′). A priori we don’t know if m,m′ are of type I or II.

However, since Fε,2ε̃,2δ(m′) ⊂ F̊ε,2ε̃,2δ(m), then

⟨f (0)
m , f

(0)
m′ ⟩ = ∫

Fε,2ε̃,2δ(m′)
f
(0)
m (x)f (0)

m′ (x)dx.

and

(3.23) (f (0)
m )∣Fε,2ε̃,2δ(m′) = c̃(m, h)h− d4 e(φ(m)−φ(x))/h

where the constant c̃(m, h) is uniformly bounded with respect to h. This is clear if m is of

type I. If m is of type II and let say m ∈ U (0)
α , then F (m′) ⊂ F̊ (m) implies that there exists

ν ∈ Û (0)
α such that F (m′) ⊂ E(ν) (or Ê(ν)). Then the general formula (3.14) shows (3.23).

Moreover, by construction, there exists a cut-off function ψ ∈ C∞
c (F̊ε,2ε̃,2δ(m)) independent

of h such that infsuppψ φ = φ(m′) and

∣f (0)
m′ (x)∣ ≤ h−d/4ψ(x)e(φ(m

′)−φ(x))/h

and it follows that

∣⟨f (0)
m , f

(0)
m′ ⟩∣ ≤ Ch−

d
2 ∫ ψ(x)e(φ(m′)+φ(m)−2φ(x))/hdx ≤ C ′h−d/2e(φ(m)−φ(m′))/h.

Since φ(m′) > φ(m), this proves the result.

It remains to study the case where φ(m) = φ(m′). Let α,α′ ∈ A be such that m ∈ U (0)
α

and m′ ∈ U (0)
α′ . From the above assumption, one has also σ(m) > σ(m′) and F (m′) ⊂ F̊ (m).

Since σ(m) > σ(m′) and φ(m) = φ(m′) then f
(0)
m′ is necessarily of type II. It has the form

(3.14) and since Fε,2ε̃,2δ(m′) ⊂ F̊ε,2ε̃,2δ(m), then (3.23) still holds true. Hence, we get

(3.24) ⟨f (0)
m , f

(0)
m′ ⟩ = c̃(m, h)h− d2 ∑

ν∈Û(0),II
α′

θm′(ν)c(ν, h)∫ χ̂ν(x)e2(φ(x)−φ(m))/hdx.
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On the other hand, by a standard argument based on Laplace method, we know that there

exist r > 0 and β > 0 such that for all ν ∈ Û (0),II
α′ , one has

h−
d
2 c(ν, h)∫ χ̂ν(x)e2(φ(x)−φ(m))/hdx = h− d2 c(ν, h) ∑

ν′∈H(ν)
∫
B(ν′,r)

e2(φ(x)−φ(m))/hdx +O(e−β/h)

= h− d2 c(ν, h)∫ ∣χ̂ν(x)∣2e2(φ(x)−φ(m))/hdx +O(e−β/h)

= 1

c(ν, h) +O(e−β/h)

Plugging this in (3.24), we get

⟨f (0)
m , f

(0)
m′ ⟩ = c̃(m, h) ∑

ν∈Û(0),II
α′

θm′(ν) 1

c(ν, h) +O(e−β/h)

= c̃(m, h)
cα

′
0 (h) ⟨θm′ , θα

′

0 ⟩Fα′ +O(e−β/h)
(3.25)

Since θm′ is orthogonal to θα
′

0 by construction, the first term of the right hand side above

vanishes and we get ⟨f (0)
m , f

(0)
m′ ⟩ = O(e−β/h). This completes the proof. ◻

We end up this section by giving some exponential estimate of the action of dφ,h on the
quasimodes.

Lemma 3.11. There exists C > 0 such that for all ε > 0 small enough, we have

dφ,hf
(0)
m = O(e−(S(m)−Cε)/h)

for all m ∈ U (0).

Proof. The result is classical, but since the quasimodes f
(0)
m are slightly different from

the usual ones, we have to check the estimates. Let m ∈ U (0) and let us compute dφ,hf
(0)
m .

If m = m, then dφ,hf
(0)
m = 0 and there is nothing to do.

Suppose now that m ≠ m. From (3.17), one has

dφ,hf
(0)
m (x) = h1− d

4 ∑
m′∈Û(0)α

θm(m′)c(m′, h)∇χ̂m′(x)e(φ(m)−φ(x))/h

All terms of the above sum corresponding to m ∈ U (0)
α are O(e−(S(m)−Cε)/h thanks to b)

of Proposition 3.5. The only new term is the one corresponding to m̂(m). Since χ̂m̂ ∈
C∞c (Êε,2ε̃,2δ) and is equal to 1 on Êε,ε̃,δ, we have again

φ(x) − φ(m̂) = φ(x) − φ(m) ≥ S(m) −Cε

on supp(∇χ̂m̂) and the proof is complete. ◻
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3.3. Quasimodes for 1-forms. This section is devoted to the quasimodes associated to

low lying eigenvalues of ∆
(1)
φ . The construction of these quasimodes was done in [10] and

we refer to that paper for all the proofs. Here, we just describe the main properties of
these functions. In this section ωs denotes a small neighbourhood of s ∈ U (1) that may be
chosen as small as needed independently of ε0 fixed in previous sections.

Given any saddle point s ∈ U (1), and any appropriate open neighborhood ωs of s, let

Pφ,s denote the operator ∆
(1)
φ restricted to ωs with Dirichlet boundary conditions. Let us

denote a normalized fundamental state of Pφ,s. The quasimodes f
(1)
s are then defined by

(3.26) f
(1)
s (x) ∶= ε0∥ψsus∥−1ψs(x)us(x),

where ψs is a well-chosen C∞
0 localization function supported in ωs and equal to 1 near s

and ε0 = ±1 will be fixed later. By taking ωs sufficiently small, we can insure that the f
(1)
s

have disjoint supports, and thanks to c) of Proposition 3.5, we can also shrink ωs in order
that

(3.27) ∀s ∈ U (1) ∖ V(1), ∀m ∈ U (0), (s ∈ supp(χm)Ô⇒ χm = 1 on ωs).

Observe that this choice of ωs depends on δ0 but not on ε0. From this construction, we
immediately deduce that

(3.28) ⟨f (1)
s , f

(1)
s′ ⟩ = δs,s′ ,

and hence the family {f (1)
s , s ∈ U (1)} is a free family of 1-forms. From [7] Proposition 5.2.6,

one knows that the eigenvalues of Pφ,s are exponentially small. Using Agmon estimates, it
follows that there exists β > 0 independent of ε such that

(3.29) ∆
(1)
φ f

(1)
s = O(e−β/h).

Combined with the spectral theorem, this proves that the n1 eigenvalues of ∆
(1)
φ in [0, ε1h]

are actually O(e−β/h) (see [7] Proposition 5.2.5, for details).
Furthermore, Theorem 2.5 of [10] implies that these quasimodes have a WKB writing

(3.30) f
(1)
s (x) = ε0h

− d
4ψs(x)b(1)s (x,h)e−φ+,s(x)/h,

where b
(1)
s (x,h) is a 1-form having a semiclassical asymptotic, and φ+,s is the phase gen-

erating the outgoing manifold of ∣ξ∣2 − ∣∇xφ(x)∣2 at (s,0) (see [6] chapter 3 for details on
such constructions). In particular, the phase function φ+,s satisfies the eikonal equation
∣∇xφ+,s∣2 = ∣∇xφ∣2 and φ+,s(x) ≍ ∣x− s∣2 near s (the notation ≍ was defined in the paragraph
before section 2.1). For other properties of φ+,s we refer to [10].

3.4. Projection onto the eigenspaces. The next step in our analysis is to project the
preceding quasimodes onto the generalized eigenspaces associated to exponentially small

eigenvalues. Recall that we have built in the preceding section quasimodes f
(0)
m , m ∈ U (0)

with good orthogonality properties. To each of these quasimode we will associate a function
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in E(0), the eigenspace associated to o(h) eigenvalues. For this, we first define the spectral
projector

(3.31) Π(0) = 1

2πi ∫γ(z −∆
(0)
φ )−1dz,

where γ = ∂B(0, ε0h) and ε0 > 0 is such that σ(∆φ) ∩ [0,2ε0h] ⊂ [0, e−C/h]. From the fact

that ∆
(0)
φ is selfadjoint, we get that

∥Π(0)∥ = 1.

We now introduce the projection of the quasimodes constructed above, e
(0)
m = Π(0)(f (0)

m ).
We have the following

Lemma 3.12. The system (e(0)m )m∈U(0) is free and spans E(0). Besides, there exists β > 0
independent of ε0 such that for all 0 < ε̃ < ε/4 < ε0/4, one has

e
(0)
m = f (0)

m +O(e−β/h) and ⟨e(0)m , e
(0)
m′ ⟩ = δm,m′ +O(e−β/h).

for all m,m′ ∈ U (0).

Proof. The argument is very classical. We recall it for reader’s convenience. One has

e
(0)
m − f (0)

m = (Π(0) − Id)f (0)
m = 1

2πi ∫γ((z −∆
(0)
φ )−1 − z−1)f (0)

m dz

= 1

2πi ∫γ(z −∆
(0)
φ )−1z−1∆

(0)
φ f

(0)
m dz

(3.32)

Since (z −∆
(0)
φ )−1 = O(h−1) on γ, it follows from Lemma 3.11 that e

(0)
m − f (0)

m = O(−β/h) for
some β > 0. This proves the first point. Combining this information with Proposition 3.10
we get immediately the second point. ◻

We can do a similar study for ∆
(1)
φ , for which we know that the n1 eigenvalues lying in

[0, ε1h] are actually O(e−α′/h). To the family of quasimodes (f (1)
s )s∈U(1) , we now associate

a family of functions in E(1), the eigenspace associated to eigenvalues of ∆
(1)
φ in [0, ε1h].

Thanks to the spectral properties of the selfadjoint operator ∆
(1)
φ , its spectral projector

onto E(1) is given by

(3.33) Π(1) = 1

2πi ∫γ(z −∆
(1)
φ )−1dz,

where γ = ∂B(0, ε1h) with ε1 defined above. In the sequel, we denote e
(1)
s = Π(1)(f (1)

s ).
The family (e(1)s )s satisfies the following estimates

Lemma 3.13. The system (e(1)s )s∈U(1) is free and spans E(1). Besides, we have

e
(1)
s = f (1)

s +O(e−β′/h), and ⟨e(1)s , e
(1)
s′ ⟩ = δs,s′ +O(e−β′/h).

with β′ > 0 independent of ε.
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Proof. Using the orthonormality of the f
(1)
j and (3.29), the proof is the same as that of

Lemma 3.12. ◻

4. Preliminary for singular values analysis

This section is a preparation to the study of the singular values of the operator L ∶ E(0) →
E(1) defined below (2.20). We simplify the forthcoming study by several reductions and
changes of basis. Let us denote by Lπ the n1 × n0 matrix given by

(4.1) Lπs,m = ⟨e(1)s , dφ,he
(0)
m ⟩, ∀s ∈ U (1),m ∈ U (0)

with e
(1)
s , e

(0)
m defined in the preceding section. Since (e(0)m ) and (e(1)s ) are almost orthonor-

mal bases (thanks to Lemma 3.12 and 3.13), this matrix is close to the matrix of the
operator L in these bases. We first work on the matrix Lπ.

Recall that m denotes the absolute minimum of φ associated to the connected component

E(m) = X. Since ∆
(0)
φ em = 0, the non zero singular values of Lπ are exactly the singular

values of the reduced matrix Lπ,′ defined by Lπ,′s,m = Lπs,m for all s ∈ U (1),m ∈ U (0) with

U (0) = U (0) ∖ {m}.

Lemma 4.1. There exists β′′ > 0 such that for ε > 0 sufficiently small, one has

Lπ,′s,m = ⟨f (1)
s , dφ,hf

(0)
m ⟩ +O(e−(S(m)+β′′)/h)

for all s ∈ U (1),m ∈ U (0).

Proof. The trick to get the good error estimate above is now well-known (see for instance
proof of Prop. 5.8 in [11]) but we recall the proof for reader’s convenience. Let s ∈ U (1),m ∈
U (0), then thanks to (2.18) we have

⟨e(1)s , dφ,he
(0)
m ⟩ = ⟨e(1)s , dφ,hΠ

(0)f
(0)
m ⟩ = ⟨e(1)s ,Π(1)dφ,hf

(0)
m ⟩ = ⟨e(1)s , dφ,hf

(0)
m ⟩

= ⟨f (1)
s , dφ,hf

(0)
m ⟩ + ⟨e(1)s − f (1)

s , dφ,hf
(0)
m ⟩

But from Lemma 3.11, 3.13 and Cauchy-Schwarz inequality one gets

∣⟨e(1)s − f (1)
s , dφ,hf

(0)
m ⟩∣ ≤ Ce−(β′+S(m)−Cε)/h.

Since β′ is independent of ε, one can conclude by taking ε small enough and β′′ = β′/2. ◻

Let us denote Lbkw ∈ M (U (0),U (1)) the matrix defined by

(4.2) Lbkws,m = ⟨f (1)
s , dφ,hf

(0)
m ⟩,∀s ∈ U (1),m ∈ U (0).

Of course, the first column of this matrix is identically zero and it is more interesting to
consider the matrix Lbkw,′ ∈ M (U (0),U (1)) defined by

(4.3) Lbkw,′s,m = ⟨f (1)
s , dφ,hf

(0)
m ⟩,∀s ∈ U (1),m ∈ U (0).
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As we shall see later, the singular values of Lπ,′ and Lbkw,′ are exponentially close and it
is natural to study the matrix Lbkw,′ . For s ∈ U (1) ∖ V(1) and m ∈ U (0), thanks to ii) of

Proposition 3.9 one has dφ,hf
(0)
m = 0 near s, and hence

(4.4) ⟨f (1)
s , dφ,hf

(0)
m ⟩ = 0.

Therefore, the singular values of Lbkw,′ are equal to the singular values of the reduced
matrix Lbkw,′′ ∈ M (U (0),V(1)) defined by

(4.5) Lbkw,′′s,m = ⟨f (1)
s , dφ,hf

(0)
m ⟩, ∀s ∈ V(1),m ∈ U (0).

In order to study this matrix, we need to introduce a new enumeration of critical points.
Let us start with few abstract notations. Assume that (I,≤) and (J ,≤) are two totally
ordered sets and let A = (aij)i∈I,j∈J be the associated matrix (with i, j enumerated in
increasing order). Assume that we have partitions PI ,PJ of I and J respectively

PI = (I1, . . . ,INI) and PJ = (J1, . . . ,JNJ ).
Assume that each partition admits a total order ⪯ (that is we can compare the subsets Ii).
Then we get a total order ⪯ on I (resp. J ) by using the associated lexicographical order:

i ⪯ j iff (∃Iα ⪯ Iβ, i ∈ Iα and j ∈ Iβ) or (∃Iα, i, j ∈ Iα and i ≤ j).
Hence, there exists a unique α ∶ (I,≤) → (I,⪯) which is strictly increasing (and hence
bijective). Similarly, there is a unique β ∶ (J ,≤) → (J ,⪯) which is strictly increasing. We
denote by API ,PJ the matrix (aα(i),β(j))i∈I,j∈J . This matrix is obtained from A by inter-
twining the basis vector, hence it has exactly the same singular values.

Let us go back to the matrix Lbkw,′′ . Consider the partitions of U (0) and V(1) given by

P(0) = {U (0)
α , α ∈ A} and P(1) = {V(1)

β , β ∈ A}.
At this stage of our analysis, we do not need any specific choice of order on these partitions.
We just endow A with any total order and for all α,β ∈ A we choose any arbitrary total

order on U (0)
α and V(1)

β . This gives an order on the above partitions and we denote by

L = (L α,β)α,β∈A the matrix Lbkw,′′ associated to these partitions. Observe here that each

L α,β is itself a matrix L α,β = (L α,β
s,m)

s∈V(1)
β
,m∈U(0)α

.

Lemma 4.2. For all α ≠ β, L α,β = 0.

Proof. Let α;β ∈ A such that α ≠ β and let m ∈ U (0)
α and s ∈ V(1)

β . If σ(α) = σ(β) then

α ≠ β implies that s ∉ F (m). Shrinking if necessary (by taking ε0, δ0 > 0 small enough) the

support of f
(0)
m and f

(1)
s , it follows that these functions have disjoint supports so that their

scalar product vanishes.

If σ(α) ≠ σ(β), then by construction dφ,hf
(0)
m is supported near {φ = σ(α)} whereas e

(1)
s

is supported near {φ = σ(β)}. Since this two sets are disjoints we get ⟨f (1)
s , dφ,he

(0)
m ⟩ = 0

and the proof is complete. ◻
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From this lemma we deduce that the matrix L admits a block-diagonal structure

(4.6) L = diag(L α, α ∈ A)
with L α ∶= L α,α. Recall from Definition 3.7, that for any α ∈ A, the matrix T α ∈
M (U (0)

α , Û (0)
α ) is given by T α = (θαm(m′))

m′∈Û(0)α ,m∈U(0)α
. We have the following factorization

result on L α.

Lemma 4.3. We have L α = L̂ αT α where the matrix L̂ α = (ˆ̀α
s,m′)s,m′ ∈ M (Û (0)

α ,V(1)
α ) is

given by
ˆ̀α
s,m′ = ⟨f (1)

s , dφ,hg
(0)
m′ ⟩, ∀s ∈ V(1)

α ,m′ ∈ Û (0)
α

with g
(0)
m′ (x) = h−

d
4 c(m′, h)χ̂m′(x)eφ(m′)−φ(x)/h.

Proof. Let s ∈ V(1)
α ,m ∈ U (0)

α . From equation (3.17), one has

⟨f (1)
s , dφ,hf

(0)
m ⟩ = h− d4 ∑

m′∈Û(0)α

θαm(m′)c(m′, h)⟨f (1)
s , hdχ̂m′(x)e(φ(m)−φ(x))/h⟩

Moreover, the function φ being constant on Û (0),II
α , we can replace φ(m) by φ(m′) in the

above identity and it follows that

⟨f (1)
s , dφ,hf

(0)
m ⟩ = ∑

m′∈Û(0)α

θαm(m′)⟨f (1)
s , dφ,hg

(0)
m′ ⟩

which is exactly the result to be proved. ◻

One of the crucial points of our analysis is to compute the coefficient ˆ̀α
s,m. Given m ∈ Û (0)

α ,
we define

(4.7) hφ(m) = ( ∑
m′∈Ĥα(m)

∣det Hessφ(m)∣− 1
2)

− 1
2

with Ĥα(m) defined in (3.12). One has clearly hφ(m) = π d
4γ0(m) with γ0 given by (3.13).

Moreover, in the case where H(m) = {m}, one has hφ(m) = ∣det Hessφ(m)∣ 14 . Given

s ∈ V(1), we denote by λ̂1(s) the unique negative eigenvalue of Hessφ(s). In order to keep
uniform notations, we also extend the definition (4.7) to saddle points by

hφ(s) = ∣det Hessφ(s)∣ 14 .

Eventually, we introduce the diagonal matrix Ω̂α ∈ M (Û (0)
α , Û (0)

α ) defined by

(4.8) Ω̂αf(m) = e−Ŝ(m)/hf(m), ∀m ∈ Û (0)
α

with Ŝ(m) = σ(α) − φ(m). For m ∈ U (0)
α , one has of course σ(α) = σ(m) and hence

Ŝ(m) = S(m) but this fails to be true for m = m̂(α). We then define the rescaled matrix

L̃ α = (˜̀α
s,m) ∈ M (Û (0)

α ,V(1)
α ) by

L̂ α = L̃ αΩ̂α
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i.e.

(4.9) ˜̀α
s,m = eŜ(m)/h ˆ̀α

s,m, ∀s ∈ V(1)
α ,m ∈ Û (0)

α .

Going back to the matrix L α, one has

L α = L̃ αΩ̂αT α

and using the fact that T αf(m) = f(m) for any f supported on U (0),I
α one gets

(4.10) L α = L̃ αT αΩα

with Ωα ∈ M (U (0)
α ,U (0)

α ) defined by Ωαf(m) = e−S(m)/hf(m). The following lemma gives

an asymptotic expansion of the matrix L̃ α. We recall that m1(s),m2(s) were defined in
Lemma 3.3

Lemma 4.4. Let α ∈ A and s ∈ V(1)
α , m ∈ Û (0)

α . The following hold true:

i) if m ∉ {m1(s),m2(s)}, then ˜̀α
s,m = 0.

ii) the coefficients ˜̀α
s,m admits a classical expansion ˜̀α

s,m ∼ h 1
2 ∑k≥0 h

k ˜̀α,k
s,m. Moreover,

one can chose ε0 = ±1 in (3.26) in order that the leading terms satisfy

(4.11) ˜̀α,0
s,m1(s) = π

− 1
2 ∣λ̂1(s)∣

1
2
hφ(m1(s))
hφ(s)

and in the case where m2(s) ∈ Û (0)
α ,

(4.12) ˜̀α,0
s,m2(s) = −π

− 1
2 ∣λ̂1(s)∣

1
2
hφ(m2(s))
hφ(s)

.

In particular, if m2(s) ∈ Û (0)
α , one has

(4.13)
˜̀α,0
s,m1(s)

hφ(m1(s))
= −

˜̀α,0
s,m2(s)

hφ(m2(s))

for all s ∈ V(1)
α .

Proof. Suppose first that m ≠ m1(s),m2(s). Then, supp(dφ,hg(0)m ) = supp(dχ̂m) is
contained in a small neighborhood ω of Γ(m). Since m ≠ m1(s),m2(s) it follows from

Lemma 3.3 that s ∉ ω and hence ˜̀α
s,m = 0 which proves i).

Let us now compute the coefficients ˜̀
s,m for m ∈ {m1(s),m2(s)} ∩ Û (0)

α (observe that
this set may be reduced to m1(s)). We compute these coefficients in the case where

m2(s) ∈ Û (0)
α . If it is not the case, the only non-zero coefficient is ˜̀

s,m1(s) that is computed
in the same way. Recall from (3.30), that the quasimodes on 1-forms are given by

f
(1)
s = ε0h

− d
4ψs(x)b(1)s (x,h)e−φ+,s(x)/h.

Summing up the construction of [8] section 4.2, there exists an open neighborhood Vs of s
on which one can find a system of local Morse coordinates (y, z) ∈ R ×Rd−1 in which s is
the origin and such that the following properties hold true:
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(1) in the above coordinate system one has

φ = φ(s) + 1

2
(λ̂1(s)y2 +

d

∑
j=2

λ̂j(s)z2
j )

and

φ+ =
1

2
( − λ̂1(s)y2 +

d

∑
j=2

λ̂j(s)z2
j )

where (λ̂j(s))j=1,...,d are the eigenvalues of Hess(φ) at point s.

(2) the amplitude b
(1)
s (x,h) admits a classical expansion

(4.14) b
(1)
s ∼

∞
∑
k=0

hkws,k

with

(4.15) ws,0 = (−1)d−1 ∣det Hessφ(s)∣ 14
π
d
4

dy on {z = 0}

(3) one can chose the orientation of the y axis so that

E(m1(s)) ∩ Vs ⊂ {y < 0} ∩ Vs and E(m2(s)) ∩ Vs ⊂ {y > 0} ∩ Vs.
Moreover, the cut-off function χm can be constructed so that

(4) in Vs the functions χ̂mj
, j = 1,2 depend only on the variable y,

and one can shrink ωs in order that

(5) supp(f (1)
s ) is contained in Vs.

Observe that the only minor (but important) difference with [8] is the property (2), saying
that each χmj , j = 1,2 is supported in one of the two different half plane {y ≶ 0}. Let us

now compute the first coefficient in the asymptotic expansion of ˜̀p,α
s,m. Using the above

properties, Proposition 3.5 and following the computations of [8] section 6 we get

ˆ̀α
s,m = ⟨f (1)

s , dφ,hg
(0)
m ⟩ =

h1− d
2 c(m, h)e(s, h)∫

B(s,ε)
e−(φ+(x)+φ(x)−φ(m))/h(χ̂′m(y) +O(h))dy ∧ dz2 ∧ . . . ∧ dzd

+Oε(e−(φ(s)−φ(m)+cε)/h)
with

e(s, h) = ε0(−1)d−1 ∣det Hessφ(s)∣ 14
π
d
4

+O(h) = ε0(−1)d−1π−
d
4hφ(s) +O(h)

Using the local form of φ and φ+, we get

ˆ̀α
s,m = h1− d

2 c(m, h)e(s, h)e−(φ(s)−φ(m))/h∫
B(s,ε)

e−g−(z)/h(χ̂′m(y) +O(h))dy ∧ dz2 ∧ . . . ∧ dzd

+Oε(e−(φ(s)−φ(m)+cε)/h)
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with g−(z) = ∑d
j=2 λ̂j(s)z2

j . Since χ̂m depends only on y and g− ≥ cν2 on ∣z∣∞ ≥ ν, the
integration domain B(s, ε) can be replaced by a smaller one Ws = {∣y∣ < ε, ∣z∣∞ ≤ νε}
modulo exponentially small error terms. Using also the identity Ŝ(m) = φ(s) − φ(m), we
get

ˆ̀α
s,m = Iε(h)e−Ŝ(m)/h +Oε(e−(Ŝ(m)+cε)/h)

with

Iε(h) = h1− d
2 c(m, h)e(s, h)∫

Ws

e−g−(z)/h(χ̂′m(y) +O(h))dy ∧ dz2 ∧ . . . ∧ dzd

The integral in the right hand side can be easily computed by mean of Stoke formula and
Laplace method. We get

Iε(h) = h1− d
2 c(m, h)e(s, h)([χ̂m]ε−ε +O(h))∫

∣z∣∞≤νε
e−g−(z)/hdz2 ∧ . . . ∧ dzd

= h 1
2 c(m, h)e(s, h)([χ̂m]ε−ε +O(h))( π

d−1
2

∣λ̂2(s) . . . λ̂d(s)∣
1
2

)

Combining this with the expression of c(m, h) and e(s, h), we obtain

˜̀α,0
s,m = ε0(−1)d−1[χ̂m]ε−επ−

1
2 ∣λ̂1(s)∣

1
2
hφ(m)
hφ(s)

.

We now remark that with our choice of χ̂m, one has [χ̂m1]ε−ε = −1 and [χ̂m2]ε−ε = 1. Taking
ε0 = (−1)d, we get immediately the formula of ii). ◻

5. Computation of the approximated singular values

From Lemma A.2, we know that the singular values of a block-diagonal matrix are given
by the singular values of each block. Hence, in view of the results of the preceding section,
we study the matrices L α. The first step in the analysis is to prove that L α is injective
excepted for α = α.

5.1. Injectivity of the matrix L α. We first compute the kernel of the matrix L̃ α.

Lemma 5.1. Let α ∈ A, then

- if α is of type I (that is U (0),II
α = ∅), then L̃ α,0 is injective

- if α is of type II, then Ker(L̃ α,0) = Rξ0 where ξ0 ∈ Rq̂α ≃ Fα is defined by

ξ0(m) = hφ(m)−1

for all m ∈ Û (0)
α .

Proof. Suppose first that α is of type II. Let x ∈ Fα = F (Û (0)
α ) be such that L̃ α,0x = 0,

then

(5.1) ∑
m∈Û(0)α

˜̀α,0
s,mxm = 0, ∀s ∈ V(1)

α .
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From i) of Lemma 4.4 it follows that

˜̀α,0
s,m1(s)xm1(s) = −˜̀α,0

s,m2(s)xm2(s), ∀s ∈ V(1)
α .

Moreover, since α is of type II, then m2(s) ∈ Û (0)
α for any s ∈ V(1)

α and thanks to (4.13) we
get

(5.2) xm1(s)hφ(m1(s)) = xm2(s)hφ(m2(s)), ∀s ∈ V(1)
α .

Now, we recall that for any s ∈ V(1)
α , m1(s) and m2(s) are exactly the two minima such

that s = Γα(m1) ∩ Γα(m2). Therefore, we deduce from (5.2) that

∀m,m′ ∈ Û (0)
α , (Γα(m) ∩ Γα(m′) ≠ ∅Ô⇒ hφ(m)xm = hφ(m′)xm′).

By definition of the equivalence relation R, this implies that xmhφ(m) is constant on Û (0)
α ,

which means exactly that x ∈ Rξ0.

Suppose now that α is of type I and let x ∈ F (U (0)
α ) such that L̃ α,0x = 0. As precedently,

one shows that there exists a constant c such that for all m ∈ U (0)
α , hφ(m)xm = c. Recall

that the non-empty set V(1),b
α was defined in Lemma 3.4. Given sb ∈ V(1),b

α , since m2(sb) =
m̂(α) ∉ Û (0)

α , one has ˜̀α,0
sb,m = 0 for any m ≠ m1(sb) and

˜̀α,0
sb,m1(sb)

= π− 1
2 ∣λ̂1(sb)∣

1
2 ≠ 0

Combined with (5.1) this shows that xm1(sb) = 0 and hence c = 0 which proves that

Ker(L̃ α,0) = 0. ◻

Proposition 5.2. Let α ∈ A, then the matrix ÍL α ∶= L̃ αT α admits a classical expansion
ÍL α ∼ h 1

2 ∑j h
j ÍL α,j and the matrix ÍL α,0 is injective.

Proof. Thanks to Lemma 3.6 and 4.4 the matrices L̃ α and T α admit some classical

expansions L̃ α ∼ h
1
2 ∑hjL̃ α,j and T α ∼ ∑hjT α,j. Therefore, ÍL α admits a classical

expansions ÍL α ∼ h 1
2 ∑j h

j ÍL α,j with ÍL α,0 = L̃ α,0T α,0.

Let us now prove that ÍL α,0 is injective.
Suppose first that α is of type I. Then T α = T α,0 = Id and the result follows immediately

from the first part of Lemma 5.1.
Suppose now that α is of type II and let x ∈ F (U (0)) be such that L̃ α,0T α,0x = 0. We

decompose x = xI + xII with x● supported in Û (0),●. Thanks to (3.20), one has

T α,0x(m) = xI(m) + ( ÍT α,0xII)(m)
with ÍT α,0 ∶ F (U (0),II) → F (Û (0),II) such that Ran ÍT α,0 = (Rθα0 )� where the function θα0
is defined by (3.11). On the other hand, one has ker L̃ α,0 = Rξ0 and one can decompose

ξ0 = ξI0 + ξII0 with ξII0 = θα,0. The equation L̃ α,0T α,0x = 0 implies that there exists λ ∈ R
such that T α,0x = λξ0 and hence ÍT α,0xII = λξII0 . On the other hand, by construction,

Ran ÍT α,0 = (ξII0 )�. This implies that λ = 0 and proves the result. ◻
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Corollary 5.3. For all α ∈ A the matrix L α is injective.

Proof. This follows directly from the above proposition and the fact that

(5.3) L α = L̂ αT α = L̃ αΩ̂αT α = ÍL αΩα

with Ωα defined below (4.10) which is invertible. ◻

5.2. Graded structure of the matrices L α. Throughout this section, we assume that

α ∈ A is fixed. Recall that we defined Sα = S(U (0)
α ), p(α) = ♯Sα and some integers

να1 < . . . < να
p(α) such that

Sα = {Sνα1 , . . . , Sναp(α)}
with the convention Sνα1 > . . . > Sνα

p(α)
. In order to lighten the notation we will drop the

indices α and write from now p = p(α), νj = ναj . To the set of heights Sα, we can associate
a natural partition

(5.4) Û (0)
α =

p

⊔
n=1

Û (0)
α,n

with Û (0)
α,n = {m ∈ Û (0)

α , φ(m) = σ(α) − Sνn}. We order this partition by deciding that

Û (0)
α,n+1 ≺ Û (0)

α,n. On the other hand, we recall that L α = ÍL αΩα with ÍL α = L̃ αT α. Let

us compute the matrices ÍL α and Ωα in the basis given by the above partition of Û (0)
α .

With a slight abuse of notation we still denote by ÍL α, Ωα the resulting matrices. Since

Ŝ(m) = σ(α) − Sνk on U (0)
α,k , it follows from (4.8) that in the above partition, the matrix

Ωα writes

(5.5) Ωα =

⎛
⎜⎜⎜⎜⎜⎜
⎝

e−Sνp/hIrp 0 ⋯ ⋯ 0

0 e−Sνp−1/hIrp−1 0 ⋯ 0
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ ⋯ 0 e−Sν1/hIr1

⎞
⎟⎟⎟⎟⎟⎟
⎠

where the rj = ♯ Û (0)
α,j are such that r1 + . . . + rp = ♯U (0)

α . Factorizing by e−Sνp/h, we get

Ωα = e−Sνp/hÌΩα(τ) with

(5.6) ÌΩα(τ) =

⎛
⎜⎜⎜⎜⎜
⎝

Irp 0 ⋯ ⋯ 0
0 τ2Irp−1 0 ⋯ 0
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ ⋯ 0 τ2τ3 . . . τpIr1

⎞
⎟⎟⎟⎟⎟
⎠

where τ = (τ2, . . . , τp) ∈ (R∗
+)p is defined by τj = e(Sνp−(j−2)−Sνp−(j−1))/h for any j = 2, . . . , p.

With these new notations, one deduces from (5.3), that L α,∗L α = he−2Sνp/h ÍMα(τ) with

(5.7) ÍMα(τ) = ÌΩα(τ)(h−1 ÍL α,∗ ÍL α)ÌΩα(τ).
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It turns out that matrix such matrices can be described in a slightly more general setting
that is useful to compute their spectrum. We introduce this setting now. Throughout,
we denote by S +(E) the set of symmetric positive definite matrix on a vector space E.
We will denote by S +

cl (E) the set of h-depending matrices M(h) ∈ S +(E) admitting a
classical expansion M(h) ∼ ∑j h

jMj with M0 ∈ S +(E). We will sometimes forget E and
write for short S +,S +

cl .

Definition 5.4. Let E = (Ej)j=1,...,p be a sequence of finite dimensional vector spaces Ej
of dimension rj > 0, let E = ⊕j=1,...,pEj and let τ = (τ2, . . . , τp) ∈ (R∗

+)p−1. Suppose that
τ ↦M(τ) is a smooth map from (R∗

+)p−1 into the set of matrices M (E).

- We say that M(τ) is an (E , τ)-graded matrix if there exists M′ ∈ S +(E) indepen-
dent of τ such that M(τ) = Ω(τ)M′Ω(τ) with Ω(τ) ∈ M (E) of the form (5.6),
that is Ω = diag(εj(τ)Irj , j = 1, . . . , p) where ε1(τ) = 1 and εj(τ) = (∏j

k=2 τk) for all
j ≥ 2.

- We say that a family of (E , τ)-graded matrices Mh(τ), h ∈]0, h0] is classical if one
has Mh(τ) = Ω(τ)M′(h)Ω(τ) for some matrix M′(h) ∈ S +

cl (E).

Throughout, we denote by G (E , τ) the set of (E , τ)-graded matrices and by Gcl(E , τ) the
set of classical (E , τ)-graded matrices.

Let us remark that for p = 1, a graded matrix is simply a τ -independent symmetric
positive definite matrix.

Lemma 5.5. Suppose that Mh(τ) is a classical (E , τ)-graded family of matrices and that
p ≥ 2. Then one has

(5.8) Mh(τ) = ( J(h) τ2Bh(τ ′)∗
τ2Bh(τ ′) τ 2

2Nh(τ ′)
)

with

- J(h) ∈ S +
cl (E1)

- Nh(τ ′) ∈ Gcl(E ′, τ ′) with τ ′ = (τ3, . . . , τp) and E ′ = (Ej)j=2,...,p.
- Bh(τ ′) ∈ M (E1,⊕pj=2Ej) satisfies

Bh(τ ′)∗ = (b2(h)∗, τ3b3(h)∗, τ3τ4b4(h)∗, . . . , τ3 . . . τpbp(h)∗)

with bj(h) ∶ E1 → Ej independent of τ admitting a classical expansion.

Moreover, the matrix Nh(τ ′) −Bh(τ ′)J(h)−1Bh(τ ′)∗ belongs to Gcl(E ′, τ ′).

Proof. Assume thatMh(τ) = Ω(τ)M′(h)Ω(τ) with Ω(τ) of the form (5.6). First observe
that

Ω(τ) = ( Irp 0
0 τ2Ω′(τ ′) )
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with

Ω′(τ ′) =

⎛
⎜⎜⎜⎜⎜
⎝

Irp−1 0 ⋯ ⋯ 0
0 τ3Irp−2 0 ⋯ 0
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ ⋯ 0 τ3τ4 . . . τpIr1

⎞
⎟⎟⎟⎟⎟
⎠

.

On the other hand, we can write

M′(h) = ( J(h) B′(h)∗
B′(h) N ′(h) )

with J(h),N ′(h) ∈ S +
cl and B′(h) admitting a classical expansion. Therefore,

Ω(τ)M′
hΩ(τ) = ( J(h) τ2B′(h)∗Ω′(τ ′)

τ2Ω′(τ ′)B′(h) τ 2
2 Ω′(τ ′)N ′(h)Ω′(τ ′) )

which has exactly the form (5.8) withBh(τ ′) = Ω′(τ ′)B′(h) andNh(τ ′) = Ω′(τ ′)N ′(h)Ω′(τ ′).
By construction, Nh(τ ′) belongs to Gcl(E ′, τ ′) and Bh(τ ′) has the required form.

It remains to prove that Rh ∶= Nh(τ ′) − Bh(τ ′)J(h)−1Bh(τ ′)∗ belongs to Gcl(E ′, τ ′).
First observe that since J(h) is symmetric positive definite, this quantity is well-defined.
Moreover, one has by construction

Rh = Ω′(τ ′)N ′(h)Ω′(τ ′) −Ω′(τ ′)B′(h)J(h)−1B′(h)∗Ω′(τ ′)
= Ω′(τ ′)R′(h)Ω′(τ ′)

with R′(h) = N ′(h) −B′(h)J(h)−1B′(h)∗. Since J(h) ∈ S +
cl , then J(h)−1 ∈ S +

cl and R′(h)
admits a classical expansion R′(h) ∼ ∑j h

jR′
j with

R′
0 = J0 −B′

0J
−1
0 (B′

0)∗.
Moreover, since M′(h) ∈ S +

cl then the matrix

M′
0 = ( J0 (B′

0)∗
B′

0 N ′
0

)

is symmetric definite positive. Hence, it follows directly from Lemma A.5 that R′
0 ∈ S +.

◻

5.3. The spectrum of graded matrices. Using Lemma 5.5, we define an application
R ∶ Gcl(E , τ)→ Gcl(E ′, τ ′) with τ ′ = (τ3, . . . , τp) and E ′ = ⊕pj=2Ej, by

(5.9) R(Mh(τ)) = Nh(τ ′) −Bh(τ ′)J(h)−1B∗
h(τ ′)

for anyMh(τ) ∈ Gcl(E , τ). Of course, the map R depends on E and τ , but we ommit this
dependance since the set on which R is acting will be obvious in the sequel. By a slight
abuse of notations we will denote Rk = R ○ . . . ○ R (k times). Obviously, Rk acts from
G (E , τ) into G (E (k), τ (k)) with E (k) = ⊕pj=k+1Ej and τ (k) = (τk+2, . . . , τp). In the same way,

we defined R, we can define a map J ∶ Gcl(E , τ) → S +
cl (E1) by J (Mh(τ)) =Mh if p = 1

and J (Mh(τ)) = J(h) for any Mh(τ) having the form (5.8) if p ≥ 2.
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Theorem 5.6. Let E = (Ej)j=1,...,p be a finite sequence of vector space Ej of finite dimension
nj = dimEj and let τ = (τ2, . . . , τp) ∈ (R∗

+)p−1. Suppose that Mh(τ) is classical (E , τ)-
graded. There exists h0 > 0 and δ > 0 such that uniformly with respect to h ∈]0, h0] and
∣τ ∣∞ < δ, one has

(5.10) σ(Mh(τ)) =
p

⊔
j=1

εjσ(J ○Rj−1(Mh(τ)))(1 +O(∣τ ∣2∞))

with εj = εj(τ) given in Definition 5.4.

Remark 5.7. In the above theorem, the matrix J ○Rj−1(Mh(τ)) is always independent of
the parameter τ . Let us denote {λj1 ≤ . . . ≤ λ

j
nj} = σ(J ○Rj−1(Mh(τ)). The identity (5.10)

means that there exists a, b > 0 independent of τ, h such that

σ(Mh(τ)) ⊂
p

⊔
j=1

εj[a, b]

and that for all j = 1, . . . , p, Mh(τ) has exactly nj eigenvalues µj1 ≤ . . . ≤ µ
j
nj in εj[a, b] and

µjn = εj(λjn +O(∣τ ∣2∞)).
Proof. We prove the theorem by induction on p. Throughout the proof the notation
O(.) is uniform with respect to the parameters h and τ . For p = 1,Mh(τ) =Mh ∈ S +

cl (E1)
is independent of τ and JR0(Mh(τ)) = JMh(τ) =Mh which proves the statement.

Suppose now that p ≥ 2 and let Mh(τ) ∈ Gcl(E , τ). We have

Mh(τ) = ( J(h) τ2Bh(τ ′)∗
τ2Bh(τ ′) τ 2

2Nh(τ ′)
)

with J(h),Bh(τ ′) and Nh(τ ′) as in Lemma 5.5. In order to lighten the notation we will
drop the variable τ, τ ′ in the proof below. For λ ∈ C, let

(5.11) P(λ) ∶=Mh − λ = ( J(h) − λ τ2B∗
h

τ2Bh τ 2
2Nh − λ

) .

This is an holomorphic function, and since it is non trivial, its inverse is well defined
excepted for a finite number of values of λ which are exactly the eigenvalues of Mh.
Moreover λ ∈ C ↦ P(λ)−1 is meromorphic with poles in σ(Mh) and for any µ in σ(Mh),
the rank of the residue of P(λ)−1 at µ is exactly the multiplicity of µ as an eigenvalue.

Let us first prove that Mh admits at least n1 eigenvalues of size 1. Let λ1
n = λ1

n(h),
n = 1, . . . , n1 denote the increasing sequence of eigenvalues of the positive definite matrix
J(h). Since J(h) = J0 +O(h) with J0 ∈ S +, then the λ1

n(h) satisfy λ1
n(h) = λ1

n,0 +O(h)
with λ1

n,0 eigenvalue of J0. In particular λ1
n,0 > 0 for all n = 1, . . . , n1 and hence there exists

c1, d1 > 0 and h0 > 0 such that for h ∈]0, h0] and all n = 1, . . . , n1, one has λ1
n(h) ∈ [c1, d1].

Let n ∈ {1, . . . , n1} be fixed and consider Dn = Dn(h, τ2) = {z ∈ C, ∣z − λ1
n∣ ≤ Mτ 2

2 } for

some M > 0 that will be chosen large enough later and D̃n = {z ∈ C, ∣z − λ1
n∣ ≤ 2Mτ 2

2 }.

Observe that for h, τ2 > 0 small enough, the disks D̃n are disjoint. By definition, one
has Nh(τ ′) = O(1) and since λ`n ≥ c1 > 0, this implies that for τ2 > 0 small enough with
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respect to c and λ ∈ D̃n, the matrix τ 2
2Nh(τ ′)−λ is invertible, and (τ 2

2Nh(τ ′)−λ)−1 = O(1).
Moreover, for λ ∈ D̃n ∖ Dn, J(h) − λ is invertible and (J(h) − λ)−1 = O(τ−2

2 M−1). This
implies that for M > 0 large enough, J(h) − λ − τ 2

2B
∗
h(τ 2

2Nh − λ)−1Bh is invertible with

(J(h) − λ − τ 2
2B

∗
h(τ 2

2Nh − λ)−1Bh)
−1 = (J(h) − λ)−1(I − τ 2

2B
∗
h(τ 2

2Nh − λ)−1Bh(J(h) − λ)−1)
−1

= (J(h) − λ)−1(1 +O(M−1)).

(5.12)

Hence, the standard Schur complement procedure shows that for λ ∈ D̃n ∖ Dn, P(λ) is
invertible with inverse E(λ) given by

(5.13) E(λ) = ( E(λ) −τ2E(λ)B∗
h(τ 2

2Nh − λ)−1

−τ2(τ 2
2Nh − λ)−1BhE(λ) E0(λ) )

with

E(λ) = (J(h) − λ − τ 2
2B

∗
h(τ 2

2Nh − λ)−1Bh)
−1

and
E0(λ) = (τ 2

2Nh − λ)−1 + τ 2
2 (τ 2

2Nh − λ)−1BhE(λ)B∗
h(τ 2

2Nh − λ)−1

By the functional calculus and Cauchy formula, the number of eigenvalues ofMh (counted
with multiplicity) in Dn is equal to the rank of the projector

Πn =
1

2iπ ∫∂Dn
E(λ)dλ.

Let us denote Rτ2(λ) = −τ2(τ 2
2Nh − λ)−1Bh and R†

τ2(λ) = −τ2B∗
h(τ 2

2Nh − λ)−1 , then

(5.14) Πn =
1

2iπ ∫∂Dn
( E(λ) E(λ)R†

τ2(λ)
Rτ2(λ)E(λ) (τ 2

2Nh − λ)−1 +Rτ2(λ)E(λ)R†
τ2(λ)

)dλ

Since Nh = O(1), then τ 2
2Nh − λ is invertible in D̃n and it follows that

Πn =
1

2iπ ∫∂Dn
( E(λ) E(λ)R†

τ2(λ)
Rτ2(λ)E(λ) Rτ2(λ)E(λ)R†

τ2(λ)
)dλ

that can be written

Πn =
1

2iπ ∫∂Dn
Rτ2(λ)(

E(λ) E(λ)
E(λ) E(λ) )R†

τ2(λ)dλ

with R●
τ2 = ( I 0

0 R●
τ2

). Moreover, since R●
τ2 is invertible and holomorphic in D̃n then so is

R●
τ2 . Therefore, rk(Πn) = rk(Π̃n) where

Π̃n =
1

2iπ ∫∂Dn
( E(λ) E(λ)
E(λ) E(λ) )dλ = ( En En

En En
)

with

En =
1

2iπ ∫∂Dn
(J(h) − λ − τ 2

2B
∗
h(τ 2

2Nh − λ)−1Bh)
−1

dλ.



42 L. MICHEL

Since for M large enough independent of (h, τ), the matrix (I−τ 2
2B

∗
h(τ 2

2Nh−λ)−1Bh(J(h)−
λ)−1)−1 is holomorphic in D̃n, it follows from (5.12) that the rank of En is exactly the
multiplicity of λ1

n and hence the rank of Πn is exactly the multiplicity of λ1
n. This proves

that Mh admits at least n1 eigenvalues µ1
1 ≤ . . . ≤ µ1

n1
in the interval [c1 −Mτ 2

2 , d1 +Mτ 2
2 ]

and that these eigenvalues satisfy

(5.15) µ1
n = λ1

n +O(τ 2
2 ), ∀n = 1, . . . , n1.

Let us now study the eigenvalues below τ 2
2 . Throughout the proof, we denote t = ∣τ ′∣∞.

Thanks to the last part of Lemma 5.5, the matrix Zh(τ ′) ∶=R(Mh(τ)) = Nh−BhJ(h)−1B∗
h

is classical (E ′, τ ′)-graded. Hence, it follows from the induction hypothesis that uniformly
with respect to h, one has

(5.16) σ(Zh(τ ′)) =
p

⊔
j=2

ε̃jσ(J ○Rj−2(Zh(τ ′)))(1 +O(∣τ ′∣2∞))

with ε̃j = (∏j
l=3 τl)2 for j ≥ 3 and ε̃2 = 1. Moreover, by definition, one has Zh = R(Mh(τ)),

hence (5.16) rewrites

(5.17) σ(Zh(τ ′)) =
p

⊔
j=2

ε̃jσ(J ○Rj−1(Mh(τ)))(1 +O(∣τ ′∣2∞)).

Since Mh(τ ′) ∈ Gcl(E , τ), then for all j = 2, . . . , p the matrix J ○Rj−1(Mh(τ)) belongs to
S +
cl (Ej). For j = 2, . . . , p, let λj1(h) ≤ . . . ≤ λ

j
nj(h) denote the eigenvalues of the symmetric

matrix J ○Rj−1(Mh(τ)). As above, this implies that there exists cj, dj > 0 and h0 > 0 such

that for all h ∈]0, h0] the eigenvalues λjnj(h) satisfy λjnj(h) ∈ [cj, dj] for all n = 1, . . . , nj.
Suppose now that j ∈ {2, . . . , p} and n ∈ {1, . . . , nj} are fixed and consider D′

j,n = {z ∈ C, ∣z−
εjλ

j
n∣ ≤ Mt2εj} for some M > 0 to be chosen large enough and D̃′

j,n = {z ∈ C, ∣z − εjλjn∣ ≤
2Mt2εj}. As above, we introduce also the corresponding projector

Π′
j,n =

1

2iπ ∫∂D′
j,n

E(λ)dλ.

Since J0 is invertible, we know that for λ in D̃′
j,n and h, t small enough, J(h)−λ is invertible

and once again the Schur complement formula permits to write the invert of P(λ)

(5.18) E(λ) = ( E0(λ) −τ2(J(h) − λ)−1B∗
hE(λ)

−τ2E(λ)Bh(J(h) − λ)−1 E(λ) )

with

E(λ) = (τ 2
2Nh − λ − τ 2

2Bh(J(h) − λ)−1B∗
h)

−1

and
E0(λ) = (J(h) − λ)−1 + τ 2

2 (J(h) − λ)−1B∗
hE(λ)Bh(J(h) − λ)−1.

Setting λ = τ 2
2 z, we get (using the relation εj = τ 2

2 ε̃j)

Π′
j,n =

τ 2
2

2iπ ∫∂D̂′
j,n

E(τ 2
2 z)dz
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with D̂′
n = {z ∈ C, ∣z − ε̃jλjn∣ ≤Mt2ε̃j}. Moreover, for ∣z − ε̃jλjn∣ =Mt2ε̃j, the matrix J(h) is

invertible with J(h)−1 = O(1), hence we have

E(τ 2
2 z) = τ−2

2 (Nh − z −Bh(J(h) − τ 2
2 z)−1B∗

h)
−1

= τ−2
2 (Zh − z +O(τ 2

2 ∣z∣))−1

= τ−2
2 (Zh − z)−1(I +O(τ 2

2 ε̃j∥(Zh − z)−1∥)).

Moreover, by definition of D̂′
j,n and thanks to (5.16), one has dist(z, σ(Zh)) ≥ 1

2Mt2ε̃j for

any z ∈ ∂D̂′
j,n. Hence ∥(Zh − z)−1∥ ≤ 2(Mt2ε̃j)−1 and since t ≥ τ2, it follows that

E(τ 2
2 z) = τ−2

2 (Zh − z)−1(I +O(M−1)).

Integrating along ∂D̃′
j,n and working as above, we get

Π′
j,n =

1

2iπ ∫∂D′
j,n

R†
τ2(λ)(

E(λ) E(λ)
E(λ) E(λ) )Rτ2(λ)dλ

with R●
τ2 = ( R●

τ2 0
0 I

). The same argument as above show that rk(Πn) = rk(E′
n) with

E′
n =

τ 2
2

2iπ ∫∂D̂′
j,n

E(τ 2
2 z)dz =

1

2iπ ∫∂D̂′
j,n

(Zh − z)−1(I +O(M−1))−1dz

This shows again that the rank of E′
n (and hence Π′

j,n) is exactly the multiplicity of λjn.

Therefore, for any j = 2, . . . , p, Mh admits nj eigenvalues µ1
1 ≤ . . . µ1

n1
in the interval

εj[cj −Mt2, dj +Mt2] and that these eigenvalues satisfy

(5.19) µjn = εj(λjn +O(∣τ ∣2∞)), ∀n = 1, . . . , nj.

Combining this estimate with (5.15) and using the fact the dim(E) = ∑p
j=1 rj, we obtain

the µjn are the only eigenvalues of Mh. This completes the proof. ◻

5.4. The singular values of L α. Given m,m1,m2 ∈ U (0) and s ∈ V(1), we denote

υ2(s,m,m1,m2) = π−
1
2 ∣λ̂1(s)∣

1
2(hφ(m1)

hφ(s)
δm,m1 −

hφ(m2)
hφ(s)

δm,m2)(5.20)

and

(5.21) υ1(s,m,m1) = π−
1
2 ∣λ̂1(s)∣

1
2
hφ(m1)
hφ(s)

δm,m1 .

Let us define the matrix Υα ∈ M (Û (0)
α ,V(1)

α ) by

(5.22) Υα(s,m) = { υ2(s,m,m1(s),m2(s)) if m2(s) ∈ Û (0)
α

υ1(s,m,m1(s)) if m2(s) ∉ Û (0)
α
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where the indexes m, s are enumerated according to the partitions of Section 5.2. Observe
that with this notation, the conclusion of Lemma 4.4 rephrases as L̃ α,0 = Υ. Moreover,
the above expression can be simplified according to the type of α. More precisely,

- if α is of type I, then m2(s) ∈ Û (0)
α if and only if s ∈ V(1),i

α

- if α is of type II, then m2(s) is always in Û (0)
α .

Theorem 5.8. Let Mα = L α,∗L α. There exist c > 0 such that counted with multiplicity,
one has

σ(Mα) =
p(α)
⊔
j=1

he
−2h−1Sνα

j σ(Mα,j)(1 +O(e−c/h))

where the matrices Mα,j have a classical expansion Mα,j ∼ ∑hkMα,j
k whose leading term is

given by
Mα,j

0 = JRj−1(Zα)
where Zα = ΩαT α,0Υα,∗ΥαT α,0Ωα belongs to G (E , τ) with E = (F (Û (0)

α,j ))j=1,...,p and τ =
(τj)j=1,...,p with τj = e(Sνp−(j−2)−Sνp−(j−1))/h

Proof. One has
Mα = L α,∗L α = he−2Sp1/h ÍMα

with ÍMα given by (5.7):
ÍMα(τ) = ÌΩα(τ)∗ ÍMα,′ÌΩα(τ)

with ÍMα,′ = (h−1 ÍL α,∗ ÍL α). Of course, this matrix is symmetric positive and thanks to
Proposition 5.2, it admits a classical expansion

ÍMα,′ ∼∑
k

hk ÍMα,′

k

with ÍMα,′

0 = ( ÍL α,0)∗ ÍL α,0 = T α,0Υα,∗ΥαT α,0 ∈ S +. This shows that ÍMα,′ belongs to

S +
cl . Hence ÍMα is classical (E , τ)-graded with E = (F (Û (0)

α,j ))j=1,...,p and τ = (τ2, . . . , τp),
τj = e(Sνp−(j−2)−Sνp−(j−1))/h and the conclusion follows directly from Theorem 5.6. ◻

6. Proof of main theorem

In this section we explain how one can deduce Theorem 2.8 from Theorem 5.8. As in
[8], the general idea is to compare the singular values of the successive reduced matrix by
mean of Fan inequalities. As a preparation, we shall compare the matrices Lπ,′ and Lbkw,′
defined in Section 3. First, observe that thanks to (4.4), (4.5), (4.10), one has

(6.1) Lbkw,′ = JLbkw,′′ = J L = J L̃ T Ω

with J ∶ F (V(1)) → F (U (1)) defined by Js,s′ = δs,s′ , L̃ = diag(L̃ α, α ∈ A), T =
diag(T α, α ∈ A) and Ω = diag(Ωα, α ∈ A).
Lemma 6.1. There exists γ > 0 such that

Lπ,′ = (J +O(e−γ/h))L .
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Proof. First observe that thanks to Lemma 4.1, one has

(6.2) Lπ,′ = Lbkw,′ +R
with R ∶ F (U (0))→F (U (1)) satisfying

(6.3) Rs,m = O(e−(S(m)+γ)/h), ∀m ∈ U (0)

for some γ > 0. Using (6.1), we get

Lπ,′ = J L̃ T Ω + R̃Ω

with R̃ = O(e−γ/h). Hence, we have to prove that there exists R ∶ F (V(1)) → F (U (1))
such that R̃ = RL̃ T and R = O(e−γ/h). From Proposition 5.2, we know that the matrix

W ∶= (L̃ T )∗L̃ T is invertible with inverse uniformly bounded with respect to h. This

allows to define R ∶= R̃W −1(L̃ T )∗. Thanks to the above remarks, one has R = O(e−γ/h)
and by construction

RL̃ T = R̃W −1(L̃ T )∗L̃ T = R̃
which completes the proof. ◻

We are now ready to prove Theorem 2.8. Until the end of this section, γ,C > 0 denote
some constants independent on h that may change from line to line. We shall also denote
by SV (M) the singular values of any matrix M .

From Section 2.3, we know that the n0 exponentially small eigenvalues of ∆
(0)
φ are the

square of the singular values of the matrix L. Thanks to Lemmas 3.12 and 3.13, one has

L = (Id+O(e−γ/h))Lπ(Id+O(e−γ/h))
and it follows from Fan inequality (Lemma A.1) that

SV (L) = SV (Lπ)(1 +O(e−γ/h)).
Hence, we are reduced to compute the singular values of Lπ. Since the first column of Lπ
is the null vector, it follows that the non zero singular values of Lπ are the singular values
of Lπ,′ . From Lemma 6.1, one knows that

(6.4) Lπ,′ = (J +O(e−γ/h))L .

and since J ∗J = Id this implies for h small enough

(6.5) L = (J ∗ +O(e−γ/h))Lπ,′ .
Using the fact that ∥J ∥ = ∥J ∗∥ = 1, (6.4) and (6.5) combined with Lemma A.1 show that

SV (Lπ,′) = (1 +O(e−γ/h))SV (L ).
Combined with Theorem 5.8 this proves Theorem 2.8.

7. Some particular cases and examples

In this section, we rephrase Theorem 5.8 in the particular situations p(α) = 1 and
p(α) = 2.



46 L. MICHEL

7.1. The case p(α) = 1. In this section we assume that p(α) = 1. Then, the set Sα is

reduced to a singleton Sα = {Sνα1 }. Moreover, the points of U (0)
α are either all of type I, or

all of type II.

7.1.1. The case where α is of type II. We first assume that α is of type II. Then all the

points m ∈ U (0)
α are of type II and Theorem 5.8 takes the following form

Theorem 7.1. Let α ∈ A be such that p(α) = 1 and all the points of U (0)
α are of type

II. Then the matrix L α has exactly qα = ♯U (0)
α singular values counted with multiplicity,

ρα,µ(h), µ = 1, . . . , qα. They have the following form

ρα,µ(h) = h
1
2 ζα,µ(h)e−Sνα1 /h

where ζα,µ ∼ ∑∞
r=0 h

rζα,µ,r is a classical symbol such that the ζα,µ,0, µ = 1, . . . , qα are the non

zero singular values of the matrix Υα ∈ M (Û (0)
α ,V(1)

α ) given by

Υα
s,m = π− 1

2 ∣λ̂1(s)∣
1
2(hφ(m1(s))

hφ(s)
δm,m1(s) −

hφ(m2(s))
hφ(s)

δm,m2(s)), ∀s ∈ V(1)
α , m ∈ Û (0)

α

with m1(s),m2(s) defined in Lemma 3.3.

Observe that the description of the approximated small eigenvalues of ∆φ in the above
theorem is very close in spirit to that obtained in non degenerate situations. Though,
the different eigenvalues ρα,µ are linked one each other, the only minima involved in the
computation of the prefactor ζα,µ are associated to the typical height Sνα1 . In that sense,
we can say that the above formula is a generalized Eyring-Kramers formula.

As already mentioned in the introduction, the matrix Υα enjoys a nice interpretation in
terms of graphs theory. In order to simplify, suppose that the function φ is such that the
coefficients of Υα are either 1 or −1. Define a graph Gα associated to the equivalence class

α in the following way. The vertices of the graph are the minima m ∈ Û (0)
α and the edges

are the saddle points s ∈ V(1)
α . The two vertices associated to the edge s ∈ V(1)

α are just
m1(s) and m2(s). With this definition it turns out that the matrix Υα is the transpose
of the incidence matrix of a certain oriented version of the graph G. As a consequence,
the ∣ζα,µ,0∣2 are the eigenvalues of the corresponding graph Laplacian ∆G = (δm,m′)m,m′∈Û(0)
defined by

(7.1) δm,m′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(m) if m = m′

−1 if m ≠ m′ and there is an edge between m and m′

0 otherwise

where the degree d(m) is the number of edges incident to the vertex m.
Figure 1.1 in the introduction presents an example of potential φ having one unique

saddle value σ and such that all local minima are absolute minima. We represent also in
Figure 1.1 the graph associated to the non trivial equivalence class (that is the one which
is not reduced to one element).
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In the case where the coefficients of Υα are not necessarily equal to ±1, the same inter-
pretation is available with weighted graphs. We refer to [3] for definitions and standard
results on graphs theory.

7.1.2. The case where α is of type I. In this section, we compute explicitly the singular
values of L α, when α is of type I.

Theorem 7.2. Let α ∈ A be such that p(α) = 1 and all the points of U (0)
α are of type

I. Then, the matrix L α has exactly qα ∶= ♯U (0)
α singular values counted with multiplicity.

These singular values ρα,µ(h), µ = 1, . . . , qα have the following form

ρα,µ(h) = ζα,µ(h)e−Sνα1 /h

where ζα,µ ∼ h 1
2 ∑∞

r=0 h
rζα,µ,r has a classical expansion such that ζα,µ,0 are the qα singular

values of the matrix Υα given by

Υs,m = π− 1
2 ∣λ̂1(s)∣

1
2(hφ(m1(s))

hφ(s)
δm,m1(s) −

hφ(m2(s))
hφ(s)

δm,m2(s))

if s ∈ V(1),i
α and

Υs,m = π− 1
2 ∣λ̂1(s)∣

1
2
hφ(m1(s))
hφ(s)

δm,m1(s)

if s ∈ V(1),b
α . Moreover, these singular values are non zero.

As in the case of points of type II we can interpret the matrix L̃ α,0 in terms of graphs.
However, some saddle points are now associated to only one minimum. In terms of graph,
this leads to some edges having only one vertex which means that we are dealing with
hypergraphs.

7.2. The case p(α) = 2. In all this section we assume that p(α) = 2. Then φ takes two

different values ϕ− < ϕ+ on U (0)
α . One has Sα = {Sνα+ < Sνα− } with Sνα± = σ(α) − ϕ±.

7.2.1. The case where α is of type II. The partition (5.4) takes the form Û (0)
α = Û (0)

α,+ ⊔ Û (0)
α,−

with Û (0)
α,± = {m ∈ U (0)

α , φ(m) = ϕ±}. Since α is of type II, then m2(s) ∈ Û (0)
α for all s. It is

then convenient to introduce the partition of V(1)
α given by

(7.2) V(1)
α = V(1)

α,+ ⊔ V(1)
α,+− ∪ V(1)

α,−

with V(1)
α,+ = {s ∈ V(1)

α , m1(s),m2(s) ∈ Û (0)
α,+} and V(1)

α,− = {s ∈ V(1)
α , m1(s),m2(s) ∈ Û (0)

α,−},
where the functions m1,m2 are defined by Lemma 3.3. In the case s ∈ V(1)

α,+−, it follows from

the choice of Lemma 3.3 that m1(s) ∈ Û (0)
α,+ and m2(s) ∈ Û (0)

α,−. We order the above partitions

by deciding Û (0)
α,+ ≺ Û (0)

α,− and V(1)
α,+ ≺ V(1)

α,+− ≺ V(1)
α,−. Then, the matrix Y α ∶= h− 1

2 e−Sνα+ /hL̂ α has
the form

Y α =
⎛
⎜
⎝

ι 0
b+− τb−+
0 τa

⎞
⎟
⎠
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where τ = e(Sνα+ −Sνα− )/h and the matrices ι, b+−, b−+ admit a classical expansion whose prin-
cipal terms are given by the following formula

- for all s ∈ V(1)
α,+ and m ∈ Û (0)

α,+ one has ι0s,m = υ2(s,m,m1(s),m2(s))
- for all s ∈ V(1)

α,− and m ∈ Û (0)
α,− one has a0

s,m = υ2(s,m,m1(s),m2(s))
- for all s ∈ V(1)

α,+−, m ∈ Û (0)
α,+ and m′ ∈ Û (0)

α,− one has (b0
+−)s,m = υ1(s,m,m1(s)) and

(b0
−+)s,m′ = −υ1(s,m′,m2(s))

with υ2, υ1 given by (5.20), (5.21). By a standard block-matrix computation one has

(7.3) (Y α)∗Y α = ( J τB̂

τB̂∗ τ 2Â
)

with J = ι∗ι + b∗+−b+−, B̂ = b∗+−b−+ and Â = a∗a + b∗−+b−+. All these matrices admit a classical
expansion, Â ≃ ∑k≥0 h

kÂk, B̂ ≃ ∑k≥0 h
kB̂k, J = ∑k≥0 h

kJk and one has J0 = ι0,∗ι0 + b0,∗
+− b0

+−,

B̂0 = b0,∗
+− b0

−+ and Â0 = a0,∗a0 + b0,∗
−+ b0

−+, where we use the notation (cj)∗ = cj,∗.

Theorem 7.3. The matrix L α has exactly qα,± = ♯U (0)
α,± singular values λ±α,µ(h), µ =

1, . . . , qα,± counted with multiplicity which are of order h
1
2 e−Sνα± /h. These singular values

have the following form

λ±α,µ(h) = ζ±α,µ(h)e−Sνα± /h

where ζ±α,µ ∼ h 1
2 ∑k h

kζ±α,µ,k is a classical symbol such that (ζ±α,µ,0)2 are the qα,± non-zero

eigenvalues of the matrices G± given by G+ = J0 and G− = Â0 − (B̂0)∗(J0)−1B̂0, where

Â0, J0 and B̂0 are defined below (7.3).

Let us make a few comments on this theorem. First, observe that the prefactor ζ± = ζ±α,µ
obeys two different laws wether we are in the + or − case. In the + case, ζ+ is determined

by the matrix J0 which depends only on the minima m ∈ U (0)
α such that S(m) = Sν+ . In

that sense, the behavior of ζ+ obeys law similar to the generalized Eyring-Kramers law of
Theorem 7.1. In the − case, the situation is different since the matrix G− involves values of
φ on all minima and not only those for which S(m) = Sν− . Hence the term (B̂0)∗(J0)−1B̂0

in the definition of G− can be understood as a tunneling term between minima associate
to both heights.

This interpretation is confirmed by the following example. Suppose that φ has two
distinct minimal values and one saddle value. Figure 7.1 below represents such a potential.
The blue wells correspond to the absolute minimal value and the red one to the other
minimal value. All the saddle points are supposed to be at the same level. Then, the
matrices Â0 and J0 can be viewed as the Laplacians of the hypergraphs built as follows.
First we consider the graph G associated to all the minima whose vertex are the minima
and edges are the saddle points between two minima (without distinction on the level of
the minima). The blue and red hypergraphs Gb and Gr are obtained by cutting the graph
G on edges between a blue and a red minimum. Eventually, the matrix B links blue and
red minima.
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Figure 7.1. Top: The sublevel set {φ < σ} associated to a potential φ
having a unique saddle value and two minimal values. Bottom: The

associated hypergraphs.

7.2.2. The case where α is of type I. In this section we assume that α is of type I. The

partition (5.4) takes the form U (0)
α = U (0)

α,− ⊔ U (0)
α,+ with

U (0)
α,± = {m ∈ U (0)

α , φ(m) = ϕ±}.

We order the two elements of P(0)
α by deciding U (0)

α,+ ≺ U (0)
α,−. In order to deal with the saddle

points, we introduce the partition P(1)
α which is a mix of partitions used in Lemma 3.4

and Section 7.2.1:

V(1)
α = V(1)

α,+,b ⊔ V
(1)
α,+,i ⊔ V

(1)
α,+− ⊔ V(1)

α,−,b ⊔ V
(1)
α,−,i

with

V(1)
α,+,− = {s ∈ V(1),i

α , m1(s) ∈ U (0)
α,+,m2(s) ∈ U (0)

α,−}
V(1)
α,+,i = {s ∈ V(1),i

α , m1(s),m2(s) ∈ U (0)
α,+}

V(1)
α,+,b = {s ∈ V(1),b

α ,m1(s) ∈ U (0)
α,+}

V(1)
α,−,i = {s ∈ V(1),i

α , m1(s),m2(s) ∈ U (0)
α,−}

V(1)
α,−,b = {s ∈ V(1),b

α ,m1(s) ∈ U (0)
α,−}.

(7.4)

Here the function m1,m2 are defined by Lemma 3.3. One has the following

Theorem 7.4. Assume that p(α) = 2 and α is of type I. The matrix L α has exactly

qα,± = ♯U (0)
α,± singular values λ±α,µ(h), µ = 1, . . . , qα,± counted with multiplicity which are of

order h
1
2 e−Sνα± /h. These singular values have the following form

λ±α,µ(h) = ζ±α,µ(h)e−Sνα± /h
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m1,1

m2,1 m2,2

m2,3

σ2

σ1 =∞

φ(m2,3)

φ(m2,1) = φ(m2,2)

φ(m1,1)

s1 s2 s3

S3
S2

S2

Figure 7.2. A potential with p(α) = 1 for all α

where ζ±α,µ ∼ h
1
2 ∑k h

kζ±α,µ,k is a classical symbol such that (ζ±α,µ,0)2 are the qα,± eigenvalues

(which are non zero) of the matrices G± given by G+ = J0 and G− = A0 − (B0)∗(J0)−1B0,
where A0,B0 and J0 are defined by

J0 = ι0,∗ι0 + b0,∗
+− b

0
+−, B

0 = b0,∗
+− b

0
−+, A

0 = a0,∗a0 + b0,∗
−+ b

0
−+

with the matrix, a0, b0
+−, b

0
−+ and ι0 defined by

- for all s ∈ V(1)
α,+,i and m ∈ U (0)

α,+ one has ι0s,m = Υ2(s,m,m1(s),m2(s))
- for all s ∈ V(1)

α,+,b and m ∈ U (0)
α,+ one has ι0s,m = Υ1(s,m,m1(s))

- for all s ∈ V(1)
α,−,i and m ∈ U (0)

α,− one has a0
s,m = Υ2(s,m,m1(s),m2(s))

- for all s ∈ V(1)
α,−,b and m ∈ U (0)

α,− one has a0
s,m = Υ1(s,m,m1(s))

- for all s ∈ V(1)
α,+−, m ∈ U (0)

α,+ and m′ ∈ U (0)
α,− one has (b0

+−)s,m = Υ1(s,m,m1(s)) and
(b0

−+)s,m′ = −Υ1(s,m′,m2(s))

7.3. Some examples.

7.3.1. Computations in dimension one with p(α) = 1. Let us compute the small eigenvalues
of the potential φ represented in Figure 7.2.

As already noticed in the discussion below Theorem 2.8, there are exactly three equiva-

lence classes for R in that case: U (0)
1 = {m1,1}, U (0)

2 = {m2,1,m2,2} and U (0)
3 = {m2,3}. Let us

denote by s1 the saddle point between m2,1 and m2,2, s2 the saddle point between m2,2 and
m1,1 and s3 the saddle point between m1,1 and m2,3. Denote also S2 = φ(s1) − φ(m2,1) =
φ(s1) − φ(m2,2) and S3 = φ(s3) − φ(m2,3). Observe also that for all m ∈ U (0), one has
H(m) = {m}. Then the matrix Lbkw defined by (4.2), admits the following form

Lbkw = (h
π
)

1
2
⎛
⎜
⎝

0 d2
1,1 d2

1,2 0
0 d2

2,1 d2
2,2 0

0 0 0 d3

⎞
⎟
⎠
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with the coefficients given by the following formula:

d2
1,1 = (∣φ′′(s1)φ′′(m2,1)∣

1
4 +O(h))e−S2/h, d2

1,2 = −(∣φ′′(s1)φ′′(m2,2)∣
1
4 +O(h))e−S2/h

d2
2,1 = 0, d2

2,2 = (∣φ′′(s2)φ′′(m2,2)∣
1
4 +O(h))e−S2/h, d3 = (∣φ′′(s3)φ′′(m2,3)∣

1
4 +O(h))e−S3/h

The corresponding squares of singular values are then

λ0 = 0, λ3 =
h

π
(∣φ′′(s3)φ′′(m2,3)∣

1
2 +O(h))e−2S3/h and λ±2 =

h

π
(µ±2 +O(h))e−2S2/h

where µ±2 are the square of the singular values of the matrix

D̃2 = ( a −b
0 c

)

with a = ∣φ′′(s1)φ′′(m2,1)∣
1
4 , b = ∣φ′′(s1)φ′′(m2,2)∣

1
4 and c = ∣φ′′(s2)φ′′(m2,2)∣

1
4 . It follows

that

(D̃2)∗D̃2 = ( a2 −ab
−ab b2 + c2 )

whose eigenvalues could be computed handily. For instance, if ∣φ′′(s)∣ = ∣φ′′(m)∣ = 1 for all
s ∈ U (1) and m ∈ U (0), one has

(D̃2)∗D̃2 = ( 1 −1
−1 2

)

whose eigenvalues are µ±2 = 3
2 ±

√
5

2

We would like to conclude this example by noticing that one has necessarily µ+2 ≠ µ−2 .
Indeed, if one computes the characteristic polynomial of the above matrix, one finds P (x) =
x2 − (a2 + b2 + c2)x + a2c2 whose discriminant is given by

∆ = (a2 + b2 + c2)2 − 4a2c2 = ((a − c)2 + b2)((a + c)2 + b2).
Since φ is a Morse function, one has b ≠ 0 and hence ∆ > 0.

7.3.2. Computations in dimension one with p(α) = 2. Suppose now that the potential φ is
as represented in Figure 2.4. As already noticed there are exactly two equivalence classes

forR in that case: U (0)
1 = {m1,1}, U (0)

2 = {m2,1,m2,2,m2,3}, and again, one has H(m) = {m}
for all m ∈ U (0). Let us denote by s1 the saddle point between m2,1 and m2,2, s2 the saddle
point between m2,2 and m2,3 and s3 the saddle point between m2,3 and m1,1. Denote also
S2 = φ(s1) − φ(m2,1) = φ(s1) − φ(m2,2) and S3 = φ(s2) − φ(m2,3). Then the matrix Lbkw,′′

admits the following form in the basis (f (0)
m2,3 , f

(0)
m2,1 , f

(0)
m2,2) and (f (1)

s3 , f
(1)
s2 , f

(1)
s1 )

Lbkw,′′ = (h
π
)

1
2

e−S3/h
⎛
⎜
⎝

ι 0 0
b1 0 b2e−(S2−S3)/h

0 a1e−(S2−S3)/h a2e−(S2−S3)/h

⎞
⎟
⎠

with the leading terms of the coefficients given by the following formula:

ι0 = −∣φ′′(s3)φ′′(m2,3)∣
1
4 , b0

1 = ∣φ′′(s2)φ′′(m2,3)∣
1
4 , b0

2 = ∣φ′′(s2)φ′′(m2,2)∣
1
4
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and

a0
1 = ∣φ′′(s1)φ′′(m2,1)∣

1
4 , a0

2 = −∣φ′′(s1)φ′′(m2,2)∣
1
4

In order to simplify the computation, assume that φ′′(m) = 1 for all m ∈ U (0) and φ′′(s1) =
φ′′(s2) = −1. Denote θ = ∣φ′′(s3)∣ and τ = e−(S2−S3)/h. Then

Lbkw,′′ = (h
π
)

1
2

e−S3/h
⎛
⎜
⎝

⎛
⎜
⎝

−θ 0 0
1 0 τ
0 τ −τ

⎞
⎟
⎠
+O(h)

⎞
⎟
⎠
.

Hence, we can apply Theorem 7.4 with

a0 = (1 − 1), ι0 = −θ, b0
+− = 1, b0

−+ = (0 1).

It follows that the singular values of order e−S2/h are µ±(h) = (h
π
)

1
2 e−S2/h(

√
λ±+O(h)) with

λ± eigenvalues of M0 ∶= A0 − (B0)∗(J0)−1B0 with

A0 = ( 1 −1
−1 2

) , B0 = (0 − 1), J0 = 1 + θ2.

Hence

M0 = ( 1 −1
−1 2 − ν )

with ν = 1
1+θ2 ∈]0,1[. The eigenvalues of this matrix are

λ± =
3 − ν

2
±

√
(3 − ν)2 − 4(1 − ν)

2

This can be seen as perturbations by the well of height S3 of the eigenvalues λ± computed
in the previous example (obtained by taking ν = 0 in the above formula).

7.3.3. Computations in higher dimension. Consider the case of potential φ having N ≥ 3
minima m1, . . . ,mN and one local maximum at the origin as presented in Figure 7.3.
Assume also that there are exactly N saddle points s1, . . . , sN , all at the same height
φ(sj) = σ2 and that the set {φ < σ2} has exactly N connected components E1, . . . ,EN ,

each Ej containing the minimum mj and that for all j = 1, . . . ,N , {sj} = Ej ∩ Ej+1 with
the convention EN+1 = E1. Assume in addition that all the φ(mj) are equal and denote
S = σ2 − φ(m1). Then, Assumption H(1,2) is satisfied. Let us choose m1 as the global
minimum associated to σ1 = ∞. Then all the other minima are associated to the saddle
value σ2. It is clear that they all belong to the same equivalence class and that they are all
of type II. Moreover, for all m ∈ U (0) ∖ {m1}, one has H(m) = {m}. Then, we can apply
Theorem 7.1 to get the spectrum of the Witten Laplacian associated to φ. It follows that
the eigenvalues are given by λ1 = 0 and for all n = 2, . . . ,N

(7.5) λn(h) = bn(h)e−2S/h(1 +O(e−α/h))
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+

+

+

+

+

+

+

+
m1

m2

m3

mN

mN−1

s1

s2

sN−1

sN

⊙
O

Figure 7.3. N wells in dimension two

where bn admit a classical expansion bn(h) ≃ h
π ∑k≥0 bn,kh

k. Moreover, one has bn,0 = µ2
n

where the µn, n = 2, . . . ,N are the non zero singular values of the matrix

L ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

α1β1 −α2β1 0 . . . . . . 0
0 α2β2 −α3β2 0 . . . 0
0 0 α3β3 ⋱ . . . 0
⋮ ⋮
0 . . . . . . 0 αN−1βN−1 −αNβN−1

−α1βN 0 . . . . . . 0 αNβN

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

where we denote αj = ϕ′′(mj)
1
4 and βj = (−ϕ′′(sj))

1
4 .

If one assumes additionally that αj and βj are independent of j, let say αj = α and
βj = β, then L = αβA with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 0 . . . . . . 0 0
0 1 −1 0 . . . . . . 0
0 0 1 −1 0 . . . 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ 0
0 0 . . . . . . 0 1 −1
−1 0 . . . . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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The singular values of A are the square roots of the eigenvalues of

A ∗A =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 . . . 0 −1
−1 2 −1 . . . 0 0
0 −1 2 −1 . . . 0
⋮ ⋮
0 0 . . . −1 2 −1
−1 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

which are known to be νk = 2(1−cos(2kπ
N )), k = 0, . . . ,N −1. In particular, for all 2 ≤ k < N

2 ,
νk has multiplicity 2 since νk = νN−k.

Suppose now that the potential φ is invariant by rotation of angle 2π
N , then (7.5) still

holds true with bn(h) being the singular values of a matrix of the form

A = θ(h)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 0 . . . . . . 0 0
0 1 −1 0 . . . . . . 0
0 0 1 −1 0 . . . 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ 0
0 0 . . . . . . 0 1 −1
−1 0 . . . . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with θ(h) ≃ ∑k≥0 h
kθk. Hence, the above computation is still available and it follows that

for 2 ≤ k < N
2 , bk(h) = bN−k(h). This permits to recover the results of [11], section 7.4.

Appendix A. Some results in linear algebra

We collect here some helpful results of linear algebra.

Lemma A.1. (Fan inequalities) Let A,B be two matrices and denote by µn the singular
values of any matrix. Then

µn(AB) ≤ ∥B∥µn(A)
µn(AB) ≤ ∥A∥µn(B)

where ∥C∥ denotes the norm of C ∶ Rp → Rq with R● endowed with `2 norms.

Proof. See [19]. ◻

Lemma A.2. Let A = diag(A1, . . . ,AN) be a block diagonal matrix. Then the singular
values of A are the singular values of the An counted with multiplicities.

Proof. It is straightforward, since A∗A = diag(A∗
1A1, . . . ,A∗

NAN). ◻

Lemma A.3. Let E, F be two finite dimensional vector spaces and A(h) ∶ E → F be a
family of linear operators depending on a parameter h ∈]0,1]. Assume that A(h) admits a
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classical expansion A(h) ∼ ∑k≥0 h
kAk and that the matrix A0 has non zero singular values.

Then, for h > 0 small enough the singular values µn(h) of A(h) admit a classical expansion

µn(h) ∼∑
k≥0

hkµkn

where the µ0
n are the singular values of A0.

Proof. Since the singular values of A(h) are the eigenvalues of A∗A which is selfadjoint,
the result follows easily from Kato’s perturbation theory of analytic families of selfadjoint
operators ([13], chap 2, section 1) applied to the expansion of A∗A in h powers cut at finite
rank. ◻

Lemma A.4. Let A be a p×(q+1) matrix and T a (q+1)×q matrix. Assume that T ∗T = Id
and that kerA = Ran(T )�. Then the singular values of A are {0, z1, . . . , zq} where z1, . . . , zq
are the singular values of AT .

Proof. First observe that since kerA = Ran(T )�, then 0 is a singular value of multiplicity

one of A. Let us denote ξ̃0 a unit vector such that kerA = Rξ̃0. By definition, there exists
an orthonormal basis ξ1, . . . , ξq of Rq such that

(A.1) T ∗A∗ATξk = z2
kξk

for all k = 1, . . . , q. Let us denote ξ̃k = Tξk. Since T ∗T = Id, then ξ̃k is an orthonormal
family of Rq+1. Moreover, since kerA = Ran(T )�, then Ξ = {ξ̃0, . . . , ξ̃q} is an orthonormal
basis of Rq+1. Moreover, for all k = 1, . . . , q, it follows from (A.1) that

∣Aξ̃k∣2 = ∣ATξk∣2 = z2
k

This shows that the matrix A∗A in the basis Ξ is exactly diag(0, z2
1 , . . . , z

2
q) and proves the

result. ◻

Lemma A.5. Let M be a real matrix. Assume that M is symmetric definite positive and
that it admits a block decomposition

M = ( J B∗

B N
) .

Then J and N −B∗J−1B are symmetric definite positive.

Proof. This is quite standard, but we recall the proof for reader’s convenience. Of course
J and N −B∗J−1B are symmetric. Moreover, since M is positive definite, then

⟨Jx,x⟩ = ⟨M(x
0
),(x

0
)⟩ ≥ c∣x∣2

for some c > 0. This shows that J is definite positive. On the other hand, denoting

Ω = ( I −J−1B∗

0 I
)
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one has

Ω∗MΩ = ( J 0
0 N −BJ−1B∗ ) .

Since M is positive definite, this implies that N −BJ−1B∗ is positive definite. ◻

Appendix B. Link between R and the Generic Assumption

Proposition B.1. Suppose that the Generic Assumption is satisfied, that is for all m ∈ U (0)

one has the following:

i) φ∣E(m) has a unique point of minimum
ii) if E is a connected component of {φ < σ(m)} such that E ∩V(1) ≠ ∅, there exists a

unique s ∈ V(1) such that φ(s) = supE ∩V(1). In particular, E ∩φ−1(]−∞, φ(s)[) is
the union of exactly two different connected components.

Then for all m ∈ U (0), Cl(m) is reduced to {m}.

Proof. If m = m there is nothing to prove. Suppose that m ∈ U0) and apply Assumption

ii) to E−(m). One has evidently V(1) ∩E−(m) ≠ ∅ since it contains E(m) ⊂ E−(m) and
E(m) is a critical component. Hence, E−(m) ∩ {φ < σ(m)} has exactly two connected

components which are necessarily Ê(m) and E(m). Suppose now that m′Rm. Then

σ(m′) = σ(m) and hence m′ ∉ Ê(m). Therefore m′ ∈ E(m) which implies m = m′. ◻

Remark B.2. There exists some functions φ such that Cl(m) = {m} for all m ∈ U (0)

and that do not satisfy the Generic Assumption. Take for instance φ ∶ R → R with 2N + 1
minima and 2N saddle points such that

- m1 < s1 < m2 < s2 < . . . < m2N < s2N < m2N+1

- there exists σ such that φ(sj) = σ for all j = 1, . . . ,2N .
- there exists α < β < σ such that ∀j = 1, . . . ,N , φ(m2j+1) = β, and ∀j = 1, . . . ,N ,
φ(m2j) = α.

Then, Cl(mj) = {mj} for all j and since max{φ(s), s ∈ R} = σ is equal to φ(sj) for all
j = 1, . . . ,2N , the ii) of (GA) is not satisfied.
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Appendix C. List of symbols

We enumerate different notations used in the paper and give the first place they appear.

U (0),U (1) page 6
n0, n1 page 6
F (.) page 7
V(1) Definition 2.1

C ,Σ,Σ Definition 2.1
S,σ above (2.3)
S (2.3)

U (0) (2.4)
E (2.5)

Γ(m) below (2.5)
H(m) (2.6)
E− (2.7)

Ê (2.9)
m̂ (2.10)

U (0),I ,U (0),II Definition 2.3
R Definition 2.5

U (0)
α (2.14)
A,A below (2.14)
qα below (2.14)

U (0),I
α ,U (0),II

α below (2.14)
Sα (2.16)
p(α) (2.16)
ναj below (2.16)

V(1)
α (3.2)

ÌU (0)
α (3.3)

Γα (3.4)

V(1),b
α , V(1),i

α Lemma 3.4

Û (0),II
α (3.10)

θα0 (m) (3.11)

Ĥα(m) (3.12)

Û (0)
α (3.15)

T α Definition 3.7
Lπ (4.1)
Lπ,′ below (4.1)
Lbkw (4.2)
Lbkw,′ (4.3)
Lbkw,′′ (4.5)

L above Lemma 4.2
L α (4.6)

L̂ α Lemma 4.3
hφ(m) (4.7)

L̃ α (4.9)
ÍL α (5.3)

S +,S +
cl above Definition 5.4

G (E , τ),Gcl(E , τ) Definition 5.4
υ2 (5.20)
υ1 (5.21)
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