METASTABLE DIFFUSIONS WITH DEGENERATE DRIFTS

MAROUANE ASSAL, JEAN-FRANCOIS BONY AND LAURENT MICHEL

ABSTRACT. We study the spectrum of the semiclassical Witten Laplacian Ay associated
to a smooth function f on R?. We assume that f is a confining Morse-Bott function.
Under this assumption we show that Ay admits exponentially small eigenvalues separated
from the rest of the spectrum. Moreover, we establish Eyring-Kramers formula for these
eigenvalues. Our approach is based on microlocal constructions of quasimodes near the
critical submanifolds.
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1.1. Motivations. The Witten Laplacian A, associated to a smooth Morse function f
was introduced by Witten [33] to give an analytical proof of Morse inequalities. This
operator appears also after unitary conjugation in the study of stochastic processes as the

generator of overdamped Langevin dynamics associated to the drift V f
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where X; € R? and (Bt)i>0 is a standard Brownian motion in R¢. In this context, the
semiclassical parameter is proportional to the temperature of the system and the study
of the lowest eigenvalues of A gives crucial informations on the dynamic. In particular,
the existence of exponentially small (with respect to h™') eigenvalues of A, explains the
metastable behavior in the low temperature regime. A detailed knowledge of the relevant
time scales is also crucial in computational physics where ergodic Markov processes may be
used to sample a target distributions and where many algorithms require a priori knowledge
of the metastable behavior [32, 31]. We refer to [26] for details on these topics.

The computation of the transition times of (1.1) is a historical problem which at least
goes back to Kramers [23]. In the case of Morse functions, a first rigorous study of the
low eigenvalues of A was performed by Helffer and Sjostrand [16] who showed the corre-
spondence between critical points of index p of f and exponentially small eigenvalues of
the Witten Laplacian acting on p-forms. This approach was generalized to Morse-Bott
inequalities in [11, 19]. Later on, the first accurate computation of the exponential rate
(Arrhenius law) and asymptotic expansion of the prefactor was done by Bovier, Gayrard
and Klein [6] by a probabilist approach and Helffer, Klein and Nier [12] by semiclassi-
cal methods. More recently, Le Peutrec, Nier and Viterbo [25] proved Arrhenius law for
Lipschitz functions f admitting a finite number of critical values.

In a more general framework, the study of the asymptotic behavior of the eigenvalues
of Schrodinger operators of the form P = —h?A + V(z), in the semiclassical limit h —
0, has a long history and has been the subject of several investigations from basis of
quantum mechanics to microlocal analysis. Precise spectral asymptotics on the bottom of
the spectrum has been proved for a large class of smooth real-valued potentials using the
WKB method and harmonic approximations (we refer to [9] for a detailed account). Under
suitable assumptions, the low-lying eigenvalues are localized near the absolute minima of
the potential V' and precise results on the splitting between eigenvalues can be obtained
under additional geometric assumptions [13, 14]. At a first sight the analysis of the Witten
Laplacian A associated to a Morse function f requires even more sophisticated techniques,
since it presents non-resonant wells in the sense of [15]. However it is possible to avoid
the machinery of [15] by using the existence of an explicit element in the kernel of Ay
given by the Gibbs state e~ /", In [12], this is done by using additional supersymmetry
properties and local analysis of the Witten Laplacian on 1-forms. More recently, a general
construction of quasimodes based on Gaussian cut-off of the Gibbs state was developed in
[4] to study general Fokker—Planck operators.

In the present paper, we consider the case where the critical points of the function f are
made of smooth compact manifolds. This can be seen as an intermediate situation between
the case of Morse function and the fully degenerate case of [25]. One of the motivations
to work with submanifold critical sets comes also from physical context where symmetries
in the problem yield such degenerate situations (see [14] for operators invariant under a
finite group of isometries). In particular, we provide the complete asymptotic of the small
eigenvalues for radial functions f.
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1.2. Framework and first localization result. Let f : R — R with d > 1 be a smooth
function. We consider the associated semiclassical Witten Laplacian

(1.2) Ap=—h’A+|Vf]* - hAf,

where h €]0, 1] denotes the semiclassical parameter. Throughout the paper, we assume
that f € C>(R% R) satisfies the following confining assumption.

Assumption 1. There exist C' > 0 and a compact set K C R? such that

1
C

flz) =z =C, |[Vf(x)] = and  |Hess f(z)] < C|V ()],

for all z € R4\ K.

Let us observe that, under Assumption 1, there exist C' > 0 and a compact set L such that
(1.3) Vo € R\ L, f(z) > C|x|,

see for example [28, Lemma 3.14] for a proof. Under this assumption, Ay is essentially
self-adjoint on C§°(R?). By definition, Ay has a square structure

(1.4) Ap=djod; with df=e/MohVoell

which implies that A is non-negative and hence o(Ay) C [0,4+o00[. Moreover, it follows
from Assumption 1 that there exists ¢y, hg > 0 such that, for all h €]0, ho|,

(1.5) Tess(Af) C [co, +00],

and hence o(Af)NI0, ¢o[ is made of h-dependent discrete eigenvalues with no accumulation
point excepted maybe ¢;. In addition, (1.3) gives that e~//* belongs to the domain of A f
for all h €]0, ho|, which implies thanks to (1.4) that 0 is a simple eigenvalue of Ay.

The aim of this work is to describe the small eigenvalues of Ay in the degenerate case
where f is of Morse-Bott type. More precisely, throughout this paper we assume the
following condition

Assumption 2. The set of critical points of f is a finite disjoint union of boundaryless
compact connected submanifolds I' of R? such that the transversal Hessian of f at any
point of I'' is non degenerate. From now, we will denote by U the set of submanifolds I' as
above and for any I' € U we denote dr its dimension.

Let us recall the celebrated Morse-Bott Lemma (see [2] for a proof).

Lemma 1.1. Assume that f satisfies Assumption 2 and let I' € U. Around any point of
[, there exist local coordinates (y;,y_,yy) with y; € R and (y_,y,) € R4 such that

(1.6) Fy) = —ly-> + ly+ .

In particular, the signature of Hess f is constant on T'.
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Set
d
U= UL{U), Uv) = {I" € U; Hess(f)r has j negative eigenvalues},
=0

and, for j = 0,1,...,d, let n; be the cardinal of the set UY) . Elements of U will be called
minimal submanifolds and those of #(!) will be called saddle submanifolds. Similarly to
the Morse case, only the minimal manifolds can create small eigenvalues, and we have the
following first localization result.

Theorem 1.2. Let Assumptions 1 and 2 hold. There exist 1y, hg > 0 such that, for all
h €]0, hol, Ay admits exactly ng eigenvalues in [0,m0h?*] counting multiplicities, denoted
0=MX(h) < X(h) <--- <\, (h). Furthermore, there exists a constant ¢ > 0 such that,
for all j € {1,...,np}, one has

Aj(h) = O(e="),
uniformly for h €]0, hy].

The proof of this result, based on the Helffer-Sjostrand theory of quantum wells [13, 17,
18], can be found in Section 2. The aim of our paper is to give a precise description of
the small eigenvalues A;(h), j = 2,...,n9. More precisely, one aims to prove asymptotics
of the form \;(h) ~ a;(h)e 2%/" for some positive constants S; and some prefactors a;
admitting an expansion in powers of h. Such asymptotics are often called Eyring—Kramers
formula. In order to prove it, the first main difficulty is to identify the relevant energy
barriers S;. For this purpose, one needs to label the critical manifolds in a suitable way.
This is the object of the next section.

1.3. Separating saddle manifolds and labeling procedure. For any ¢ € R U {0},
let X, = {r € R% f(z) <o} Then X, = R? and, as soon as ny > 2, there exists 0 € R
such that X, has at least two connected components. We now describe the structure of
X, near an element I' of U with o = f(I'). In the sequel, for zo € R? and r > 0, B(wo,7)
stands for the open ball centered at zy and of radius r.

Proposition 1.3. Let f satisfies Assumption 2 and denote o = f(I') for I" € U.

i) For all T' € UY with j > 2 and v > 0 small enough, the set X, N (T + B(0,7)) is
connected.

ii) For T € UM, one of the following assertion holds
(a) either, for all r > 0 small enough, the set X, N (' + B(0,r)) is connected,

(b) or, for all r > 0 small enough, the set X, N (I' + B(0,r)) has exactly two disjoint
connected components Ay (r) and A_(r). In that case, I' C A, (r) N A_(r).

We postpone the proof of this proposition to Section 3. Relying on this result, we
introduce the following notions of locally separating and separating saddle manifolds.

Definition 1.4. A saddle manifold T € U"Y satisfying ii) (b) of Proposition 1.3 is called
locally separating. We say that a locally separating saddle manifold T" is separating when
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FIGURE 1.1. The set X, near the saddle manifold I" in Example 1.5.

A, (r) and A_(r) belong to two disjoint connected components of X, with o = f(I"). We
will denote by Lls(elp), (resp. Ul

oc sep) the set of separating (resp. locally separating) saddle
manifolds.

Proposition 1.3 ¢) shows that non-saddle critical manifolds are not separating. From
Section 3.1 of [12], all the saddle points (that are saddle manifolds of dimension 0) are
locally separating (this also follows from (3.4)). In dimension 1 and 2, all the saddle
manifolds are locally separating. Indeed, we have just seen that this is the case when
dr = 0. Furthermore, if dpr = 1 in dimension d = 2, I' is topologically a circle which
(globally) separates R? into two parts. However, there exist saddle manifolds which are
not locally separating in dimension d > 3, as shown by the following example.

Example 1.5. On R? endowed with the cylinder variables (r,6, 2) € [0, +oo[x [0, 27| xR,
consider the function

F=((r—1)cos(0/2) + zsin(0/2))* = (2 cos(6/2) — (r — 1)sin(6/2)),

near I' = {(r,0,2); r = 1 and z = 0}. This is noting than the function a? — b* apply to
the vector (r — 1, 2z) after a rotation of angle /2. Thus, f is smooth, satisfies Assumption
2 and I' € YV, But, since the rotation of angle §/2 induces a symmetry after a turn along
I, this saddle manifold is not locally separating (see Figure 1.5).

We deduce from Proposition 1.3 the following statement.

Lemma 1.6. Let I" € Lls(el_g and o = f(I"). There » exist exactly two connected components
By of X, such that I' N By # (). Moreover, I' C B, N B_ (see Figure 1.2).

With Definition 1.4 in mind, we can adapt the labeling procedure of minima and saddle
manifolds introduced in [12] and generalized in Section 4 of [21]. There is no difference
here expect that the role of the saddle points in the Morse case is replaced by the locally
separating saddle manifolds in the present setting. Following the presentation of [29], we
recall quickly this labeling procedure and send the reader to the previous references for
more details.

The set Y, of separating saddle values is defined by Xs, = {f(I'); T € UL, Tts
elements arranged in the decreasing order are denoted oy > 03 > --- > oy to which
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FIGURE 1.2. The geometry near a separating saddle manifold.

is added a fictive infinite separating saddle value o1 = +o00. Starting from o, we will
successively associate to each o; a finite family of local minimal manifolds (m;;); and a
finite family of connected components (E; ;); of X,..

We choose my ; as any global minimal manifold of f (not necessarily unique) and E;; =
R, In the sequel, we denote m = my ;. We continue the labeling procedure by induction
and suppose that the families (my, ;); and (E}, ;); have been constructed for all 1 < k <i—1.
The set X,, = {z € R%; f(z) < 0;} has finitely many connected components and we label
FE;j, 3 = 1,...,N; those of these components that do not contain any my, with & < 1.
In each Ej;; we pick up a minimal manifold m;; which is a global minimum of fg, .. We
run the procedure until all the minimal manifolds have been labeled. Note that all the
components ; ; with ¢ > 2 are critical in the sense that there exists I' € Z/{s(elr), such that
I C E;; (see Lemma 1.6).

Throughout I'y is a fictive saddle point such that f(I'y) = o3 = 400 and for any set A,
P(A) denotes the power set of A. From the above labeling, we define two mappings

(1.7) E:UY -PRY)  and U = PUY VAT,

as follows: for every i € {1,..., N} and j € {1,..., N;},

(18) E(mw) = E’i,j;

and

(1.9) jm) :={I'1} and  j(m,;;) ={l € L{S(;I),; I'NOE;; # 0} for i > 2.

In particular, we have E(m) = R? and, for all 4,5 € {1,..., N}, one has j(m;;) # 0 and
fir = o; for all T" € j(m; ;). Moreover, it follows from Lemma 1.6 that

(1.10) vm e U\ {m},  j(m) c P(OE(m)).

We then define the mappings

(1.11) o U = fUl)u{o}  and  S:U® =)0, +oc],
by

(1.12) vm e U, o(m) = f(j(m)) and S(m) :=o(m) — f(m),
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where, with a slight abuse of notation, we have identified the set f(j(m)) with its unique
element. Note that S(m) = +o0 if and only if m = m.

1.4. Main result. We are now in position to introduce our last assumption. In addition
to Assumptions 1 and 2, we will suppose

Assumption 3. The following holds true:
* for all m € UV, m is the unique global minimum of J1E(m)
* for all m,m’ € U with m #m’, j(m) Njm') = 0.
In particular, this assumption implies that f uniquely attains its global minimum at
m € U®. This assumption is a generalization of Hypothesis 5.1 of [21] (see also [24]). By

smooth perturbation of the function f, one sees that it is generically satisfied. We now
state our main result.

Theorem 1.7. Let Assumptions 1, 2, 3 hold. There exist 1y, hg > 0 such that, for all
h €]0, hol, one has, counting the eigenvalues with multiplicities,

a(A) N[0, moh?] = {A(m, h); m e UV},

where A(m,h) = 0 and, for all m # m € U, X\(m,h) satisfies the following Eyring—
Kramers law

_gmax 25(m)
h

(1.13) A(m, h) = D(m)h ™"+ le

a(h),
where S : U —]0, +-00] is defined by (1.11), a(h) admits a classical expansion in powers of
hz of the form a(h) ~ > i0 a;h? with ag = 1 and (o) ;51 C R, and for any m € U\ {m}

dip, —d 2%

_ Zfejmax(m) Wf_l fr |ILL(S)|| det HeSSL f<8)|_%d5

D(m) -
[, |detHess, f(s)| zds

Here dn™ := maxrej(m) dr, j™(m) = {I" € j(m); dr = d»**}, p(s) is the unique negative
eigenvalue of Hess f(s) and Hess, f is the Hessian of f restricted to the normal space of
the considered critical manifold.

Recall that the equation
(114) h@tu + Afu = 0, Ujt=0 = Uo,

models the evolution of the probability of presence of a Brownian particle, solution of
(1.1), with initial distribution uy. Hence the spectral asymptotics of the above theorem
yield immediately quantitative informations on the solutions of (1.14). First, the time to
return to equilibrium is given by the inverse of the spectral gap, that is the inverse of the
first non zero eigenvalue. Moreover, the precise knowledge of the other small eigenvalues
permits to understand the metastable behavior of the system (see Corollary 1.6 in [4] for
precise statements in the context of Morse functions).
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The Eyring—Kramers asymptotic (1.13) has some similarities with the one obtained in
the Morse case, see [6, 12]. We recognize the same exponentially small factor e=250m)/%
however, the power of h depends now on the dimension of the minimal manifolds m and of
the separating saddle manifolds T". Lastly, the constant factor D(m) averages the contri-
bution of the critical manifolds m and I'. In the more general setting where the function f
is only assumed to be Lipschitz subanalytic with a finite number of critical values, Le Peu-
trec, Nier and Viterbo [25] are able to give the semiclassical limit of hln A(m, k). Though,
this approach is very general, it seems that, in many geometrical cases, it doesn’t allow to
recover the prefactor and in particular, the power of h in the asymptotic of A\(m, h).

As already noticed, the return to the global equilibrium is faster as the spectral gap is
larger. We observe from the power of h in the prefactor of (1.13) that the spectral gap
increases when d,,, decreases or d»** increases. This is natural since a minimal manifold
of smaller dimension seems less trapping. The same way, it seems easier to pass through
a saddle manifold of larger dimension. In this direction, note also that only the saddle
manifolds of maximal dimension appear in the leading term of (1.13) which suggests that
the underlying process selects the largest saddle manifolds to escape from a local minimum.
Variations of the power of h were observed in [3] where the authors prove Eyring—Kramers
formula for the exit time from a domain in the case of non quadratic separating saddle
point. It would be very interesting to give rigorous results on the exit event in our Morse—
Bott case in the spirit of [5, 8.

In the usual Eyring—Kramers asymptotic for Morse functions, the corresponding symbol
a(h) admits generally an asymptotic expansion in integer powers of h. In our Morse-Bott
setting, this is the case if and only if the dimensions of the saddle manifolds in j(m) have
the same parity. This follows from Proposition 5.4 and (6.7).

The results have been stated on R?, but can be adapted to compact boundaryless man-
ifolds. Indeed, the constructions made near the saddle manifolds are purely local. On
the other hand, let us observe that the generic Assumption 3 could certainly be relaxed
by using methods in the spirit of [29, 4]. Finally, generalizations to the study of Witten
Laplacian on p-forms, p > 1, could also be investigated.

1.5. Applications and examples. In this part, we study typical situations where The-
orem 1.7 can be used.

We first give the asymptotic of the small eigenvalues of Ay when f is radial. Then, let
f(x) be a radial smooth function on RY, d > 2, satisfying Assumptions 1 and 2. Outside
of 0, the critical manifolds of f are spheres of dimension d — 1 which are either minima or
separating saddles. Moreover, 0 is either a minimum or a maximum of dimension 0. We

define
F(r)= f(z)  with r=y/a3+-- +22
for r € (0,400 with (= [ or (=] if 0 is a minimum or a maximum respectively. The

function F' is a smooth Morse function satisfying Assumption 1 on (0, +oo[. Furthermore,
the minima and saddles of F' correspond to those of f. The labeling procedures at the end
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F(r)

FIGURE 1.3. The functions f(z) and F(r) in Example 1.9.

of Section 1.3 for f and F' can be carried out in parallel and can lead to the same labels
mutatis mutandis: a critical point r € (0,4o00] of F' corresponds to a critical manifold
{lz| = r} of f. Thus, f satisfies Assumption 3 if and only if F satisfies Assumption 3 on
(0, +o0o[. Let us suppose that this is the case in the sequel.

We know that j(m) # 0 for all minimum m (see below (3.2)). Moreover, the number of
minima and saddle points is the same in dimension 1 (recall that a fictive saddle point has
been added). Thus, the second part of Assumption 3 implies that, for any minimal manifold
m = {|z| = r,} with r,, € (0, +o0], there exists a unique saddle manifold I';,, = {|z| = s, }
with s, €]0, +oo[ such that j(m) = {I',,}. Theorem 1.7 directly gives

Corollary 1.8 (Asymptotic for radial functions). In the previous setting,

gd—1 25(m)
e V) [F () he™ " a(h) for m # {0},
(115) )\(m, h) = ‘Sdril‘sd—l ., . 25(m)
= F"(rn)2\/|F"(sm)|h"2 e~ a(h) for m = {0},
T2

where |S?"!| denotes the measure of the unit sphere, S(m) = F(s,,) — F(r,,) and a(h) is
as in (1.13). The second part of (1.15) makes sense only when 0 is a minimum.

This asymptotic can be compared with the one associated to F' in dimension 1. More
precisely, let A(m, h) denote the quantity formally computed from formula (1.13) with the
function F' at the minimal point r,,. For m = {0}, which only makes sense when 0 is a
minimum of f, this computation is purely formal. For m # {0}, this quantity can be seen
as the eigenvalue of Az where the function F' is defined on R, satisfies the assumptions
of Theorem 1.7 and coincides with F' outside a small neighborhood of | — oo, 0] without
additional critical point. Then, we have

pd—1

(1.16) A, h) ~ A(m, ) x ] 50T for m # {0},

7T F(ry) 2 s5 ST AT for m = {0},

Roughly speaking, spherical minima behave like minimal points en dimension one whereas 0
yields an asymptotic of different order. We now apply Corollary 1.8 in a concrete situation.
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F1GURE 1.4. A blow-up of minima described in Example 1.10.

Example 1.9 (Mexican hat). We consider a smooth function f on R? which is radial,
satisfies the assumptions of Theorem 1.7 and is as in Figure 1.3. Other types of Mexican
hats have been considered around Figure 19 of [25]. In the present setting, the set of
critical manifolds writes

U= {mla ma, PZ}a
where, using the notations at the end of Section 1.3,
my=mp1 =m= {7‘ = 7‘1}, my = Mo = {0}, Iy = {7" = 32},

and j(ms) = {I'2}. Note that d,,, = dr, = 1 and d,,, = 0. As before, we define F(r) = f(z)
for r € [0,400[. From Corollary 1.8, the two exponentially small eigenvalues of A satisfy
A(my,h) =0 and

2 25(mg)
(1.17) A(ma, h) = =2 F” 0)V/[F" (s2)[Vhe™ 72 a(h),
with S(ms) = F(s2) — F(0) and a(h) as in (1.13).
We finish this section with another type of examples.

Example 1.10 (Blow-up of minima). Let fbe a Morse function on R¢, d > 2, satisfying
Assumptions 1 and 3. It is possible to construct a (not unique) smooth function f “blowing
up” the minima of ]7 It means that f = fvoutside of a neighborhood of the minima of fand
that each minimal point m of fbecomes a small minimal manifold m of f diffeomorphic
to the sphere ! with f(m) = f(m) (see Figure 1.4).

Then, the critical manifolds of f are those of f except that the minimal points m of f
are replaced by these small manifolds m and that there is an additional local maximum
inside each of these manifolds. In particular, f is a Morse-Bott function and satisfies
Assumptions 1 and 2. Moreover, the labeling procedure at the end of Section 1.3 is the
same for f and f (except that m is replaced by m), showing that Assumption 3 holds.

Let A(m, h) (resp. (i, h)) denote the exponentially small eigenvalues of A t (resp. Ag).
Theorem 1.7 provides the relation

(1.18) A(m, h) ~ amh T (i, h),

for some constant «,, €]0,+oo[. This discussion is still valid if we only assume that the
minima (and not all the critical manifolds) of f are points.
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The plan of the paper is the following. In the next section, we give a proof of Theorem
1.2. Section 3 is devoted to microlocal constructions near the saddle submanifolds. These
constructions are used in Section 4 to define locally the quasimodes. In Section 5 we glue
these quasimodes with parts of the global Gibbs state to construct global quasimodes. In
the last section, we build the interaction matrix and prove Theorem 1.7.

2. PROOF OF THEOREM 1.2

This result is a consequence of the works of Helffer and Sjostrand [13, 17, 18]. Following
these papers, we introduce the Agmon metric |V f(z)|?dz?, where dz? denotes the Euclidean
metric on R?, and let dag(z,y) be the associated degenerate distance on R?. Given I' € U,
the Agmon distance to I' is defined by

(2.1) pr(z) = dag(z,I) := ;IellidAg(xay)-

Recall that or is a non-negative smooth function in a neighborhood of I' which vanishes
exactly at the order 2 on T' and satisfies |[Vr|? = |Vf]? (see for instance Section 0 of
[17]). Let (Mr)rey be a family of small compact neighborhoods of I" € U and consider the
self-adjoint realization Pyz. of Ay on Mp with Dirichlet boundary conditions.

Let I' € U be a critical submanifold. Suppose first that I' € (9. In that case, ¢r =
f— f(I') in a neighborhood of I' and then Apr — Af = 0 near I". Thus, applying Theorem
2.3 of [18] with Ey = E; = 0 and FE, := inf(o(Pr)) = 0, there exist np, hr > 0 such that for
all h €]0, hr], the spectrum of Py, in | — oo, nrh?] is reduced to a simple eigenvalue Ar(h).
Here, the operator Pr = V%*)Vp is defined in equation (1.5) of [18] using A¢pr — Af = 0.
Moreover, for x € C§°(Mr) with x = 1 near I', one has

d—dp
)

PMF<X€_(f_f(F))/h) — Af(xe—(f—f(l“)/h) — (’)(e‘c/h) and ||X€—(f—f(1“))/h|| >pa
for some constant ¢ > 0 and h > 0 small enough. Consequently, Ar(h) is exponentially
small with respect to h, that is Ap(h) = O(e~") for some ¢ > 0.

Suppose now that I' € U\U® and set T := min,cr(Apr—Af)(z). Using |[Vor|?> = |V f|?
near I' and Hessgr > 0 on I, we deduce Hess pr(x) = |Hess f(x)| for all x € T". Since
Ag = tr Hess g, it yields

T=2min ()| > 0.

zel
() o (Hess f(z))
u(x)<0

The Melin—-Hérmander inequality, more precisely Proposition 2.1 of [17], applied to the
operator @) := Ay — 7T gives

(Qu,u) > K[| Vul* = Ch?||ul|* > —Ch?||ul|.
Thus, there exists hr > 0 such that

hT
Vu € C(())O(MF% <PMFU7U> Z 7”“”2 2 thUHQ,
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and hence o(Py.) C [h?, +oo] for all h €]0, hr].

Define the constants hy := miny hr > 0 and 7y := min(minyw nr,1)/2 > 0. The
previous paragraphs yield
{Ar(R)} T eu",
0 if D ed \ U
for all h €]0,hg]. To conclude the proof it suffices to apply Theorem 2.4 of [13] (see
also Remark 2.4 of [18]) which states that for sufficiently small h, the spectrum of Ay in

] — 00, moh? counting multiplicities is exponentially close to the union of the spectra of
Py, This ends the proof of Theorem 1.2.

o(Py) N — oo,2770h2} = {

3. GEOMETRICAL STUDY NEAR THE CRITICAL MANIFOLDS

In this section we prove Proposition 1.3 together with topological results on separating
saddle manifolds needed in our construction of the quasimodes. We start with the following
elementary result.

Lemma 3.1. Let ¢ be a local diffeomorphism of R? defined in a neighborhood of a € R<.
Then, there exists r, > 0 such that, for all b € B(a,r,) and 0 < r < r,, the set o(B(b,r))
is star-shaped with respect to ¢(b).

Proof. We have to show that, for all b € B(a,r,), * € B(0,r) and t € [0, 1], the point
(1 —t)p(b) + tp(b + x) belongs to ¢(B(b,r)). In other words,

vie (0,1, g(t) = |7 (p() + tp(b + ) — (b)) = b € [0,
On one hand, g(0) = 0 and g(1) = |z[*> < 2. On the other hand, the Taylor formula
implies
0ig(t) = 2(0ip™" (0 (b) + t(p(b+x) — (D)), o~ (2(b) + t{p(b+ x) — (D)) — b)
= 2dgpy+t(otra)-oon P (00 +2) = (1)), 07 (p(b) + t((b + x) — (D)) —b)
= 2(dp) 0w (dop (@) + O(a?)), o7 (p(b) + tdpp(z) + O(tz?)) —b)
= 2(dyy 0 dyp () + O(2%), tdoy ™~ dp () + O(ta?))

= 2tz + O(ta®).
Thus, for r, > 0 small enough, we get 0,g(t) > 0. Summing up, g is non-decreasing and
g(t) € [9(0),g(1)] C [0,7?] for all ¢ € [0, 1]. O

Proof of Proposition 1.3. For simplicity, we assume that ¢ = 0. Let us first consider the
case I' € U with j > 2. Under Assumption 2, for all ¢ € T, there exists a diffeomorphism
¢ of R? from a neighborhood of a to a neighborhood of 0 such that f o p~! takes the form
(1.6). Then, ¢(X,) writes {—y? + y3 < 0} near y = 0. Let r, > 0 be given by Lemma
3.1. We now prove that

(3.1) VbeT'NB(a,ry), YO <r <r,, X, N B(b,r) is connected.
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On one hand, consider z € (X, N B(b,r)). From Lemma 3.1, the expression of ¢(X,) and
©(b) € {y— = 0 and y, = 0}, the segment |¢(b), 2] is included in (X, N B(b,r)). On the
other hand, since j > 2, there are at least two variables y_ and the set {—y* + yi < 0}
has a connected neighborhood of ¢(b). These two arguments imply that ¢(X, N B(b, 7))
is connected and eventually (3.1) holds.

Since I' is compact and I' C U,erB(a,r,), there exists a finite number of a; € I' such
that I' C U;B(aj,7q,). Setting 7 = min; ry;, (3.1) gives
(3.2) VbeTl, VO<r<r, X, N B(b,r) is connected.
Let ap € I', 0 <7 <7 and A be the connected component of X, N (I'+ B(0, 7)) containing
X, N B(ag,r). We also define B = ANT. If b € B, then A intersects X, N B(b,r) and
eventually X, N B(b,r) C A from (3.2). Thus, the expression of ¢(X,) gives that B is
a neighborhood of b in T showing that B is open in I". Since B is also closed (in T),
ap € B # () and T is connected, we obtain
(3.3) B=T.
Then, the argument below (3.2) yields that X, N B(b,r) C A for all b € I". In other words,
A= X,N(I"'+ B(0,7)) which is connected and i) follows.

Assume now that I' € YV, As before, for all a € T, there exists a local diffeomorphism
¢ near a such that f o ™! takes the form (1.6), and p(X,) writes {—y? + y7 < 0} near
y = 0. Let r, > 0 be given by Lemma 3.1. We have

Vb eI'NB(a,ry), Y0 <1 <71y, X, N B(b,r) has two connected
components AL (b, 1) = go_l({—yz + yi <0}N{ty- > 0}) N B(b, ).

The proof of (3.4) is similar to that of (3.1), the difference is that there is now only one
variable y_. Moreover, the expression of A4 gives that

(3.4)

(3.5)  VbeT' NnB(a,r,), YO<r<r,, Ay (b,r) NT is a neighborhood of b in T.

As above (3.2), there exists a finite number of a; € I' such that I' C U; B(aj;, 7,,). Noting
7 =min;r,;, (3.4) gives

Voel', VO<r<r, X, N B(b,r) has two connected
components A, (b,r) = ¢ ({—=y> +y7 <0} N {+y_ > 0}) N B(b, 7).

Let ap € I', 0 < r < 7 and AL(r) be the connected component of X, N (I' + B(0,r))
containing A4 (ag,r). Following the proof of (3.3) and using (3.5) and (3.6), we get

(3.6)

(3.7) 'CAi(r)nA_(r).
We now show that
(3.8) XoN(C+ B(0,r) = A (r)UA_(r).

By definition AL(r) C X, N (I'+ B(0,7)). On the other hand, let z € X, N (I" + B(0,7)).
There exists b € ' such that z € X, N B(b,7). By (3.6), there exists a sign ¢ € {+,—}
such that z € A.(b,r). Let C be the connected component of X, N (I"+ B(0,r)) containing
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A.(b,7). Asin (3.7), ap € T C C. From (3.6), C intersects As(ag,r) for some § € {+, —}.
Since this last set is connected, As(ag,r) C C, C = As(r) and finally z € A (r) U A_(r).
This concludes the proof of (3.8).

From (3.8), we know that X, N (I' + B(0,7)) has at most two connected components
A, (r) and A_(r) for 0 < r < 7. Note that, if A, (rg) = A_(ry) for some 0 < ry < 7, then
Al (r)=A_(r) for all 7o < r < 7 since O # A, (ro) C AL(r). Thus, either A, (r) = A_(r)
for all » > 0 small enough or A, (r) # A_(r) for all » > 0 small enough. Combined with
(3.7), this shows 7). O

The next result is used in the construction of quasimodes.

Proposition 3.2. Let I' € Z/{S(QI), and p(z) be the unique negative eigenvalue of Hess f(z)
for x € I". There exist r > 0 and a smooth map

v:I — S
such that
i) for allz € ', v(x) € ker(Hess f(x) — pu(x)).
i1) for all s €|0,r] and x € I', v £+ sv(z) € By.

In some sense, this result says that any manifold I' € us(ég is “negatively orientable”:
even if I' is non-orientable, it admits a global smooth normal vector field of eigenvectors of
Hess f associated to its negative eigenvalue. To construct a non-orientable element of Z/IS((}I),,
one can consider a non-orientable smooth boundaryless compact submanifold M C R4~!
and f(z) = —x3 + dist((wa, ..., 7,), M)?* near T = {0} x M. One can also deduce from
the proof of Proposition 3.2 that there is only one v(z) € S? satisfying i) and ii). This
result may also hold for locally separating manifolds, but is only needed in the sequel for
elements of Z/{S(ég.

Proof of Proposition 3.2. Since I' € U™, Hess f(x) has a unique negative eigenvalue ju(x)
and ker(Hess f(x) — p(z)) is a one dimensional vector space for all x € I'. Let v(z) be
(any) normalized element of ker(Hess f(z) — pu(z)). By Taylor’s formula,

Flo + sv(x)) = F(T) + %( Hess f(2)7(z), 7(x)) + O(s”)
= f(T) + s*u(x) /2 + O(s°),

where the O(s?) is uniform with respect to x since T' is compact. Using again the com-
pactness of I', there exists r > 0 such that

(3.9) f@ +sv(z)) < f(T),

forall z € I" and s € [—r,r] \ {0}. From Lemma 1.6, it yields z 4+ sv(z) € B_ U B,. Since
By are connected components of Xy ry, 4 sv(z) stays in the same B, for all s € [—r,0]
and all s €]0,7]. Moreover, since f takes the form (1.6) near I', = + sv(z) € By if and
only if x — sv(z) € B_. Summing up, we can choose v(x) equal to £v(z) for all z € T’
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such that = + sv(z) € By and = — sv(x) € B_ for s €]0,r]. Eventually, v(z) is C*
since ker(Hess f(z) — p(z)) depends smoothly of 2 € I' and the choice of the sign for v(z)
respects this regularity by connectedness. U

4. LOCAL CONSTRUCTION OF THE QUASIMODES

In this part, we construct Gaussian quasimodes near the separating saddle manifolds.

Such constructions go back to [5, 7, 24]. Given a separating saddle manifold T" € Z/ls(el;)),
we look for a solution of the equation Aju = 0 in the neighborhood of I" under the form

u(z) = v(z, h)e 7@/ with

£(z,h)
(4.1) v(xz,h) = /0 C(s/7)e* " ds,

for some function ¢(z,h) € C*°(R?) having a classical expansion £(z,h) ~ > im0 Wi (2).
Here ¢ denotes a fixed smooth even function equal to 1 on [—1, 1] and supported in [~2, 2]
and 7 > 0 is a small parameter which will be fixed later. The object of this section is to
construct the function /.

The following lemma holds by a straightforward computation.

Lemma 4.1 (Equations on ¢). We have

2
As(we My = (w+r)e U+

where

w=h(2Vf-Vl+|VI[l) — h*AL,
supp(r) C {|¢| > 7} and r and all its derivatives are uniformly bounded with respect to h.
Moreover, w admits a classical expansion w ~ Y i>1 hiw; with

wy = 2V f - Vi + [Vio|* Ly,
and, for all j > 1,
Wi =2V f -Vl + 206Vl - VU + |V [* 0+ Ri(x, by, .. ., 4j_1),
with R; € C=(R%).

As usual in the study of the tunneling effect, we consider

(4.2) q(z,€) = —p(x,i§) = & — |V f(z)]%,

the complexified version of the principal symbol p(z,&) := &+ |V f(x)|* of Ay. For T' e U,
the set I' x {0} C T*R? is a manifold of fixed points of the Hamiltonian vector field
H, = 0¢q- 0 — 0,q - O¢. On the cotangent space T*T, ¢ = £ and the linearization of H, is
the nilpotent matrix
0 2
(00)
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On the other hand, Assumption 2 implies that H, is hyperbolic in the normal directions
to T*I". Then, Theorem 1 in Appendix C of [1] provides the existence of the incom-
ing/outgoing manifolds AL. They are d-dimensional, stable by the Hamiltonian flow and
characterized near I' x {0} by

(4.3) Ay = {(2,8); dist (exp(tHy)(z,€),T x {0}) = 0 as t — Foo}.
For z € T, the tangeant space T(; 0)A; (resp. T(,0)A-) is spanned by the eigenvectors of

0 2
2(Hess f)*(z) 0 )’
associated to the non-negative (resp. non-positive) eigenvalues. In particular, they project

nicely on the base space and, as in Lemma 3.3 of [9], they are Lagrangian manifolds. Thus,
there exist smooth functions ¢ defined near I' such that

(4.4) Ay ={(z,Vos(z)); v € R}

In [17, 18], Helffer and Sjostrand identified the phase ¢, with the Agmon distance to I’
defined by (2.1).

Lemma 4.2. There exists a smooth function ¢y defined in a neighbohood of I' such that

6.@) = F(@) - £D) + B,

Proof. This result, based on an observation of [20, (11.20)], is similar to Lemma 3.2 of
[4]. We give its proof for a sake of completeness and to explain why this construction can
be made globally around I'. Let Af := {(z,Vf(z)); z € R?} C T*R? be the Lagrangian
manifold associated to the function f. From (4.2), we have ¢(z, V f(z)) = 0 which implies
that Ay is stable by the H, flow. Let F denote the Hamiltonian vector field H, restricted
to Ay. Then, I' x {0} is a manifold of fixed points for F. Moreover, the linearization of F
at (z,0) with z € T is

ro_ 0 2
7\ 2(Hess f)*(z) 0 )’
on the tangent space of Ay at (z,0)
TNy = {(t,Hess f(z)t); t € R}
Since F, acts as 2Hess f(x), this operator has dr zero eigenvalues (corresponding to the
tangent space of I' x {0}), 1 negative eigenvalue and d — dr — 1 positive eigenvalues.

Let K be the stable outgoing/incoming submanifold of A; associated to F. Then K
(resp. K_) has dimension d — 1 (resp. dr + 1), K4 projects nicely on the z-space,

(4.5) Ki=A:nN Af and T(gc,O)Ki = T(:Jc,O)Ai N T(x,O)Af,

for all x € T'. The existence and uniqueness of K. follows again from Theorem 1 in
Appendix C of [1]. Note that since F is normally hyperbolic at I" x {0} (which was not
the case for H, on the whole space when dr > 0), we could have used instead the classical
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FIGURE 4.1. The geometry in the proof of Lemma 4.2.

result of Hirsch, Pugh and Shub [22]. The first equality in (4.5) gives Vo = V[ on
7(K+) and then

(4.6) Vo € m(Ky),  ¢x(x) = f(x) — f(D).
On the other hand, for all z € I', we have
Hess(¢4 — f)(x) = | Hess f(z)| — Hess f(z) > 0,

on v(x)R, where the vector field v(x) is given by Proposition 3.2. Summing up, ¢ —f+f(I")
is a non-negative function in a neighborhood of I' which vanishes at order 2 on (K} )
(see Figure 4.1).

We now construct a square root of ¢ = ¢, — f + f(I') in a neighborhood of I'. Let x
be a point of I. There exist local coordinates (y, z) € R¥™! x R mapping = to 0 such that
m(Ky) = {(y,2); z =0} and such that the last basis vector (0,...,0,1) corresponds to
v(z). Near 0, we have g(y,0) = 0 from (4.6), 0.9(y,0) = 0 from (4.5) and 97 .g(y, z) > 0
from the last sentence of the previous paragraph. Then, the Taylor formula gives

1
9y, 2) = / (1= 002 .g(y, t2) dt 2
0

and

1/2

62 1
(A7) b =f—fO)+ 5 with  loa(y2) = (2 / (1= 002 gy, t=)dt) " =

Since the quantity under the square root is positive when evaluated in z = 0, the function
p ., is smooth in a vicinity of 0. Coming back to the original variables, we have construct
a smooth square root of ¢ in a neighborhood of z which is positive (resp. negative) in the
direction v(x) (resp. —v(z)). Since v is globally defined on the compact manifold I', these
local functions glue together and provide a smooth function ¢y, defined in a neighborhood
of T', which satisfies ¢, = f — f(T') + £2/2. d

Lemma 4.3 (Eikonal equation). For I' € Z/Is(elg, the function ¢, of Lemma 4.2 solves

(4.8) oV f - Vi + | Vo2 = 0,
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in a neighborhood of I'. Moreover, for all x € T', the vector V{y(z) is an eigenvector of the
matrix Hess f(z) associated to its unique negative eigenvalue p(x). Eventually,

(49)  |Ve(2)? = —2u(z)  and  det Hess, ( f+ %eg) () = — det Hess ., (f)(x).

Proof. Combining 0 = ¢(z, V¢, ) = |V, |> — |V f|* with Lemma 4.2 leads to
0=|Vf+ LVl —IVfP

= |VfI?+ 206V f - Vi + G5V = [V [

=0y (2V f - Vo + |Vio|*lo).
Since ¢y does not vanish outside the hypersurface 7, (K ;) from (4.7), it implies (4.8).

Consider now z € I' and y € R?%. Since Vf(z + y) = Hess f(z)y + O(y?), lo(z +y) =
Vio(z)y + O(y?) and Vig(z + y) = Vly(z) + O(y) as y — 0, (4.8) gives
(2Hess f(2)Vio(x),y) + (Vi (2)*Vi(x),y) = O(y?).

and then
(4.10) 2 Hess f(2)Vio(x) = —|Vilo(z)]*Vio(z).

On the other hand, (4.7) implies that Vly(xz) # 0. Thus, V¥y(z) is an eigenvector of
Hess f(x) associated to the negative eigenvalue —|V/{y(z)|?/2. Since p(z) is the unique
negative eigenvalue of Hess f(x), the first part of (4.9) follows.

Eventually, the previous discussion and ¢y(z) = 0 yield

Hess (1 + %zg) (z) = Hess(f)(x) — 2u()TL,,

with the rank-one orthogonal projection 1T, = —(2u(x)) *Vy(z)(Vey(z),-). Since II, is
the spectral projection of Hess f(x) associated to its negative eigenvalue pu(z), Hess(f +
(%2/2)(x) has the same eigenvalues than Hess f(x) except that u(z) is replaced by —pu(zx).
Since the determinant of a matrix is the product of its eigenvalues, the last part of (4.9)
holds true. U

We now construct the other functions ¢; in the spirit of [4, Lemma 3.4].

Lemma 4.4 (Transport equations). There exist an open neighborhood V' of I' and C*
functions ¢; for j > 1 such that

OV f -Vl + 205Vl - VU + [Vl = —Rj(z, Lo, ..., Lj1),
near V', where R; if given by Lemma 4.1.
Proof. We can solve these transport equations by induction over j since R; depends only

on the previous functions ¢, ...¢;_;. Then, it is enough to show that, for any smooth
function r, there exists a smooth function u defined near V' such that

(4.11) Lu=r,
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where L is the operator
Lu=2Vf Vu+ 20Vl Vu+|Vi|*u
=2V, - Vu + | V| u,
thanks to Lemma 4.2. Near each point of I', there exists a local change of coordinates

F:R'> 2 — (y,2) € Rt x R such that I' = {(y,2); z = 0}. In these new
coordinates, £ writes

(4.12) L= (dF)2V,¢, 0o F71 -V, . +|V.b|*o F .

Since V¢, vanishes on ', we have V¢, 0 F~!(y,0) = 0 for all y. Then, the Taylor formula
gives

(P29, 0 F(3,2) = (aF)2Hess(0)(@F) ™ o F(0,0) (0 ) 4100:2),

for some smooth vector r(y, z) = O(2?) near z = 0. Consider the matrix on R?
N(y) = (dF)2Hess(¢1)(dF)™" o F~'(y,0).
Since ker Hess(¢, )(z) = T,I for z € T, we deduce ker N(y) = {(t,,0); t, € R¥}. Thus,

N(y) can be written
0 L

for some (d — dr) x (d — dr) (resp. dr x (d — dr)) invertible matrix M (y) (resp. matrix
L(y)). The matrix 2 Hess(¢, )(F~!(y,0)) being real diagonalizable as a symmetric matrix,
it is the same for N(y) with the same eigenvalues. Thus, M (y) is real diagonalizable with
positive eigenvalues (those of 2Hess(¢)(F~(y,0))). The previous discussion and (4.9)
show that £ can be decomposed as

(413) L= »CO + 'Cremy
with the operators
Lo=M(y)z-V.=2u(y) and  Lim = oy, 2) +¢y(y,2)Vy + .y, 2) V-,

where p(y) is a shortcut for u(F~1(y,0)) and for some smooth functions cy(y, z) = O(z),
cy(y,2) = O(2) and ¢, (y, z) = O(z?).

To solve (4.11), we first look for a formal solution of the form formal powers in z whose
coefficients are smooth functions of y. Then, for m € N, let H,, be the set of homogeneous
polynomials in z of degree m whose coefficients are smooth functions of y. The operator
Ly acts on H,, for all m € N. Moreover, for y fixed, there exists a basis of R4~ on
which M(y) is diagonal with eigenvalues Ar(y) > 0. Then, the monomials of degree m
form a basis of eigenvectors of M(y)z - V., — 2u(y) as an operator on the homogeneous
polynomials in z of degree m. Moreover, the eigenvalue associated to z® = 27" --- z:;f;l?
is >, aAi(y) — 2u(y) > 0. Thus, M(y)z - V, — 2u(y) is invertible on the homogeneous
polynomials in z of degree m at y fixed. By continuity and compactness of I', this operator
is invertible for all (y,0) € I' with a uniformly bounded smooth inverse. This implies that
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Ly is invertible on H,,. On the other hand, the properties on the ¢, imply that L., sends
formal powers in z of degree at least m with smooth coefficients in y into formal powers
in z of degree at least m + 1 with smooth coefficients in y. Let 7 denote the formal power
expansion in z with smooth coefficients in y of r. Since L; is invertible on H,, for all
m € N and L, is a lower order operator, one can construct inductively on the order of
the powers of z a formal solution u of

(4.14) Li =T

Starting from the previous constructions, the Borel lemma provides a smooth function
% defined on R? such that its formal power expansion in z given by the Taylor formula is
precisely u. In particular, (4.14) gives
(4.15) Lu=r+T7(y,z2),

where, for all a, 8, 99977 (y, z) = O(2™) near z = 0 uniformly for (y,0) € T'. To treat the
remainder term 7 and build an exact solution of (4.11), we use the characteristic method

as in the proof of Proposition 3.5 of Dimassi and Sjostrand [9]. For that, let ¢;(z) denote
the flow of V¢, that is

{at¢t($) = Vo (pi(2)),
oi(T) = x.
Since the Hessian of ¢, is positive in the directions normal to I', the smooth function ¢,
satisfies the following estimates for all o € N¢

T (pi(2))] < CeMz|  and % (x)] < CoeCeltl,
for t <0 with C,C, > 0 and 7.(y, ) = z. We then define the function

0
(4.16) ﬂ(x):/ e I IVlol*(es (@) ds o, (2)) dit.

Thanks to the previous estimates and the properties of 7, this expression defines a smooth

function near a neighborhood V of I' (independent of 7). Moreover, it solves Lu = 7.
Finally, v := u + u is a solution of (4.11). d

Combining Lemma 4.3, Lemma 4.4 and a Borel procedure in h, we eventually get
Proposition 4.5. For any I" € Z/{S(elg, there exists a smooth function x +— {(z, h) defined in
a neighborhood V' of " such that the following holds true.

i) £ admits a classical expansion {(x,h) ~ 37 h{;(x),

ii) 2V f - VL + |Vl)? — hAl = O(h*™) uniformly with respect to x in V,

i1i) the function —{(x, h) satisfies also i) and it).

Note that —/ is also a function which can be obtained following the construction of ¢

but replacing the vector field v(z) by —v(z). Depending on the global geometry of the
critical set of f, we will choose later which function (¢ or —¢) will be convenient.
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5. GLOBAL CONSTRUCTION OF THE QUASIMODES

Following Section 3 of [24], we construct a global quasimode 1, associated to each
minimal manifold m € U®. Roughly speaking, we search this function supported in a
neighborhood of E(m) and decaying from m. Inside E(m), we choose v, = e~//". Near
a regular point = of the boundary 0F(m) (that is f(z) = o(m) and V f(x) # 0) or near a
non-separating critical manifold I' € E(m), we still take 1,, = e~/ since this choice is
in agreement with the values of v, already known in X, near x or I'. Eventually, for
any separating saddle manifold I' C 0F/(m), Lemma 1.6 shows that E(m) is one of the two
connected components By of X5,y near I'. We already know the value of ¢, in F (m) and
we want ¢, = 0 in the other connected component. To glue these two functions together,
we use the constructions of the previous section near I'.

More precisely, let ' € Z/{S(QI), be a separating saddle manifold with I' C 0F(m) and note
o:=a(m)= f(T).

From Lemma 1.6, X, has two connected components Bs with '\ By # @ and E(m) is
one of them. Modulo a change of labeling, we assume in the sequel that F(m) = By.
Let ¢r(z,h) : V — R be the function constructed in Section 4 and positive in E(m) (see
Proposition 4.5 iii) for the choice of sign), and let Ur be some small open neighborhood of
I such that Up C V. Mimicking (4.1), we set for € Ur

lr(z,h)
(5.1) vp(z, h) = 051/ C(s/7)e " /?ds,
0

where ¢ € C§°(] — 2,2[; [0, 1]) is an even function equal to 1 on [—1,1] and with 7 > 0 and
the renormalization constant

(52) Cl" :/0 OoC(S/T)ei‘g/ZhdS: @(1+O(€c/h)),

for some ¢ > 0.

Lemma 5.1. Let ‘ﬁ be an open set satisfying I' C V2 @ Ur. There exist open neighbor-
hoods V& of By NUr \ V¥ such that vp = £1 in V& for all 7 > 0 small enough.

Proof. Since ¢, has a positive Hessian in the normal directions to I', there exists § > 0
such that ¢, > B on Ur \ V¥ (after a possible shrinking of Ur). On the other hand, we
have f < o on By. Summing up, Lemma 4.2 gives

Gy =20, —2(f —0) > 28,

in (B UB_)NUr\ V. Moreover, we have +fr¢ > 0 in B N Ur by our choice of sign
for ¢r, Proposition 3.2 ii) and the discussion below (4.7). By a continuity argument, the
previous equation gives +0r > /3 in Vri, an open neighborhood of By N U \ V{. For any
0 < 7 < +/B/2, the support properties of ¢ imply that +[¢r(x), +oo[ for € V& does not
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{f=0}

F1GURE 5.1. The geometric setting near a separating saddle manifold.

meet the support of {(-/7) and then

+00
C’Fl/ C(s/m)e = Pds = 1 in V{7,
_ 0
Ur = —oo
C’F_l/ C(s/m)e " /?"ds = -1 in Vi,
0
the second identity using that ( is even. O

We are now in position to define the global quasimode v,,. Recall (see (1.9)) that j(m)

denotes the set of separating saddle manifolds I' € 2) such that T' N JE(m) # 0 (or
equivalently I' € OE(m) by (1.10)). If m # m, we have j(m) # 0. Let 6 > 0 be a small
enough parameter fixed in the sequel. For all T' € j(m), consider V¥ as in Lemma 5.1 with
VY € E(m) + B(0,0). Let 6,, € C§°(E(m) + B(0,26);[0,1]) be a function equal to 1 near

E(m) and V{ for all I" € j(m) and such that
(5.3) supp(6,,,) N OUr C Vi,
for all I' € j(m) (see Figure 5.1).

Definition 5.2. For any m € U, let us define the function v, by
O (vr 4+ 1)e” U=/ in Un for all T € j(m),
(5.4) Ui = 9g, o~(f=Fm)/h RN\ | J U,
rej(m)

when m # m and by ¥, (z) := e"U@=F)/h when m = m.

These functions satisfy the following properties.

Lemma 5.3. For 6 > 0 and then 7 > 0 small enough, one has
i) Ym € C(RY) for m # m.
i1) if o(m) = o(m’) and m # m/, then supp(¢,,) N supp (Vo) = 0.
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iii) if o(m) > o(m’), then
« either supp(in) M supp(vin) = 0
* or iy, = 2~ MM on supp(i) and f(m') > f(m).
Proof. From (5.3) and Lemma 5.1, we have vpr = 1 near supp(6,,) N OUr. Thus, 1, is
smooth near Ur and eventually on RY. This proves i). The two other points are a

consequence of Assumption 3 and similar to Lemma 4.4 v), v) of [24]. We send the reader
to this paper for the detailed proof. U

Proposition 5.4. Let Assumptions 1, 2 and 3 hold and let m € U\ {m}. For 19,5y > 0
small enough, we have

) llml® € Ea(4(mh) ="

/ (det Hess f(s))_1/2d5>,
—f(m))/h de “1/24
[l et Hess, )| as).

ORISR SN e
rej(m)

ii1) (Al = O(FNA fthms V),

where aj, = E(by) means that there exists ¢, such that a, = bpcy, for h small enough and

¢y, admits a classical expansion ¢, ~ Y.y ¢;h/ with co = 1.

Proof. By Assumption 3, m is the unique minimal manifold of f on F(m) and then on
supp(6,,) for 6 > 0 small enough. Then, (5.4) shows that, for any small neighborhood V'
of m, we have

onl =4 [ O g 1 0

for some ¢ > 0. Since the Hessian of f is positive in the normal directions to m, we
can apply a generalization of the Laplace method to the case of critical manifolds. More
precisely, Hypothesis 2 and Theorem A.1 of [27] give

1Uml|? € Ea (4(7rh)d2dm/ det (Hess | f(s))flﬂds),

and i) follows.

Let g, be the smooth function equal to ,,(vr +1) in Ur and equal to 26,, near R*\ UUr.
Then, (1.4) and (5.4) give

—(f—f(m 2
(A fms Ym) = lldptom|> = ||dg(gme I,

Since dfe_(f_f(m))/h = 0, this yields
(55) (At tn) =1 [ | [Dgn(a)fe 0K,

On R¢ \ UUr, we have f > o on the support of Vg,, = 2V#6,, for 6 small enough. On Ur,
we can write

ng = (’UF + 1)V¢9m + vavr.
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By the support properties of V#,, and Lemma 5.1 (see Figure 5.1), we have f > ¢ on
supp((vr + 1)V#,,). On the other hand, (5.1) gives

0, Vor = Ci0,,C(p /7)™ F M.
Then, (5.5) becomes

(A, Ym) = Y C20 / C2(0r )7) |V Lp e 2T+ 2= F0m) gy

T'ej(m)

(5.6) O 2o Fm)/hc/hy

for some ¢ > 0. Since {p ~ > >0 h/lr ; has an asymptotic expansion in powers of h, the
phase factor can be decomposed as

(57) —2(f+2/2—f(m)/h _ — e (f+€12“,0/2—f(m))/h(6—241“,031“,1 + O(h)),

where /o = 0 on I" and the remainder term O(h) is a symbol. Note that ¢r . = f+ 632 ,/2
from Lemma 4.2 where the Hessian of ¢r . is positive in the normal directions to I.
Then, we can apply the Laplace method to compute (5.6). Using (4.9), (5.2), (5.7), 6,, =
Clr/7) =1, f+(;,/2=0onT and e *r0ofr1 = 1 on I to compute all the coefficients,
Theorem A.1 of [27] yields

<Afwm7¢m Z 501< 7rh i dF-l—l e~ 2(o—f(m) )/h/|ﬂ HdetHeSSLf( )‘ 1/2d )’

Tej(m)

and i7) follows.

We now estimate ||Ast,,]|2. Near R?\ UUr, (5.4) gives Asth, = 2[A;,0,,]e”S=Fm)/h
since Aye~U=fm)/h = (. Using f > o on supp(V6,,), we deduce

(5:8) 1A | 2oy = O (€727 m=erh),
for some ¢ > 0. On Ur with I' € j(m), we can write
Ay, = Ame(vr +1)e —(f=f(m))/h
= O A p(vp 4+ 1)e” SN0 LA L 9, ] (op + 1)e” U= m)/R
(5.9) = O A pope” =IO LA 6 T (up + 1)e” U= mD/R

The choice of 6, and Lemma 5.1 (see Figure 5.1) imply that f > ¢ on supp(vr + 1) N
supp(V#,,). Thus, the last term of (5.9) satisfies

(5.10) (A, 0] (vp + 1)e” U =S/ — O(B—Q(U—f(m))/h—c/h)7
for some ¢ > 0. On the other hand, Lemma 4.1 and Proposition 4.5 show that
(5.11) HmAfvpe‘(f‘f(m))/h = O (w + T)e—(f-i-f%/Q—f(m))/h’

with r = O(1), supp(r) C {|¢r| > 7} and w = O(h*>°). On supp(f,,r), Lemma 4.2 gives
f+10%)2 = ¢r > o since the Hessian of ¢r , is positive in the normal directions to T



METASTABLE DIFFUSIONS WITH DEGENERATE DRIFTS 25

Then, we obtain
Hgmre—(erf%/?—f(m))/h” — O(e—(o—f(m))/h—C/h)7

for some ¢ > 0. Concerning w, we can only deduce from Lemma 4.2 that f+¢%/2 = ¢ >
o on supp(f,,w). Since w = O(h™), we get

Hgmwe*(fﬁ%/?*f(m))/hn = O(he oI m)/hy,
Combining (5.11) with the two last inequalities, it comes
(5.12) B pope U= TN/D = O (Booe(o=Tm)/h).
Then, (5.9), (5.10) and (5.12) give
(5.13) 1A fml| T2y = O (he 2o mI/).
Eventually, 7i7) follows from (5.8), (5.13) and ). O

6. PROOF OF THEOREM 1.7

Recall that, for m € U, S(m) := a(m)— f(m) where o is defined in (1.11). From now,
one labels the minimal submanifolds my,...,m,, € U of f so that (S(m;))jeqt,...no} 18
non-decreasing, i.e.,

S(my,) = o0 and  Vje{2,...,n9— 1}, S(m;) > S(mj—1).
For j € {1,...,n0}, we set

YV,
(6.1) Sji=8(m;), ;= ool and ;= (Arpj, 05).
Let 9 > 0 be as in Theorem 1.2 and introduce the spectral projection
1
I, = — (z — Ap) ldz.

27 Jop(o, 1)
For j € {1,...,n0} and h > 0 small enough, we set v; := Il,p;.
According to Proposition 5.4, we have for any j € {1,...,no}

(6.2) 187051 = O(h=\/(Bs05.65)) = Oh™ V).

On the other hand, using Lemma 5.3 and proceeding in the same way as in the proofs of [4,
Proposition 5.1 (i)] and [24, Lemma 4.7] respectively, we also have for any j, k € {1,...,no}

(6.3) (pjrpn) = 0+ 0™ and  (Aspy, 00) = iy,
for some constant ¢ > 0, uniformly for A > 0 small enough.
Writing
1
(1-1I)p; = —5— 2= Ay Ay dz,

2im Jop(0,1 n2)
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and using (6.2) together with ||(z — Ay)~'|| = O(h™?) for any z € dD(0, 2h?), we get

(6.4 (1 = M), = O™ /7).
Combining estimates (6.2), (6.3) and (6.4), we obtain the following proposition (see for
instance [24, Proposition 4.10] for the proof).

Proposition 6.1. There exists a constant ¢ > 0 such that, for all j,k € {1,...,n},

(6.5) (vj,vk) = 6 + O(e~/M),

and

(6.6) (Agvj,v) = 0jnpy + O™ /1)

In particular, {vy,..., vy} is a basis of RanIl, for h > 0 small enough.

Relying on the above result, the rest of the proof is standard. We recall only the main
steps referring for instance to [24, Proposition 4.12] for the details. Starting from the basis

,,,,,,,,,,

Gram—Schmidt process. Thanks to (6.5), this new basis satisfies for any j € {1,...,n},
€ng—jt1 = Ung—jp1 + O(e™M).

Now, it follows from the above labeling and (6.6) that, for any j, k € {1,... ,ng},

<Af6no—j+1a Cro—k+1) = jikHng—j+1 T O(hoo\/luno—j—i-l,uno—k—i-l)'

My, = diag ((v/Fing—j1)1<5<n0) (Ing + O(h>)) diag ((\/ling—j+1)1<j<n0) -
The spectrum of such a matrix can be computed using the Fan inequalities (see [10, 30])

or Lemma 6.2 below. From these results, the eigenvalues \;(h) of M}, that are the small
eigenvalues of Ay, satisfy

(6.7) Aj(h) = png—j+1 (1 + O(h%)) = (AfPng—jt1; Pry—j+1) (1 + O(hT)).
Eventually, the announced result follows from ¢) and i) of Proposition 5.4.
Lemma 6.2. Let M = M(h) be a n x n matrix of the form
M = D(I, + O(h™))D,
for some diagonal matrix D(h) = diag(v;(h)) with v;(h) € C. Then, the eigenvalues of M
are of the form v?(h)(1+ O(h*)).

Proof. Without loss of generality, we can assume that v; # 0 for all j € {1,...,n} (we
simply remove the lines and columns of zeros if some of the v;’s vanish). The eigenvalues
of M are the zeros of the renormalized characteristic polynomial

p(2) = det(D) 2det(M — z) = det(D™ (M — 2)D™)
(6.8) = det (diag(1 — zv; %) + O(h™)).
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The usual expansion formula for the determinant using permutations allows to write p(z) =
f(2)+g(2) where f(2) = [[;cq1 (1 — zv; %) and g(z) is a finite sum of terms of the form
O(h>) [1e,(1 — zv;?) with J ¢ {1,...,n}. For K > 0, we have |1 — zv;?| > h¥ for
z & B(v7, h¥|v;|?). It follows that

V2 e C\U; B}, b yl?),  19(2)| < [f(2)],
for A small enough. Letting K goes to +00, the Rouché Theorem implies the Lemma. [J
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