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Abstract. We study the spectrum of the semiclassical Witten Laplacian ∆f associated
to a smooth function f on Rd. We assume that f is a confining Morse–Bott function.
Under this assumption we show that ∆f admits exponentially small eigenvalues separated
from the rest of the spectrum. Moreover, we establish Eyring-Kramers formula for these
eigenvalues. Our approach is based on microlocal constructions of quasimodes near the
critical submanifolds.
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1. Introduction and main result

1.1. Motivations. The Witten Laplacian ∆f associated to a smooth Morse function f
was introduced by Witten [33] to give an analytical proof of Morse inequalities. This
operator appears also after unitary conjugation in the study of stochastic processes as the
generator of overdamped Langevin dynamics associated to the drift ∇f

(1.1) dXt = −2∇f(Xt)dt+
√

2hdBt,
1
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where Xt ∈ Rd and (Bt)t≥0 is a standard Brownian motion in Rd. In this context, the
semiclassical parameter is proportional to the temperature of the system and the study
of the lowest eigenvalues of ∆f gives crucial informations on the dynamic. In particular,
the existence of exponentially small (with respect to h−1) eigenvalues of ∆f explains the
metastable behavior in the low temperature regime. A detailed knowledge of the relevant
time scales is also crucial in computational physics where ergodic Markov processes may be
used to sample a target distributions and where many algorithms require a priori knowledge
of the metastable behavior [32, 31]. We refer to [26] for details on these topics.

The computation of the transition times of (1.1) is a historical problem which at least
goes back to Kramers [23]. In the case of Morse functions, a first rigorous study of the
low eigenvalues of ∆f was performed by Helffer and Sjöstrand [16] who showed the corre-
spondence between critical points of index p of f and exponentially small eigenvalues of
the Witten Laplacian acting on p-forms. This approach was generalized to Morse–Bott
inequalities in [11, 19]. Later on, the first accurate computation of the exponential rate
(Arrhenius law) and asymptotic expansion of the prefactor was done by Bovier, Gayrard
and Klein [6] by a probabilist approach and Helffer, Klein and Nier [12] by semiclassi-
cal methods. More recently, Le Peutrec, Nier and Viterbo [25] proved Arrhenius law for
Lipschitz functions f admitting a finite number of critical values.

In a more general framework, the study of the asymptotic behavior of the eigenvalues
of Schrödinger operators of the form P = −h2∆ + V (x), in the semiclassical limit h →
0, has a long history and has been the subject of several investigations from basis of
quantum mechanics to microlocal analysis. Precise spectral asymptotics on the bottom of
the spectrum has been proved for a large class of smooth real-valued potentials using the
WKB method and harmonic approximations (we refer to [9] for a detailed account). Under
suitable assumptions, the low-lying eigenvalues are localized near the absolute minima of
the potential V and precise results on the splitting between eigenvalues can be obtained
under additional geometric assumptions [13, 14]. At a first sight the analysis of the Witten
Laplacian ∆f associated to a Morse function f requires even more sophisticated techniques,
since it presents non-resonant wells in the sense of [15]. However it is possible to avoid
the machinery of [15] by using the existence of an explicit element in the kernel of ∆f

given by the Gibbs state e−f/h. In [12], this is done by using additional supersymmetry
properties and local analysis of the Witten Laplacian on 1-forms. More recently, a general
construction of quasimodes based on Gaussian cut-off of the Gibbs state was developed in
[4] to study general Fokker–Planck operators.

In the present paper, we consider the case where the critical points of the function f are
made of smooth compact manifolds. This can be seen as an intermediate situation between
the case of Morse function and the fully degenerate case of [25]. One of the motivations
to work with submanifold critical sets comes also from physical context where symmetries
in the problem yield such degenerate situations (see [14] for operators invariant under a
finite group of isometries). In particular, we provide the complete asymptotic of the small
eigenvalues for radial functions f .
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1.2. Framework and first localization result. Let f : Rd → R with d ≥ 1 be a smooth
function. We consider the associated semiclassical Witten Laplacian

(1.2) ∆f = −h2∆ + |∇f |2 − h∆f,

where h ∈]0, 1] denotes the semiclassical parameter. Throughout the paper, we assume
that f ∈ C∞(Rd;R) satisfies the following confining assumption.

Assumption 1. There exist C > 0 and a compact set K ⊂ Rd such that

f(x) ≥ −C, |∇f(x)| ≥ 1

C
and |Hess f(x)| ≤ C|∇f(x)|2,

for all x ∈ Rd \K.

Let us observe that, under Assumption 1, there exist C > 0 and a compact set L such that

(1.3) ∀x ∈ Rd \ L, f(x) ≥ C|x|,

see for example [28, Lemma 3.14] for a proof. Under this assumption, ∆f is essentially
self-adjoint on C∞0 (Rd). By definition, ∆f has a square structure

(1.4) ∆f = d∗f ◦ df with df = e−f/h ◦ h∇ ◦ ef/h,

which implies that ∆f is non-negative and hence σ(∆f ) ⊂ [0,+∞[. Moreover, it follows
from Assumption 1 that there exists c0, h0 > 0 such that, for all h ∈]0, h0],

(1.5) σess(∆f ) ⊂ [c0,+∞[,

and hence σ(∆f )∩ [0, c0[ is made of h-dependent discrete eigenvalues with no accumulation
point excepted maybe c0. In addition, (1.3) gives that e−f/h belongs to the domain of ∆f

for all h ∈]0, h0], which implies thanks to (1.4) that 0 is a simple eigenvalue of ∆f .

The aim of this work is to describe the small eigenvalues of ∆f in the degenerate case
where f is of Morse–Bott type. More precisely, throughout this paper we assume the
following condition

Assumption 2. The set of critical points of f is a finite disjoint union of boundaryless
compact connected submanifolds Γ of Rd such that the transversal Hessian of f at any
point of Γ is non degenerate. From now, we will denote by U the set of submanifolds Γ as
above and for any Γ ∈ U we denote dΓ its dimension.

Let us recall the celebrated Morse–Bott Lemma (see [2] for a proof).

Lemma 1.1. Assume that f satisfies Assumption 2 and let Γ ∈ U . Around any point of
Γ, there exist local coordinates (yt, y−, y+) with yt ∈ RdΓ and (y−, y+) ∈ Rd−dΓ such that

(1.6) f(y) = −|y−|2 + |y+|2.

In particular, the signature of Hess f is constant on Γ.
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Set

U =
d⋃
j=0

U (j), U (j) :=
{

Γ ∈ U ; Hess(f)|Γ has j negative eigenvalues
}
,

and, for j = 0, 1, . . . , d, let nj be the cardinal of the set U (j). Elements of U (0) will be called
minimal submanifolds and those of U (1) will be called saddle submanifolds. Similarly to
the Morse case, only the minimal manifolds can create small eigenvalues, and we have the
following first localization result.

Theorem 1.2. Let Assumptions 1 and 2 hold. There exist η0, h0 > 0 such that, for all
h ∈]0, h0], ∆f admits exactly n0 eigenvalues in [0, η0h

2] counting multiplicities, denoted
0 = λ1(h) < λ2(h) ≤ · · · ≤ λn0(h). Furthermore, there exists a constant c > 0 such that,
for all j ∈ {1, . . . , n0}, one has

λj(h) = O(e−c/h),

uniformly for h ∈]0, h0].

The proof of this result, based on the Helffer–Sjöstrand theory of quantum wells [13, 17,
18], can be found in Section 2. The aim of our paper is to give a precise description of
the small eigenvalues λj(h), j = 2, . . . , n0. More precisely, one aims to prove asymptotics
of the form λj(h) ∼ aj(h)e−2Sj/h for some positive constants Sj and some prefactors aj
admitting an expansion in powers of h. Such asymptotics are often called Eyring–Kramers
formula. In order to prove it, the first main difficulty is to identify the relevant energy
barriers Sj. For this purpose, one needs to label the critical manifolds in a suitable way.
This is the object of the next section.

1.3. Separating saddle manifolds and labeling procedure. For any σ ∈ R ∪ {∞},
let Xσ = {x ∈ Rd; f(x) < σ}. Then X∞ = Rd and, as soon as n0 ≥ 2, there exists σ ∈ R
such that Xσ has at least two connected components. We now describe the structure of
Xσ near an element Γ of U with σ = f(Γ). In the sequel, for x0 ∈ Rd and r > 0, B(x0, r)
stands for the open ball centered at x0 and of radius r.

Proposition 1.3. Let f satisfies Assumption 2 and denote σ = f(Γ) for Γ ∈ U .

i) For all Γ ∈ U (j) with j ≥ 2 and r > 0 small enough, the set Xσ ∩ (Γ + B(0, r)) is
connected.

ii) For Γ ∈ U (1), one of the following assertion holds

(a) either, for all r > 0 small enough, the set Xσ ∩ (Γ +B(0, r)) is connected,

(b) or, for all r > 0 small enough, the set Xσ ∩ (Γ + B(0, r)) has exactly two disjoint

connected components A+(r) and A−(r). In that case, Γ ⊂ A+(r) ∩ A−(r).

We postpone the proof of this proposition to Section 3. Relying on this result, we
introduce the following notions of locally separating and separating saddle manifolds.

Definition 1.4. A saddle manifold Γ ∈ U (1) satisfying ii) (b) of Proposition 1.3 is called
locally separating. We say that a locally separating saddle manifold Γ is separating when
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Figure 1.1. The set Xσ near the saddle manifold Γ in Example 1.5.

A+(r) and A−(r) belong to two disjoint connected components of Xσ with σ = f(Γ). We

will denote by U (1)
sep (resp. U (1)

loc sep) the set of separating (resp. locally separating) saddle
manifolds.

Proposition 1.3 i) shows that non-saddle critical manifolds are not separating. From
Section 3.1 of [12], all the saddle points (that are saddle manifolds of dimension 0) are
locally separating (this also follows from (3.4)). In dimension 1 and 2, all the saddle
manifolds are locally separating. Indeed, we have just seen that this is the case when
dΓ = 0. Furthermore, if dΓ = 1 in dimension d = 2, Γ is topologically a circle which
(globally) separates R2 into two parts. However, there exist saddle manifolds which are
not locally separating in dimension d ≥ 3, as shown by the following example.

Example 1.5. On R3 endowed with the cylinder variables (r, θ, z) ∈ [0,+∞[×[0, 2π[×R,
consider the function

f =
(
(r − 1) cos(θ/2) + z sin(θ/2)

)2 −
(
z cos(θ/2)− (r − 1) sin(θ/2)

)2
,

near Γ = {(r, θ, z); r = 1 and z = 0}. This is noting than the function a2 − b2 apply to
the vector (r− 1, z) after a rotation of angle θ/2. Thus, f is smooth, satisfies Assumption
2 and Γ ∈ U (1). But, since the rotation of angle θ/2 induces a symmetry after a turn along
Γ, this saddle manifold is not locally separating (see Figure 1.5).

We deduce from Proposition 1.3 the following statement.

Lemma 1.6. Let Γ ∈ U (1)
sep and σ = f(Γ). There exist exactly two connected components

B± of Xσ such that Γ ∩B± 6= ∅. Moreover, Γ ⊂ B+ ∩B− (see Figure 1.2).

With Definition 1.4 in mind, we can adapt the labeling procedure of minima and saddle
manifolds introduced in [12] and generalized in Section 4 of [21]. There is no difference
here expect that the role of the saddle points in the Morse case is replaced by the locally
separating saddle manifolds in the present setting. Following the presentation of [29], we
recall quickly this labeling procedure and send the reader to the previous references for
more details.

The set Σsep of separating saddle values is defined by Σsep = {f(Γ); Γ ∈ U (1)
sep}. Its

elements arranged in the decreasing order are denoted σ2 > σ3 > · · · > σN to which
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Γ

B+

B−

ν(x)

Figure 1.2. The geometry near a separating saddle manifold.

is added a fictive infinite separating saddle value σ1 = +∞. Starting from σ1, we will
successively associate to each σi a finite family of local minimal manifolds (mi,j)j and a
finite family of connected components (Ei,j)j of Xσi .

We choose m1,1 as any global minimal manifold of f (not necessarily unique) and E1,1 =
Rd. In the sequel, we denote m = m1,1. We continue the labeling procedure by induction
and suppose that the families (mk,j)j and (Ek,j)j have been constructed for all 1 ≤ k ≤ i−1.
The set Xσi = {x ∈ Rd; f(x) < σi} has finitely many connected components and we label
Ei,j, j = 1, . . . , Ni those of these components that do not contain any mk,` with k < i.
In each Ei,j we pick up a minimal manifold mi,j which is a global minimum of f|Ei,j . We
run the procedure until all the minimal manifolds have been labeled. Note that all the

components Ei,j with i ≥ 2 are critical in the sense that there exists Γ ∈ U (1)
sep such that

Γ ⊂ Ei,j (see Lemma 1.6).

Throughout Γ1 is a fictive saddle point such that f(Γ1) = σ1 = +∞ and for any set A,
P(A) denotes the power set of A. From the above labeling, we define two mappings

(1.7) E : U (0) → P(Rd) and j : U (0) → P(U (1)
sep ∪ {Γ1}),

as follows: for every i ∈ {1, . . . , N} and j ∈ {1, . . . , Ni},
(1.8) E(mi,j) := Ei,j,

and

(1.9) j(m) := {Γ1} and j(mi,j) := {Γ ∈ U (1)
sep; Γ ∩ ∂Ei,j 6= ∅} for i ≥ 2.

In particular, we have E(m) = Rd and, for all i, j ∈ {1, . . . , N}, one has j(mi,j) 6= ∅ and
f|Γ = σi for all Γ ∈ j(mi,j). Moreover, it follows from Lemma 1.6 that

(1.10) ∀m ∈ U (0) \ {m}, j(m) ⊂ P(∂E(m)).

We then define the mappings

(1.11) σ : U (0) → f(U (1)
sep) ∪ {σ1} and S : U (0) →]0,+∞],

by

(1.12) ∀m ∈ U (0), σ(m) := f(j(m)) and S(m) := σ(m)− f(m),
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where, with a slight abuse of notation, we have identified the set f(j(m)) with its unique
element. Note that S(m) = +∞ if and only if m = m.

1.4. Main result. We are now in position to introduce our last assumption. In addition
to Assumptions 1 and 2, we will suppose

Assumption 3. The following holds true:

? for all m ∈ U (0), m is the unique global minimum of f|E(m),

? for all m,m′ ∈ U (0) with m 6= m′, j(m) ∩ j(m′) = ∅.

In particular, this assumption implies that f uniquely attains its global minimum at
m ∈ U (0). This assumption is a generalization of Hypothesis 5.1 of [21] (see also [24]). By
smooth perturbation of the function f , one sees that it is generically satisfied. We now
state our main result.

Theorem 1.7. Let Assumptions 1, 2, 3 hold. There exist η0, h0 > 0 such that, for all
h ∈]0, h0], one has, counting the eigenvalues with multiplicities,

σ(∆f ) ∩ [0, η0h
2] = {λ(m,h); m ∈ U (0)},

where λ(m,h) = 0 and, for all m 6= m ∈ U (0), λ(m,h) satisfies the following Eyring–
Kramers law

(1.13) λ(m,h) = D(m)h
dm−dmax

m
2

+1e−
2S(m)
h α(h),

where S : U (0) →]0,+∞] is defined by (1.11), α(h) admits a classical expansion in powers of

h
1
2 of the form α(h) ∼

∑
j≥0 αjh

j
2 with α0 = 1 and (αj)j≥1 ⊂ R, and for any m ∈ U (0)\{m}

D(m) =

∑
Γ∈jmax(m) π

dm−dmax
m

2
−1
∫

Γ
|µ(s)|| det Hess⊥ f(s)|− 1

2ds∫
m
| det Hess⊥ f(s)|− 1

2ds
.

Here dmax
m := maxΓ∈j(m) dΓ, jmax(m) := {Γ ∈ j(m); dΓ = dmax

m }, µ(s) is the unique negative
eigenvalue of Hess f(s) and Hess⊥ f is the Hessian of f restricted to the normal space of
the considered critical manifold.

Recall that the equation

(1.14) h∂tu+ ∆fu = 0, u|t=0 = u0,

models the evolution of the probability of presence of a Brownian particle, solution of
(1.1), with initial distribution u0. Hence the spectral asymptotics of the above theorem
yield immediately quantitative informations on the solutions of (1.14). First, the time to
return to equilibrium is given by the inverse of the spectral gap, that is the inverse of the
first non zero eigenvalue. Moreover, the precise knowledge of the other small eigenvalues
permits to understand the metastable behavior of the system (see Corollary 1.6 in [4] for
precise statements in the context of Morse functions).
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The Eyring–Kramers asymptotic (1.13) has some similarities with the one obtained in
the Morse case, see [6, 12]. We recognize the same exponentially small factor e−2S(m)/h,
however, the power of h depends now on the dimension of the minimal manifolds m and of
the separating saddle manifolds Γ. Lastly, the constant factor D(m) averages the contri-
bution of the critical manifolds m and Γ. In the more general setting where the function f
is only assumed to be Lipschitz subanalytic with a finite number of critical values, Le Peu-
trec, Nier and Viterbo [25] are able to give the semiclassical limit of h lnλ(m,h). Though,
this approach is very general, it seems that, in many geometrical cases, it doesn’t allow to
recover the prefactor and in particular, the power of h in the asymptotic of λ(m,h).

As already noticed, the return to the global equilibrium is faster as the spectral gap is
larger. We observe from the power of h in the prefactor of (1.13) that the spectral gap
increases when dm decreases or dmax

m increases. This is natural since a minimal manifold
of smaller dimension seems less trapping. The same way, it seems easier to pass through
a saddle manifold of larger dimension. In this direction, note also that only the saddle
manifolds of maximal dimension appear in the leading term of (1.13) which suggests that
the underlying process selects the largest saddle manifolds to escape from a local minimum.
Variations of the power of h were observed in [3] where the authors prove Eyring–Kramers
formula for the exit time from a domain in the case of non quadratic separating saddle
point. It would be very interesting to give rigorous results on the exit event in our Morse–
Bott case in the spirit of [5, 8].

In the usual Eyring–Kramers asymptotic for Morse functions, the corresponding symbol
α(h) admits generally an asymptotic expansion in integer powers of h. In our Morse–Bott
setting, this is the case if and only if the dimensions of the saddle manifolds in j(m) have
the same parity. This follows from Proposition 5.4 and (6.7).

The results have been stated on Rd, but can be adapted to compact boundaryless man-
ifolds. Indeed, the constructions made near the saddle manifolds are purely local. On
the other hand, let us observe that the generic Assumption 3 could certainly be relaxed
by using methods in the spirit of [29, 4]. Finally, generalizations to the study of Witten
Laplacian on p-forms, p ≥ 1, could also be investigated.

1.5. Applications and examples. In this part, we study typical situations where The-
orem 1.7 can be used.

We first give the asymptotic of the small eigenvalues of ∆f when f is radial. Then, let
f(x) be a radial smooth function on Rd, d ≥ 2, satisfying Assumptions 1 and 2. Outside
of 0, the critical manifolds of f are spheres of dimension d− 1 which are either minima or
separating saddles. Moreover, 0 is either a minimum or a maximum of dimension 0. We
define

F (r) = f(x) with r =
√
x2

1 + · · ·+ x2
d,

for r ∈ (0,+∞[ with (= [ or (=] if 0 is a minimum or a maximum respectively. The
function F is a smooth Morse function satisfying Assumption 1 on (0,+∞[. Furthermore,
the minima and saddles of F correspond to those of f . The labeling procedures at the end
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r

r1

m1

Γ2

F (r)

s20

m2

Figure 1.3. The functions f(x) and F (r) in Example 1.9.

of Section 1.3 for f and F can be carried out in parallel and can lead to the same labels
mutatis mutandis: a critical point r ∈ (0,+∞[ of F corresponds to a critical manifold
{|x| = r} of f . Thus, f satisfies Assumption 3 if and only if F satisfies Assumption 3 on
(0,+∞[. Let us suppose that this is the case in the sequel.

We know that j(m) 6= ∅ for all minimum m (see below (3.2)). Moreover, the number of
minima and saddle points is the same in dimension 1 (recall that a fictive saddle point has
been added). Thus, the second part of Assumption 3 implies that, for any minimal manifold
m = {|x| = rm} with rm ∈ (0,+∞[, there exists a unique saddle manifold Γm = {|x| = sm}
with sm ∈]0,+∞[ such that j(m) = {Γm}. Theorem 1.7 directly gives

Corollary 1.8 (Asymptotic for radial functions). In the previous setting,

(1.15) λ(m,h) =


sd−1
m

πrd−1
m

√
F ′′(rm)|F ′′(sm)|he−

2S(m)
h α(h) for m 6= {0},

|Sd−1|sd−1
m

π
1+d

2

F ′′(rm)
d
2

√
|F ′′(sm)|h

3−d
2 e−

2S(m)
h α(h) for m = {0},

where |Sd−1| denotes the measure of the unit sphere, S(m) = F (sm) − F (rm) and α(h) is
as in (1.13). The second part of (1.15) makes sense only when 0 is a minimum.

This asymptotic can be compared with the one associated to F in dimension 1. More
precisely, let Λ(m,h) denote the quantity formally computed from formula (1.13) with the
function F at the minimal point rm. For m = {0}, which only makes sense when 0 is a
minimum of f , this computation is purely formal. For m 6= {0}, this quantity can be seen

as the eigenvalue of ∆F̃ where the function F̃ is defined on R, satisfies the assumptions
of Theorem 1.7 and coincides with F outside a small neighborhood of ] −∞, 0] without
additional critical point. Then, we have

(1.16) Λ(m,h) ∼ λ(m,h)×


rd−1
m

sd−1
m

for m 6= {0},

π
d−1

2 F ′′(rm)
1−d

2 s1−d
m |Sd−1|−1h

d−1
2 for m = {0}.

Roughly speaking, spherical minima behave like minimal points en dimension one whereas 0
yields an asymptotic of different order. We now apply Corollary 1.8 in a concrete situation.
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f̃ f

Figure 1.4. A blow-up of minima described in Example 1.10.

Example 1.9 (Mexican hat). We consider a smooth function f on R2 which is radial,
satisfies the assumptions of Theorem 1.7 and is as in Figure 1.3. Other types of Mexican
hats have been considered around Figure 19 of [25]. In the present setting, the set of
critical manifolds writes

U = {m1,m2,Γ2},
where, using the notations at the end of Section 1.3,

m1 = m1,1 = m = {r = r1}, m2 = m2,1 = {0}, Γ2 = {r = s2},
and j(m2) = {Γ2}. Note that dm1 = dΓ2 = 1 and dm2 = 0. As before, we define F (r) = f(x)
for r ∈ [0,+∞[. From Corollary 1.8, the two exponentially small eigenvalues of ∆f satisfy
λ(m1, h) = 0 and

(1.17) λ(m2, h) =
2s2√
π
F ′′(0)

√
|F ′′(s2)|

√
he−

2S(m2)
h α(h),

with S(m2) = F (s2)− F (0) and α(h) as in (1.13).

We finish this section with another type of examples.

Example 1.10 (Blow-up of minima). Let f̃ be a Morse function on Rd, d ≥ 2, satisfying
Assumptions 1 and 3. It is possible to construct a (not unique) smooth function f “blowing

up” the minima of f̃ . It means that f = f̃ outside of a neighborhood of the minima of f̃ and

that each minimal point m̃ of f̃ becomes a small minimal manifold m of f diffeomorphic

to the sphere Sd−1 with f̃(m̃) = f(m) (see Figure 1.4).

Then, the critical manifolds of f are those of f̃ except that the minimal points m̃ of f̃
are replaced by these small manifolds m and that there is an additional local maximum
inside each of these manifolds. In particular, f is a Morse–Bott function and satisfies
Assumptions 1 and 2. Moreover, the labeling procedure at the end of Section 1.3 is the

same for f̃ and f (except that m̃ is replaced by m), showing that Assumption 3 holds.

Let λ(m,h) (resp. λ̃(m̃, h)) denote the exponentially small eigenvalues of ∆f (resp. ∆f̃ ).
Theorem 1.7 provides the relation

(1.18) λ(m,h) ∼ αmh
d−1

2 λ̃(m̃, h),

for some constant αm ∈]0,+∞[. This discussion is still valid if we only assume that the

minima (and not all the critical manifolds) of f̃ are points.
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The plan of the paper is the following. In the next section, we give a proof of Theorem
1.2. Section 3 is devoted to microlocal constructions near the saddle submanifolds. These
constructions are used in Section 4 to define locally the quasimodes. In Section 5 we glue
these quasimodes with parts of the global Gibbs state to construct global quasimodes. In
the last section, we build the interaction matrix and prove Theorem 1.7.

2. Proof of Theorem 1.2

This result is a consequence of the works of Helffer and Sjöstrand [13, 17, 18]. Following
these papers, we introduce the Agmon metric |∇f(x)|2dx2, where dx2 denotes the Euclidean
metric on Rd, and let dAg(x, y) be the associated degenerate distance on Rd. Given Γ ∈ U ,
the Agmon distance to Γ is defined by

(2.1) ϕΓ(x) = dAg(x,Γ) := inf
y∈Γ

dAg(x, y).

Recall that ϕΓ is a non-negative smooth function in a neighborhood of Γ which vanishes
exactly at the order 2 on Γ and satisfies |∇ϕΓ|2 = |∇f |2 (see for instance Section 0 of
[17]). Let (MΓ)Γ∈U be a family of small compact neighborhoods of Γ ∈ U and consider the
self-adjoint realization PMΓ

of ∆f on MΓ with Dirichlet boundary conditions.

Let Γ ∈ U be a critical submanifold. Suppose first that Γ ∈ U (0). In that case, ϕΓ =
f − f(Γ) in a neighborhood of Γ and then ∆ϕΓ−∆f = 0 near Γ. Thus, applying Theorem
2.3 of [18] with E0 = E1 = 0 and E2 := inf(σ(PΓ)) = 0, there exist ηΓ, hΓ > 0 such that for
all h ∈]0, hΓ], the spectrum of PMΓ

in ]−∞, ηΓh
2] is reduced to a simple eigenvalue λΓ(h).

Here, the operator PΓ = ∇(∗̃)
Γ ∇Γ is defined in equation (1.5) of [18] using ∆ϕΓ −∆f = 0.

Moreover, for χ ∈ C∞0 (MΓ) with χ = 1 near Γ, one has

PMΓ
(χe−(f−f(Γ))/h) = ∆f (χe

−(f−f(Γ)/h) = O(e−c/h) and ‖χe−(f−f(Γ))/h‖ & h
d−dΓ

4 ,

for some constant c > 0 and h > 0 small enough. Consequently, λΓ(h) is exponentially
small with respect to h, that is λΓ(h) = O(e−c/h) for some c > 0.

Suppose now that Γ ∈ U\U (0) and set T := minx∈Γ(∆ϕΓ−∆f)(x). Using |∇ϕΓ|2 = |∇f |2
near Γ and HessϕΓ ≥ 0 on Γ, we deduce HessϕΓ(x) = |Hess f(x)| for all x ∈ Γ. Since
∆g = tr Hess g, it yields

T = 2 min
x∈Γ

∑
µ(x)∈σ(Hess f(x))

µ(x)<0

|µ(x)| > 0.

The Melin–Hörmander inequality, more precisely Proposition 2.1 of [17], applied to the
operator Q := ∆f − hT gives

〈Qu, u〉 ≥ h3‖∇u‖2 − Ch2‖u‖2 ≥ −Ch2‖u‖2.

Thus, there exists hΓ > 0 such that

∀u ∈ C∞0 (MΓ), 〈PMΓ
u, u〉 ≥ hT

2
‖u‖2 ≥ h2‖u‖2,
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and hence σ(PMΓ
) ⊂ [h2,+∞[ for all h ∈]0, hΓ].

Define the constants h0 := minU hΓ > 0 and η0 := min(minU(0) ηΓ, 1)/2 > 0. The
previous paragraphs yield

σ(PMΓ
) ∩
]
−∞, 2η0h

2
]

=

{
{λΓ(h)} if Γ ∈ U (0),

∅ if Γ ∈ U \ U (0),

for all h ∈]0, h0]. To conclude the proof it suffices to apply Theorem 2.4 of [13] (see
also Remark 2.4 of [18]) which states that for sufficiently small h, the spectrum of ∆f in
] − ∞, η0h

2] counting multiplicities is exponentially close to the union of the spectra of
PMΓ

. This ends the proof of Theorem 1.2.

3. Geometrical study near the critical manifolds

In this section we prove Proposition 1.3 together with topological results on separating
saddle manifolds needed in our construction of the quasimodes. We start with the following
elementary result.

Lemma 3.1. Let ϕ be a local diffeomorphism of Rd defined in a neighborhood of a ∈ Rd.
Then, there exists ra > 0 such that, for all b ∈ B(a, ra) and 0 < r < ra, the set ϕ(B(b, r))
is star-shaped with respect to ϕ(b).

Proof. We have to show that, for all b ∈ B(a, ra), x ∈ B(0, r) and t ∈ [0, 1], the point
(1− t)ϕ(b) + tϕ(b+ x) belongs to ϕ(B(b, r)). In other words,

∀t ∈ [0, 1], g(t) :=
∣∣ϕ−1

(
ϕ(b) + t(ϕ(b+ x)− ϕ(b))

)
− b
∣∣2 ∈ [0, r2[.

On one hand, g(0) = 0 and g(1) = |x|2 < r2. On the other hand, the Taylor formula
implies

∂tg(t) = 2
〈
∂tϕ

−1
(
ϕ(b) + t(ϕ(b+ x)− ϕ(b))

)
, ϕ−1

(
ϕ(b) + t(ϕ(b+ x)− ϕ(b))

)
− b
〉

= 2
〈
dϕ(b)+t(ϕ(b+x)−ϕ(b))ϕ

−1(ϕ(b+ x)− ϕ(b)), ϕ−1
(
ϕ(b) + t(ϕ(b+ x)− ϕ(b))

)
− b
〉

= 2
〈
dϕ(b)+O(tx)ϕ

−1(dbϕ(x) +O(x2)), ϕ−1
(
ϕ(b) + tdbϕ(x) +O(tx2)

)
− b
〉

= 2
〈
dϕ(b)ϕ

−1dbϕ(x) +O(x2), tdϕ(b)ϕ
−1dbϕ(x) +O(tx2)

〉
= 2tx2 +O(tx3).

Thus, for ra > 0 small enough, we get ∂tg(t) ≥ 0. Summing up, g is non-decreasing and
g(t) ∈ [g(0), g(1)] ⊂ [0, r2[ for all t ∈ [0, 1]. �

Proof of Proposition 1.3. For simplicity, we assume that σ = 0. Let us first consider the
case Γ ∈ U (j) with j ≥ 2. Under Assumption 2, for all a ∈ Γ, there exists a diffeomorphism
ϕ of Rd from a neighborhood of a to a neighborhood of 0 such that f ◦ϕ−1 takes the form
(1.6). Then, ϕ(Xσ) writes {−y2

− + y2
+ < 0} near y = 0. Let ra > 0 be given by Lemma

3.1. We now prove that

(3.1) ∀b ∈ Γ ∩B(a, ra), ∀0 < r < ra, Xσ ∩B(b, r) is connected.
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On one hand, consider z ∈ ϕ(Xσ∩B(b, r)). From Lemma 3.1, the expression of ϕ(Xσ) and
ϕ(b) ∈ {y− = 0 and y+ = 0}, the segment ]ϕ(b), z] is included in ϕ(Xσ ∩ B(b, r)). On the
other hand, since j ≥ 2, there are at least two variables y− and the set {−y2

− + y2
+ < 0}

has a connected neighborhood of ϕ(b). These two arguments imply that ϕ(Xσ ∩ B(b, r))
is connected and eventually (3.1) holds.

Since Γ is compact and Γ ⊂ ∪a∈ΓB(a, ra), there exists a finite number of aj ∈ Γ such
that Γ ⊂ ∪jB(aj, raj). Setting r̃ = minj raj , (3.1) gives

(3.2) ∀b ∈ Γ, ∀0 < r < r̃, Xσ ∩B(b, r) is connected.

Let a0 ∈ Γ, 0 < r < r̃ and A be the connected component of Xσ ∩ (Γ +B(0, r)) containing
Xσ ∩ B(a0, r). We also define B = A ∩ Γ. If b ∈ B, then A intersects Xσ ∩ B(b, r) and
eventually Xσ ∩ B(b, r) ⊂ A from (3.2). Thus, the expression of ϕ(Xσ) gives that B is
a neighborhood of b in Γ showing that B is open in Γ. Since B is also closed (in Γ),
a0 ∈ B 6= ∅ and Γ is connected, we obtain

(3.3) B = Γ.

Then, the argument below (3.2) yields that Xσ ∩B(b, r) ⊂ A for all b ∈ Γ. In other words,
A = Xσ ∩ (Γ +B(0, r)) which is connected and i) follows.

Assume now that Γ ∈ U (1). As before, for all a ∈ Γ, there exists a local diffeomorphism
ϕ near a such that f ◦ ϕ−1 takes the form (1.6), and ϕ(Xσ) writes {−y2

− + y2
+ < 0} near

y = 0. Let ra > 0 be given by Lemma 3.1. We have

(3.4)
∀b ∈ Γ ∩B(a, ra), ∀0 < r < ra, Xσ ∩B(b, r) has two connected

components A±(b, r) = ϕ−1
(
{−y2

− + y2
+ < 0} ∩ {±y− > 0}

)
∩B(b, r).

The proof of (3.4) is similar to that of (3.1), the difference is that there is now only one
variable y−. Moreover, the expression of A± gives that

(3.5) ∀b ∈ Γ ∩B(a, ra), ∀0 < r < ra, A±(b, r) ∩ Γ is a neighborhood of b in Γ.

As above (3.2), there exists a finite number of aj ∈ Γ such that Γ ⊂ ∪jB(aj, raj). Noting
r̃ = minj raj , (3.4) gives

(3.6)
∀b ∈ Γ, ∀0 < r < r̃, Xσ ∩B(b, r) has two connected

components A±(b, r) = ϕ−1
(
{−y2

− + y2
+ < 0} ∩ {±y− > 0}

)
∩B(b, r).

Let a0 ∈ Γ, 0 < r < r̃ and A±(r) be the connected component of Xσ ∩ (Γ + B(0, r))
containing A±(a0, r). Following the proof of (3.3) and using (3.5) and (3.6), we get

(3.7) Γ ⊂ A+(r) ∩ A−(r).

We now show that

(3.8) Xσ ∩ (Γ +B(0, r)) = A+(r) ∪ A−(r).

By definition A±(r) ⊂ Xσ ∩ (Γ + B(0, r)). On the other hand, let z ∈ Xσ ∩ (Γ + B(0, r)).
There exists b ∈ Γ such that z ∈ Xσ ∩ B(b, r). By (3.6), there exists a sign ε ∈ {+,−}
such that z ∈ Aε(b, r). Let C be the connected component of Xσ∩ (Γ+B(0, r)) containing
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Aε(b, r). As in (3.7), a0 ∈ Γ ⊂ C. From (3.6), C intersects Aδ(a0, r) for some δ ∈ {+,−}.
Since this last set is connected, Aδ(a0, r) ⊂ C, C = Aδ(r) and finally z ∈ A+(r) ∪ A−(r).
This concludes the proof of (3.8).

From (3.8), we know that Xσ ∩ (Γ + B(0, r)) has at most two connected components
A+(r) and A−(r) for 0 < r < r̃. Note that, if A+(r0) = A−(r0) for some 0 < r0 < r̃, then
A+(r) = A−(r) for all r0 < r < r̃ since ∅ 6= A+(r0) ⊂ A±(r). Thus, either A+(r) = A−(r)
for all r > 0 small enough or A+(r) 6= A−(r) for all r > 0 small enough. Combined with
(3.7), this shows ii). �

The next result is used in the construction of quasimodes.

Proposition 3.2. Let Γ ∈ U (1)
sep and µ(x) be the unique negative eigenvalue of Hess f(x)

for x ∈ Γ. There exist r > 0 and a smooth map

ν : Γ −→ Sd−1,

such that

i) for all x ∈ Γ, ν(x) ∈ ker(Hess f(x)− µ(x)).

ii) for all s ∈]0, r] and x ∈ Γ, x± sν(x) ∈ B±.

In some sense, this result says that any manifold Γ ∈ U (1)
sep is “negatively orientable”:

even if Γ is non-orientable, it admits a global smooth normal vector field of eigenvectors of

Hess f associated to its negative eigenvalue. To construct a non-orientable element of U (1)
sep,

one can consider a non-orientable smooth boundaryless compact submanifold M ⊂ Rd−1

and f(x) = −x2
1 + dist((x2, . . . , xn),M)2 near Γ = {0} ×M . One can also deduce from

the proof of Proposition 3.2 that there is only one ν(x) ∈ Sd satisfying i) and ii). This
result may also hold for locally separating manifolds, but is only needed in the sequel for

elements of U (1)
sep.

Proof of Proposition 3.2. Since Γ ∈ U (1), Hess f(x) has a unique negative eigenvalue µ(x)
and ker(Hess f(x) − µ(x)) is a one dimensional vector space for all x ∈ Γ. Let ν̃(x) be
(any) normalized element of ker(Hess f(x)− µ(x)). By Taylor’s formula,

f(x+ sν̃(x)) = f(Γ) +
s2

2

〈
Hess f(x)ν̃(x), ν̃(x)

〉
+O(s3)

= f(Γ) + s2µ(x)/2 +O(s3),

where the O(s3) is uniform with respect to x since Γ is compact. Using again the com-
pactness of Γ, there exists r > 0 such that

(3.9) f(x+ sν̃(x)) < f(Γ),

for all x ∈ Γ and s ∈ [−r, r] \ {0}. From Lemma 1.6, it yields x+ sν̃(x) ∈ B− ∪B+. Since
B± are connected components of Xf(Γ), x + sν̃(x) stays in the same B• for all s ∈ [−r, 0[
and all s ∈]0, r]. Moreover, since f takes the form (1.6) near Γ, x + sν̃(x) ∈ B+ if and
only if x − sν̃(x) ∈ B−. Summing up, we can choose ν(x) equal to ±ν̃(x) for all x ∈ Γ
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such that x + sν(x) ∈ B+ and x − sν(x) ∈ B− for s ∈]0, r]. Eventually, ν(x) is C∞

since ker(Hess f(x)− µ(x)) depends smoothly of x ∈ Γ and the choice of the sign for ν(x)
respects this regularity by connectedness. �

4. Local construction of the quasimodes

In this part, we construct Gaussian quasimodes near the separating saddle manifolds.

Such constructions go back to [5, 7, 24]. Given a separating saddle manifold Γ ∈ U (1)
sep,

we look for a solution of the equation ∆fu = 0 in the neighborhood of Γ under the form
u(x) = v(x, h)e−f(x)/h with

(4.1) v(x, h) =

∫ `(x,h)

0

ζ(s/τ)e−s
2/2hds,

for some function `(x, h) ∈ C∞(Rd) having a classical expansion `(x, h) ∼
∑

j≥0 h
j`j(x).

Here ζ denotes a fixed smooth even function equal to 1 on [−1, 1] and supported in [−2, 2]
and τ > 0 is a small parameter which will be fixed later. The object of this section is to
construct the function `.

The following lemma holds by a straightforward computation.

Lemma 4.1 (Equations on `). We have

∆f (ve
−f/h) = (w + r)e−(f+ `2

2
)/h,

where

w = h
(
2∇f · ∇`+ |∇`|2`

)
− h2∆`,

supp(r) ⊂ {|`| ≥ τ} and r and all its derivatives are uniformly bounded with respect to h.
Moreover, w admits a classical expansion w ∼

∑
j≥1 h

jwj with

w1 = 2∇f · ∇`0 + |∇`0|2`0,

and, for all j ≥ 1,

wj+1 = 2∇f · ∇`j + 2`0∇`0 · ∇`j + |∇`0|2`j +Rj(x, `0, . . . , `j−1),

with Rj ∈ C∞(Rd+j).

As usual in the study of the tunneling effect, we consider

(4.2) q(x, ξ) := −p(x, iξ) = ξ2 − |∇f(x)|2,

the complexified version of the principal symbol p(x, ξ) := ξ2 + |∇f(x)|2 of ∆f . For Γ ∈ U ,
the set Γ × {0} ⊂ T ∗Rd is a manifold of fixed points of the Hamiltonian vector field
Hq = ∂ξq · ∂x − ∂xq · ∂ξ. On the cotangent space T ∗Γ, q = ξ2 and the linearization of Hq is
the nilpotent matrix (

0 2
0 0

)
.



16 M. ASSAL, J.-F. BONY, L. MICHEL

On the other hand, Assumption 2 implies that Hq is hyperbolic in the normal directions
to T ∗Γ. Then, Theorem 1 in Appendix C of [1] provides the existence of the incom-
ing/outgoing manifolds Λ±. They are d-dimensional, stable by the Hamiltonian flow and
characterized near Γ× {0} by

(4.3) Λ± =
{

(x, ξ); dist
(

exp(tHq)(x, ξ),Γ× {0}
)
→ 0 as t→ ∓∞

}
.

For x ∈ Γ, the tangeant space T(x,0)Λ+ (resp. T(x,0)Λ−) is spanned by the eigenvectors of(
0 2

2(Hess f)2(x) 0

)
,

associated to the non-negative (resp. non-positive) eigenvalues. In particular, they project
nicely on the base space and, as in Lemma 3.3 of [9], they are Lagrangian manifolds. Thus,
there exist smooth functions φ± defined near Γ such that

(4.4) Λ± = {(x,∇φ±(x)); x ∈ Rd}.
In [17, 18], Helffer and Sjöstrand identified the phase φ+ with the Agmon distance to Γ
defined by (2.1).

Lemma 4.2. There exists a smooth function `0 defined in a neighbohood of Γ such that

φ+(x) = f(x)− f(Γ) +
`2

0(x)

2
,

Proof. This result, based on an observation of [20, (11.20)], is similar to Lemma 3.2 of
[4]. We give its proof for a sake of completeness and to explain why this construction can
be made globally around Γ. Let Λf := {(x,∇f(x)); x ∈ Rd} ⊂ T ∗Rd be the Lagrangian
manifold associated to the function f . From (4.2), we have q(x,∇f(x)) = 0 which implies
that Λf is stable by the Hq flow. Let F denote the Hamiltonian vector field Hq restricted
to Λf . Then, Γ× {0} is a manifold of fixed points for F . Moreover, the linearization of F
at (x, 0) with x ∈ Γ is

Fx =

(
0 2

2(Hess f)2(x) 0

)
,

on the tangent space of Λf at (x, 0)

T(x,0)Λf = {(t,Hess f(x)t); t ∈ Rd}.
Since Fx acts as 2 Hess f(x), this operator has dΓ zero eigenvalues (corresponding to the
tangent space of Γ× {0}), 1 negative eigenvalue and d− dΓ − 1 positive eigenvalues.

Let K± be the stable outgoing/incoming submanifold of Λf associated to F . Then K+

(resp. K−) has dimension d− 1 (resp. dΓ + 1), K± projects nicely on the x-space,

(4.5) K± = Λ± ∩ Λf and T(x,0)K± = T(x,0)Λ± ∩ T(x,0)Λf ,

for all x ∈ Γ. The existence and uniqueness of K± follows again from Theorem 1 in
Appendix C of [1]. Note that since F is normally hyperbolic at Γ × {0} (which was not
the case for Hq on the whole space when dΓ > 0), we could have used instead the classical
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Γ

πx(K−)

πx(K+)

x

ν(x)

Figure 4.1. The geometry in the proof of Lemma 4.2.

result of Hirsch, Pugh and Shub [22]. The first equality in (4.5) gives ∇φ± = ∇f on
πx(K±) and then

(4.6) ∀x ∈ πx(K±), φ±(x) = f(x)− f(Γ).

On the other hand, for all x ∈ Γ, we have

Hess(φ+ − f)(x) = |Hess f(x)| − Hess f(x) > 0,

on ν(x)R, where the vector field ν(x) is given by Proposition 3.2. Summing up, φ+−f+f(Γ)
is a non-negative function in a neighborhood of Γ which vanishes at order 2 on πx(K+)
(see Figure 4.1).

We now construct a square root of g = φ+ − f + f(Γ) in a neighborhood of Γ. Let x
be a point of Γ. There exist local coordinates (y, z) ∈ Rd−1 ×R mapping x to 0 such that
πx(K+) = {(y, z); z = 0} and such that the last basis vector (0, . . . , 0, 1) corresponds to
ν(x). Near 0, we have g(y, 0) = 0 from (4.6), ∂zg(y, 0) = 0 from (4.5) and ∂2

z,zg(y, z) > 0
from the last sentence of the previous paragraph. Then, the Taylor formula gives

g(y, z) =

∫ 1

0

(1− t)∂2
z,zg(y, tz) dt z2,

and

(4.7) φ+ = f − f(Γ) +
`2

0,x

2
with `0,x(y, z) =

(
2

∫ 1

0

(1− t)∂2
z,zg(y, tz) dt

)1/2

z.

Since the quantity under the square root is positive when evaluated in z = 0, the function
`0,x is smooth in a vicinity of 0. Coming back to the original variables, we have construct
a smooth square root of g in a neighborhood of x which is positive (resp. negative) in the
direction ν(x) (resp. −ν(x)). Since ν is globally defined on the compact manifold Γ, these
local functions glue together and provide a smooth function `0, defined in a neighborhood
of Γ, which satisfies φ+ = f − f(Γ) + `2

0/2. �

Lemma 4.3 (Eikonal equation). For Γ ∈ U (1)
sep, the function `0 of Lemma 4.2 solves

(4.8) 2∇f · ∇`0 + |∇`0|2`0 = 0,
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in a neighborhood of Γ. Moreover, for all x ∈ Γ, the vector ∇`0(x) is an eigenvector of the
matrix Hess f(x) associated to its unique negative eigenvalue µ(x). Eventually,

(4.9) |∇`0(x)|2 = −2µ(x) and det Hess⊥

(
f +

1

2
`2

0

)
(x) = − det Hess⊥(f)(x).

Proof. Combining 0 = q(x,∇φ+) = |∇φ+|2 − |∇f |2 with Lemma 4.2 leads to

0 = |∇f + `0∇`0|2 − |∇f |2

= |∇f |2 + 2`0∇f · ∇`0 + `2
0|∇`0|2 − |∇f |2

= `0

(
2∇f · ∇`0 + |∇`0|2`0

)
.

Since `0 does not vanish outside the hypersurface πx(K+) from (4.7), it implies (4.8).

Consider now x ∈ Γ and y ∈ Rd. Since ∇f(x + y) = Hess f(x)y + O(y2), `0(x + y) =
∇`0(x)y +O(y2) and ∇`0(x+ y) = ∇`0(x) +O(y) as y → 0, (4.8) gives〈

2 Hess f(x)∇`0(x), y
〉

+
〈
|∇`0(x)|2∇`0(x), y

〉
= O(y2).

and then

(4.10) 2 Hess f(x)∇`0(x) = −|∇`0(x)|2∇`0(x).

On the other hand, (4.7) implies that ∇`0(x) 6= 0. Thus, ∇`0(x) is an eigenvector of
Hess f(x) associated to the negative eigenvalue −|∇`0(x)|2/2. Since µ(x) is the unique
negative eigenvalue of Hess f(x), the first part of (4.9) follows.

Eventually, the previous discussion and `0(x) = 0 yield

Hess
(
f +

1

2
`2

0

)
(x) = Hess(f)(x)− 2µ(x)Πx,

with the rank-one orthogonal projection Πx = −(2µ(x))−1∇`0(x)〈∇`0(x), ·〉. Since Πx is
the spectral projection of Hess f(x) associated to its negative eigenvalue µ(x), Hess(f +
`2

0/2)(x) has the same eigenvalues than Hess f(x) except that µ(x) is replaced by −µ(x).
Since the determinant of a matrix is the product of its eigenvalues, the last part of (4.9)
holds true. �

We now construct the other functions `j in the spirit of [4, Lemma 3.4].

Lemma 4.4 (Transport equations). There exist an open neighborhood V of Γ and C∞

functions `j for j ≥ 1 such that

2∇f · ∇`j + 2`0∇`0 · ∇`j + |∇`0|2`j = −Rj(x, `0, . . . , `j−1),

near V , where Rj if given by Lemma 4.1.

Proof. We can solve these transport equations by induction over j since Rj depends only
on the previous functions `0, . . . `j−1. Then, it is enough to show that, for any smooth
function r, there exists a smooth function u defined near V such that

(4.11) Lu = r,
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where L is the operator

Lu = 2∇f · ∇u+ 2`0∇`0 · ∇u+ |∇`0|2u
= 2∇φ+ · ∇u+ |∇`0|2u,

thanks to Lemma 4.2. Near each point of Γ, there exists a local change of coordinates
F : Rd 3 x → (y, z) ∈ RdΓ × Rd−dΓ such that Γ = {(y, z); z = 0}. In these new
coordinates, L writes

(4.12) L = (dF )2∇xφ+ ◦ F−1 · ∇y,z + |∇x`0|2 ◦ F−1.

Since ∇φ+ vanishes on Γ, we have ∇xφ+◦F−1(y, 0) = 0 for all y. Then, the Taylor formula
gives

(dF )2∇xφ+ ◦ F−1(y, z) = (dF )2 Hess(φ+)(dF )−1 ◦ F−1(y, 0)

(
0
z

)
+ r(y, z),

for some smooth vector r(y, z) = O(z2) near z = 0. Consider the matrix on Rd

N(y) = (dF )2 Hess(φ+)(dF )−1 ◦ F−1(y, 0).

Since ker Hess(φ+)(x) = TxΓ for x ∈ Γ, we deduce kerN(y) = {(ty, 0); ty ∈ RdΓ}. Thus,
N(y) can be written

N(y) =

(
0 L(y)
0 M(y)

)
,

for some (d − dΓ) × (d − dΓ) (resp. dΓ × (d − dΓ)) invertible matrix M(y) (resp. matrix
L(y)). The matrix 2 Hess(φ+)(F−1(y, 0)) being real diagonalizable as a symmetric matrix,
it is the same for N(y) with the same eigenvalues. Thus, M(y) is real diagonalizable with
positive eigenvalues (those of 2 Hess(φ+)(F−1(y, 0))). The previous discussion and (4.9)
show that L can be decomposed as

(4.13) L = L0 + Lrem,

with the operators

L0 = M(y)z · ∇z − 2µ(y) and Lrem = c0(y, z) + cy(y, z)∇y + cz(y, z)∇z,

where µ(y) is a shortcut for µ(F−1(y, 0)) and for some smooth functions c0(y, z) = O(z),
cy(y, z) = O(z) and cz(y, z) = O(z2).

To solve (4.11), we first look for a formal solution of the form formal powers in z whose
coefficients are smooth functions of y. Then, for m ∈ N, let Hm be the set of homogeneous
polynomials in z of degree m whose coefficients are smooth functions of y. The operator
L0 acts on Hm for all m ∈ N. Moreover, for y fixed, there exists a basis of Rd−dΓ on
which M(y) is diagonal with eigenvalues λk(y) > 0. Then, the monomials of degree m
form a basis of eigenvectors of M(y)z · ∇z − 2µ(y) as an operator on the homogeneous

polynomials in z of degree m. Moreover, the eigenvalue associated to zα = zα1
1 · · · z

αd−dΓ
d−dΓ

is
∑

k αkλk(y) − 2µ(y) > 0. Thus, M(y)z · ∇z − 2µ(y) is invertible on the homogeneous
polynomials in z of degree m at y fixed. By continuity and compactness of Γ, this operator
is invertible for all (y, 0) ∈ Γ with a uniformly bounded smooth inverse. This implies that
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L0 is invertible on Hm. On the other hand, the properties on the c• imply that Lrem sends
formal powers in z of degree at least m with smooth coefficients in y into formal powers
in z of degree at least m+ 1 with smooth coefficients in y. Let r̃ denote the formal power
expansion in z with smooth coefficients in y of r. Since L0 is invertible on Hm for all
m ∈ N and Lrem is a lower order operator, one can construct inductively on the order of
the powers of z a formal solution ũ of

(4.14) Lũ = r̃.

Starting from the previous constructions, the Borel lemma provides a smooth function
u defined on Rd such that its formal power expansion in z given by the Taylor formula is
precisely ũ. In particular, (4.14) gives

(4.15) Lu = r + r̂(y, z),

where, for all α, β, ∂αy ∂
β
z r̂(y, z) = O(z∞) near z = 0 uniformly for (y, 0) ∈ Γ. To treat the

remainder term r̂ and build an exact solution of (4.11), we use the characteristic method
as in the proof of Proposition 3.5 of Dimassi and Sjöstrand [9]. For that, let ϕt(x) denote
the flow of ∇φ+, that is {

∂tϕt(x) = ∇φ+(ϕt(x)),

ϕt(x) = x.

Since the Hessian of φ+ is positive in the directions normal to Γ, the smooth function ϕt
satisfies the following estimates for all α ∈ Nd

|πz(ϕt(x))| ≤ Ce−C|t||x| and |∂αxϕt(x)| ≤ Cαe
Cα|t|,

for t ≤ 0 with C,Cα > 0 and πz(y, z) = z. We then define the function

(4.16) û(x) =

∫ 0

−∞
e−

∫ 0
t |∇`0|

2(ϕs(x)) dsr̂(ϕt(x)) dt.

Thanks to the previous estimates and the properties of r̂, this expression defines a smooth
function near a neighborhood V of Γ (independent of r̂). Moreover, it solves Lû = r̂.
Finally, u := u+ û is a solution of (4.11). �

Combining Lemma 4.3, Lemma 4.4 and a Borel procedure in h, we eventually get

Proposition 4.5. For any Γ ∈ U (1)
sep, there exists a smooth function x 7→ `(x, h) defined in

a neighborhood V of Γ such that the following holds true.

i) ` admits a classical expansion `(x, h) ∼
∑

j h
j`j(x),

ii) 2∇f · ∇`+ |∇`|2`− h∆` = O(h∞) uniformly with respect to x in V ,

iii) the function −`(x, h) satisfies also i) and ii).

Note that −` is also a function which can be obtained following the construction of `
but replacing the vector field ν(x) by −ν(x). Depending on the global geometry of the
critical set of f , we will choose later which function (` or −`) will be convenient.
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5. Global construction of the quasimodes

Following Section 3 of [24], we construct a global quasimode ψm associated to each
minimal manifold m ∈ U (0). Roughly speaking, we search this function supported in a
neighborhood of E(m) and decaying from m. Inside E(m), we choose ψm = e−f/h. Near
a regular point x of the boundary ∂E(m) (that is f(x) = σ(m) and ∇f(x) 6= 0) or near a
non-separating critical manifold Γ ∈ ∂E(m), we still take ψm = e−f/h since this choice is
in agreement with the values of ψm already known in Xσ(m) near x or Γ. Eventually, for
any separating saddle manifold Γ ⊂ ∂E(m), Lemma 1.6 shows that E(m) is one of the two
connected components B± of Xσ(m) near Γ. We already know the value of ψm in E(m) and
we want ψm = 0 in the other connected component. To glue these two functions together,
we use the constructions of the previous section near Γ.

More precisely, let Γ ∈ U (1)
sep be a separating saddle manifold with Γ ⊂ ∂E(m) and note

σ := σ(m) = f(Γ).

From Lemma 1.6, Xσ has two connected components B± with Γ ∩ B± 6= ∅ and E(m) is
one of them. Modulo a change of labeling, we assume in the sequel that E(m) = B+.
Let `Γ(x, h) : V → R be the function constructed in Section 4 and positive in E(m) (see
Proposition 4.5 iii) for the choice of sign), and let UΓ be some small open neighborhood of
Γ such that UΓ ⊂ V . Mimicking (4.1), we set for x ∈ UΓ

(5.1) vΓ(x, h) = C−1
Γ

∫ `Γ(x,h)

0

ζ(s/τ)e−s
2/2hds,

where ζ ∈ C∞0 (]− 2, 2[; [0, 1]) is an even function equal to 1 on [−1, 1] and with τ > 0 and
the renormalization constant

(5.2) CΓ =

∫ +∞

0

ζ(s/τ)e−s
2/2hds =

√
πh

2

(
1 +O(e−c/h)

)
,

for some c > 0.

Lemma 5.1. Let V 0
Γ be an open set satisfying Γ ⊂ V 0

Γ b UΓ. There exist open neighbor-
hoods V ±Γ of B± ∩ UΓ \ V 0

Γ such that vΓ = ±1 in V ±Γ for all τ > 0 small enough.

Proof. Since φ+ has a positive Hessian in the normal directions to Γ, there exists β > 0
such that φ+ ≥ β on UΓ \ V 0

Γ (after a possible shrinking of UΓ). On the other hand, we
have f ≤ σ on B±. Summing up, Lemma 4.2 gives

`2
Γ,0 = 2φ+ − 2(f − σ) ≥ 2β,

in (B+ ∪ B−) ∩ UΓ \ V 0
Γ . Moreover, we have ±`Γ,0 ≥ 0 in B± ∩ UΓ by our choice of sign

for `Γ, Proposition 3.2 ii) and the discussion below (4.7). By a continuity argument, the
previous equation gives ±`Γ ≥

√
β in V ±Γ , an open neighborhood of B± ∩UΓ \V 0

Γ . For any
0 < τ <

√
β/2, the support properties of ζ imply that ±[`Γ(x),+∞[ for x ∈ V ±Γ does not
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B−

m

B+ = E(m)

{f = σ}

V +
Γ V 0

Γ

vΓ = 1

V −Γ

vΓ = −1

Γ

∂{θm = 1}
∂{θm = 0} UΓ

Figure 5.1. The geometric setting near a separating saddle manifold.

meet the support of ζ(·/τ) and then

vΓ =


C−1

Γ

∫ +∞

0

ζ(s/τ)e−s
2/2hds = 1 in V +

Γ ,

C−1
Γ

∫ −∞
0

ζ(s/τ)e−s
2/2hds = −1 in V −Γ ,

the second identity using that ζ is even. �

We are now in position to define the global quasimode ψm. Recall (see (1.9)) that j(m)

denotes the set of separating saddle manifolds Γ ∈ U (1)
sep such that Γ ∩ ∂E(m) 6= 0 (or

equivalently Γ ⊂ ∂E(m) by (1.10)). If m 6= m, we have j(m) 6= ∅. Let δ > 0 be a small
enough parameter fixed in the sequel. For all Γ ∈ j(m), consider V 0

Γ as in Lemma 5.1 with
V 0

Γ ⊂ E(m) +B(0, δ). Let θm ∈ C∞0 (E(m) +B(0, 2δ); [0, 1]) be a function equal to 1 near

E(m) and V 0
Γ for all Γ ∈ j(m) and such that

(5.3) supp(θm) ∩ ∂UΓ ⊂ V +
Γ ,

for all Γ ∈ j(m) (see Figure 5.1).

Definition 5.2. For any m ∈ U (0), let us define the function ψm by

(5.4) ψm :=


θm(vΓ + 1)e−(f−f(m))/h in UΓ for all Γ ∈ j(m),

2θme
−(f−f(m))/h in Rd \

⋃
Γ∈j(m)

UΓ,

when m 6= m and by ψm(x) := e−(f(x)−f(m))/h when m = m.

These functions satisfy the following properties.

Lemma 5.3. For δ > 0 and then τ > 0 small enough, one has

i) ψm ∈ C∞0 (Rd) for m 6= m.

ii) if σ(m) = σ(m′) and m 6= m′, then supp(ψm) ∩ supp(ψm′) = ∅.
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iii) if σ(m) > σ(m′), then

? either supp(ψm) ∩ supp(ψm′) = ∅,
? or ψm = 2e−(f−f(m))/h on supp(ψm′) and f(m′) > f(m).

Proof. From (5.3) and Lemma 5.1, we have vΓ = 1 near supp(θm) ∩ ∂UΓ. Thus, ψm is
smooth near ∂UΓ and eventually on Rd. This proves i). The two other points are a
consequence of Assumption 3 and similar to Lemma 4.4 iv), v) of [24]. We send the reader
to this paper for the detailed proof. �

Proposition 5.4. Let Assumptions 1, 2 and 3 hold and let m ∈ U (0) \ {m}. For τ0, δ0 > 0
small enough, we have

i) ‖ψm‖2 ∈ Ecl

(
4(πh)

d−dm
2

∫
m

(
det Hess⊥ f(s)

)−1/2
ds
)
,

ii) 〈∆fψm, ψm〉 ∈
∑

Γ∈j(m)

Ecl

( 4

π2
(πh)

d−dΓ
2

+1e−2(σ−f(m))/h

∫
Γ

|µ(s)|
∣∣ det Hess⊥ f(s)

∣∣−1/2
ds
)
,

iii) ‖∆fψm‖2 = O(h∞)〈∆fψm, ψm〉,
where ah = Ecl(bh) means that there exists ch such that ah = bhch for h small enough and
ch admits a classical expansion ch ∼

∑
j∈N cjh

j with c0 = 1.

Proof. By Assumption 3, m is the unique minimal manifold of f on E(m) and then on
supp(θm) for δ > 0 small enough. Then, (5.4) shows that, for any small neighborhood V
of m, we have

‖ψm‖2 = 4

∫
V

e−2(f(x)−f(m))/hdx+O(e−c/h),

for some c > 0. Since the Hessian of f is positive in the normal directions to m, we
can apply a generalization of the Laplace method to the case of critical manifolds. More
precisely, Hypothesis 2 and Theorem A.1 of [27] give

‖ψm‖2 ∈ Ecl

(
4(πh)

d−dm
2

∫
m

det
(

Hess⊥ f(s)
)−1/2

ds
)
,

and i) follows.

Let gm be the smooth function equal to θm(vΓ +1) in UΓ and equal to 2θm near Rd\∪UΓ.
Then, (1.4) and (5.4) give

〈∆fψm, ψm〉 = ‖dfψm‖2 =
∥∥df (gme−(f−f(m))/h)

∥∥2
.

Since dfe
−(f−f(m))/h = 0, this yields

(5.5) 〈∆fψm, ψm〉 = h2

∫
Rd
|∇gm(x)|2e−2(f(x)−f(m))/hdx.

On Rd \ ∪UΓ, we have f > σ on the support of ∇gm = 2∇θm for δ small enough. On UΓ,
we can write

∇gm = (vΓ + 1)∇θm + θm∇vΓ.
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By the support properties of ∇θm and Lemma 5.1 (see Figure 5.1), we have f > σ on
supp((vΓ + 1)∇θm). On the other hand, (5.1) gives

θm∇vΓ = C−1
Γ θmζ(`Γ/τ)e−`

2
Γ/2h∇`Γ.

Then, (5.5) becomes

〈∆fψm, ψm〉 =
∑

Γ∈j(m)

C−2
Γ h2

∫
UΓ

θ2
mζ

2(`Γ/τ)|∇`Γ|2e−2(f+`2Γ/2−f(m))/hdx

+O(e−2(σ−f(m))/h−c/h),(5.6)

for some c > 0. Since `Γ ∼
∑

j≥0 h
j`Γ,j has an asymptotic expansion in powers of h, the

phase factor can be decomposed as

(5.7) e−2(f+`2Γ/2−f(m))/h = e−2(f+`2Γ,0/2−f(m))/h
(
e−2`Γ,0`Γ,1 +O(h)

)
,

where `Γ,0 = 0 on Γ and the remainder term O(h) is a symbol. Note that φΓ,+ = f + `2
Γ,0/2

from Lemma 4.2 where the Hessian of φΓ,+ is positive in the normal directions to Γ.
Then, we can apply the Laplace method to compute (5.6). Using (4.9), (5.2), (5.7), θm =
ζ(`Γ/τ) = 1, f + `2

Γ,0/2 = σ on Γ and e−2`Γ,0`Γ,1 = 1 on Γ to compute all the coefficients,
Theorem A.1 of [27] yields

〈∆fψm, ψm〉 ∈
∑

Γ∈j(m)

Ecl

( 4

π2
(πh)

d−dΓ
2

+1e−2(σ−f(m))/h

∫
Γ

|µ(s)|
∣∣ det Hess⊥ f(s)

∣∣−1/2
ds
)
,

and ii) follows.

We now estimate ‖∆fψm‖2. Near Rd \ ∪UΓ, (5.4) gives ∆fψm = 2[∆f , θm]e−(f−f(m))/h

since ∆fe
−(f−f(m))/h = 0. Using f > σ on supp(∇θm), we deduce

(5.8) ‖∆fψm‖2
L2(Rd\∪UΓ) = O

(
e−2(σ−f(m))/h−c/h),

for some c > 0. On UΓ with Γ ∈ j(m), we can write

∆fψm = ∆fθm(vΓ + 1)e−(f−f(m))/h

= θm∆f (vΓ + 1)e−(f−f(m))/h + [∆f , θm](vΓ + 1)e−(f−f(m))/h

= θm∆fvΓe
−(f−f(m))/h + [∆f , θm](vΓ + 1)e−(f−f(m))/h(5.9)

The choice of θm and Lemma 5.1 (see Figure 5.1) imply that f > σ on supp(vΓ + 1) ∩
supp(∇θm). Thus, the last term of (5.9) satisfies

(5.10) [∆f , θm](vΓ + 1)e−(f−f(m))/h = O
(
e−2(σ−f(m))/h−c/h),

for some c > 0. On the other hand, Lemma 4.1 and Proposition 4.5 show that

(5.11) θm∆fvΓe
−(f−f(m))/h = θm(w + r)e−(f+`2Γ/2−f(m))/h,

with r = O(1), supp(r) ⊂ {|`Γ| ≥ τ} and w = O(h∞). On supp(θmr), Lemma 4.2 gives
f + `2

Γ/2 = φΓ,+ > σ since the Hessian of φΓ,+ is positive in the normal directions to Γ.
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Then, we obtain ∥∥θmre−(f+`2Γ/2−f(m))/h
∥∥ = O

(
e−(σ−f(m))/h−c/h),

for some c > 0. Concerning w, we can only deduce from Lemma 4.2 that f+`2
Γ/2 = φΓ,+ ≥

σ on supp(θmw). Since w = O(h∞), we get∥∥θmwe−(f+`2Γ/2−f(m))/h
∥∥ = O

(
h∞e−(σ−f(m))/h

)
,

Combining (5.11) with the two last inequalities, it comes

(5.12) θm∆fvΓe
−(f−f(m))/h = O

(
h∞e−(σ−f(m))/h

)
.

Then, (5.9), (5.10) and (5.12) give

(5.13) ‖∆fψm‖2
L2(UΓ) = O

(
h∞e−2(σ−f(m))/h

)
.

Eventually, iii) follows from (5.8), (5.13) and ii). �

6. Proof of Theorem 1.7

Recall that, for m ∈ U (0), S(m) := σ(m)−f(m) where σ is defined in (1.11). From now,
one labels the minimal submanifolds m1, . . . ,mn0 ∈ U (0) of f so that (S(mj))j∈{1,...,n0} is
non-decreasing, i.e.,

S(mn0) = +∞ and ∀j ∈ {2, . . . , n0 − 1}, S(mj) ≥ S(mj−1).

For j ∈ {1, . . . , n0}, we set

(6.1) Sj := S(mj), ϕj :=
ψmj
‖ψmj‖L2

and µj := 〈∆fϕj, ϕj〉.

Let η0 > 0 be as in Theorem 1.2 and introduce the spectral projection

Πh :=
1

2iπ

∫
∂D(0,

η0
2
h2)

(z −∆f )
−1dz.

For j ∈ {1, . . . , n0} and h > 0 small enough, we set vj := Πhϕj.

According to Proposition 5.4, we have for any j ∈ {1, . . . , n0}

(6.2) ‖∆fϕj‖ = O
(
h∞
√
〈∆fϕj, ϕj〉

)
= O(h∞

√
µj).

On the other hand, using Lemma 5.3 and proceeding in the same way as in the proofs of [4,
Proposition 5.1 (i)] and [24, Lemma 4.7] respectively, we also have for any j, k ∈ {1, . . . , n0}

(6.3) 〈ϕj, ϕk〉 = δj,k +O(e−c/h) and 〈∆fϕj, ϕk〉 = δj,kµj,

for some constant c > 0, uniformly for h > 0 small enough.

Writing

(1− Πh)ϕj = − 1

2iπ

∫
∂D(0,

η0
2
h2)

z−1(z −∆f )
−1∆fϕj dz,
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and using (6.2) together with ‖(z −∆f )
−1‖ = O(h−2) for any z ∈ ∂D(0, η0

2
h2), we get

(6.4) (1− Πh)ϕj = O(h∞
√
µj).

Combining estimates (6.2), (6.3) and (6.4), we obtain the following proposition (see for
instance [24, Proposition 4.10] for the proof).

Proposition 6.1. There exists a constant c > 0 such that, for all j, k ∈ {1, . . . , n0},

(6.5) 〈vj, vk〉 = δj,k +O(e−c/h),

and

(6.6) 〈∆fvj, vk〉 = δj,kµj +O(h∞
√
µjµk).

In particular, {v1, . . . , vn0} is a basis of Ran Πh for h > 0 small enough.

Relying on the above result, the rest of the proof is standard. We recall only the main
steps referring for instance to [24, Proposition 4.12] for the details. Starting from the basis
{vn0−j+1}j∈{1,...,n0} we obtain an orthonormal basis {en0−j+1}j∈{1,...,n0} of Ran Πh using the
Gram–Schmidt process. Thanks to (6.5), this new basis satisfies for any j ∈ {1, . . . , n0},

en0−j+1 = vn0−j+1 +O(e−c/h).

Now, it follows from the above labeling and (6.6) that, for any j, k ∈ {1, . . . , n0},
〈∆fen0−j+1, en0−k+1〉 = δj,kµn0−j+1 +O(h∞

√
µn0−j+1µn0−k+1).

Hence the matrix Mh of ∆f |Ran Πh
in the basis {en0−j+1}j∈{1,...,n0} takes the form

Mh = diag
(
(
√
µn0−j+1)1≤j≤n0

)
(In0 +O(h∞)) diag

(
(
√
µn0−j+1)1≤j≤n0

)
.

The spectrum of such a matrix can be computed using the Fan inequalities (see [10, 30])
or Lemma 6.2 below. From these results, the eigenvalues λj(h) of Mh, that are the small
eigenvalues of ∆f , satisfy

(6.7) λj(h) = µn0−j+1(1 +O(h∞)) = 〈∆fϕn0−j+1, ϕn0−j+1〉(1 +O(h∞)).

Eventually, the announced result follows from i) and ii) of Proposition 5.4.

Lemma 6.2. Let M = M(h) be a n× n matrix of the form

M = D(In +O(h∞))D,

for some diagonal matrix D(h) = diag(νj(h)) with νj(h) ∈ C. Then, the eigenvalues of M
are of the form ν2

j (h)(1 +O(h∞)).

Proof. Without loss of generality, we can assume that νj 6= 0 for all j ∈ {1, . . . , n} (we
simply remove the lines and columns of zeros if some of the νj’s vanish). The eigenvalues
of M are the zeros of the renormalized characteristic polynomial

p(z) = det(D)−2 det(M − z) = det(D−1(M − z)D−1)

= det
(

diag(1− zν−2
j ) +O(h∞)

)
.(6.8)
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The usual expansion formula for the determinant using permutations allows to write p(z) =
f(z) + g(z) where f(z) =

∏
j∈{1,...,n}(1− zν

−2
j ) and g(z) is a finite sum of terms of the form

O(h∞)
∏

j∈J(1 − zν−2
j ) with J  {1, . . . , n}. For K > 0, we have |1 − zν−2

j | ≥ hK for

z /∈ B(ν2
j , h

K |νj|2). It follows that

∀z ∈ C \ ∪jB(ν2
j , h

K |νj|2), |g(z)| < |f(z)|,

for h small enough. Letting K goes to +∞, the Rouché Theorem implies the Lemma. �
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7. G. Di Gesù and D. Le Peutrec, Small noise spectral gap asymptotics for a large system of nonlinear
diffusions, J. Spectr. Theory 7 (2017), no. 4, 939–984.
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