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We present new numerical models for computing transitional or rarefied

gas flows as described by the Boltzmann-BGK and BGK-ES equations.

We first propose a new discrete-velocity model, based on the entropy min-

imization principle. This model satisfies the conservation laws and the

entropy dissipation. Moreover, the problem of conservation and entropy

for axisymmetric flows is investigated. We find algebraic relations that

must be satisfied by the discretization of the velocity derivative appearing

in the transport operator. Then we propose some models that satisfy these

constraints. Owing to these properties, we obtain numerical schemes that

are economic, in terms of discretization, and robust. In particular, we de-

velop a linearized implicit scheme for computing stationary solutions of the

discrete-velocity BGK and BGK-ES models. This scheme is the basis of a

code which can compute high altitude hypersonic flows, in 2D plane and

axisymmetric geometries. Our results are analyzed and compared to other

methods.
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1. INTRODUCTION

For the simulation of gas flows in rarefied or transitional regimes, there mainly
exists two classes of methods. The first one is a probabilistic approach, like the
classical Direct Simulation Monte Carlo method (DSMC). The second approach is
called deterministic. It consists in numerically solving the kinetic equation, namely
the Boltzmann equation.

The DSMC method is the most often used in engineering applications. But due
to its particular nature, this method is still expensive for some flows like recircula-
tion problems or near continuum flows. However, it is worth mentioning the recent
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approach of Pareschi and Caflisch [28] that proposes a modification of DSMC to
correct this problem. But the probabilistic nature of DSMC also leads to noise
charged solutions. The deterministic approaches are more accurate (see Rogier-
Schneider [30], Buet [11], Ohwada [27]), but they are very expensive in terms of
computational time, especially due to to the quadratic cost of the velocity dis-
cretization of the collision operator.

A reduction of this cost can be obtained by considering simplified models of the
Boltzmann equation, like the Bathnagar-Gross-Krook model (BGK)

∂tf + v · ∇xf =
1
τ

(M [f ]− f).

This model [5] is known to be sufficient for numerous situations, even in some cases
where the gas is far from equilibrium (see [18]). Some drawbacks of this model as
the incorrect value of the Prandtl number can be corrected by modified models. A
lot of works have been devoted to numerical approximations of the BGK equation,
essentially by the discrete-ordinate method (see Yang and Huang in [36] and Aoki,
Kanba and Takata in [3] and their references), but also by particular methods (
see Issautier in [20]). However, to our knowledge, none of these methods satisfy
at the discrete level the macroscopic properties known as conservation laws and
dissipation of entropy.

In this work, we are essentially concerned by developing numerical methods that
are conservative and entropic. For that reason, this paper presents three distinct
points. First we present a robust velocity discretization of the BGK and BGK-
Ellipsoidal-Statistical (BGK-ES) collision operators. Then the velocity discretiza-
tion of the transport operator is considered, especially for cylindrical coordinates.
These two points give us discrete-velocity models of BGK and BGK-ES equations,
that are discretized in space and time in the last point.

For the velocity discretization of the BGK collision operator, the main prob-
lem is the approximation of the Maxwellian distribution. Many works use precise
quadratures of Gauss-Hermite type (see [36, 3]). But despite the accuracy of their
quadratures, these methods lack the properties of conservation and dissipation of
entropy. This makes necessary a fine velocity mesh to ensure robust algorithms,
which then are expensive. We have proposed in [26] a method based on an entropy
minimization principle, which gives a conservative and entropic discrete BGK col-
lision operator. Here, we advance the work of [26] and generalize the method to
the BGK-ES operator. This allows us to reach correct Prandtl number in the
hydrodynamic limit.

The velocity discretization of the transport operator is trivial in Cartesian coor-
dinates, but not in cylindrical coordinates. In fact, the cylindrical description yields
inertia terms that are velocity derivatives of the distribution function. This problem
is important to simulate axisymmetric flows, but to our knowledge, a few articles
exist about the numerical approximation of this operator. One of the first work is
due to Bergers in [6] (see also his references). He approximates the inertia terms by
assuming that they are equal to that given by a Maxwellian distribution. However
this assumption is not valid for strong kinetic non equilibrium, as with strong shock
waves normal to the radial direction. In the works of Shakhov [31], Sone et al. [35],
and Larina and Rykov [22], the inertia terms are directly discretized, but one or all
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the properties of positivity, conservation, and entropy are lost. Consequently, these
methods may lack robustness and are restricted to simple 1D or 2D axisymmetric
flows like in circular pipes or between two coaxial cylinders.

Here we follow the same velocity discretization approach of the previous authors
but we put in evidence the properties that should be satisfied by the discrete inertia
terms so as to ensure conservation and entropy. We propose some corrections to
existing methods to make them conservative. We also propose new discretizations
that satisfy positivity of solution, conservation and entropy. To our knowledge, it
is the first time that discretizations simultaneously possessing all these properties
are presented. Moreover, we point out that these discretizations of the transport
equation are independent of the collision term. Therefore they may be applied to
a large class of kinetic equations as Boltzmann or Fokker-Planck equations.

The velocity discretization of the collision and transport operator leads to a
so-called discrete-velocity model (DVM). This DVM must be discretized in space
and time. First, we present an explicit scheme that inherits all the properties of
the discrete-velocity model. However, in view of steady computations, the CFL
condition of this scheme is restrictive in dense regimes (where τ is small) and in
high-velocity regimes. To overcome this difficulty, there exists three different ways.
First, many authors directly use a discretization of the stationary equation with
fixed point techniques (see [3] and Babovski [4]). The drawback is that this method
may converge very slowly (see a comparison in [26]). Another approach, quite
recent, consists in developing schemes that are robust in the fluid dynamic limit
(see Jin-Levermore [21], Gabetta-Pareschi-Toscani in [17], Caflisch et al. in [12]).
But the problem of high velocity regimes does not seem to be resolved by these
methods.

Our approach is a classical CFD technique which consists in developing a fully
linearized implicit scheme, thus stable for any arbitrary relaxation time and any
large velocity. A similar technique has been used by Yang and Huang [36], but
in their work, only the negative term −f of the collision operator is implicit. Our
method involves solving a very large linear system, for which we propose an iterative
solver. We use the sparse structure of the different matrices involved in the system,
related to the different role of space and velocity variables. Our solver is then a
kind of coupling between Jacobi and Gauss-Seidel methods. Our linearized implicit
scheme appears to be very fast and robust for computing steady flows, for both
dense and high speed regimes. We also present an adaptation of this scheme to
curvilinear meshes and axisymmetric flows.

The remainder of the paper follows logically. In the next section, some properties
of the BGK and BGK-ES equations are recalled, as well as a short list of notations.
In section 3, we present our velocity discretization of the BGK and BGK-ES colli-
sion operators. In section 4, we discuss the problem of the velocity discretization
of the transport operator in cylindrical coordinates. Then in section 5, we present
our numerical schemes for discretizing in space and time our DVM. The linearized
implicit scheme is derived from the explicit scheme and the linear solver algorithm
is precisely described. The extension to axisymmetric DVM is also presented. Fi-
nally, the last section shows numerous numerical results for subsonic, supersonic,
and hypersonic flows. Both plane and axisymmetric cases are presented. Plane
flow computations show the difference between BGK and BGK-ES, the advantage
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of our approach in comparison with classical DSMC computations for recircula-
tion problems, and the ability of our method for computing hypersonic flows. For
axisymmetric flows, the different velocity discretizations are compared on a sim-
ple 1D case, and the potentiality of our method is demonstrated on a 2D flow
around a sphere. Whenever it is possible, our results are compared to DSMC and
Navier-Stokes computations.

2. BGK EQUATION

The BGK equation is a simplified model of the Boltzmann equation [13] for rar-
efied gases, which describes the evolution of the mass density f(t, x, v) of monoatomic
molecules that have position x = (x, y, z) and velocity v = (vx, vy, vz) ∈ R3

∂tf + v · ∇xf =
1
τ

(M [f ]− f). (1)

The collisions are modeled here by the relaxation of f towards the Maxwellian
equilibrium distribution M [f ] (cf. [5]). This distribution only depends on v and on
the fluid quantities - density ρ, mean velocity u = (ux, uy, uz) and temperature T
- that are defined by the first five moments of f

ρ = 〈f〉, ρu = 〈vf〉, E = 〈 12 |v|
2f〉 = 1

2ρ|u|
2 + 3

2ρRT,

where 〈g〉 =
∫

g(v) dv denotes the integral of any vectorial or scalar function g.
These moments are called density, momentum, and total energy of the gas. We
denote by m(v) = (1, v, 1

2 |v|
2)T the vector of microscopic quantities mass, mo-

mentum and kinetic energy (normalized by the mass). Similarly we denote by
ρ = (ρ, ρu,E)T the vector of first five moments of f . These notations yield a more
compact definition of the moments

ρ = 〈mf〉.

Note that throughout this paper, bold symbols are only used for vectors of R5 such
as, for example, ρ and m(v). Since M [f ] depends only on ρ, it will be denoted by
M [ρ] in the sequel. An expression of M [ρ] is

M [ρ] = exp(α ·m(v)), with α =
(

log
(

ρ

(2πRT )3/2

)

− |u|
2

2RT
,
u

RT
,− 1

RT

)T

.(2)

By definition, M [ρ] has the same moments as f and it can easily be seen that this
distribution is the unique solution of the following entropy minimization problem
(see for instance [29])

(P) H(M [ρ]) = min {H(g), g ≥ 0 s.t. 〈mg〉 = ρ} , (3)

where H(g) = 〈g log g〉 is the kinetic entropy of the distribution g. This simply
means that the local equilibrium state minimizes the entropy of all the possible
states leading to the same macroscopic properties.

With this characterization of the local Maxwellian equilibrium, the following
properties of conservation of density, momentum, energy, and dissipation of entropy
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may easily be proved

∂t〈mf〉+∇x〈mvf〉 = 0, (4)

∂t〈f log f〉+∇x〈vf log f〉 ≤ 0. (5)

Furthermore, it is possible to check that solutions of (1) are nonnegative. We point
out that in a numerical scheme, the preservation of these properties is essential to
a robust and economic discretization.

The relaxation time of the BGK model is defined by

τ−1 = cρT 1−δ, (6)

where δ is the exponent of the viscosity law of the gas (see [14]). It depends on
the molecular interaction potential and on the type of the gas. The constant c is
RT δref/µref , where µref is the viscosity of the gas at the reference temperature
Tref . We refer to a table in [7] for some values of δ and µref of different gases.

The problem of this single relaxation time in the BGK model is that the collision
operator leads to unrealistic values of the transport coefficients at the hydrody-
namic limit. In particular, the Prandtl number Pr is then equal to 1, instead of
the value 2

3 given by both experimental data and a Chapman-Enskog expansion of
the Boltzmann equation for monoatomic gases. There exist several BGK-like relax-
ation models that fit the correct Prandtl number (see the models of Shakhov [32],
Liu [24], Holway [19], Bouchut-Perthame [9], Struchtrup [34]). However, a few
models respect each constraints of positivity, conservation of moments, dissipation
of entropy, as well as a low computational cost. Here, we consider the BGK-ES
model introduced by Holway [19] where the collision operator is now

C(f) =
1
τ

(G[f ]− f).

In this model, the Maxwellian equilibrium is replaced by an anisotropic Gaussian
G[f ] defined by

G[f ] =
ρ

√

det(2πT )
exp

(

− 1
2 (v − u)TT −1(v − u)

)

,

where ρT = 1
PrρRTI + (1 − 1

Pr )ρΘ is a linear combination of the stress tensor
ρΘ = 〈(v − u) ⊗ (v − u)f〉 and of the Maxwellian isotropic stress tensor ρRTI =
〈(v − u)⊗ (v − u)M [ρ]〉. The relaxation time is now defined by τ−1 = 1

Pr cρT
1−δ.

The Gaussian satisfies the following properties

〈mG[f ]〉 = 〈mf〉, 〈(v − u)⊗ (v − u)G[f ]〉 = ρT , (7)

H(G[f ]) = min{H(g), g ≥ 0, 〈(1, v, v ⊗ v)T g〉 = (ρ, ρu, ρu⊗ u+ ρT )T }. (8)

The model is thus positive and conservative, and the entropy dissipation property
(H-theorem) has recently been proved by Andriès-Le Tallec-Perthame [2]. Also
note that the fundamental equilibrium property

C(f) = 0⇔ f = M [ρ]
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is well satisfied. In fact C(f) = 0 implies G[f ] = f , thus Θ = 1
PrRTI + (1− 1

Pr )Θ.
Consequently, Θ = RTI and therefore f = G[f ] = M [ρ].

Owing to the structure of the BGK-ES operator, which is very close to that of
the BGK operator, our numerical algorithms will be quite similar.

In this paper, the diffuse reflection is used for all gas-surface interactions. Inci-
dent molecules are assumed to be absorbed by the wall, and re-emitted with the
temperature Tw of the wall and with a random velocity, according to a Maxwellian
distribution centered on the velocity of the wall uw:

f(t, x, v) = φ(x)M [ρw](v), v · n(x) > 0, (9)

where ρw = (1, uw, 1
2 |uw|

2 + 3
2RTw), n(x) is the vector normal to the wall (directed

toward the gas), and φ(x) is a parameter such that the mass flux across the wall is
zero

φ(x) = −

∫

v·n(x)<0
v · n(x)f(t, x, v) dv

∫

v·n(x)>0
v · n(x)M [ρw](v) dv

.

We refer to [13] for a more detailed presentation of this reflection.

3. CONSERVATIVE AND ENTROPIC VELOCITY
DISCRETIZATION OF THE COLLISION OPERATOR

Let K be a set of Nv multi-indexes of Z3, and let V be a discrete-velocity grid of
Nv points vk ∈ R3 indexed by k = (k, l, q) ∈ K, and defined by

vk = (vkx, v
l
y, v

q
z) = (k∆vx, l∆vy, q∆vz),

where (∆vx,∆vy,∆vz) are three positive numbers. The “continuous” velocity dis-
tribution f is then replaced by a Nv-vector fK(t, x) = (fk(t, x))k∈K where each
component fk(t, x) is assumed to be an approximation of f(t, x, vk). These compo-
nents will sometimes be denoted by fk,l,q(t, x). The fluid quantities are thus given
as in continuous case, except that integrals on R3 are replaced by discrete sums on
V. That is, setting

〈g〉K =
∑

k∈K

gk∆vx∆vy∆vz

for any vector g ∈ RNv , we can define discrete moments and discrete entropy of fK
by

ρK = 〈mfK〉K =
∑

k∈K

m(vk)fk∆vx∆vy∆vz,

HK(fK) = 〈fK log fK〉K.

Our discrete velocity BGK model follows as a set of Nv equations

∂tfk + vk · ∇xfk =
1
τ

(Ek[ρK]− fk) , ∀k ∈ K (10)

and the main problem is to define an approximation EK[ρK] of the Maxwellian
equilibrium M [ρ] such that conservation properties (4) and entropy property (5)
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still hold. First we note that the natural approximation (used by Yang and Huang
in [36])

Ek[ρK] = M [ρK](vk), ∀k ∈ K, (11)

cannot satisfy these requirements. Instead, we propose to use the discrete version
of entropy minimization problem (3). Let EK[ρK] be defined by the minimum of
discrete entropy, with the constraints that it must have the same moments as fK,
i.e. EK[ρK] is the solution of the following problem

(PK) HK(EK[ρK]) = min
{

HK(g), g ≥ 0 ∈ RNv s.t. 〈mg〉K = ρK
}

.

Obviously, it must be checked that this problem has a unique and easily solvable
solution (solving directly (PK) in RNv would be numerically expensive). In the
continuous case, the condition ρ, T > 0 is sufficient to characterize the solution
of (3) by the Maxwellian distribution. However, this is not true for the discrete
case where explicit computations are not possible. To this end, we have then proved
in [15, 26] that under a natural assumption on V, the discrete equilibrium EK[ρK]
has an exponential form if, and only if, a “strict realizability” condition is fulfilled
by ρK:

Theorem 3.1. Let ρK be a vector in R5, such that the set XρK = {g ≥ 0 ∈
RNv s.t. 〈mg〉K = ρK} of nonnegative discrete distributions realizing ρK is not
empty. Then, the problem (PK) has a unique solution EK[ρK] called discrete equi-
librium. Moreover, we assume that V has at least three points in each direction.
Then there exists a unique vector α in R5 such that the following exponential char-
acterization holds

Ek[ρK] = exp(α ·m(vk)), ∀k ∈ K,

if and only if ρK is strictly realizable, i.e.

∃g ∈ XρK s.t. g > 0. (12)

Remark 3.1. Due to the above result, the computation of EK[ρK] does not re-
quire the solution of an expensive minimization problem in RNv . Instead, only the
computation of the vector α in R5 is necessary. This vector α is the unique solution
of the nonlinear set of five equations

〈m exp(α ·m)〉K = ρK,

since EK[ρK] realizes ρK. This set may be solved by a Newton algorithm (see Sec.5).
Note that for plane flows, we have uz = 0. Then this set reduces to four equations
only, and we set m(v) = (1, vx, vy, 1

2 |v|
2) and ρ = (ρ, ρux, ρuy, E).
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Remark 3.2. Note that the case where XρK is empty is not considered here,
since the model implicitly contains the fact that ρK is realized by fK ≥ 0. However,
the condition of strict realizability (12) is more restrictive than the natural condition
ρK, TK > 0 (see [26] for a counter example). But, as it is stated in the following
theorem, it is sufficient to have an initial condition f0

K strictly positive to ensure
that ρK is always strictly realizable.

Theorem 3.2. Let f0
K be a strictly positive vector of RNv . Consider the initial

value problem associated with model (10), where EK[ρK] is defined by (PK). If this
problem has a solution fK, then the solution fK remains strictly positive and thus
the discrete equilibrium has always the form Ek[ρK] = exp(α ·m(vk)). Moreover,
the model satisfies the conservation laws and the dissipation of entropy

∂t〈mfK〉K +∇x〈mvfK〉K = 0, ∂t〈fK log fK〉K +∇x〈vfK log fK〉K ≤ 0.

Note here that these properties permit us to obtain existence and uniqueness
results for model (10), as well as convergence toward the continuous BGK (see [25]).

Velocity discretization of the BGK-ES model.
Following the previous approach, we define the approximation GK[fK] of G[f ] by

a discrete version of the generalized entropy minimization problem (8). Then we
have

Gk[fK] = exp(~α · ~m(vk)),

where ~m(vk) = (1, vk, vk ⊗ vk)T and ~α is the unique solution of the following non-
linear system of ten equations (six only for plane flows)

〈~m exp(~α · ~m)〉K = (ρK, ρKuK, ρKuK ⊗ uK + ρTK).

However, note that the modified tensor TK should now be defined as

TK =
1
Pr

ΠK + (1− 1
Pr

)ΘK,

where ρKΠK = 〈(v − uK) ⊗ (v − uK)EK[ρK]〉K is the stress tensor of the discrete
equilibrium EK[ρK]. As opposed to the continuous case, ρKΠK is different from
ρKRTKI, because of a lack of symmetry and invariance of the discrete velocity set.
This modification is necessary to ensure the equilibrium property, i.e. that the
discrete collision operator is zero if and only if fK = EK[ρK]. The discrete-velocity
BGK-ES model is thus positive and conservative, but the entropy property seems
more difficult to be rigorously obtained. Actually, the fact that the entropy of G[f ]
is lower than the entropy of f relies for the continuous case on analytic expressions
that are not available in the discrete case (see [2]). But as it will be shown in the
next sections, computations using this model are possible and give accurate results.

Discretization of the diffuse reflection.
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Using our approach, this boundary condition can be very naturally discretized.
The wall Maxwellian M [ρw] of (9) is approximated by the discrete equilibrium
Ek[ρw] associated to ρw. We set

fk(t, x) = φ(x) Ek[ρw], vk · n(x) > 0. (13)

The parameter φ(x) must be determined so as to avoid a mass flux across the wall.
In the discrete frame, this yields

φ(x) = −
∑

vk·n(x)<0 vk · n(x) fk(t, x)∆vx∆vy∆vz
∑

vk·n(x)>0 vk · n(x) Ek[ρw]∆vx∆vy∆vz
(14)

4. CONSERVATIVE AND ENTROPIC DISCRETIZATION
OF THE TRANSPORT OPERATOR: AXISYMMETRIC CASE

In this section, we consider a general kinetic equation

∂tf + v · ∇xf = C(f) (15)

that could be BGK or BGK-ES, as well as Boltzmann or Fokker-Planck equation.
First we make some remarks about cylindrical coordinates transformation of (15) in
view of the discretization, and about conservation laws and dissipation of entropy.
Then we give algebraic relations that should be satisfied by any finite difference
discretization of the transport operator, independently of the discrete collision op-
erator. We review some existing discretizations and our new schemes are presented.
At last, an application to the BGK equation is given.

4.1. Conservation laws and entropy dissipation
The axisymmetric formulation of equation (15) is obtained as follows. Space vari-

ables are written in a system of cylindrical coordinates (x, y, z) = (x, r cosϕ, r sinϕ),
and in order to use the axial symmetry in space, we define the radial and azimuthal
velocities vr and vϕ by

vr = vy cosϕ+ vz sinϕ, vϕ = −vy sinϕ+ vz cosϕ.

The assumption of axial symmetry now reads ∂ϕf(t, x, r, ϕ, vx, vr, vϕ) = 0, and the
Cartesian equation (15) yields

∂tf + vx ∂xf + vr ∂rf +
v2
ϕ

r
∂vrf −

vrvϕ
r

∂vϕf = C(f). (16)

Note the velocity gradients of f in this equation, that are in fact inertia terms due
to the local coordinate system.

We feel it necessary to explain why this formulation is not convenient for a
velocity discretization. The characteristic curves of transport equation (16) are
more complex than for the Cartesian equation, because they are now curves of R4

defined by

ẋ(t) = vx, ṙ(t) = vr, v̇r(t) =
v2
ϕ

r
, v̇ϕ(t) = −vrvϕ

r
.
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However it can easily be seen that they satisfy vr(t)2 + vϕ(t)2 = cst, which means
that in the plane (vr, vϕ), the characteristic curves are circles. Consequently, one
can observe that in view of the discretization of (16), the bounded domain that
would replace the velocity space should have a circular section in the plane (vr, vϕ).
Otherwise, due to the intersection of the characteristic curves with the boundary
of the domain, boundary conditions in velocity would be needed. Therefore, it
appears that, for a future discretization, a circular coordinate system for the radial
and azimuthal velocities is more relevant than the previous rectangular system. As
Sugimoto and Sone in [35], we define ζ and ω by (vr, vϕ) = (ζ cosω, ζ sinω), and
equation (16) now reads as a much more convenient equation

∂tf + vx ∂xf + ζ cosω ∂rf −
ζ sinω
r

∂ωf = C(f). (17)

A completely conservative form equation can be obtained

∂trf + vx ∂xrf + ζ cosω ∂rrf − ζ ∂ω(sinωf) = rC(f). (18)

Now, we define the four moments density, axial and radial momentums, and total
energy by

(ρ, ρux, ρur, E)T =
∫

(1, vx, ζ cosω, 1
2 (v2

x + ζ2))T f ζdvxdζdω. (19)

The components of the stress tensor and of the heat flux are denoted by ρΘxx, ρΘrr,
ρΘxr, ρΘϕϕ and qx, qr. For sake of simplicity, we have assumed that f is even in ω
(i.e. f(ω) = f(−ω)), thus the tangential quantities uϕ,Θrϕ,Θxϕ, qϕ are zero. This
assumption, which is equivalent to f(vr, vϕ) = f(vr,−vϕ), is valid for flows without
incidence past axisymmetric bodies. The conservation laws and the dissipation of
entropy are obtained by integrating (18) multiplied by (1, vx, ζ cosω, 1

2 (v2
x+ζ2), 1+

log f). This yields

∂trρ+ ∂xrρux + ∂rrρur = 0, (20a)

∂trρux + ∂xr(ρu2
x + ρΘxx) + ∂rr(ρuxur + ρΘxr) = 0, (20b)

∂trρur + ∂xr(ρuxur + ρΘxr) + ∂rr(ρu2
r + ρΘrr) = ρΘϕϕ, (20c)

∂trE + ∂xr(uxE + ρ(Θxxux + Θxrur) + qx)

+ ∂rr(urE + ρ(Θxrux + Θrrur) + qr) = 0, (20d)

∂tr

∫

f log f ζdvxdζdω + ∂xr

∫

vxf log f ζdvxdζdω

+ ∂rr

∫

ζ cosωf log f ζdvxdζdω ≤ 0. (20e)

In view of the velocity discretization of (18), we now discuss the intermediate
steps between (18) and (20a-e). For instance, for the density, integrating (18) first
yields

∂trρ+ ∂xrρux + ∂rrρur =
∫

ζ ∂ω(sinωf) ζdvxdζdω + r

∫

C(f) ζdvxdζdω.
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But the contribution of C(f) is zero, as well as the contribution of ∂ω, since we
have

∫ 2π

0

∂ω(sinωf) dω = 0. (21a)

Therefore we find (20a). For ρux and E, equations (20b) and (20d) are obtained
for the same reasons. For ρur, Eq. (20c) is due to the following contribution of ∂ω

∫ 2π

0

cosω ∂ω(sinωf) dω =
∫ 2π

0

sin2ωf dω. (21b)

For the entropy, note that by assumption, the contribution of C(f) is negative.
Moreover, the contribution of ∂ω is found to satisfy

∫ 2π

0

∂ω(sinωf) log f dω ≤
∫ 2π

0

cosωf dω. (21c)

In fact, this relation is an equality, but the inequality is sufficient to obtain (20e).
Finally, note that the uniform flows in t, x, r, ω are solution of (18). This is due to
the trivial relation

∂ω(sinω) = cosω. (21d)

Consequently, it appears that analyzing the possible discretizations of the terms
due to ∂ω in the transport operator is essential to a conservative and entropic
discrete-velocity model. In fact, this short study suggests that it is sufficient to
satisfy some discrete relations similar to (21a-d). Obviously, this problem does not
appear in Cartesian coordinates. Also note that this problem is different from the
approximation of the source term, which has been treated in the previous section.

The same procedure can be adapted to the non-conservative form equation (17),
and we obtain the same conservation laws and entropy dissipation. The different
contributions of ∂ω now read

∫ 2π

0

sinω ∂ωf dω = −
∫ 2π

0

cosωf dω, (22a)
∫ 2π

0

cosω sinω ∂ωf dω =
∫ 2π

0

(− cos2ω + sin2ω)f dω, (22b)
∫ 2π

0

sinω ∂ωf(1 + log f) dω ≤ −
∫ 2π

0

cosωf log f dω, (22c)

∂ω1 = 0. (22d)

The first relation appears for conservation of ρ, ρux, E, the second one for ρur, the
third one for the entropy, and the last relation is for uniform flows.

Finally, note that if f is not even in ω, then there exists an additional conservation
law for ρuϕ with a source term. Relations similar to (21b) and (22b) can be derived.

4.2. Discretization of the velocity derivative
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In this section, the discrete collision operator CK(f) is assumed to be conser-
vative and entropic (see section 3 for BGK and BGK-ES operators, see also [30]
for Boltzmann, and [16] for Fokker-Planck). Then equation (15) with only the
transport term is considered. The variable ω ∈ [0, 2π] is discretized by the points
{ωq}Qq=0, and f(ωq) is approximated by fq. Since the problem of conservation and
entropy is only due to the discretization of ω (see section 4.1), vx and ζ are kept
continuous.

Let D be a finite difference operator that approximates ∂ω at least up to the
first order. In the case of the conservative form equation (18), the term ∂ω(sinωf)
is approximated by D(sinωf)q. Then the discrete approximation of (18) without
collision term is

∂trfq + vx ∂xrfq + ζ cosωq ∂rrfq − ζD(sinωf)q = 0. (23)

The macroscopic quantities are defined as in (19), except that integrals on [0, 2π]
are replaced by a simple rectangular formula. For instance, we set

(ρ, ρux, ρur, E)T =
∫

R

∫ +∞

0

∑

q≥0

(1, vx, ζ cosωq, 1
2 (v2

x + ζ2))T fq(vx, ζ) ∆ω dvxζdζ.

(24)

Now the discrete approximations of relations (21a-d) read as algebraic relations for
the operator D

∑

q

D(sinωf)q = 0, (25a)

∑

q

cosωqD(sinωf)q =
∑

q

sin2ωqfq, (25b)

∑

q

D(sinωf)q log fq ≤
∑

q

cosωqfq, (25c)

D(sinω)q = cosωq. (25d)

The advantage of these relations is that we can prove, exactly as for the continuous
equation (18), that they are sufficient to obtain the conservation laws for the discrete
moments as defined by (24), the dissipation of discrete entropy, and the preservation
of uniform flows. This is stated in the following result:

Proposition 4.1. Let f = {fq}Qq=0 be a solution of (23), then

•the discrete moments ρ, ρux, E satisfy the conservation laws (20a,20b,20d)) if
(25a) is satisfied;
•the discrete radial momentum ρur satisfies the conservation law with source

term (20c) if (25b) holds;
•the discrete entropy

∫

R

∫ +∞
0

∑

q≥0 fq log fq ∆ω dvxζdζ satisfies dissipation rela-
tion (20e) if (25c) holds;
•uniform flows (in t, x, r, q) are preserved if (25d) is satisfied.
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For the non-conservative form equation (17), the term ∂ωf is approximated by
D(f)q. The discrete approximation of (17) without collision term is

∂tfq + vx ∂xfq + ζ cosωq ∂rfq −
ζ sinωq

r
D(f)q = 0. (26)

As for the conservative form equation, the following discrete formulations of rela-
tions (22a-d) are sufficient to obtain the conservation laws and entropy dissipation,
and to preserve uniform flows

∑

q

sinωqD(f)q = −
∑

q

cosωqfq, (27a)

∑

q

cosωq sinωqD(f)q =
∑

q

(− cos2ωq + sin2ωq)fq, (27b)

∑

q

sinωqD(f)q(1 + log fq) ≤ −
∑

q

cosωqfq log fq, (27c)

D(1)q = 0. (27d)

Note that the operator D should preserve the positivity of f , but as opposed to
conservation properties, this is not expressed by an algebraic relation for D.

Remark 4.3. Since the radial momentum ρur is not a conserved quantity by its
own (there is a source term in (20c)), it is important to address the issue concerning
the conservation of the total momentum

∫

(ρu) rdxdrdϕ, where u is the vector u =
uxex + urer in the cylindrical basis (ex, er, eϕ). The assumption of axial symmetry
∂ϕ = 0 implies that the sum of the contributions of the radial momentum is zero.
Hence the total momentum is parallel to the axis, i.e.

∫

(ρu) rdxdrdϕ =
(∫

(ρux) rdxdrdϕ
)

ex.

Consequently, this total momentum is conserved, provided that the local conserva-
tion law of ρux is satisfied. From proposition 4.1, a sufficient condition is that (25a)
or (27a) holds.

4.3. Two operators used in literature
The following upwind operators are defined for the non-conservative form equa-

tion (26). They are presented here with the assumption that f is even in ω, and
therefore for ωq ∈ [0, π] only.

The first one is defined by a first order upwind discretization, used by Shakhov
in [31].

D(f)q =
fq+1 − fq

∆ω
. (28)

In the sequel, the discrete equation (26) with this operator will be denoted by
UNCE. It can be seen that this method preserves the positivity of f and uniform
flows, since (25d) is satisfied.
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The second operator is defined by a second order upwind discretization, used by
Sone et al. in [35]

D(f)q =
1

∆ω
(−1

2
fq+2 + 2fq+1 −

3
2
fq). (29)

This will be denoted by U2NCE. This operator preserves uniform flows, but not
the positivity of f .

Whereas this discretization is second order accurate, note that the conservation
laws are obtained at order O(∆ω) only, as for the operator UNCE. Moreover, for
these two methods, the entropy is not dissipated.

4.4. Trigonometric corrections
The fact that the two previous methods do not satisfy the conservation laws can

be explained as follows. When one tries to prove that relation (27a) holds, one
makes discrete integration by parts, and there appears the adjoint operator D∗ of
D, defined by

∑

q

D(f)qgq =
∑

q

fqD
∗(g)q + boundary terms, (30)

for any functions f, g. Then, relation (27a) is obtained if the boundary terms vanish
and if D∗ is exact for the sine function. Our idea is then to modify the previous
operators so as to make the adjoint D∗ exact for the trigonometric functions.

For UNCE, we replace D of (28) by

D(f)q =
fq+1 − cos ∆ωfq

sin ∆ω
.

This operator, denoted by T-UNCE, is an asymptotically equivalent approximation
to (28) as ∆ω goes to zero, thus it is consistent. It can easily be proved that
D and D∗ are exact for sine and cosine. Then discrete equation (26) has the
following properties : positivity of f , conservation of ρ, ρux, E. However, since
D∗(cosω sinω)q = − cos2 ωq + sin2 ωq + O(∆ω), then we do not have conservation
law for ρur. Moreover, we have D(1)q = 1−cos ∆ω

sin ∆ω = 1 + O(∆ω), thus this scheme
does not preserve uniform flows. This last property is known to lead to schemes
that are not precise and not robust.

For U2NCE, we replace D of (29) by

D(f)q =
1

sin ∆ω

(

−1
2
fq+2 + (1 + cos ∆ω)fq+1 −

1 + 2 cos ∆ω
2

fq

)

.

This operator, denoted by T-U2NCE is also a consistent approximation of ∂ω. It
is exact for sine and cosine, and preserves uniform flows. But due to the non-
vanishing boundary terms, this is not sufficient to ensure conservation. Namely,
the conservation laws are satisfied only up to the first order.

4.5. New trigonometric operators for the conservative form equation
We propose the following operator

D(sinωf)q =
sinωq+1fq+1 − sinωq−1fq−1

2 sin ∆ω
. (31)



DISCRETE-VELOCITY MODELS AND NUMERICAL SCHEMES 15

This is nothing but a classical centered finite difference approximation of second
order, where we have replaced the increment ∆ω by the asymptotically equivalent
quantity sin ∆ω. Thus this formula is consistent. The corresponding discrete equa-
tion (23) will be denoted by T-CCE. In order to eliminate the boundary terms
in (30), we set ω0 = 0 and ωQ = 2π −∆ω. Then (25a) is satisfied, which implies
(thanks to proposition 4.1) that we have the conservation laws for ρ, ρux, E. For ρur
and uniform flows, note that owing to our trigonometric correction (∆ω → sin ∆ω),
then D and D∗ = −D satisfy

D(cosω)q = − sinωq, D(sinω)q = cosωq,

Thus (25b) and (25d) are satisfied, and we have the conservation law of ρur and
the uniform flows are preserved. However, this centered operator does not preserve
the positivity of f , so we can not prove the entropy property. We also mention
that the operator without the trigonometric correction (D(f)q = fq+1−fq−1

2∆ω ) only
satisfies the conservation laws of ρ, ρux, E. It will be denoted by CCE.

Remark 4.4. Note that we can use the centered operator D(f)q = fq+1−fq−1
2∆ω

for the non-conservative form equation (26), it will be denoted by CNCE. The only
property of this scheme is the preservation of uniform flows. As for the conservative
form equation, we can derive the following trigonometric modification D(f)q =
fq+1−fq−1

2 sin ∆ω . Then we obtain the additional property of conservation of ρ, ρux, and
E. This scheme will be denoted by T-CNCE.

Finally, we propose an upwind version of the previous operator defined in (31)
so as to obtain the positivity. We set

D(sinωf)q =
1

2 sin ∆ω
2

(

((sinωq+ 1
2
)+fq+1 + (sinωq+ 1

2
)−fq)

−((sinωq− 1
2
)+fq + (sinωq− 1

2
)−fq−1)

)

, (32)

where a± denotes 1
2 (a ± |a|) and ωq± 1

2
= ωq ± ∆ω

2 . Since 2 sin ∆ω
2 and ∆ω are

asymptotically equivalent, this formula is consistent. The boundary terms in dis-
crete integrations by parts are eliminated by setting Q = 2m− 1 with m such that
ωm = π. The discrete equation (23) with this operator will be denoted by T-UCE.
This equation possesses numerous properties that are stated in the following result:

Proposition 4.2.

(i)the positivity of f is preserved;
(ii)the conservation laws of ρ, ρux, E are satisfied (Eq. (20a,20b,20d));
(iii)the entropy is locally dissipated (Eq. (20e)).
(iv)the uniform flows are preserved;

Proof. Property (iv) is obtained by noting that (25d) is satisfied

D(sinω)q =
1

2 sin ∆ω
2

(sinωq+ 1
2
− sinωq− 1

2
) = cosωq.
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For (ii), we note that D(sinωf)q can be written as a numerical flux difference
D(sinωf)q = hq+ 1

2
− hq− 1

2
, therefore (25a) is obvious. Property (i) is due to the

upwinding of the discretization.
The most striking property of this discretization is the entropy dissipation. It

can actually be proved that (25c) holds: by a change of indexes, it comes

Q
∑

q=0

D(sinωf)q log fq =
Q
∑

q=0

1
2 sin ∆ω

2

(

(sinωq− 1
2
)+ log fq−1 + (sinωq+ 1

2
)− log fq

−(sinωq− 1
2
)+ log fq − (sinωq+ 1

2
)− log fq+1

)

fq.

Then we use the convexity inequality t2 log t1 ≤ t2 log t2 + t1 − t2 for the terms
fq log fq±1; the logarithms vanish and we obtain

Q
∑

q=0

D(sinωf)q log fq ≤
Q
∑

q=0

1
2 sin ∆ω

2

(

(sinωq− 1
2
)+(fq−1 − fq)

−(sinωq+ 1
2
)−(fq+1 − fq)

)

.

By a new change of indexes, we find

Q
∑

q=0

D(sinωf)q log fq

≤
Q
∑

q=0

1
2 sin ∆ω

2

(

(sinωq+ 1
2
)+ − (sinωq− 1

2
)+ − (sinωq− 1

2
)− + (sinωq+ 1

2
)−
)

fq

=
Q
∑

q=0

cosωqfq.

This is (25c), which implies (iii) (cf. proposition 4.1).

Remark 4.5. To our knowledge, it is the first time that a discretization pre-
serving the positivity, the conservation of ρ, ρux et E, and the entropy dissipation,
is presented. Also note that if the classical upwind discretization is used without
trigonometric correction (i.e. with ∆ω instead of 2 sin ∆ω

2 in (32), that will be
denoted by UCE), then we have only D(sinω)q = cosωq + O(∆ω), and only prop-
erties (ii) and (i) are satisfied.

Remark 4.6. The evolution equation of ρur (20c) is obtained at order O(∆ω)
only. But we think it less important to be obtained than the other properties. In
fact, equation (20c) possesses a source term, therefore even in continuous case, the
quantity ρur is not really conserved.

4.6. Summary of the different discretizations
and their related properties
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For the readability of the sequel, we summarize in this section all the previous
schemes. The discretizations of the velocity derivative for the conservative form
equation (18) are the following

CCE : D(sinωf)q =
sinωq+1fq+1 − sinωq−1fq−1

2∆ω
,

T− CCE : D(sinωf)q =
sinωq+1fq+1 − sinωq−1fq−1

2 sin ∆ω
,

UCE : D(sinωf)q =
1

∆ω

(

((sinωq+ 1
2
)+fq+1 + (sinωq+ 1

2
)−fq)

−((sinωq− 1
2
)+fq + (sinωq− 1

2
)−fq−1)

)

,

T−UCE : D(sinωf)q =
1

2 sin ∆ω
2

(

((sinωq+ 1
2
)+fq+1 + (sinωq+ 1

2
)−fq)

−((sinωq− 1
2
)+fq + (sinωq− 1

2
)−fq−1)

)

.

For the non-conservative form equation (17), we have

CNCE : D(f)q =
fq+1 − fq−1

2∆ω
,

T− CNCE : D(f)q =
fq+1 − fq−1

2 sin ∆ω
,

UNCE : D(f)q =
fq+1 − fq

∆ω
,

T−UNCE : D(f)q =
fq+1 − cos ∆ωfq

sin ∆ω
,

U2NCE : D(f)q =
1

∆ω
(−1

2
fq+2 + 2fq+1 −

3
2
fq),

T−U2NCE : D(f)q =
1

sin ∆ω

(

−1
2
fq+2 + (1 + cos ∆ω)fq+1 −

1 + 2 cos ∆ω
2

fq

)

.

We recall that the schemes CCE, T-CCE, UCE and T-UCE are the new schemes
that have been proposed in section 4.5 for the conservative form equation, as well
as CNCE and T-CNCE for the non-conservative form equation. Schemes UNCE
and U2NCE have been respectively proposed in [31] and [35]. They are recalled in
section 4.3 of the present paper. Finally, their trigonometric corrections T-UNCE
and T-U2NCE have been proposed in section 4.4. The properties of all these
schemes are recalled in table 1.

Note that another approach has recently been proposed by Larina and Rykov [22].
By a modification of the radial velocity ζ cosω, they obtain a second order conser-
vative scheme (for ρ, ρux, ρur, E), but non positive. If we replace ∆ω by sin ∆ω in
their method, it reduces to our scheme T-CCE.

4.7. Application to the BGK equation
In order to apply the previous discretizations to the BGK equation, we discretize

the velocity variables vx and ζ by

vkx = k∆vx + a, ζl = l∆ζ,
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with k = (k, l, q) ∈ K (cf. section 3). The fully discrete-velocity models for the
non-conservative and conservative axisymmetric kinetic equations are

∂tfk + vkx ∂xfk + ζl cosωq ∂rfk −
ζl sinωq

r
D(fk,l)q = C(fK)k, (33)

∂trfk + vkx ∂xrfk + ζl cosωq ∂rrfk − ζlD(sinωfk,l)q = rC(fK)k, (34)

where fk,l = (fk,l,q)q=0...Q. In the case of the BGK equation, the discrete collision
operator is

C(fK)k =
1
τ

(Ek[ρK]− fk).

According to section 3, Ek[ρK] is the discrete equilibrium defined by Ek[ρK] =
exp(α ·m(vk)), where m(vk) = (1, vkx, ζl cosωq, ζl sinωq, 1

2 (|vkx|2 + ζ2
l ))T , and the

vector α is the unique solution of the nonlinear system of five equations

∑

k

m(vk) exp(α ·m(vk)) ζl∆vx∆ζ∆ω = (ρ, ρux, ρur, ρuϕ, E).

Note that if the distribution function is even in ω, then uϕ = 0, and the system
above reduces to four equations only. This is also true if ux = 0.
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TABLE 1

Properties of the discrete-velocity models for the axisymmetric

transport operator.

uniform flows positivity cons. ρ, ρux, E cons. ρur entropy

CCE yes no no no no

T-CCE yes no yes yes no

UCE no yes yes no no

T-UCE yes yes yes no yes

CNCE yes no no no no

T-CNCE yes no yes no no

UNCE yes yes no no no

T-UNCE no yes yes no no

U2NCE yes no no no no

T-U2NCE yes no no no no
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5. DISCRETIZATION IN SPACE AND TIME OF THE
DISCRETE-VELOCITY MODELS

In this section, we give an explicit scheme and a linearized implicit scheme for
fast computing steady flows. The linear solver for solving the large linear systems is
detailed. The algorithm for computing the discrete equilibrium is also given. The
extension of these schemes to axisymmetric models is discussed at the end of the
section.

5.1. Explicit scheme
For the sake of simplicity, our scheme is presented here in two spatial dimensions

on a Cartesian grid, but all the properties stated here are valid for a 3-dimensional
space and curvilinear meshes (cf. below). The equation to be approximated is

∂tfk + vkx∂xfk + vly∂yfk =
1
τ

(Ek[ρK]− fk), k ∈ K. (35)

Note that in the case of plane flows, the dependency of fK on vz can be eliminated
by introducing reduced distribution functions (see [36]). But this technique is not
used here because it is not possible for axisymmetric flows, and we want a same
scheme for both 2D plane and axisymmetric flows. Consider a spatial Cartesian
grid defined by nodes (xi, yj) = (i∆x, j∆y) and cells ]xi− 1

2
, xi+ 1

2
[×]yj− 1

2
, yj+ 1

2
[.

Consider also a time discretization with tn = n∆t. If fni,j = (fnk,i,j)k∈K is an
approximation of fK(tn, xi, yj), the moments of fni,j are naturally ρni,j = 〈mfni,j〉K,
and the corresponding discrete equilibrium is denoted by (Ek[ρni,j ])k∈K. If ρni,j
is strictly realizable (in the sense of (12)), the discrete equilibrium is therefore
Ek[ρni,j ] = exp(αni,j ·m(vk)), where αni,j is the unique solution of the system of four
nonlinear equations (see remark 3.1)

〈m exp(αni,j ·m)〉K = ρni,j . (36)

The transport part is simply the linear convection equation, and can be approx-
imated by a standard finite volume scheme. For the nonlinear relaxation term, a
standard centered approximation technique is used. Our scheme thus reads

fn+1
k,i,j = fnk,i,j −

∆t
∆x

(Fnk,i+ 1
2 ,j
−Fnk,i− 1

2 ,j
)− ∆t

∆y
(Fnk,i,j+ 1

2
−Fnk,i,j− 1

2
)

+
∆t
τni,j

(Ek[ρni,j ]− fnk,i,j), (37)

where the numerical fluxes are defined by

Fnk,i+ 1
2 ,j

=
1
2

(

vkx(fnk,i+1,j + fnk,i,j)− |vkx|(∆fnk,i+ 1
2 ,j
− Φnk,i+ 1

2 ,j
)
)

Fnk,i,j+ 1
2

=
1
2

(

vly(fnk,i,j+1 + fnk,i,j)− |vly|(∆fnk,i,j+ 1
2
− Φnk,i,j+ 1

2
)
)

with the notation ∆fn
k,i+ 1

2 ,j
= fnk,i+1,j−fnk,i,j , and the flux limiter function Φn

k,i+ 1
2 ,j

allows to obtain a second order scheme. For instance Φn
k,i+ 1

2 ,j
= 0 for first order,

and Φn
k,i+ 1

2 ,j
= minmod(∆fn

k,i− 1
2 ,j
,∆fn

k,i+ 1
2 ,j
,∆fn

k,i+ 3
2 ,j

) for second order.
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With the appropriate definitions of our discrete-velocity model, our scheme now
possesses the expected properties. In the case of an infinite space domain (i.e.
(i, j) ∈ Z2), theorem 3.2 can be expressed in its numerical form (proved in [26]):

Proposition 5.1. Let {f0
k,i,j}k,i,j be a strictly positive initial condition. If the

time steps follows the condition

∆t

(

max
i,j

(
1
τni,j

) + max
K

(

|vkx|
∆x

+
|vly|
∆y

))

< 1, (38)

then the sequence {fn}n≥0 defined by the first order scheme (37) remains strictly
positive, and the discrete equilibrium is Ek[ρni,j ] = exp(αni,j ·m(vk)). Furthermore,
the total mass, momentum, and energy are conserved, and the total entropy is
decreasing.

General geometries are treated with a curvilinear mesh. Then we use the curvi-
linear coordinates ξ(x, y) and η(x, y) so as to approximate space derivatives on the
grid. After this change of variables, equation (35) yields

1
J
∂tfk + ∂ξ

(

vk ·
∇ξ
J
fk

)

+ ∂η

(

vk ·
∇η
J
fk

)

=
1
Jτ

(Ek[ρK]− fk),

where ∇ξ = (∂xξ, ∂yξ), ∇η = (∂xη, ∂yη), and J = ∂xξ∂yη − ∂yξ∂xη. If we define a
uniform grid (ξi = i∆ξ, ηj = j∆η), then a scheme very similar to (37) can be used

fn+1
k,i,j = fnk,i,j −

∆t
∆ξ

(Fnk,i+ 1
2 ,j
−Fnk,i− 1

2 ,j
)Ji,j −

∆t
∆η

(Fnk,i,j+ 1
2
−Fnk,i,j− 1

2
)Ji,j

+
∆t
τni,j

(Ek[ρni,j ]− fnk,i,j),

where the numerical fluxes are defined by

Fnk,i+ 1
2 ,j

=
1
2

(

vk ·
(∇ξ
J

)

i+ 1
2 ,j

(fnk,i+1,j + fnk,i,j)

−
∣

∣

∣vk · (
∇ξ
J

)i+ 1
2 ,j

∣

∣

∣(∆fnk,i+ 1
2 ,j
− Φnk,i+ 1

2 ,j
)
)

Fnk,i,j+ 1
2

=
1
2

(

vk ·
(∇η
J

)

i,j+ 1
2

(fnk,i,j+1 + fnk,i,j)

−
∣

∣

∣vk · (
∇η
J

)i,j+ 1
2

∣

∣

∣(∆fnk,i,j+ 1
2
− Φnk,i,j+ 1

2
)
)

.

The geometric coefficients (∇ξJ )i± 1
2 ,j

, (∇ηJ )i,j± 1
2

and Ji,j are standard approxima-
tions used in order to preserve the free stream. This scheme has the same properties
as scheme (37) (i.e. positivity, conservation of moments, dissipation of entropy),
provided that a CFL condition similar to (38) be satisfied.

Remark 5.7. The same scheme is used with the BGK-ES model by replacing
Ek[ρni,j ] by Gk[fni,j ].
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5.2. Linearized implicit scheme for steady flows
In steady state computations, CFL condition (38) of the explicit scheme is very

restrictive for dense or rapid regimes. A classical way to overcome this difficulty is
to use an implicit scheme. It is derived from the explicit scheme by evaluating at
tn+1 the terms that produce undesirable negative distributions for large ∆t.

5.2.1. Description of the scheme
In the collision operator, the loss term (−fnk,i,j) is negative and then it is written

at tn+1. The gain term, namely the discrete equilibrium Ek[ρni,j ], is positive, and
therefore may be kept explicit (a strategy used in [36]). However, gain and loss terms
are then evaluated at different times, which is observed to slow the convergence of
the scheme considerably (see [26]). Consequently, we decide to evaluate the gain
term at tn+1 as well. However, defining an implicit relaxation time τn+1

i,j is not
very useful. Since the discrete equilibrium is a nonlinear function of f , it may be
linearized as follows

Ek[ρn+1
i,j ] ≈ Ek[ρni,j ] + [Dni,j(fn+1

i,j − f
n
i,j)]k,

where Dni,j is the Jacobian of the mapping g ∈ RNv 7→ E [g] evaluated at fni,j . Then
the linearized implicit first order scheme is the following

fn+1
k,i,j +

∆t
∆x

(Fn+1
k,i+ 1

2 ,j
−Fn+1

k,i− 1
2 ,j

) +
∆t
∆y

(Fn+1
k,i,j+ 1

2
−Fn+1

k,i,j− 1
2
)

+
∆t
τni,j

(fn+1
k,i,j − [Dni,jfn+1

i,j ]k) = fnk,i,j +
∆t
τni,j

(Ek[ρni,j ]− [Dni,jfni,j ]k),

for k ∈ K and i, j = 1, . . . , imax, jmax. For the second order scheme, the flux
limiters (non differentiable) are kept explicit. The following δ matrix-form of the
scheme is more adapted to computations

(

I

∆t
+ T +Rn

)

δfn = RHSn, (39)

where δfn = fn+1 − fn, I is the unit matrix, T is a matrix such that (Tfn)k,i,j =
1

∆x (Fn
k,i+ 1

2 ,j
− Fn

k,i− 1
2 ,j

) + 1
∆y (Fn

k,i,j+ 1
2
− Fn

k,i,j− 1
2
) with only the first order fluxes,

Rn is such that (Rnfn)i,j = 1
τn
i,j

(fni,j −Dni,jfni,j), and

RHSnk,i,j = − 1
∆x

(Fnk,i+ 1
2 ,j
−Fnk,i− 1

2 ,j
)− 1

∆y
(Fnk,i,j+ 1

2
−Fnk,i,j− 1

2
)

+
1
τni,j

(Ek[ρni,j ]− fnk,i,j)

which contains the limiters for the second order scheme. The Jacobian Dni,j has
the simple form

Dni,j [k, k′] = A−1(αni,j) : m(vk)⊗m(vk′)Ek[ρni,j ]∆vx∆vy∆vz, (40)
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where A(αni,j) = 〈m⊗m exp(αni,j ·m)〉K. A similar scheme can be derived for the
BGK-ES model.

The particular structure of matrices T and Rn may be noted. If quantities fnk,i,j
are stored as fn = (fnk )k∈K with fnk = (fnk,i,j), then it can easily be seen (cf. figure 1)
that T is a NvNc×NvNc block diagonal matrix with Nc×Nc pentadiagonal blocks
Tk (Nc = imax × jmax is the number of cells), and that Rn is a full matrix of
diagonal blocks Rnk,k′ . One can also note that if fnk is stored by i then by j, then
the (i, j)th line of a block Tk is

[0, . . . , 0, Tk,i−1,j , 0, . . . , 0, Tk,i,j−1, Tk,i,j , Tk,i,j+1, 0, . . . , 0, Tk,i+1,j , 0, . . . , 0],

with

Tk,i−1,j = − 1
∆xv

k,+
x , Tk,i,j−1 = − 1

∆y v
l,+
y , Tk,i,j = 1

∆x |v
k
x|+ 1

∆y |v
l
y|,

Tk,i,j+1 = 1
∆y v

l,−
y , Tk,i+1,j = 1

∆xv
k,−
x .

The diagonal element of the (i, j)th line of a block Rnk,k′ is

1
τni,j

(δk,k′ −Dni,j [k, k′]),

where δk,k′ is the Kronecker symbol, and Dni,j [k, k′] is defined in (40). These sparse
structures are naturally due to the fact that relaxation process in BGK equation is
local in space but global in velocity, whereas transport process is numerically global
in space but local in velocity.

Remark 5.8. As for the explicit scheme, a linearized implicit scheme can be
derived for curvilinear meshes. This scheme can be written as in (39), but the
elements of a bloc Tk depend on i and j; we have

Tk,i−1,j = − 1
∆ξ

[

vk ·
(∇ξ
J

)

i− 1
2 ,j

]+

, Tk,i,j−1 = − 1
∆η

[

vk ·
(∇η
J

)

i,j− 1
2

]+

,

Tk,i,j =
1

∆ξ

([

vk ·
(∇ξ
J

)

i+ 1
2 ,j

]+

−
[

vk ·
(∇ξ
J

)

i− 1
2 ,j

]−)

+
1

∆η

([

vk ·
(∇η
J

)

i,j+ 1
2

]+

−
[

vk ·
(∇η
J

)

i,j− 1
2

]−)

,

Tk,i,j+1 =
1

∆η

[

vk ·
(∇η
J

)

i,j+ 1
2

]−

, Tk,i+1,j =
1

∆ξ

[

vk ·
(∇ξ
J

)

i+ 1
2 ,j

]−

.

5.2.2. Resolution of the linear system (39)
The linear system (39) to be solved at each iteration is very large (NvNc×NvNc),

and an iterative method well adapted to different sparse structures of the matrices
may be used. We use here an algorithm based on a coupling between Jacobi and
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Gauss-Seidel methods by using the storage of figure 1. First, Rn is separated into
its block diagonal ∆n and its block off-diagonal En, i.e. Rn = ∆n−En (this is the
Jacobi step). Then system (39) is equivalent to

(

I

∆t
+ T + ∆n

)

δfn = RHSn + Enδfn.

Since the matrix of this linear system is block diagonal with pentadiagonal blocks
I

∆t + Tk + ∆n
k , it is possible to use a line Gauss-Seidel method by setting Tk =

Mk −Nk. This gives the following algorithm:

Algorithm 1.

1. set g(0) = 0,
2. for p = 0, . . . , P , solve

(

I

∆t
+Mk + ∆n

k

)

g
(p+1)
k = RHSnk +Nkg

(p)
k + [Eng(p)]k, k ∈ K (41)

3. set δfn = g(P+1).

The linear systems (41) may easily and exactly be solved by successive LU de-
compositions of tridiagonal matrices of Rimax×imax or Rjmax×jmax . Note that calcu-
lating the product Eng is not very expensive because the blocks of En are diagonal.
In fact we have

[Eng]k,i,j =
1
τni,j

A−1(αni,j)m(vk)Ek[ρni,j ] ·
(

〈mgi,j〉K −m(vk)gk,i,j∆vx∆vy∆vz
)

.

It is thus sufficient to compute A−1(αni,j)m(vk)Ek[ρni,j ] at the beginning of the
algorithm (a local computation in k and i, j), then to compute 〈mgi,j〉K on each
cell (which is local in i, j), and finally to form the dot product. The computation of
Eng is thus local in i, j, and hence completely parallelizable; its cost is in O(NcNv).

It is well known in CFD that since only a few iterations are needed to have the
external process converge (the loop in n), it is not useful to carry on an algorithm
like the previous one at convergence. The cost of our implicit scheme is then
in O(PNvNc) where P = 2 or 3, which is confirmed by numerical experiments
(see [26]).

5.3. Computation of αni,j
The nonlinear set of equations (36) may be solved by the following Newton algo-

rithm, where F is defined by F (β) = 〈m exp(β ·m)〉K − ρni,j .

Algorithm 2.

1. set α(0) ∈ R4,
2. solve the linear system F ′(α(r))α(r+1) = α(r) − F (α(r))

until a stop criterion is satisfied,
3. set αni,j = α(r).
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Such an algorithm requires almost 12Nv operations by iteration r and by cell (i, j)
and is thus in O(NcNv). For most cases we have tested, this algorithm is robust
enough, if the initial datum is wisely chosen (cf. below). However, a back-tracking
linesearch algorithm may be employed if the matrix F ′(α(r)) = 〈m⊗m exp(α(r) ·
m)〉K is too much ill-conditioned. This may happen when the velocity of the flow is
very high, since the last element of m(vk)⊗m(vk) is |vk|4, whereas the first one is
always 1. For the initial condition α(0), we use the parameter α of the continuous
equation (2) at the beginning of the computation. Then, when the flow is almost
stabilized, we take α(0) = αn−1

i,j computed at the previous global iteration. With
this choice, the algorithm converges rapidly - only one iteration is needed for most
cases tested. The same algorithm is used to compute the vector ~αni,j which defines
the discrete Gaussian GK[fni,j ] of the BGK-ES model.

5.4. Axisymmetric flows
Consider a discrete-velocity model for the conservative form equation, as given

by (34). The explicit scheme of section 5.1 can now be applied to this model

fn+1
k,i,j = fnk,i,j −

∆t
∆x

(Fnk,i+ 1
2 ,j
−Fnk,i− 1

2 ,j
)− ∆t

rj∆r
(rj+ 1

2
Fnk,i,j+ 1

2
− rj− 1

2
Fnk,i,j− 1

2
)

+
∆t
τni,j

(Ek[ρni,j ]− fnk,i,j) + ∆t
ζl
rj
D(sinωfnk,l,i,j)q.

Note that owing to the cell-centered approach, the radius rj is always strictly
positive, even near the symmetry axes (where rj = 1

2∆r).
We can prove that if the operator D has the properties mentioned in section 4,

then this explicit scheme is also positive, conservative, and entropic. Note that the
only difference with the Cartesian case is the presence of the term ∆t ζlrjD(sinωfnk,l,i,j)q.
For the linearized implicit scheme, the opposite of this term can be rewritten under
a matrix-vector product Anfn where An is a full matrix of diagonal blocks. Then
we have the following scheme

(

I

∆t
+ T +Rn +An

)

δfn = RHSn.

The Jacobi-Gauss-Seidel algorithm 0 can be applied to this linear system. As for
Rn, we split An into its diagonal part ∆An and its off-diagonal part −EAn in the
Jacobi step of the algorithm. The algorithm is now

Algorithm 3.

1. set g(0) = 0,
2. for p = 0, . . . , P and k ∈ K, solve

(

I

∆t
+Mk + ∆n

k + [∆An ]k

)

g
(p+1)
k = RHSnk +Nkg

(p)
k + [(En + EAn)g(p)]k,

3. set δfn = g(P+1).
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For instance, with the operator T-UCE, we have

[∆An ]k,i,j = − ζl

rj2 sin ∆ω
2

(

(sinωq+ 1
2
)+ − (sinωq− 1

2
)−
)

,

[EAnfn]k,i,j =
ζl

rj2 sin ∆ω
2

(

(sinωq+ 1
2
)+fnk,l,q+1,i,j − (sinωq− 1

2
)−fnk,l,q−1,i,j

)

.
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FIG. 1. Matrices T and Rn, and corresponding storage of vector fn.
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6. NUMERICAL RESULTS

We present numerical tests for plane and axisymmetric flows. For plane flows, the
improvement of the results due tot the BGK-ES model is shown. We also show test
cases where our implicit deterministic method is a relevant alternative to DSMC.
For axisymmetric flows, the different discretizations of Sec. 4 are compared on 1D
cases. We also present an application of these schemes to an axisymmetric flow
around a sphere.

Except in some cases, the linearized implicit scheme of second order is used in all
the computations, with a CFL number of 10000 (i.e. ∆t is 10000 times the explicit
time step). The criterion used to determine whether the flow has reached steady
state is the reduction of the quadratic global residual 1

∆t (
∑

k,i,j |RHSnk,i,j |2)
1
2 by a

factor of 105.
Numerically, all the boundary conditions (gas-surface, symmetry axes, etc.) are

treated by a classical ghost cell technique (see [37]. For instance, incident molecules
in a boundary cell of indexes (i, j = 1) are supposed to be re-emitted by the wall
from a ghost cell of indexes (i, 0). This cell is the mirror cell of (i, 1) with respect
to the wall. The diffuse reflection (13) is then modeled by

fnk,i,0 = φi,1 Ek[ρw], vk · ni,1 > 0,

where φi,1 is determined so as to avoid a mass flux across the wall, i.e. between
cells (i, 0) and (i, 1). Relation (14) gives

φi,1 = −
∑

vk·ni,1<0 vk · ni,1 fnk,i,1∆vx∆vy∆vz
∑

vk·ni,1>0 vk · ni,1 Ek[ρw]∆vx∆vy∆vz

Moreover, relation (6), where δ is given for each gas in [7], is used to compute
the relaxation time of the model. As explained in section 2, this depends on the
molecular interaction potential. For each test case, we specify which potential is
used among VHS, Hard-Sphere, and Maxwellian potentials. In each comparison, a
unique potential is used for the three methods (BGK, BGK-ES, DSMC).

Note that the velocity grid is appropriately chosen for each case. Since the same
grid is used in each point of space, it should be large and precise enough to correctly
describe the flow (i.e. the distributions everywhere in the space domain). Then
the bounds are given by a combination between the maximum macroscopic velocity
and temperature of the flow (maxx(u + c

√
RT ), where we take c = 4). The step

of the grid is given by the smallest temperature (i.e. ∆v = minx

√
RT ). These

quantities may be estimated by two methods. First in some cases, they are given
by the data, e.g velocity and temperature at infinity and wall temperature. But
for more “extreme” flows, the maximum temperature is much greater than these
data. Then in that cases, we make a converged Navier-Stokes computation, and
the converged values of the macroscopic velocity and temperature are sufficient for
defining a correct velocity grid.

Finally, note that all the tests presented here have been computed on the single
processor of the IBM-SP2 (120 MHz - 512 Mo).

6.1. Plane flows
6.1.1. Compression ramp
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Here our method for BGK and BGK-ES equations is compared to the DSMC
method, which simulates the Boltzmann equation with the code of J.-C. Len-
grand [23], and to the Navier-Stokes equations (without slip condition). We study
a supersonic flow past a flat plate of 5 cm followed by a compression ramp of 10◦.
The gas is air, and the parameters of the flow are ρ∞ = 1.288 10−4 kg.m−3, T∞ =
72.2K,M∞ = 3.67, for the density, temperature and Mach number. The wall tem-
perature is 72.2K. The molecular mass is 4.815 10−26 kg and the viscosity exponent
δ is 0.77 (VHS model). This gives a Knudsen number of 6.7 10−3 at infinity. For the
four methods, we use the same mesh of 70 × 70 cells. For BGK and BGK-ES, the
velocity grid has 13× 11× 11 points with bounds [−1500, 1500]× [−1200, 1200]×
[−1200, 1200].

For the BGK model, the computation takes 260 iterations and 42 hours CPU. For
BGK-ES, it takes 564 iterations and 60 h CPU. For the DSMC, the computation
takes 8000 iterations and 46 h CPU. We used 2600 samples and an average of 20
particles per cell, with a time step of 5 10−7 s. The Navier-Stokes computation
takes less than 10 min CPU.

The contours of density and temperature are plotted in figure 2 for the four
methods. The results obtained with BGK, BGK-ES and DSMC are very close,
and this can be seen more clearly in figure 3 where the distribution of temperature
following three vertical lines x = 2.5, 5, 7.5 cm is shown. One can only note a
difference near the wall where BGK-ES is more accurate than BGK. The influence
of the Prandtl number is thus clear. On the other hand, Navier-Stokes equations
give very poor results at the beginning of the plate and within the shock. An
explanation is that the local Knudsen number (see [7]) at the leading edge is 0.13,
which is beyond the validity range of Navier-Stokes equations. In fact, Bird notices
in [7] that the error in Navier-Stokes results is significant in the regions of the flow
where the local Knudsen number exceeds 0.1. For the DSMC, note the noise induced
by the stochasticity of the method. Also, it is apparent that the results of the DSMC
are inaccurate in the small region in front of the downstream boundary. This is
a direct consequence of a defect in the boundary conditions (see [11]). Although
the CPU times of BGK and DSMC are provided for this case, a fair comparison
of computational speeds of the two methods is not easy because their criteria of
convergence are very different. For instance, making more samples to decrease the
noise in DSMC results can strongly increase the CPU time of this method.
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FIG. 2. Compression ramp: density (left) and temperature (right) for BGK, DSMC,
BGK-ES and Navier-Stokes.
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5, 7.5 cm) for BGK, DSMC, BGK-ES, and Navier-Stokes.
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6.1.2. Recirculation
We want to prove that it is relevant to use BGK for flows with a recirculation

zone. It is well known that particle methods like DSMC have some difficulties to
converge in these situations. A problem is that, due to the low velocity of the flow
in the recirculation, a large number of iterations may be needed to reach steady
state. Moreover, the density is often very low in such a zone, which implies that
after a long time, particle methods have not enough representative molecules to
correctly describe the gas.

Here we consider a supersonic plane flow past a cylinder of radius 1m. The
parameters of the flow are ρ∞ = 0.31696 10−5 kg.m−3, T∞ = 249K,M∞ = 4, for
the density, temperature and Mach number. The wall temperature is 293K. The
molecular mass is 0.663 10−25 kg and the viscosity exponent δ is 0.5 (Hard-Sphere
model). This gives a Knudsen number of 0.0358 at infinity. These characteristics
correspond to an atmospheric flow at 90 km of altitude (but here, the gas is argon).
We use a mesh of 49 × 60 cells, and a velocity grid of bounds [−2562, 2562] ×
[−2462, 2462] × [−2303, 2303] with 11 points in each direction. We test our BGK
method and the DSMC on this mesh. For DSMC, with 20 particles per cell, the
steady state is reached after 250 iterations with a time step of 1. 10−4 s. After, we
used 2500 samples (each 3 times steps) to compute macroscopic values. Note that
the mesh respects the criterion of cell size lower than the mean-free-path only near
the wall. Thus one can expect that DSMC results will not be very accurate.

For BGK, the computation takes 1167 iterations and 90 h CPU. The DSMC
computation takes 50 h CPU, which is shorter than for BGK. The total number
of molecules in the flow is stabilized at the end of the computation, which proves
that the flow has reached steady-state. However, the cells in the recirculation
zone contain between one and five molecules only, which is clearly not sufficient
to correctly describe the gas. This problem is also observed in figure 4, because
the recirculation zone (visible on the zoom on velocity field) is poorly described by
DSMC, contrary to our method. In addition, we observe that the time step is too
large in the shock since it is ten times as large as the inverse collision frequency.
Finally note the noise on density contours obtained with DSMC.

Consequently, whereas BGK is more expensive than DSMC on this test case, our
method appears to be more accurate. Note that with DSMC, a smaller time step
and almost five times as many molecules as in this computation would be necessary
to obtain more correct results. Then the CPU time of DSMC would be greater
than the cost of BGK.

Also note that contrary to DSMC, the parameters of our method do not need to
be adapted if there is a recirculation zone. The resolution of the velocity grid is
not affected by this phenomenon, contrary to the number of molecules of DSMC.
This suggests that our method is simpler to use.
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6.1.3. Hypersonic flow
We present this case for testing the robustness of our method on hypersonic flows

(and particularly the Newton algorithm and the linear solver). This is an hypersonic
flow at Mach 18.3 without incidence on a flat plate of length 10 cm, width 0.5 cm
and an angle of length 1.4 cm at the leading edge. The parameters of the flow are:
ρ∞ = 5.19 10−5 kg.m−3, T∞ = 13.6K,M∞ = 18.3, for the density, temperature
and Mach number. The molecular mass is 4.65 10−26 kg and the viscosity exponent
is 0.5 (Hard-Sphere model). This gives a Knudsen number of 1.4 10−2 at infinity.
This case has been studied by Andriès-Bourgat-Le Tallec-Perthame in [1] with a
Monte-Carlo-like code which simulates Boltzmann, BGK, and BGK-ES equations
(see also [10]).

For BGK, we use a mesh of 75× 29 cells in tangent and orthogonal directions to
the plate. This is very coarse compared to the mesh of [1] which has almost 180×180
cells. A Navier-Stokes computation gives a velocity grid of bounds [−2300, 2300]×
[−1600, 1600]× [−1300, 1300] with 31×29×27 velocities. Such a grid would lead to
very long computations, then we only take 21×21×21 velocities. The computation
takes 140 iterations and 36 h CPU. We observe that the code succeeds in computing
such a violent flow. This confirms the robustness of the implicit scheme and of the
Newton algorithm.

Our results are plotted in figures 5 and 6. First, we note that our results are
globally quite close to that of [1], whereas our mesh is much less refined (because
the deterministic resolution of BGK does not require a mesh as fine as DSMC).

One can have an idea of the kinetic non-equilibrium near the leading edge by
noting that the local Knudsen number is 0.5, and by plotting the reduced distri-
bution function F (vx, vy) =

∫

f(vx, vy, vz) dvz (see figure 6). One can clearly see
the half-Maxwellian of the wall centered on ux = 0, and the Maxwellian of the up-
stream flow, centered on the upstream velocity ux = 1500. As the wall temperature
is greater than the upstream one, the half-Maxwellian is more spread.

We want to emphasize that the conservation and entropy properties of our
discrete-velocity model are essential in the fact that we need only 213 discrete
velocities to reach steady state. For comparison, note that in [36], for a case at
Mach 12 (instead of 18.3 here), it is needed more than 70 discrete velocities in each
direction with a non-conservative discretization.



DISCRETE-VELOCITY MODELS AND NUMERICAL SCHEMES 35

−2 0 2 4 6 8 10

−3

−2

−1

0

1

2

3

density

 

 

−3

−2

−1

0

1

2

3

−2 0 2 4 6 8 10

−3

−2

−1

0

1

2

3

temperature

 

 

−2 0 2 4 6 8 10

−3

−2

−1

0

1

2

3

velocity

 

 

−2 0 2 4 6 8 10

−3

−2

−1

0

1

2

3

pressure

 

FIG. 5. Contours and velocity field for hypersonic flow past a flat plate.
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FIG. 6. Reduced distribution function F (vx, vy) at the leading edge of the flat plate. Note
the half-Maxwellian of the wall centered on vx = 0, and the Maxwellian of the upstream flow,
centered on the upstream velocity ux = 1500.
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6.2. Axisymmetric flows
6.2.1. 1D flow
We consider a gas between two coaxial cylinders. The large cylinder rotates at

a constant velocity and the small one is stationary. Therefore the flow depends
only on the radius r. This case has the advantage of being computable either by
a 2D plane method or by a 1D axisymmetric method (cf. figure 7). Moreover, the
total mass of the gas is constant, then it is a good case for testing the conserva-
tion properties of our schemes. The parameters of the flow are the following: the
gas is argon of molecular mass 0.663 10−25 kg and of viscosity exponent δ = 0.5
(Hard-Sphere model). The flow is initially at temperature 300 K and of density
0.1247 10−5 kg.m−3. The large cylinder rotates a constant speed of 106m.s−1, and
the two cylinders have a temperature of 300 K. They have radius R1 = 1m and
R2 = 2m. This gives a Knudsen number based on R1 of 0.1. For the 2D plane
computation in the (y, z)-plane, the mesh has 22 × 20 cells in ϕ and r directions
(cf. figure 7). The velocity grid has 93 velocities and bounds [−1000, 1000]3. For
the 1D axisymmetric computations, we use a mesh of 20 cells in r direction and a
velocity grid of 9× 6× 18 points in (vx, ζ, ω)-directions.

For plane and axisymmetric computations we use the explicit scheme, in order
to plot the total mass during the unstationary part of the flow (see figure 8). First
we observe that the upwind non-conservative schemes (U2NCE, T-U2NCE and
UNCE) do not conserve the total mass at all: M(t) rapidly decreases to 0. Thus
the trigonometric correction T-UNCE of UNCE appears to be essential. For the
second order centered non-conservative scheme CNCE, the mass is not conserved,
but it changes only by 0.01% between the initial time and the steady state. For all
the conservative schemes (UCE, T-UCE, CCE, T-CCE, T-CNCE, T-UNCE), the
total mass is perfectly constant. Note that for the 2D plane computation the total
mass is slightly decreasing, whereas the scheme is theoretically conservative. This
is a consequence of the approximation of the curved boundaries with the curvilinear
mesh.

At steady state, we also plot the tangential velocity and the density for all our
schemes (figure 9), except for UNCE, U2NCE, T-U2NCE that give totally incorrect
results (they cannot be plotted on the same scale). This is not surprising, since these
schemes satisfy the conservation laws only up to the first order (see sections 4.3
and 4.6). Considering the results of the 2D plane computation as the reference
curves, we observe that second order axisymmetric schemes (in velocity) are much
more accurate than the others (CCE, T-CCE, CNCE, T-CNCE). Moreover, there
is only a small difference between the schemes and their trigonometric corrections,
except for CCE. Also note that the trigonometric correction T-UNCE of UNCE
gives very poor results, but however more accurate that UNCE itself. The reason is
that T-UNCE is conservative, as opposed to UNCE, but does not preserve uniform
flows.

If the number of points is increased from 18 to 60 in ω-direction of the velocity
grid, then we observe that the difference between trigonometric corrections and
basic schemes is smaller. The first order schemes are closer to second order schemes,
and all the axisymmetric results are closer to plane results. Consequently, it is clear
that axisymmetric computations require a more precise velocity discretization than
plane computations. This is probably due to the fact that in axisymmetric case,
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a velocity derivative of f must be approximated. In plane computations, only an
approximation of the moments of f is needed, i.e. integrals on velocity space, which
requires a less precise discretization. Finally, note that whereas the second order
schemes do not theoretically preserve the positivity of f , this does not affect our
results for this test-case.

For testing our implicit schemes, we use a slightly different test-case, taken from
Sone et al. [33]. Here the only difference with the previous case is that the boundary
conditions are now evaporation-condensation conditions. This means that at the
surface of the cylinders, the distribution function is completely prescribed. Conse-
quently, there is a mass flux across the boundaries, and the total mass is no longer
conserved. Thus we can expect that conservation properties are less crucial here.
On the small cylinder, the pressure is set to 0.0708, and to 0.0779 on the large
cylinder, with the same temperature as previously. We plot the results for the tan-
gential velocity and the temperature (figure 10), normalized by the parameters of
the small cylinder (see [33]). The plane results are very close to that of [33]. For
axisymmetric results, we found the same hierarchy between the schemes as in the
previous test-case. The difference is that here, upwind non-conservative schemes
(UNCE, U2NCE, T-U2NCE) give correct results. Moreover if the number of points
ωq is increased as previously (from 18 to 60), we observe that second order centered
schemes become very unstable, and the computation stops. Consequently, despite
their high accuracy, these schemes lack robustness.

This short study proves that the trigonometric second order centered schemes
have the highest accuracy. Among these schemes, there is no significant difference
between discretizations of the conservative and non-conservative form equations (T-
CCE and T-CNCE). However, as it is proved with the last test case, these schemes
lack robustness. Therefore, the best compromise between robustness and accuracy
is the scheme T-UCE, which has numerous strong properties (see table 1).
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6.2.2. 2D supersonic flow past a sphere
In this test, we advance the validation of our method for solving the axisymmetric

BGK equation. We consider a flow past a sphere of radius 0.1m, with the param-
eters of an atmospheric flow at 90 km of altitude: ρ∞ = 0.317 10−5 kg.m−3, T∞ =
249K,M∞ = 5, for the density, temperature and Mach number. The molecular
mass is 0.663 10−25 kg and the viscosity exponent is 0.81 (VHS model). This gives
a Knudsen number of 0.236 at infinity.

For BGK, we use a mesh of 60× 50 cells in tangential and orthogonal directions.
The computational domain is restricted to the upstream flow, we have neglected the
influence of the flow downstream from the sphere. The velocity grid has 11×9×21
points in (vx, ζ, ω) directions. Since the distribution function is even in ω, this
variable is in [0, π]. The bounds of the grid for vx and ζ are [−2300, 2300]×[0, 2000].
The velocity discretization of the transport operator uses the T-UCE scheme, which
has been proved in section 6.2.1 to be the best compromise between accuracy and
robustness. The computation takes 137 iterations and 31 h CPU.

For the DSMC, we use the same mesh. Since the size of the cells is greater than
the mean-free-path, one cannot expect accurate results. The parameters of the
method are: 20 particles per cell, with a time step of 2 10−6 s. After 136 iterations
we make 500 samples (one every three time steps). The maximum simulation time
is reached in 1631 iterations and 18 h CPU. Therefore, the CPU time is lower
than for BGK, but it would be much longer to obtain more accurate results. A
Navier-Stokes computation (without slip condition) is also made.

The results are shown in figures 11 and 12. The noisy contours obtained with
DSMC are not surprising (figure 11). We also note that BGK contours are oscillat-
ing in the tail of the shock. This phenomenon also arises with Navier-Stokes results
although it is less visible. This is a classical problem of structured meshes, which
is due to the numerical viscosity of the scheme, because the streamlines are not
aligned with the mesh. However, the results of BGK and DSMC are quite close,
which is not true for Navier-Stokes.

In figure 12, we plot density, temperature, and pressure profiles as functions of
the radius r along two lines orthogonal to the wall. One is the symmetry axis, the
other one is at 45◦ of this axis. For the first line, DSMC and BGK curves are quite
close, except near the wall where there is a difference of approximately 20% for the
temperature and the density. However, note that the difference between DSMC and
Navier-Stokes is much larger, especially for the temperature. For the line at 45◦,
DSMC and BGK are strikingly close. At the contrary, we note a large difference
between DSMC and Navier-Stokes. This is not surprising, since the local Knudsen
number is found to be 0.6 in this zone. For instance, there is a difference of nearly
50% for the temperature in the shock (r = 0.025m).

One can estimate the gain obtained by using an axisymmetric computation in-
stead of a full 3D computation. For estimating the CPU cost of a 3D computation,
we have computed the same flow in 2D plane geometry, with a cylinder instead of
a sphere, and with the same number of cells. A Cartesian computation requires
a less precise velocity grid, then we use 11 × 11 × 11 discrete velocities (this is
almost a half as many discrete velocities as in the axisymmetric computation). The
computation takes 194 iterations and 22 h CPU, which is of course faster than the
axisymmetric case. For a 3D computation, assume that we would use 50 cells in
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z-direction. Since our algorithms have a linear complexity, then we can assume
that the 3D computation would be 50 times as long as the 2D plane case, which
yields 1100 h CPU. This must be compared to the 31 h CPU for the same result
with the axisymmetric computation. This is clear that despite the high cost of the
discretization in ω, the 2D axisymmetric method is much less expensive than a full
3D computation.
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FIG. 11. Axisymmetric flow past a sphere. Temperature and pressure contours for BGK,
DSMC, and Navier-Stokes.
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7. CONCLUSION

We have presented a new numerical method for BGK and BGK-ES equations.
It is based on discrete-velocity models for the collision and transport operators,
for plane and axisymmetric geometries, and on a linearized implicit scheme. Our
discrete-velocity models satisfy important mathematical properties (conservation
and entropy). They permit us to have robust algorithms that do not require a
fine velocity grid. Whereas these properties are not a necessary condition for high
accuracy, they make it possible to yield plausible results even with low-resolution
velocity grids.

Our numerical results have been compared to the DSMC reference method. They
have been noted to be very closed to DSMC results for transitional flows, with
a comparable CPU time. The BGK equation is a simplified model, but here it
appears sufficient for these flows, and the BGK-ES model allows for more physics.
We have proved that our deterministic method is well suited for situations - like
recirculation flows - where the DSMC method may be difficult to use. Our study
on axisymmetric transport operator allows to make simulations on 3D geometries
with axial symmetry.

Moreover, due to the linear complexity of our algorithms, our method may be
extended to 3D non axisymmetric computations, without a prohibitive increasing of
the computational cost. The explicit and implicit schemes of sections 5.1 and 5.2 can
be extended with the same properties. The only difference is that the blocks of the
transport matrix T (see figure 1) would be heptadiagonal instead of pentadiagonal.
Thus the Gauss-Seidel method proposed in section 5.2.2 to split the matrix T should
be modified.

Finally, we mention that an extension of our method to polyatomic gases is in
preparation.
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