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We present a numerical method for computing transitional flows as described by the BGK
equation of gas kinetic theory. Using the minimum entropy principle to define a discrete
equilibrium function, a discrete velocity model of this equation is proposed. This model,
like the continuous one, ensures positivity of solutions, conservation of moments, and
dissipation of entropy. The discrete velocity model is then discretized in space and time
by an explicit finite volume scheme which is proved to satisfy the previous properties.
A linearized implicit scheme is then derived to efficiently compute steady-states; this
method is then verified with several test cases.

1. Introduction

In a computation of the flow of a rarefied gas, the most commonly used numerical
methods are probabilistic, such as the Direct Simulation Monte Carlo (DSMC)
method. The main drawback of these methods is the frequent occurrence of noisy
results. Numerous parameters (i.e. size of cells, number of representative molecules,
number of samples) must be adjusted to obtain a good representation of the gas.

Recently, alternate deterministic methods based on discretization of the Boltz-
mann equation have been proposed in order to obtain higher accuracy (Rogier-
Schneider 29, Buet 7). However, the Boltzmann equation is difficult to solve numer-
ically due to binary collisions. Generally, this leads to a near quadratic cost with
respect to the velocity discretization which makes the approach very expensive. The
method by Buet in 7 reduces this cost but introduces a type of stochasticity into
the method.

In order to correct this problem, it is interesting to consider the simpler BGK
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model proposed by Bathnagar, Gross and Krook in 28

∂tf + v · ∇xf =
1
τ

(M [f ]− f),

in which the binary interactions are modeled with a relaxation toward a local equi-
librium M [f ]. This modeling approach allows for the possibility of a linear cost
of the discretization. In addition, the BGK model is known to be very accurate
in near-equilibrium regions because it has the same fluid limit as the Boltzmann
equation. This model is especially relevant in transitional flows where the classical
Navier-Stokes equation fails to describe non-equilibrium phenomena, and where the
Boltzmann equation is very expensive. Despite some recent studies 17 which have
suggested the relevance of the BGK model for computing transport properties far
from equilibrium, its use for extreme rarefied flows is questionable.

It is important to mention that same other relaxation models exist to fit realistic
values of the Prandtl number given by a Chapman-Enskog expansion of BGK, but
this approach is not investigated here. For more details on this subject, see the ES
model (recently proved to be entropic in 2), the S-model 31, or the BGK model with
a velocity-dependent relaxation time 32.

When solving BGK equation, the main difficulty is the velocity discretization.
Most numerical methods (like Issautier 19, Aoki-Kanba-Takata 3, Yang-Huang 34)
lack the properties of conservation of mass, momentum and energy, as well as the
entropy property. This leads to algorithms which are expensive due to the fine
velocity meshes which guarantee robustness, in particular with implicit schemes.

An elegant approach which allows to have conservation and entropy proper-
ties with Boltzmann equation approximations is the discrete kinetic theory. It has
been widely developed by Gatignol 18 who constructed some discrete velocity mod-
els (DVM) of Boltzmann equation. In addition, she demonstrated conservation
properties and some other interesting results. These models were initially used to
simplify the mathematical study of the Boltzmann equation. However, the recent
numerical methods developed by 29,7 also use the DVM with the above mentioned
properties.

In this paper, we present a similar approach to that of 29 and 7 for the develop-
ment of a DVM of the BGK equation. We propose a non-trivial discrete approxi-
mation of M [f ], defined by a minimum entropy principle. In addition, we advance
the work of 12 and prove the existence and uniqueness result for this principle. Our
model is thus a conservative and entropy decreasing DVM. To our knowledge, it is
the first time that such a model is presented for the BGK equation (it is relevant to
note that the conservative method of Perthame-Coron 14 has the above mentioned
properties but cannot be viewed as a DVM). So, as opposed to non-conservative
methods for which a large number of velocities is needed to recover conservation
properties, our model appears to be very economic.
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The second aim of this paper is to provide a fast and robust algorithm for steady-
state computations. Many numerical schemes have been proposed for unsteady
BGK equation (see the references below), but the simulation of stationary flows
involves additional difficulties. For these flows, one may either solve the steady
BGK equation with an iterative scheme (due to the nonlinearity of the source term),
or solve the unsteady equation and then let time evolve to infinity.

In the first method, the nonlinearity may be treated by a Newton algorithm,
but it is well known in CFD that such a method is not very robust and may not
converge. It may also be treated by a fixed point technique like Aoki, Kanba,
Takata in 3 with the scheme v · ∇xfn+1 = 1

τn (M [fn]− fn+1), but this leads to the
uncoupling of the gain and loss terms, and may converge very slowly. This can be
viewed as a semi-implicit method for the non-stationary equation where only the
loss term −f is implicit (because it gives negative distributions). In this paper, we
demonstrate that this method is slow.

In the second method, the main issue is that in order to guarantee positivity of
distributions, the time step ∆t has to satisfy two severe conditions:

• ∆t must be smaller than the relaxation time τ . This is very restrictive in
transitional regimes for which τ is small.

• A molecule should not cross more than one cell of the mesh during ∆t. This
condition is known as the classical CFL condition for convection. Thus ∆t
must be very small in high velocity regimes, such as reentry problems in
aerodynamics applications.

These restrictions on the time step imply that a very large number of iterations are
then required in order to reach steady state.

The first constraint has been widely studied. For example, Perthame and Coron
in 14 proposed a relaxation scheme (where both the exponential form of BGK equa-
tion and a splitting method are used) which is stable for any arbitrary small τ .
A similar method for other kinetic equations has been given by Gabetta, Pareschi
and Toscani in 16. The same idea is also used by Issautier in 19 with a Lagrangian
discretization instead of the splitting method.

The second constraint can be more restrictive than the first one. However,
it has received considerable less attention, and has yet to be properly taken care
of. A classical solution in CFD is to use an implicit convective term during the
time integration (see for instance 35 for Euler equations). But as mentioned by
Waluś in 33, the splitting methods are incompatible with implicit procedures because
transport and collision processes are greatly decoupled. In addition the Lagrangian
discretization of 19 is not well designed for steady applications (the moving mesh is
appropriate for internal unsteady flows but obviously not for steady flows).

The method introduced by Yang and Huang in 34 is completely different and
appears to be very interesting for steady computations. They propose an implicit
scheme based on an explicit finite volume scheme of the BGK equation and use
all the CFD techniques for hyperbolic systems. However, they stress that only the
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loss term is implicit because the linearization of M [f ] is difficult. Their method is
therefore a semi-implicit one and has the same drawbacks of slow convergence as
the method of 3 cited above. In this paper, we present a similar approach, but we
do make use of a fully implicit source term.

Finally, it is worth mentioning some drawbacks of implicit methods such as
spurious solutions and bad long-time behavior (also referred to by Bobylev and
Struckmeier in 5 and by Jin in 20). These problems are not investigated here.

The remainder of the paper follows logically. The properties of the BGK equa-
tion as well as a short list of notations are shown in Section 2. In Section 3, we
present our DVM and prove the existence of a discrete equilibrium. The properties
of the model are then described. In Section 4 we construct an explicit finite volume
scheme which is proved to be conservative and have dissipated entropy. Then, a
linearized implicit scheme is derived from the previous scheme, and an algorithm for
solving the large linear systems is presented. In Section 5, some numerical applica-
tions are given, and a brief study of the influence of the discretization on the results
is shown. Finally, several comparisons with experiments and the DSMC method
are presented.

2. BGK equation

Positions x and velocities v of molecules are given in RD. The integral of any
function g(v) is denoted by

〈g〉 =
∫

RD
g(v) dv.

Classical fluid quantities are obtained by integration of f on velocity space. For
instance, density, momentum, and total energy are given by

ρ = 〈f〉 ∈ R, ρu = 〈vf〉 ∈ RD, E = 〈 12 |v|
2f〉 ∈ R. (2.1)

These variables are, therefore, the D + 2 first moments of f with respect to v.
Microscopic quantities 1, v, 1

2 |v|
2 (the so-called collisional invariants) can be denoted

by the vector
m(v) =

(

1, v, 1
2 |v|

2
)T ∈ RD+2. (2.2)

By analogy, the D + 2 first moments of f are denoted by the vector

ρ = (ρ, ρu,E)T , (2.3)

of which components may be numbered from 0 to D + 1: ρ = (ρ(i))i=0..D+1. Defi-
nition (2.1) may thus be rewritten in a shorter form

ρ = 〈mf〉, (2.4)

and one then says that ρ is realizable by f , or that f realizes ρ. Finally, we define
the kinetic entropy of f by

H[f ] = 〈f log f〉, (2.5)
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and we recall that the temperature T and the pressure p of the gas are defined by

T =
1
DR
〈|v − u|2f〉, p = ρRT, (2.6)

where R is the gas constant.
The BGK equation (see 28) is the following relaxation time model

∂tf + v · ∇xf =
1
τ

(M [f ]− f) , (2.7)

where the relaxation time is defined by

τ−1 = CρT 1−ω, (2.8)

and ω is the exponent of the viscosity law of the gas (see 10). The source term
represents the fact that the distribution function tends towards a local equilibrium
distribution M [f ], defined by

M [f ] = exp (α ·m(v)) . (2.9)

This Gaussian distribution, called Maxwellian, has the same moments as f . The
parameters α are functions of t and x and may be expressed in terms of ρ, u, T
through the invertible relation (if ρ, T > 0)

α =
(

log
(

ρ

(2πRT )D/2

)

− |u|
2

2RT
,
u

RT
,− 1

RT

)T

. (2.10)

It can easily be seen that M is the unique solution of the following entropy mini-
mization problem (see for instance 27)

(P) H[M ] = min {H[g], g ≥ 0 s.t. 〈mg〉 = ρ} . (2.11)

This simply means that the local equilibrium state minimizes the entropy of all the
possible states leading to the same macroscopic properties.

With this characterization of the local Maxwellian equilibrium, the following
properties of conservation of mass, momentum, energy, and dissipation of entropy
may easily be proved, at least formally,

∂t〈mf〉+∇x〈mvf〉 = 0, (2.12)

∂t〈f log f〉+∇x〈vf log f〉 ≤ 0. (2.13)

Furthermore, it is possible to check that solutions of (2.7) are nonnegative.
We point out that in a numerical scheme, the preservation of these properties

is essential to a robust and economic discretization. Yet, most of the commonly
accepted numerical methods (particular, discrete ordinate or finite difference meth-
ods) fail to satisfy these properties. We present a discrete velocity model for which
the conditions of positivity of solutions, conservation of moments, and dissipation
of entropy are fully satisfied.
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3. Discrete Velocity Model

Let K be a set of N multi-indexes of ND, defined by K =
{

k=(k(i))Di=1, k
(i) ≤ K(i)

}

,
where {K(i)} are some given bounds. We define a discrete velocity set V of RD by

V = {vk = k∆v + a, k ∈ K} , (3.14)

where a is an arbitrary vector of RD and ∆v is a scalar a. The microscopic quantities
on V are denoted by mk =

(

1, vk, 1
2 |vk|

2
)T . The “continuous” velocity distribution

f is then replaced by a N -vector fK(t, x) = (fk(t, x))k∈K where each component
fk(t, x) is assumed to be an approximation of f(t, x, vk). The fluid quantities are
thus given as in continuous case, except that integrals on RD are replaced by discrete
sums on V. That is, setting

〈g〉K =
∑

k∈K

gk∆vD (3.15)

for any vector g ∈ RN , we can define discrete moments and discrete entropy of fK
by

ρK = 〈mfK〉K, (3.16)

HK = 〈fK log fK〉K. (3.17)

Our discrete velocity BGK model follows as a set of N equations

∂tfk + vk · ∇xfk =
1
τ

(Ek − fk) , ∀k ∈ K (3.18)

and the main problem is to define an approximation EK of the Maxwellian equi-
librium M [f ] such that conservation properties (2.12) and entropy property (2.13)
still hold. First we note that the natural approximation (used by Yang and Huang
in 34)

Ek = M [fK](vk), ∀k ∈ K, (3.19)

cannot satisfy these requirements. Instead, we propose to use the discrete version
of entropy minimization problem (2.11). Let EK be defined by the minimum of
discrete entropy, with the constraints that it must have the same moments as f ,
i.e. EK is the solution of the following problem (PK)

(PK) HK[EK] = min
{

HK[g], g ≥ 0 ∈ RN s.t. 〈mg〉K = ρK
}

. (3.20)

Obviously, it must be checked that this problem has a unique and easily solvable
solution (solving directly (PK) in RN would be numerically expensive).

In the continuous case, the condition ρ, T > 0 is sufficient to characterize the
solution of (2.11) by the Maxwellian distribution. However, this is not true for the
discrete case where explicit computations are not possible. To this end, we have
aThe results presented in this section remain valid if ∆v depends on the direction (i) and on the
index k .
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then proved that under a natural assumption on V, the discrete equilibrium EK has
an exponential form if, and only if, a “strict realizability” condition is fulfilled by
ρK. This result has been announced in 26,24,12,25,13.

Theorem 3.1 Let ρ be a vector in RD+2, such that the set Eρ = {g ≥ 0 ∈
RN s.t. 〈mg〉K = ρ} of nonnegative discrete distributions realizing ρ is not empty.
Then, the problem (PK) has a unique solution EK called discrete equilibrium. More-
over, we assume that V is such that microscopic quantities satisfy

{mk, k ∈ K} is of rank D + 2. (3.21)

Then there exists a unique vector α in RD+2 such that the following exponential
characterization holds

Ek = exp(α ·mk), ∀k ∈ K, (3.22)

if and only if ρ is strictly realizable, i.e.

∃g ∈ Eρ s.t. g > 0. (3.23)

Remark 3.1 Due to the above result, the computation of EK does not require the
solution of an expensive minimization problem in RN . Instead, only the computa-
tion of the vector α in RD+2 is necessary. This vector α is the unique solution of
the nonlinear set of D + 2 equations

〈m exp(α ·m)〉K = ρK, (3.24)

since EK realizes ρK. This set may be solved by a Newton algorithm (see Sec.).
This relation has already been used for initial conditions of numerical simulations
(see 30,6). However, to our knowledge, it is the first time that existence and unique-
ness is proved.

Remark 3.2 This result is generalized in 12 for discrete equilibrium associated to
higher order moments, in order to define discrete version of Levermore’s moment
closures (see 22 for Levermore’s closures and 11 for discrete theory and numerical
applications).

Remark 3.3 It will be shown in the next section that condition on V is not very
restrictive. However, condition (3.23) is more restrictive than in the continuous
case. The reason of this difference is mainly the number of degrees of freedom: the
smaller the number of discrete velocities is, the fewer degrees of freedom there are
to realize ρ, i.e. , to find g in Eρ, and therefore the more difficult it is to find
a discrete Gaussian distribution in Eρ. For instance with D = 1 and N = 3, if
we set V = {−1, 0, 1} and ρ = (2, 0, 2), then Eρ has only one element g = (1, 0, 1).
Therefore discrete equilibrium EK is equal to g, and cannot be an exponential (since
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E2 = 0), whereas ρ, T > 0 implies that the continuous equilibrium is a Maxwellian.
In the continuous-velocity limit, the number of degrees of freedom becomes infinite,
and condition (3.23) is always satisfied provided that the natural conditions ρ, T > 0
are fulfilled.

Proof of Theorem 3.1. First, note that the existence and uniqueness of EK is
easily obtained since the mapping HK is clearly continuous, coercive, and strictly
convex on the closed subset Eρ (we do not write the simple proof of these assertions).

The non-trivial part of this theorem is the characterization of EK. For that
purpose, let us introduce the mapping J(β) = 〈exp(β ·m)〉K − β · ρ defined on
RD+2, and a second minimization problem

(P ′K) α s.t. J(α) = min{J(β);β ∈ RD+2}. (3.25)

It is clear that this problem implies the original problem (PK) (see (3.20)). In fact,
a solution α of (P ′K) necessarily satisfies the extremum relation

J ′(α) = 〈m exp(α ·m)〉K − ρ = 0. (3.26)

Therefore, if we define Ek = exp(α ·mk) for all k ∈ K, then EK realizes ρ. Finally,
this exponential form allows us to conclude that EK is the solution of (PK). As in
the continuous case (see 27), by convexity of t log t and using (3.26), we have for all
g ∈ Eρ

HK[EK] ≤ HK[g]− 〈(1 +α ·m)(g − EK)〉K
= HK[g].

We want now to prove the existence and uniqueness of a solution to (P ′K).
The advantage of this second problem is that conditions (3.21) and (3.23) appear
naturally. First, we shall prove J to be strictly convex. To that effect, it is sufficient
to note that the second derivative of J satisfies

J ′′(β)(ξ, ξ) = ξT 〈m⊗m exp(β ·m)〉Kξ

=
∑

k∈K

exp(β ·m)(
∑

i

ξ(i)m
(i)
k )2∆vD

Therefore J ′′(β)(ξ, ξ) ≥ 0 for all ξ ∈ RD+2. In addition, assumption (3.21) reads

ξ ·mk = 0 ∀k ∈ K ⇔ ξ = 0, (3.27)

which implies J ′′(β)(ξ, ξ) > 0 if ξ 6= 0. This proves that J ′′(β) is positive definite
for all β ∈ RD+2, and hence J is strictly convex. Now, we shall prove the coercivity
of J . This is accomplished in two steps.
step 1: The first step will ensure that J is coercive “on each direction of RD+2”,

that is

∀ω ∈ SD+1, J(λω) =
∑

k∈K

exp(λω ·mk)∆vD − λω · ρ −−−−−→
λ→+∞

+∞
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locally uniformly around each ω. This problem is split into two cases. First, as-
suming that there exists k0 such that ω ·mk0 > 0, we obtain 0 < c1(ω) ≤ ω̃ ·mk0

for every ω̃ of a small enough neighborhood B(ω, ε(ω)) of ω. Consequently

J(λω̃) ≥ exp(λc1(ω))∆vD − λc2(ω,ρ), (3.28)

which tends to +∞ uniformly on B(ω, ε(ω)). In the second case ω ·mk ≤ 0 for all
k, and property (3.21) implies that there exists k0 such that ω ·mk0 < 0. Therefore,
ω·ρ < 0 and there exists a neighborhood B(ω, ε(ω)) of ω in which ω̃·ρ ≤ c3(ω) < 0.
Hence

J(λω̃) ≥ −λω̃ · ρ ≥ −λc3(ω) (3.29)

which tends to +∞ uniformly on B(ω, ε(ω)).

step 2: We can now prove that J tends globally uniformly to +∞ on each direction
ω. Let us consider the neighborhoods B(ω, ε(ω)) defined above for all ω of SD+1. It
is clear that the union of these open sets covers SD+1. As we know SD+1 is compact,
this union contains therefore a finite covering, i.e. , there exists ω1,ω2, . . .ωL of
SD+1 such that

SD+1 ⊂
L
⋃

i=1

B(ωi, ε(ωi)). (3.30)

From the previous step, we know that for all i and for all M > 0, there exists
R(ωi,M) > 0 such that

λ ≥ R(ωi,M)⇒ J(λω̃) ≥M ∀ω̃ ∈ B(ωi, ε(ωi)), (3.31)

then we can define R(M) = maxi=1..LR(ωi,M) which is finite. It is thus clear that
from (3.31)

∀ω̃ ∈ SD+1 λ ≥ R(M)⇒ J(λω̃) ≥M,

i.e. J(λω̃) tends toward infinity uniformly in ω̃. The coercivity is then obvious.
It is now a classical result of optimization that problem (P ′K) has a unique

solution α in RD+2. As was noted at the beginning of the proof, this implies
that EK = (exp(α ·mk))k∈K is the unique solution of (PK). We have thus proved
that under assumption (3.21), the solution of (PK) is characterized if condition of
strict realizability (3.23) is fulfilled. The converse of this statement is trivial, since
g = EK = (exp(α ·mk))k∈K is necessarily strictly positive and realizes ρ.

The model is now completely defined except in the case where EρK is empty.
For that case, we can set EK = 0. This has practically no interest because the model
implicitly contains the fact that ρK is realized by fK ≥ 0. We can now state the
model is well defined and has the expected properties.

Theorem 3.2 Let f0 be a strictly positive vector of RN . Consider the initial value
problem associated with model (3.18), where EK is defined either by (PK), or by
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EK = 0 (if EρK = ∅). If this problem has a solution fK, then we have (at least
formally)

fk(t, x) > 0 ∀k, t, x, (3.32)

Ek = exp(α ·mk) ∀k, (3.33)

∂t〈mfK〉K +∇x〈mvfK〉K = 0, (3.34)

∂t〈fK log fK〉K +∇x〈vfK log fK〉K ≤ 0. (3.35)

Proof. The proof of assertions (3.32,3.34,3.35) is very similar to that of the con-
tinuous case, and is left to the reader. We only need to show that the discrete
equilibrium is always an exponential. Noting fK is always strictly positive proves
that the discrete moment ρK is obviously strictly realizable, and theorem (3.1) then
allows us to conclude.

Note here that these properties permit us to obtain existence and uniqueness
results for model (3.18), as well as convergence toward the continuous BGK (see 23).

We feel that it is necessary to explain why condition (3.21) on V is not greatly
restrictive. The following result demonstrates that it is sufficient to take a Cartesian
grid with at least two points in each direction (including 0), and at least three points
in a given direction.

Proposition 3.1 Let V be defined by (3.14) with

K(i) ≥ 1 ∀i = 1..D. (3.36)

If there exists one direction i such that

K(i) ≥ 2, (3.37)

then {mk, k ∈ K} satisfies (3.21).

Proof. Let us first assume that a = 0 (see (3.14)). Moreover, up to the renumbering
of axes, we can assume there are at least three points in direction 1 (set i = 1
in (3.37)). With the assumptions of the proposition, we can then find a subset of
D + 2 multi-indexes {kl}l=1..D+2 of K such that

vk1 = 0,

vkl = (v(j)
kl

= ∆v if j < l, 0 otherwise) for l = 2..D + 1,

vkD+2 = (2∆v, 0, . . . , 0).

We intent to prove {mkl}l=1..D+2 is a linearly independent set of RD+2, which
will prove the proposition. Let us consider β ∈ RD+2 such that β ·mkl = 0 for
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l = 1..D + 2, this reads Aβ = 0 in a matrix form where

A =
[

mk1 , . . . ,mkD+2

]

=

























1 1 . . . . 1 1
0 ∆v . . . . ∆v 2∆v
0 0 . ∆v 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . 0 ∆v 0
0 1

2∆v2 . . . . D
2 |∆v|

2 2∆v2

























.

It can easily be verified that the determinant of A is detA = ∆vD+2 6= 0. This
proves that β = 0, and {mkl}l=1..D+2 is a linearly independent set, hence a basis
of RD+2.

In the case a 6= 0, we set ṽk = vk − a for all k ∈ K. From the previous case it is
clear that {m̃k = m(ṽk)}k=1..D+2 is a linearly independent set, which means that
Ã =

[

m̃k1 , . . . , m̃kD+2

]

is invertible. Setting A =
[

mk1 , . . . ,mkD+2

]

, we have the
following lemma:

Lemma 3.1 There exists an upper triangular matrix L such that AT = ÃTL and
Lll 6= 0 for l = 1..D + 2.

The simple proof of this lemma being left to the reader, we can immediately conclude
that detA = det Ã×detL 6= 0, and the proof of the proposition is now complete.

4. Other properties

4.1. Temperature and velocity bounds in a general DVM

In this section, given a discrete velocity set, we investigate the properties of macro-
scopic quantities, independently of the collision process (i.e. BGK or Boltzmann).
The following result shows that once V is chosen, a discrete velocity model cannot
describe any flow. Conversely, for a given flow, the discrete velocity set must be
properly chosen to give a correct representation.

Proposition 4.2 Let f ∈ RN be a nonnegative discrete distribution function.
Then the macroscopic velocity and temperature associated with f on V by u =
1
ρ 〈vf〉K and T = 1

DRρ 〈|v − u|
2f〉K satisfy the bounds

min
K

v
(i)
k ≤ u

(i) ≤ max
K

v
(i)
k i = 1..D (4.38)

1
DR

min
K
|vk − u|2 ≤ T ≤

1
DR

max
K
|vk − u|2. (4.39)

The proof is an immediate consequence of definitions of u and T and is left to the
reader.
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These inequalities show that the macroscopic velocity and temperature are
bounded above by velocity bounds. This implies that the discrete velocity set must
be large enough to take into account high velocities and high temperatures which
may appear in the flow.

Another, perhaps unexpected, feature of a discrete velocity flow is that temper-
ature is bounded below. This bound is in fact strongly related to ∆v, as it can be
seen in the following example. Consider a 1D plane Couette flow (that is a plane
flow between two plates of equal temperature TW , one of which is motionless and
the other moving at uW ). In such a flow, the macroscopic velocity increases con-
tinuously between 0 and uW . This implies that there exists position x for which
minK |u(x) − vk| = 1

2∆v. Thus at this point T (x) is bounded below by ∆v2

4DR , re-
gardless of the wall temperature. As a consequence, a small TW could lead to an
overestimated temperature jump near the plates. This example suggests that ∆v
must be small enough to take into account low temperatures which may appear in
the flow.

Remark 4.4 From Statistical Mechanics theory, it is preferable to define the tem-
perature of a discrete velocity gas through the coefficient c such that exp(α ·mk) =
a exp(− 1

2c |b−vk|
2) (see 9). The result of the previous proposition does not give any

bounds on this temperature. However Rogier and Schneider 29 have proved that
for a continuous Maxwellian in a bounded velocity domain, this coefficient may be
either positive, if the domain is large enough, or negative if the domain is too small.
Thus, it seems reasonable that this is also true for our discrete case. Note, how-
ever, that in the sequel, we shall only use the definition of the temperature given in
proposition 4.2.

4.2. A remark on plane flows

This remark is motivated by the fact that in the continuous-velocity case (for in-
stance with D = 3), if u(3) = 0 (i.e. a plane flow), then (2.10) implies that α(3) = 0
as well. It is interesting to see if this would hold in a discrete velocity frame, since
it would reduce the cost of computing discrete equilibrium. This would lead to a
problem in RD+1 rather than in RD+2. Because explicit invertible relation between
ρ and α is not known, the situation is not as obvious as in the continuous case.
However, we shall prove it to be true in the discrete case.

Proposition 4.3 Let V be a discrete velocity grid satisfying (3.21) and symmetric
with respect to the jth hyperplan {v(j) = 0}. Let ρ be a strictly realizable vector
of RD+2 on V (in the sense of (3.23)), such that ρ(j) = 0 (i.e. u(j) = 0). Then the
Lagrange multiplier α from theorem 3.1 satisfies equivalently α(j) = 0.

Proof. Note that the symmetry assumption on V means that for all k in K, there
exists k′ in K such that v(i)

k = v
(i)
k′ if i 6= j and v(j)

k = −v(j)
k′ . Consequently, defining
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rk such that α ·mk = rk + α(j)v
(j)
k , yields

ρ(j) = 2
∑

k s.t.
v

(j)
k >0

exp(rk) sinh(α(j)v
(j)
k )v(j)

k ∆vD.

All the terms of this sum have the same sign, and are zero if and only if α(j) = 0.

5. Numerical schemes for the discrete velocity BGK model

5.1. Explicit conservative entropic scheme

For the sake of simplicity, our scheme is presented here in two spatial dimensions
on a Cartesian grid, but all the properties stated here are valid for a general D-
dimensional space and curvilinear meshes. The equation to be approximated is

∂tfk + v
(1)
k ∂xfk + v

(2)
k ∂yfk =

1
τ

(Ek − fk), k ∈ K. (5.40)

Consider a spatial Cartesian grid defined by nodes (xi, yj) = (i∆x, j∆y) and cells
I =]xi− 1

2
, xi+ 1

2
[×]yj− 1

2
, yj+ 1

2
[. Consider also a time discretization with tn = n∆t.

If fni,j = (fnk,i,j)k∈K is an approximation of fK(tn, xi, yj), the moments of fni,j are
naturally ρni,j = 〈mfni,j〉K, and the corresponding discrete equilibrium is denoted
by (Enk,i,j)k∈K. If ρni,j is strictly realizable (in the sense of (3.23)), the discrete
equilibrium is therefore Enk,i,j = exp(αni,j ·mk), where αni,j is the unique solution of
the nonlinear set of equations (see remark 3.1)

〈m exp(αni,j ·m)〉K = ρni,j . (5.41)

The transport part is simply the linear convection equation, and can be approx-
imated by a standard finite volume scheme. For the nonlinear relaxation term, a
standard centered approximation technique is used. Our scheme thus reads

fn+1
k,i,j = fnk,i,j −

∆t
∆x

(Fnk,i+ 1
2 ,j
−Fnk,i− 1

2 ,j
)− ∆t

∆y
(Fnk,i,j+ 1

2
−Fnk,i,j− 1

2
)

+
∆t
τni,j

(Enk,i,j − fnk,i,j),
(5.42)

where the numerical fluxes are defined by

Fnk,i+ 1
2 ,j

=
1
2

(

v
(1)
k fnk,i+1,j + v

(1)
k fnk,i,j − |v

(1)
k |(∆f

n
k,i+ 1

2 ,j
− Φnk,i+ 1

2 ,j
)
)

(5.43)

with the notation ∆fn
k,i+ 1

2 ,j
= fnk,i+1,j − fnk,i,j , and the flux limiter function gives

the order of the scheme. For instance

Φnk,i+ 1
2 ,j

=

{

∆fn
k,i+ 1

2 ,j
for first order,

minmod(∆fn
k,i− 1

2 ,j
,∆fn

k,i+ 1
2 ,j
,∆fn

k,i+ 3
2 ,j

) for second order.
(5.44)
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With the appropriate definitions of our DVM, our scheme now possesses the
expected properties mentioned in the first section. Theorem 3.2 can be expressed
in its numerical form:

Proposition 5.4 Let {f0
k,i,j}k,i,j be a strictly positive initial condition. Then the

sequence {fn}n≥0 defined by scheme (5.42) satisfies

fnk,i,j > 0 and Enk,i,j = exp(αni,j ·mk), (5.45)

for all k, n, i, j. Also, for all n
∑

k,i,j

mkf
n
k,i,j∆v

D =
∑

k,i,j

mkf
0
k,i,j∆v

D (5.46)

∑

k,i,j

fn+1
k,i,j log fn+1

k,i,j∆v
D ≤

∑

k,i,j

fnk,i,j log fnk,i,j∆v
D, (5.47)

with the condition that for the first order scheme, the time step follows

∆t

(

max
i,j

(
1
τni,j

) + max
K

(

|v(1)
k |

∆x
+
|v(2)
k |

∆y

))

< 1. (5.48)

Additionally, the second order scheme is subject to a similar condition.

Proof. We simply prove the entropy property (5.47) for the first order scheme.
Relation (5.42) reads

fn+1
k,i,j =

(

1− ∆t
τni,j
− |v(1)

k |
∆t
∆x
− |v(2)

k |
∆t
∆y

)

fnk,i,j −
∆t
∆x

v
(1)−
k fnk,i+1,j

+
∆t
∆x

v
(1)+
k fnk,i−1,j −

∆t
∆y

v
(2)−
k fnk,i,j+1 +

∆t
∆y

v
(2)+
k fnk,i,j−1

+
∆t
τni,j
Enk,i,j ,

with the classical notations a+ = a+|a|
2 and a− = a−|a|

2 . Using condition (5.48),
this expression is a convex combination of fnk,i,j , f

n
k,i+1,j , f

n
k,i,j+1, fnk,i−1,j , f

n
k,i,j−1

and Enk,i,j . Since the function t log t is also convex, we have

fn+1
k,i,j log fn+1

k,i,j ≤

(

1− ∆t
τni,j
− |v(1)

k |
∆t
∆x
− |v(2)

k |
∆t
∆y

)

fnk,i,j log fnk,i,j

− ∆t
∆x

v
(1)−
k fnk,i+1,j log fnk,i+1,j +

∆t
∆x

v
(1)+
k fnk,i−1,j log fnk,i−1,j

− ∆t
∆y

v
(2)−
k fnk,i,j+1 log fnk,i,j+1 +

∆t
∆y

v
(2)+
k fnk,i,j−1 log fnk,i,j−1

+
∆t
τni,j
Enk,i,j log Enk,i,j .
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By summation over i, j, entropy numerical fluxes vanish, and summing over k yields

∑

k,i,j

fn+1
k,i,j log fn+1

k,i,j ≤
∑

k,i,j

(1− ∆t
τni,j

) fnk,i,j log fnk,i,j +
∑

k,i,j

∆t
τni,j
Enk,i,j log Enk,i,j .

Since the discrete equilibrium minimizes entropy, relation (5.47) becomes obvious.

5.2. Linearized implicit scheme

To efficiently compute steady flows without the restriction (5.48), we present a
linearized implicit scheme.

Implicit schemes are usually derived from explicit schemes by evaluating at time
tn+1 the terms leading to negative quantities for large ∆t (e.g. numerical fluxes and
source terms). If the nonlinear terms are differentiable, they are then linearized,
otherwise they are kept at tn (like the second order fluxes).

The scheme presented here is derived accordingly. For the source term, it is clear
that −fnk,i,j (the so-called loss term) must be written at tn+1, since it produces un-
desirable negative distributions if ∆t is large. The gain term, namely the discrete
equilibrium Enk,i,j , is positive, and therefore may be kept explicit (a strategy used
in 34). However, gain and loss terms are then evaluated at different times. This
is observed to slow the convergence of the scheme considerably (see Sec.). Conse-
quently, we decide to evaluate the gain term at tn+1 as well. However, defining an
implicit relaxation time τn+1

i,j would yield a more difficult computation, and is not
very useful. Since the discrete equilibrium is a nonlinear function of f , it may be
linearized as follows

En+1
k,i,j ≈ E

n
k,i,j + [Dn

i,j(f
n+1
i,j − f

n
i,j)]k, (5.49)

where Dn
i,j is the Jacobian of the mapping g ∈ RN 7→ E [g] evaluated at fni,j . We

thus obtain the following linearized implicit scheme
(

I

∆t
+Rn + T

)

δfn = RHSn, (5.50)

where δfn = fn+1 − fn, I is the unit matrix, T is a matrix such that (Tfn)k,i,j =
1

∆x (Fn
k,i+ 1

2 ,j
− Fn

k,i− 1
2 ,j

) + 1
∆y (Fn

k,i,j+ 1
2
− Fn

k,i,j− 1
2
) with only the first order fluxes,

Rn is such that (Rnfn)i,j = 1
τni,j

(fni,j −Dn
i,jf

n
i,j), and

RHSni,j =− 1
∆x

(Fnk,i+ 1
2 ,j
−Fnk,i− 1

2 ,j
)− 1

∆y
(Fnk,i,j+ 1

2
−Fnk,i,j− 1

2
)

+
1
τni,j

(Eni,j − fni,j) (5.51)

with first or second order fluxes. The Jacobian Dn
i,j has the simple form

Dn
i,j [k, k

′] = A−1(αni,j) : mk ⊗mk′Enk,i,j∆vD, (5.52)
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where A(αni,j) = 〈m⊗m exp(αni,j ·m)〉K.
Due to the linearization of EK the scheme does not possess the conservation and

entropy properties proved for the explicit scheme. However we are interested in the
steady state solution only. More precisely, after convergence we have fn+1 = fn

and the scheme gives the stationary conservation laws and entropy inequality.

The particular structure of matrices T and Rn may be noted. If quantities fnk,i,j
are stored as fn = (fnk )k∈K with fnk = (fnk,i,j), then it can easily be seen that T is
a NM × NM block diagonal matrix with M ×M pentadiagonal blocks Tk (M is
the number of cells), and that Rn is a full matrix of diagonal blocks Rnk,k′ . These
structures are naturally due to the fact that relaxation process in BGK equation is
local in space but global in velocity, whereas transport process is numerically global
in space but local in velocity. One could observe that all the nonzero elements of a
block Tk are equal, which would simplify the scheme. But in a practical use of this
scheme, a curvilinear grid is used instead of a Cartesian one. This leads to geometric
coefficients in the numerical fluxes which depend on (i, j). This is the reason why
we do not employ all the simplifications awarded by the use of a Cartesian grid.

The linear system (5.50) to be solved at each iteration is quite large (NM×NM),
and an iterative method well adapted to different sparse structures of the matrices
may be used. We present here an algorithm based on a coupling between Gauss-
Seidel and Jacobi methods. First, Rn is separated into its block diagonal ∆n and its
block off-diagonal En, i.e. Rn = ∆n − En (this is the Jacobi step). System (5.50)
may then be solved by the following algorithm

1. g(0) = 0

2. for p = 0..P solve
(

I
∆t + T + ∆n

)

g(p+1) = RHSn + Eng(p)

3. set δfn = g(P+1).

Since the matrix of these linear systems is block diagonal with pentadiagonal blocks
I

∆t + Tk + ∆n
k , it is possible to use a line Gauss-Seidel method by setting Tk =

Mk −Nk. This gives the following algorithm.

1. g(0) = 0

2. ∀k ∈ K and for p = 0..P solve
(

I

∆t
+Mk + ∆n

k

)

g
(p+1)
k = RHSnk +Nkg

(p)
k + [Eng(p)]k (5.53)

3. set δfn = g(P+1).

The linear systems (5.53) may easily and exactly be solved by successive inversions
of tridiagonal matrices. Note that calculating the product Eng is not very expensive
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because the blocks of En are diagonal. In fact, we have

[Eng]k,i,j =
1
τni,j

A−1(αni,j)mkEnk,i,j ·
(

〈mgi,j〉K −mkgk,i,j∆vD
)

. (5.54)

It is thus sufficient to compute A−1(αni,j)mkEnk,i,j at the beginning of the algorithm
(a local computation in k and i, j), then to compute 〈mgi,j〉K on each cell (which is
local in i, j), and finally to form the dot product. The computation of Eng is thus
local in i, j, and hence completely parallelizable; its cost is in O(NM).

It is well known in CFD that since only a few iterations are needed to have the
external process converge (the loop in n), it is not useful to carry on an algorithm
like the previous one at convergence. The cost of our implicit scheme is then in
O(PNM) where P = 2 or 3.

5.3. Computation of αni,j

The nonlinear set of equations (5.41) may be solved by the following Newton algo-
rithm where J is defined in the proof of Theorem (3.1):

1. Let be given α(0)

2. solve J ′′(α(r))α(r+1) = α(r) − J ′(α(r)) until a stop criterion is satisfied

3. set αni,j = α(r)

Such an algorithm requires almost O((D2 + D)N) operations by iteration r and
by cell (i, j) and is thus in O(MN). However three problems may occur. First,
although the inversion of J ′′(α(r)) = 〈m ⊗m exp(α(r) ·m)〉K in step 2 is always
theoretically possible (see the proof of Theorem 3.1), it is numerically difficult. Since
the first element of mk ⊗mk is 1 whereas the last one is |vk|4, the conditioning of
this matrix may be very large. In fact, the conditioning is in fact as large as the
velocity bounds, and it is often greater than 1020. This leads to a lack of robustness
which can be fixed by globalization technique such as the back-tracking linesearch
(see 15).

The second problem is the choice of initial data α(0). A natural choice is to take
the parameter α of the continuous equilibrium given in (2.10). But this parameter
may be far from the solution, especially when N is small. Another choice is to
take α(0) = αn−1

i,j computed at the previous global iteration. The advantage of this
method is that for small time steps (like in explicit scheme) and for stabilized flows,
the initial data is close to the solution. For practical use of the implicit scheme, a
good approach is to use the first method at the beginning of the computation, when
the flow may have strong variations, and then to use the second one when the flow
is almost stabilized.

This raises the third problem which could be a prohibitive large number of
iterations of the Newton algorithm. In fact, with our choice α(0), the algorithm
converges rapidly - only one iteration is needed for most cases tested.
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Finally, using proposition 4.3 permits the reduction of the size of the sys-
tem (5.41) to D + 1 in the case of plane flows (with a well defined velocity set).
This decreases the cost of the algorithm by a factor of almost 1.3.

6. Numerical results

Some numerical results are presented here to illustrate the ability of the method
to describe steady flows. Our method is first validated on simple 1D flows which
represent some typical kinetic non-equilibrium phenomena (shock and boundary
layer). We also investigate the influence of the velocity discretization. Then, more
complex 2D flow computations are presented, and comparisons with DSMC results
are given.

Except in some cases, the linearized implicit scheme of second order is used in
all the computations, with a CFL number of 10000 (i.e. ∆t is 10000 times the
explicit time step). The criterion used to determine whether the flow has reached
steady state is the reduction of the quadratic global residual 1

∆t (
∑

k,i,j |RHSnk,i,j |2)
1
2

by a factor of 105. In all the results of this section, gas-surface interactions are
Maxwellian reflections with total accommodation, i.e. incident molecules are sup-
posed to be re-emitted by the wall with a Maxwellian distribution ρ̃M [1, uw, Tw] of
mean velocity uw and temperature Tw. The coefficient ρ̃ is determined to ensure a
zero mass flux normal to the wall. In our discrete velocity model, the Maxwellian
is naturally replaced by the discrete equilibrium function associated to uw and Tw.
Numerically, all the boundary conditions (gas-surface, symmetry axes, etc.) are
treated by a classical ghost cell technique. Finally, the relation (2.8) where ω is
given for each gas in 4, is used to compute the relaxation time of the model.

The first test case studied is the 1D stationary shock wave. The flow is initial-
ized with two Maxwellian states related by classical Rankine-Hugoniot relations. In
addition, the steady state shows the transition between upstream and downstream
flows. In this instance, we have used ρL = 6.63 10−6kg.m−3, TL = 293K, uL =
2551m.s−1 for the upstream flow. These values yield a shock Mach number of
8. The gas considered is argon, and consequently ω = 0.81. The width of the
computational domain is 0.5m, and a 1D grid of 200 cells is used. Fig.(1) shows
the normalized profiles qL−q

qL−qR for q = ρ, T, u, obtained with 11 × 9 × 9 discrete
velocities in the (vx, vy, vz) directions. The bounds are given by [−3846, 5181] ×
[−4513, 4513]× [−4513, 4513] which ensures that left and right Maxwellian are cor-
rectly represented. This allows us to account almost for most flow information.
These profiles are found to be somewhat less smooth than those by Bird 4. The
distribution functions in upstream flow, within the shock, and in downstream flow,
are plotted in fig.(2). Despite the small number of discrete velocities, the results
clearly show the kinetic nonequilibrium in the shock (the distribution is quite far
from Maxwellian repartition). As expected, upstream and downstream distribu-
tions are approximately Maxwellian (upstream flow is less well represented because
of its smaller temperature).

Fig.(3) shows a comparison of the shock-wave thicknesses given by our method
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for different upstream Mach numbers with the experimental results taken from
Alsmeyer’s account 1 and with Navier-Stokes results. Our results are found to be
in very good agreement with the experimental data.
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Fig. 3. Comparison of BGK, Navier-Stokes, and experiments for shock-wave thicknesses in argon.

In addition we have studied the influence of velocity bounds on both the macro-
scopic and microscopic quantities. Figure (4) represents the upstream, shock, and
downstream distributions obtained for different bounds. The number of discrete
velocities being adapted to each case in order to reach the same precision. The
corresponding profiles for ρ, u, T are plotted in figure (5). As expected, employing
very large bounds does not improve the results since all the essential information
is already accounted with normal bounds (fig.(4)). However, when the bounds are
too small, the profiles begin to loose their accuracy (they are not smooth enough).
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A lot of information is lost, especially in the population of high velocity molecules
in the upstream state, since the shock and upstream distributions are truncated.
Nevertheless, this truncation gives a good indication to check a posteriori if the
discrete velocity set is large enough for the flow.

Finally, the improvement due to the explicit and implicit second order schemes
(in space) is shown in figure (6) with a stationary shock wave of Mach number of
4. The upstream flow has the same density and temperature as in the previous
case. The grid is still of 200 cells but we use now 9 × 9 × 9 velocities and the
bounds are [−2013, 2771]× [−2392, 2392]× [−2392, 2392]. This test is motivated by
the fact that high order schemes that do not resolve the small relaxation time - as
our linearized implicit scheme - may reduce to lower order. This is investigated by
Jin in 20 for hyperbolic systems with stiff source terms. However, this drawback
does not seem to affect our results. The first order scheme leads to a numerical
dissipation which causes density, temperature, and velocity profiles too smooth.
The dissipation is clearly reduced by the second order discretization in space, which
yields stiffer profiles. Note that the results obtained with both explicit and implicit
second order schemes are indistinguishable. This proves that the implicit scheme
is really second order accurate. This improvement has also been observed with 2D
computations.
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Fig. 6. Comparison between first and second order schemes (for a shock-wave at Mach 4).

The second test case is a 1D plane Couette flow. The data are those of Bird in 4.
The gas, argon, lies between two plates maintained at a temperature of Tw = 273K.
One of which is stationary and the other is moving with a velocity of uw = 300m.s−1

in y direction. The gas is initially set to the same temperature as the plates,
and its density is 9.28 10−6 kg.m−3. The Knudsen number based on the distance
between the plates (1m) is thus 9.25 10−3. Using a grid of 200 cells in x direction,
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13×17×13 discrete velocities with bounds [−913, 913]× [−1253, 1253]× [−913, 913],
we obtain the profiles plotted in figure (7). We find a good qualitative agreement
with the DSMC results of Bird with, however, greater amplitudes for the density
and temperature. This is probably due to the fact that the BGK model is known
to lead to an unrealistic value of Prandtl number (1 instead of 2/3), i.e. heat
conductivity is under-estimated. Note that the Knudsen layer can be observed in
the pressure profile: this curve is almost constant except near the plates where there
is a sharp decrease over a length-scale of a few mean free paths. This length-scale
is known as the kinetic boundary layer.
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Fig. 7. Profiles in a 1D Couette flow.

The third test case is that of a supersonic flow past a cylinder. The gas con-
sidered here is argon. The upstream flow is such that ρ∞ = 0.317 10−5 kg.m−3,
T∞ = 249K, M∞ = 4, which gives a Knudsen number based on the radius of the
cylinder (1m) of 3.56 10−2. The temperature of the cylinder is 273K. For symme-
try reasons, only half of the flow is computed, and we have neglected the influence
of the flow downstream from the cylinder by enforcing a supersonic out-going condi-
tion. We used a grid of 20×40 cells and 13×13×13 discrete velocities. The velocity
bounds are [−2561, 2561] × [−2461, 2461] × [−2303, 2303]. They are estimated by
evaluating max(u + 4

√
RT ) with a Navier-Stokes code (they are essentially given

by the temperature within the shock). The results for the density, velocity and
temperature are shown in figure (8).
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Fig. 8. Supersonic flow past a cylinder: density, velocity (zoom), temperature
(M∞ = 4, Kn∞ = 0.03).

The last test is a comparison of our method with DSMC results (given by
the code of J.-C. Lengrand 21) for a supersonic flow past a flat plate of 5 cm
followed by a compression ramp of 10◦. The parameters of the flow are ρ∞ =
1.288 10−4 kg.m−3, T∞ = 72.2K,M∞ = 3.67, for the density, temperature and
Mach number. The molecular mass is 4.815 10−26 kg and the viscosity exponent
is 0.77. This gives a Knudsen number of 6.7 10−3 at infinity. The local Knudsen
number (see 4) at the leading edge is 0.13 which is beyond the validity range of
Navier-Stokes equations. In fact, Bird notices in 4 that the error in Navier-Stokes
results is significant in the regions of the flow where the local Knudsen number
exceeds 0.1.

For both the DSMC and our method, we used a grid of 70 × 70 cells, and
13× 11× 11 velocities are used for the DVM. The computation takes 260 iterations
and 42 hours for the DVM on the single-processor IBM-SP2. For the DSMC, we
used 2600 samples and an average of 20 particles per cell. It yields 46 hours of
CPU time on the same computer. The contours of density and temperature are
plotted in fig.(9) and (10) for both methods. The results are in good agreement,
and this can be seen more clearly in fig.(11) where the distributions of density and
temperature following three vertical lines are shown. The two methods are in very
good agreement except within the shock where the results are slightly different. For
the DSMC, note the noise induced by the stochasticity of the method. Also, it is
apparent that the results of the DSMC are inaccurate in the small region in front of
the downstream boundary. This is a direct consequence of a defect in the boundary
conditions (see 7). Although the CPU times of the two methods are provided for
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this case, a fair comparison of computational speeds of the two methods is not easy
because their criteria of convergence are very different. For instance one can obtain
more accurate results for the DSMC or less accurate results for DVM by increasing
or decreasing the CPU time by a factor 2. Yet, the comparison shown in figs.(9-11)
remains almost unchanged.
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Fig. 9. Compression ramp: density (left BGK, right DSMC).
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Fig. 10. Compression ramp: temperature (left BGK, right DSMC).

Finally we wish to emphasize the fact that our scheme is well suited for steady
state computations. Table 1 shows the CPU time and the number of iterations
obtained for both our explicit scheme and our linearized implicit scheme. The
advantage of using the implicit scheme for stationary flows is undeniable. Although
the explicit scheme does not require the solution of large linear systems (which
divides the cost of one iteration by 2 compared to the implicit scheme), the number
of iterations necessary for its convergence is so large that the implicit scheme is
much more efficient. Figure (12) shows a comparison of the convergence history
between implicit and semi-implicit scheme (where only the loss term is implicit,
see Sec.). As mentioned earlier, the semi-implicit scheme is much slower than the
implicit one. In fact the implicit scheme converges in almost 1000 iterations and 30
hours CPU time on the IBM-SP2, whereas approximately 4000 iterations and 158
hours are needed on the same computer in the semi-implicit case (note that with a
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Fig. 11. Density and temperature distributions normal to the ramp along three vertical lines
(x = 2.5− 5− 7.5 cm).

Table 1. Comparison of explicit and implicit schemes for the shock-wave .

iter. CPU (s)
explicit 6000 16600
implicit 100 485
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parallel computation, the implicit scheme would be even more enhanced since, as
mentioned before, the linearization of Enk,i,j is completely parallelizable).
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Fig. 12. Convergence history for implicit and semi-implicit scheme for the flow past the cylinder.

At last, we give a comparison of the mean CPU time per iteration for some of
the previous test cases and some others. In table 2 are given for each case the mean
CPU time per iteration, the number of velocities times the number of cells N ×M ,
and the ratio between these quantities. This ratio is almost constant. This confirms
that, in accordance with Sec., the cost of one iteration for our algorithm is almost
in O(NM).

Table 2. CPU time per iteration for different test cases.

CPU/iter. N ×M ratio
cylinder (M = 20× 40, N = 13× 13× 13) 100.11 1757600 17557
cylinder (M = 20× 40, N = 11× 11× 11) 59.81 1064800 17803
ramp (M = 50× 40, N = 9× 9× 7) 63.09 1134000 17974
Couette (M = 200× 1, N = 13× 17× 13) 32.96 574600 17433

7. Conclusion

We have presented a new discrete velocity model for the BGK equation such that
conservation laws and entropy property are fully satisfied. This model is based on
a rigorous discrete approximation of the Maxwellian equilibrium using a minimum
entropy principle.
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An explicit scheme for the approximation in space and time of the discrete
velocity model has been proposed. It is also conservative and entropy decreasing.
These properties allow an economic discretization in terms of the number of discrete
velocities.

A linearized implicit scheme which satisfies these properties at convergence has
been derived. It permits the model to reach steady state with large time steps, and
is consequently a fast and robust method for stationary flows. Our results appear
to compare very favorably with experiments and the DSMC method. For instance
the results shown in figures (3,9,11) prove our method to be capable of computing
transitional flows which ares in good agreement with that of the DSMC. In such
regimes, Navier-Stokes is known to be insufficient to describe the flow, thus, with
its low computational cost, the method presented here appears very attractive.

Finally, due to the linear complexity of our algorithm, the scheme may be ex-
tended to 3D flows and polyatomic gases without a prohibitive increase in the com-
putational cost. It may also be easily extended to more realistic relaxation source
terms in order to give better Prandtl number and thus reach better transport coef-
ficients.
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6. C. Buet, Résolution déterministe de l’équation de boltzmann, Tech. report, CEA, 1994.
7. C. Buet, A Discrete-Velocity Scheme for the Boltzmann Operator of Rarefied Gas Dy-

namics, Transp. Th. Stat. Phys. 25 (1996), no. 1, 33–60.
8. C. Cercignani, The Boltzmann Equation and Its Applications, vol. 68, Springer-Verlag,

Lectures Series in Mathematics, 1988.
9. C. Cercignani, Temperature, Entropy, and Kinetic Theory, J. Stat. Phys. 87 (1997),

no. 5-6.
10. S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cam-

bridge University Press, 1970.
11. P. Charrier, B. Dubroca, and J.-L. Feugeas, Levermore’s moment closure of discrete

Boltzmann equations for non-equilibrium kinetic flows, 21st RGD Symposium, Book of
Abstracts (Marseille), 1998.



28 Discrete Velocity Model and Implicit Scheme

12. P. Charrier, B. Dubroca, J.-L. Feugeas, and L. Mieussens, Discrete-velocity models for
kinetic nonequilibrium flows, C.R Acad.Sci. Serie I, 326 (1998), no. 11, 1347–1352,
Paris.

13. P. Charrier, B. Dubroca, and L. Mieussens, A numerical method for rarefied flow com-
putation using a discrete velocity BGK model, 21st RGD Symposium, Book of Abstracts
(Marseille), 1998.

14. F. Coron and B. Perthame, Numerical Passage from Kinetic to Fluid Equations, SIAM
J. Numer. Anal. 28 (1991), no. 1, 26–42.

15. J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall Series in Computational Mathematics, 1983.

16. E. Gabetta, L. Pareschi, and G. Toscani, Relaxation Schemes for Non Linear Kinetic
Equations, SIAM J. Numer. Anal. 34 (1997), no. 6, 2168–2194.
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22. C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, J. Stat. Phys. 83
(1996), 1021–1065.

23. L. Mieussens, Convergence of a discrete-velocity model for the Boltzmann-BGK equation
, to appear in C.R Acad. Sci. Paris.

24. L. Mieussens, An Implicit Discrete Velocity Scheme for the BGK Equation of Rar-
efied Gas Dynamics, First European Symposium on Applied Kinetic Theory, Book of
Abstracts (Toulouse), 1998.

25. L. Mieussens, An Implicit Discrete Velocity Scheme for the BGK Equation of Rarefied
Gas Dynamics, 16th ICNMFD, Book of Abstracts (Arcachon), 1998.
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27. B. Perthame, Global existence to the BGK model of Boltzmann Equation, J. Diff. Eq.
82 (1989), 191–205.

28. E.P. Gross P.L. Bathnagar and M. Krook, Phys. Rev. 94 (1954), 511.
29. F. Rogier and J. Schneider, A Direct Method For Solving the Boltzmann Equation,

Transp. Th. Stat. Phys. 23 (1994), no. 1-3, 313–338.
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