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Abstract. This paper presents a model which provides a smooth transition between a
kinetic and a hydrodynamic domain. The idea is to use a buffer zone, in which both hydro-
dynamics and kinetic equations will be solved. The solution of the original kinetic equation
will be recovered as the sum of the solutions of these two equations. We use an artificial
connecting function which makes the equation on each domain degenerate at the end of the
buffer zone, thus no boundary condition is needed at the transition point. Consequently
this model avoids the delicate issue of finding the interface condition in a typical domain
decomposition method that couples a kinetic equation with hydrodynamic equations. A
simple kinetic scheme is developed to discretize our model, and numerical examples are used
to validate the method.
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1 Introduction

This work is devoted to a new method for the numerical simulation of kinetic models that
involve different scales. These models allow for accurate descriptions of particles as in rarefied
gases, neutron transport, or radiative transfer. However even with modern super-computers,
the numerical solution of such models is still often impossible. Due to a very large number
of degrees of freedom, they require too much computational time and memory space.

For some flow regimes, where the particles are in a near thermodynamical equilibrium
state, there exist some simpler models that account for a correct physical description. These
models are in some sense asymptotic approximations of the kinetic models, as the diffusion
or the hydrodynamic limits. They are often called ”fluid” or ”macroscopic” models, in the
sense that the microscopic behavior of the particles is neglected.

In fact, in many situations, the flow can be considered in equilibrium in the major part
of the computational domain, except in some small zones where microscopic effects are
important (as in shocks and close to the boundaries). In such cases, it is interesting to
use the simpler macroscopic model wherever it is possible, and to restrict the use of the
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kinetic model where it is necessary. This motivates a coupling method between kinetic and
macroscopic models, already widely explored in neutron transport and radiative transfer (see
for instance [4] and the references therein), where the macroscopic model is a linear diffusion
limit. Here, we are instead interested in coupling kinetic equations with the hydrodynamic
approximation. This approximation is for instance more relevant in, for example, rarefied gas
dynamics for aerodynamical applications, where it can be either the Euler or Navier-Stokes
equations.

We briefly give below a review of previous strategies in coupling the kinetic and hydro-
dynamic equations. One of the first methods (proposed by Coron in [2]) was to extend the
validity of the hydrodynamic model near the boundaries by using boundary layer analy-
sis. This method works well in linear transport with diffusion limit [20] but it becomes not
efficient enough in the kinetic/hydrodynamic case.

During the past 15 years, several studies devoted to the coupling of Boltzmann model with
Euler or Navier-Stokes equations for reentry problems in aerodynamics have been published.
A first method was proposed by Bourgat, Le Tallec and Tidriri [1] who found new boundary
conditions for the hydrodynamic equations by numerically solving the kinetic equation in
the boundary layer (“coupling by friction”). Then Bourgat, Le Tallec, Malinger, and Qiu
developed in [15, 17] a coupling by a domain decomposition approach. Similar methods were
proposed by Neunzert, Struckmeier, Klar and Schneider [10, 16]. The common feature of
these methods is that they are domain decomposition methods where the hydrodynamic and
kinetic models are solved in different subdomains. The coupling relations are defined through
suitable boundary conditions at the interface between the subdomains. These boundary
conditions use continuity of moments or fluxes through the interface [10, 16], or a kinetic
interpretation of the hydrodynamic fluxes [15, 17], or also boundary layer analyses [9, 8].
Mathematical analyses of these methods have also been proposed in [18] and [7].

Finally, a different and more recent method has been proposed by Tiwari [19] for which
every cell of the computational domain can be considered to be in kinetic or hydrodynamic
state, by using some physical criterion. This criterion determines whether the distribution
function in the cell is evolved by some random collisional process or whether it is projected
into the hydrodynamic equilibrium. However, this particle method is very expensive, since
it uses as many degrees of freedom for the kinetic cells than for the hydrodynamic cells.

Recently, a new approach has been proposed by Degond and Jin [3] for the linear transport
coupled with the diffusion approximation. Their idea is still to use a domain decomposition
method, but in which the coupling is through the equations rather than the boundary con-
ditions. This is done by using a buffer zone around the interface, and an artificial transition
function that smoothly passes from 1 in the kinetic domain to 0 in the diffusion zone. The
solution of the original transport equation is recovered as the sum of the solutions of the
two models. This is different from the usual domain decomposition methods in which each
of the models represents the full solution. The transition function makes the equation on
each domain degenerate at the end of the buffer zone, thus no boundary condition is needed
at this interface. This idea results in a very easy-to-use method that works very well in the
linear case.

In this paper, we extend this approach to the nonlinear case, for coupling kinetic and
hydrodynamic models. In particular, this applies to the coupling between the Boltzmann
and Euler or Navier-Stokes equations. With this extension, we point out three new aspects
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of the method:

• the equilibrium distribution must satisfy an homogeneity property such that the cou-
pling method preserves uniform flows. This property was of course necessarily satisfied
in [3] due to the linearity of the collision operator;

• we use a simple kinetic scheme to discretize our coupled model. Then we show that we
recover the coupling method of [15, 17] when the buffer zone reduces to an interface;

• our method can be naturally adapted to the coupling with moving interface.

We now give the outline of the article. In section 2, we present a very general kinetic
model, with a few important properties. Most of the usual kinetic models can be written
in this form. Then we describe how to obtain a coupling of two kinetic models in two
different subdomains by using a buffer zone and a transition function. From this model we
deduce a coupling method between kinetic and hydrodynamic models and we study some of
its properties in section 3. Two extensions of the method are proposed in section 4. The
numerical method is given in section 5. In section 6, we present several numerical tests to
illustrate the potential of our approach. Finally, a short conclusion is given in section 7.

2 The coupling method

2.1 Kinetic models and hydrodynamic limit

We present the method on a general kinetic equation in one space dimension. Let f(t, x, v)
represent the density of particles that at time t have position x ∈ (0, 1) and velocity v ∈ R
or any bounded or discrete subset of R. The kinetic equation is

∂tf + v∂xf = Q(f). (1)

The left hand-side of (1) describes the motion of the particles along the x axis with velocity
v, while the operator Q takes into account the collisions between particles. This operator
acts on f only through the velocity locally at each (t, x).

The integral of any scalar or vector valued function f = f(v) over the velocity set is
denoted by 〈f〉 =

∫

f(v) dv.
The collision operator Q is assumed to satisfy the local conservation property

〈mQ(f)〉 = 0 for every f,

where m(v) = (mi(v))di=1 are locally conserved quantities. Consequently, multiplying (1) by
m and integrating over the velocity set gives the local conservation laws

∂t〈mf〉+ ∂x〈vmf〉 = 0. (2)

Finally, we assume that the local equilibria of Q (i.e. the solutions of Q(f) = 0) are
equilibrium distributions E[ρ], implicitly defined by their moments ρ through the relation

ρ = 〈mE[ρ]〉.
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We do not specify boundary conditions for the moment.
When the mean free path of the particles is very small compared with the size of the

domain, i.e. when Q is ’large’, the numerical resolution of (1) can be very expensive, and
it is worth using the asymptotic model obtained when Q ’tends to infinity’. We introduce a
new set of ’macroscopic variables’ x′ and t′ according to

x′ = εx, t′ = εt,

where ε denotes the ratio of the microscopic to the macroscopic scale. This parameter is often
called the Knudsen number in rarefied gas dynamics. After using this change of variables
and dropping the primes for simplicity, one gets

∂tf
ε + v∂xf

ε =
1

ε
Q(f ε). (3)

In the limit ε → 0, f ε converges (at least formally) towards an equilibrium such that its
moments are solutions of a system of hydrodynamic equations. More precisely, we have the
formal result:

Lemma 2.1. When ε→ 0, f ε converges to E[ρ], where ρ(t, x) is a solution of the system

∂tρ+ ∂xF (ρ) = 0, (4)

with initial condition ρ|t=0 = 〈mf0(x, v)〉. The flux F (ρ) is the equilibrium kinetic flux

F (ρ) = 〈vmE[ρ]〉. (5)

Proof. Formally, we just multiply (3) by ε, and let ε go to 0. This gives Q(f (0)) = 0 and thus
f (0) is an equilibrium distribution E[ρ]. Since the conservation laws (2) are independent of
ε, they are also satisfied in the limit ε = 0 by f (0). Since this function only depends on its
moments ρ, this system is closed and leads to (4).

2.2 The kinetic/kinetic coupling

The buffer interval is denoted by [a, b]. We introduce a smooth function h(x) such that






h(x) = 1, for x ≤ a,
h(x) = 0, for x ≥ b,
h(x) ∈ [0, 1] for a ≤ x ≤ b.

If we define the two distributions f εL = hf ε and f εR = (1− h)f ε, then it is easy to check that
they satisfy the following coupled system:

∂tf
ε
L + hv∂xf

ε
L + hv∂xf

ε
R =

1

ε
hQ(f εL + f εR), (6)

∂tf
ε
R + (1− h)v∂xf

ε
R + (1− h)v∂xf

ε
L =

1

ε
(1− h)Q(f εL + f εR), (7)

with initial data
f εL|t=0 = hf0, f εR|t=0 = (1− h)f0. (8)

Indeed, we note the following:
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Lemma 2.2. If (f εL, f
ε
R) is the solution of problem (6-7) with initial data (8), then f = f εL+f εR

is the solution of problem (1) with inital condition f0. Reciprocally, if f is the solution of (1),
then (f εL, f

ε
R) = (hf, (1− h)f) is the solution of (6-7) with the same initial condition.

Proof. Just add up eqs. (6) and (7). For the converse statement, note that ∂tf
ε
L = h∂tf =

−hv∂xf+ 1
ε
hQ(f) = −hv∂x(f εL+f εR)+ 1

ε
hQ(f εL+f εR) which gives (6). Eq. (7) is also obtained

in this way.

Remark 2.1. It could be attractive to put h inside the x-derivative to obtain the following
conservative coupling:

∂tf
ε
L + v∂xhf

ε
L + v∂xhf

ε
R =

1

ε
hQ(f εL + f εR), (9)

∂tf
ε
R + v∂x[(1− h)f εR] + v∂x[(1− h)f εL] =

1

ε
(1− h)Q(f εL + f εR). (10)

However, this coupling is not equivalent to the original kinetic equation (1), and moreover the
corresponding kinetic/hydrodynamic coupling does not have good properties, see remark 3.1.

2.3 The kinetic/hydrodynamic coupling

Assume thatQ is of order ε in the interval (−∞, a), and of order 1 in (a,+∞). In other words,
we consider that the left region must be treated by a kinetic model while the right region
can be approximated by the hydrodynamic equations. Therefore, we shall only be allowed to
perform the hydrodynamic approximation on (7) while (6) will have to stay untouched. To
this end, the source term of (7) is rewritten as Q(f εL + f εR) = Q(f εR) + [Q(f εL + f εR)−Q(f εR)],
and we assume that Q(f εR) is O(1) whereas [Q(f εL + f εR) − Q(f εR)] is an O(ε). Then (7) is
rewritten as follows:

ε∂tf
ε
R + ε(1− h)v∂xf

ε
R − (1− h)Q(f εR)

= −ε(1− h)v∂xf
ε
L + (1− h)[Q(f εL + f εR)−Q(f εR)]

(11)

where the right-hand-side is considered to be O(ε).
The following proposition states what the hydrodynamic approximation ε → 0 of this

equation is.

Proposition 2.1. Consider Eq. (11) where the right-hand-side is treated as an O(ε) term.
Then as ε→ 0, f εR ≈ equilibrium E[ρεR], where ρεR(t, x) is a solution of the following hydro-
dynamic system:

∂tρ
ε
R + (1− h)F (ρεR) + (1− h)〈vmf εL〉 = 0, (12)

with F (ρεR) defined by (5).

As noted in [3], since ε tends to 0 only in some terms and not in others, we cannot speak
of convergence, but rather, of asymptotic equivalence, hence the use of the symbol ≈.

Note that (12) is a hydrodynamic equation in (a,+∞). However no boundary condition
is needed in x = a, since the flux is cancelled by 1− h.
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Proof. We first note that taking the moments of (7) gives

∂tρ
ε
R + (1− h)∂x〈vmf εR〉+ (1− h)∂x〈vmf εL〉 = 0. (13)

Now as in Lemma 2.1, we let ε go to 0 in (11) to find Q(f 0
R) = 0, hence f 0

R = E[ρ0
R].

Then (12) is obtained as the limit ε = 0 of (13). However, ρ0
R still depends on ε through f εL:

this is why it is denoted by ρεR in the proposition.

Now, the coupled kinetic/hydrodynamic model is written as follows:

∂tf
ε
L + hv∂xf

ε
L + hv∂xE[ρεR] =

1

ε
hQ(fL + E[ρεR]), (14)

∂tρ
ε
R + (1− h)∂xF (ρεR) + (1− h)∂x〈vmf εL〉 = 0, (15)

with initial data
f εL|t=0 = hf0, ρεR|t=0 = (1− h)ρ0. (16)

Therefore, this coupled model will be used to approximate by f εL + E[ρεR] the solution f ε of
model (3). More precisely, f ε is supposed to be approximated by f εL in (0, a), by f εL +E[ρεR]
in (a, b), and by E[ρεR] in (b, 1).

To simplify the notations in the remainder of the paper, the superscript ε will be omitted
when no confusion is caused.

3 Properties of the kinetic/hydrodynamic coupling

3.1 Preservation of uniform flows

Uniform flows for model (1) are constant equilibrium distributions f = E[ρ]. Because of the
function h, f is approximated in the coupled model (14-16) by non-uniform distributions.
Then it is not clear whether the approximation fL+E[ρR] given by the coupled model (14-16)
is still a uniform distribution. However, this preservation property is desirable to prevent
oscillations in zones where the flow should be uniform (a similar phenomenon is known
in computational fluid dynamics when one wants to discretize conservation laws written in
curvilinear coordinates, see [22]). As it is shown in the following proposition, the preservation
of uniform flows is related to a particular property of the equilibrium.

Proposition 3.1. Assume the mapping ρ 7→ E[ρ] is homogeneous of degree 1, that is

E[λρ] = λE[ρ] (17)

for every λ ≥ 0 and every ρ in the definition domain of E. If the initial condition f 0 is a
constant equilibrium E[ρ], then fL = hE[ρ] and ρR = (1 − h)ρ are solutions of the coupled
model (14-16), and fL + E[ρR] = E[ρ].

Proof. First, note that the homogeneity property implies E[ρR] = E[(1−h)ρ] = (1−h)E[ρ].
Therefore it is clear that fL +E[ρR] = E[ρ]. Moreover, putting the collision operator in the
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left-hand-side of (14) and using again the homogeneity of E, we find that this left-hand-side
is

∂tfL + hv∂xfL + hv∂xE[ρR]− 1

ε
hQ(fL + E[ρR])

= ∂thE[ρ] + hv∂x(hE[ρ]) + hv∂xE[(1− h)ρ]− 1

ε
hQ(E[ρ])

= 0 + hvh′E[ρ]− hvh′E[ρ]− 0 = 0,

thus (fL, ρR) solves (14).
Then note that the equilibrium flux F defined by (5) inherits the homogeneity property

of E, and therefore the left-hand-side of (15) reads

∂tρR + (1− h)∂xF (ρR) + (1− h)∂x〈vmfL〉
= ∂t(1− h)ρ+ (1− h)∂xF ((1− h)ρ) + (1− h)∂x〈vmhE[ρ]〉
= 0− (1− h)h′∂xF (ρ) + (1− h)h′〈vmE[ρ]〉 = 0,

thus (fL, ρR) solves (15).

As it is shown in the following examples, a large class of models satisfy assumption (17),
even if some other models do not.

Example 3.1. Classical models of kinetic theory for rarefied gases and plasmas (Boltzmann,
BGK, Fokker-Planck-Landau) satisfy property (17). These models use Maxwell-Boltzmann
statistics for which the equilibrium is the Maxwellian distribution defined by

E[ρ] =
n

(2πθ)1/2
exp
(

−(v − u)2

2θ

)

.

The moment vector of this equilibrium is ρ = (n, nu, 1
2
nu2 + 1

2
nθ). This shows that the

velocity u = ρ2

ρ1
and temperature θ = 2

ρ1
(ρ3 − ρ2

2

ρ1
) are homogeneous functions of degree 0

of ρ, whereas the density n = ρ1 is homogeneous of degree 1. Consequently, E is clearly
homogeneous of degree 1.

Example 3.2. Kinetic models derived with Fermi-Dirac or Bose-Einstein statistics do not
satisfy constraint (17). In that case the equilibrium is given by

E[ρ] =
1

exp( ε−µ
τ

)± 1
(+ Fermi-Dirac, - Bose-Einstein).

In the Fermi-Dirac case, it is bounded by 1 and thus cannot be homogeneous of degree 1.

Example 3.3. A simpler model that does not satisfy this constraint (17) is the following
discrete kinetic equation

∂tu+ ∂xu =
1

τ
(M1[ρ]− u), ∂tv − ∂xv =

1

τ
(M2[ρ]− v), (18)

where the equilibrium is (M1[ρ],M2[ρ]) = 1
2
(ρ+f(ρ), ρ−f(ρ)), with f(ρ) = 1

2
ρ2 and ρ = u+v.
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This model has the same form as (1) with discrete velocities v = ±1 and collisional
invariants m(v) = 1. It is equivalent to the Jin-Xin relaxation model

∂tρ+ ∂xj = 0, ∂tj + ∂xρ =
1

τ
(f(ρ)− j),

with j = u− v. It can be shown to relax towards the conservation law ∂tρ + ∂xf(ρ) = 0 as
τ → 0 [6].

Clearly, the equilibrium is not a homogeneous function of ρ. In that case, simple calcu-
lations show that conclusions of proposition (3.1) are false. As a consequence, the coupled
model derived from this system behaves incorrectly in zones where the solution should be
uniform.This will be shown in section 6.

Remark 3.1. The kinetic/hydrodynamic coupling for the conservative coupling (9-10) is

∂tf
ε
L + v∂xhf

ε
L + v∂xhE[ρεR] =

1

ε
hQ(fL + E[ρεR]),

∂tρ
ε
R + ∂x[(1− h)F (ρεR)] + ∂x[(1− h)〈vmf εL〉] = 0.

Although this conservative form seems better for numerics, it can be seen (with the same
analysis as in the proof of proposition 3.1) that this system does not preserve uniform flows.

3.2 Full hydrodynamic limit

Here we prove that if both regions are hydrodynamic, we recover the global hydrodynamic
equation (4) for ρ = ρL + ρR.

Proposition 3.2. As ε→ 0, the moments (ρεL, ρ
ε
R) of the solution of the coupled model (14-

15) converge to (ρL, ρR), a solution of the hydrodynamic system

∂tρL + h∂xF (ρL + ρR) = 0, (19)

∂tρR + (1− h)∂xF (ρL + ρR) = 0, (20)

with initial data
ρL|t=0 = hρ0, ρR|t=0 = (1− h)ρ0. (21)

In particular, ρ = ρL + ρR is a solution of (4).

Proof. The proof is similar to that of proposition 2.1. First, we take the moments of (14) to
obtain

∂tρ
ε
L + h∂x〈vmf εL〉+ h∂xF (ρεR) = 0. (22)

Then multiplying (14) by ε and taking the limit ε = 0 gives Q(f 0
L + E[ρ0

R]) = 0. Therefore
f 0
L + E[ρ0

R] = E[ρ], where we necessarily have ρ = ρ0
L + ρ0

R. Consequently

f 0
L = E[ρ0

L + ρ0
R]− E[ρ0

R]. (23)

Now we take the limit ε = 0 in (22), and use (23) to find

∂tρ
0
L + h∂xF (ρ0

L + ρ0
R) = 0,
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which is nothing but (19) where the superscript 0 is dropped. Then by taking the limit ε = 0
of (15) and using again (23) yields

∂tρ
0
R + (1− h)∂xF (ρ0

L + ρ0
R) = 0,

which is (20) after the superscript 0 is dropped.
Finally, if one adds up (19) and (20), it is clear that ρ = ρL + ρR satisfies (4).

3.3 Limit b− a = 0 of the coupling method

As recalled in the introduction, some previous coupling methodologies use a coupling by an
interface. Therefore it is interesting to know if we can recover some of these models by taking
the limit b− a = 0 in our coupling model (14-15).

However, in this limit, h tends to the Heaviside function, and it looks difficult to know
what the limit of fluxes as h(x)∂xfL is.

See section 5.2 for such a study at the discrete level.

4 Extensions of the coupling method

4.1 Second order coupling method : kinetic/Navier-Stokes

First, in the kinetic/kinetic coupling (6-7), we take the moments of the second equation to
obtain the following (non-closed) system

∂tf
ε
L + hv∂xf

ε
L + hv∂xf

ε
R =

1

ε
hQ(f εL + f εR), (24)

∂tρ
ε
R + (1− h)∂x〈vmf εR〉+ (1− h)∂x〈vmf εL〉 = 0. (25)

By expanding f εR as f εR = E[ρεR] + εf1
R, one defines f 1

R and implies that its moments are zero,
namely 〈mf 1

R〉 = 0. Write the flux of f εR as

〈vmf εR〉 = F (ρεR) + q,

where q is defined by
q = ε〈vmf1

R〉. (26)

Therefore, the non closed system (24-25) can now be written as

∂tf
ε
L + hv∂xf

ε
L + hv∂xf

ε
R =

1

ε
hQ(f εL + f εR), (27)

∂tρ
ε
R + (1− h)∂xF (ρεR) + (1− h)∂x〈vmf εL〉 = −(1− h)∂xq. (28)

Since from (26) q is O(ε), it is clear that this system reduces to the first order ki-
netic/hydrodynamic system (14-15) as ε = 0. Now, to obtain a second order closure, one
has to approximate q up to the first order. This is done by determining the perturbation f 1

R
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up to O(ε). To do so, insert the expansion of f εR in (7) and make the same assumptions as
in proposition 2.1 about the size of Q. Then, at first order in ε, one finds that f 1

R satisfies

(1− h)DQ(E[ρεR])f 1
R

= ∂tE[ρεR] + (1− h)v∂xE[ρεR] + (1− h)v∂xf
ε
L − (1− h)∆,

(29)

where ∆ = 1
ε
[Q(f εL + f εR)−Q(f εR)] is supposed to be O(1), and DQ(f) is the derivative of Q

with respect to f .
In order to have simpler calculations, we assume that Q is the following BGK operator

Q(f) =
1

τ(ρ)
(E[ρ]− f), (30)

where ρ = 〈mf〉 = (n, nu, 1
2
nu2 + 1

2
nθ), with collisional invariants defined by m(v) =

(1, v, 1
2
|v|2). The variables u and θ are called the velocity and temperature associated to

f .
Since the moments of f 1

R are zero, it can easily be proved that DQ(E[ρεR])f 1
R = − 1

τ(ρεR)
f 1
R.

Consequently f 1
R can be explicitly computed:

f 1
R = −τ(ρεR)

(

1

1− h
∂tE[ρεR] + ∂xE[ρεR] + ∂xf

ε
L + ∆

)

. (31)

Moreover, since the collisional invariants are m(v) = (1, v, 1
2
|v|2) for BGK, one has

q =





0
0

ε〈1
2
(v − uR)3f 1

R〉



 , (32)

where uR is the velocity associated to f εR. Note that since our problem is in one dimension
in space, there is no shear-stress in q (its second component is zero). Consequently, if f 1

R is
inserted in the third component q3 of q, one obtains

q3 = −ετ(ρεR)
( 1

1− h
〈1

2
(v − uR)3∂tE[ρεR]〉+ 〈1

2
(v − uR)3v∂xE[ρεR]〉+ 〈1

2
(v − uR)3v∂xf

ε
L〉

+ 〈1
2
(v − uR)3∆〉

)

.

After classical but tedious computations (in which the first order approximation of (28) is
used to remove the time derivative), one finds

q3 =− ε3

2
τ(ρεR)nRθR∂xθR

− ετ(ρεR)〈[−3

2
θR + 1

2
(v − uR)2](v − uR)v∂xf

ε
L〉

+ ετ(ρεR)〈1
2
(v − uR)3∆〉,

where nR, uR, θR are respectively the density, velocity and temperature associated to f εR.
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The first term is the heat-flux κ∂xθR of the Fourier law, where the thermal conductivity
is κ = 3

2
ετ(ρεR)nRθR. This term is only due to f εR. In the second line, the coupling between

the f εR and f εL has no obvious interpretation.
Note that in the third line of the last expression, ∆ = 1

ε
[Q(f εL + f εR)−Q(f εR)] has not yet

been expanded. To do so, we have to make a new assumption on f εL: we shall assume that
f εL is O(ε). This is a reasonable choice near x = b of the buffer zone, but is yet difficult to
justify near x = a. For the moment, we will neglect this problem to derive the model; the
numerical tests of the model will a posteriori justify (or not) this assumption. Therefore ∆
can be expanded as

∆ =
1

ε
DQ(E[ρεR])(f εL)

with an O(ε) error.
Finally, we resume below the final second order kinetic/Navier-Stokes coupling, obtained

with the BGK collision operator (30):

∂tf
ε
L + hv∂xf

ε
L + hv∂xf

ε
R =

1

ε
hQ(f εL + f εR), (33)

∂tρ
ε
R + (1− h)∂xF (ρεR) + (1− h)∂x〈vmf εL〉 = −(1− h)∂xq, (34)

where f εR can be approximated by E[ρεR] or by E[ρεR]+εf1
R. Moreover, we have q = (0, 0, q3)T

with

q3 =− ε3

2
τ(ρεR)nRθR∂xθR

− ετ(ρεR)〈[−3

2
θR + 1

2
(v − uR)2](v − uR)v∂xf

ε
L〉

+ ετ(ρεR)〈1
2
(v − uR)3∆〉,

(35)

and

∆ =
1

ε
DQ(E[ρεR])(f εL). (36)

Finally, nR, uR and θR are defined by ρεR through the relation ρεR = (nR, nRuR,
1
2
nRu

2
R +

1
2
nRθR).

The numerical study of this model will not be done in this paper and is deferred to a
future work.

4.2 Moving buffer zone

In this section, we show that our models can be extended to the case where h is time
dependent. In that case, the method can be extended to moving interface regions: h can
actually be defined as a level set function, and can evolve according to its own dynamics,
such as a Hamilton-Jacobi equation for front propagation, or other kinds of dynamics.

If we simply let h depend on time in the coupled model (14-15), it turns out that it is
no longer uniform-flow preserving. The correct way to proceed is to derive a kinetic/kinetic
model as we did in the beginning of section 2.2. First, if f ε is the solution of the kinetic
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equation (1), we set f εL = hf ε and f εR = (1− h)f ε. Then one can easily derive the following
equations satisfied by f εL and f εR

∂tf
ε
L + hv∂xf

ε
L + hv∂xf

ε
R =

1

ε
hQ(f εL + f εR) + (f εL + f εR)∂th,

∂tf
ε
R + (1− h)v∂xf

ε
R + (1− h)v∂xf

ε
L =

1

ε
(1− h)Q(f εL + f εR)− (f εL + f εR)∂th.

This system is equivalent to the kinetic equation (1), and the corresponding kinetic/hydro-
dynamic model is found to be

∂tf
ε
L + hv∂xf

ε
L + hv∂xE[ρεR] =

1

ε
hQ(fL + E[ρεR]) + (f εL + E[ρεR])∂th,

∂tρ
ε
R + (1− h)∂xF (ρεR) + (1− h)∂x〈vmf εL〉 = −(ρεL + ρεR)∂th.

Owing to the new forcing term involving ∂th, a simple extension of the proof of proposition 3.1
shows that this system now preserves uniform flows.

The numerical investigation of this model is deferred to a future work.

5 Numerical schemes

5.1 A simple kinetic scheme

First, we present a simple spatial discretization for which the time and velocity variables
are kept continuous. The space variable x is discretized with mesh points xi = i∆x for
i = 1, . . . , imax and we define ia and ib such that xia = a and xib = b. We set hi = h(xi),
fL,i = fL(xi), and ρR,i = ρR(xi). Note that for more clarity, the ε is dropped in this section.

This discretization uses the kinetic scheme (see for instance [14]). It consists of two main
steps: (1) discretization of the kinetic/kinetic coupling (6-7), (2) projection of fR to the
equilibrium E[ρR] in the discretized system. These steps are detailed below.

Discretization of the kinetic/kinetic coupling (6-7):

The system (6-7) can be written as

∂tU + A∂xU = S, (37)

where U =
(

fL
fR

)

, A = v
(

h h
1−h 1−h

)

and S =
(

hQ(fL+fR)
(1−h)Q(fL+fR)

)

. The eigenvalues of A are 0

and v, therefore for each v this system is a linear hyperbolic system with source term. This
system is discretized below by following the classical procedure: (a) diagonalization, (b)
upwind discretization, (c) back to the original variables (see for instance [11]).

(a) diagonalization

The matrix of eigenvectors of A is P =
(

1 1
−1 1−h

h

)

. Multiplying (37) by P−1 and defining

the characteristic variables V = ( αβ ) = P−1U , we get the following diagonalized system

∂tV +D∂xV = T,
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where D = ( 0 0
0 v ) = P−1AP and T = P−1S. The two components of this system are

∂tα = T1

∂tβ + v∂xβ = T2.

(b) Upwind discretization

The system can be discretized by upwinding the space derivative ∂xβ following the sign
of v :

∂tαi = (T1)i

∂tβi + v+βi − βi−1

∆x
+ v−

βi+1 − βi
∆x

= (T2)i,
(38)

where βi stands fo β(xi) and v± = 1
2
(v ± |v|) is the positive/negative part of v.

(c) Back to the original variables

The semi-discrete system (38) can be written as

∂tVi +D+Vi − Vi−1

∆x
+D−

Vi+1 − Vi
∆x

= Ti,

where we set D± =
(

0 0
0 v±

)

. By going back to the original variables U = PV after multiplying
this system by P , one gets

∂tUi + A+
i

Ui − Ui−1

∆x
+ A−i

Ui+1 − Ui
∆x

= Si,

where A±i = PiD
±P−1

i = v±
(

hi hi
1−hi 1−hi

)

. We can write this system componentwise: this
gives the following discretization of the kinetic/kinetic coupling (6-7)

∂tfL,i + hi
φi+ 1

2
(fL)− φi− 1

2
(fL)

∆x
+ hi

φi+ 1
2
(fR)− φi− 1

2
(fR)

∆x
= hiQ(fL,i + fR,i), (39)

∂tfR,i + (1− hi)
φi+ 1

2
(fR)− φi− 1

2
(fR)

∆x
+ (1− hi)

φi+ 1
2
(fL)− φi− 1

2
(fL)

∆x
= (1− hi)Q(fL,i + fR,i), (40)

where the numerical flux
φi+ 1

2
(g) = v−gi+1 + v+gi, (41)

for every i.
Note that this semi-discrete scheme could in fact be directly derived from system (6-7)

without using the diagonalization step. This is a general property of 2× 2 linear hyperbolic
systems ∂tU + A∂xU = 0 with matrix A = ( a ab b ) such that ab > 0. Indeed, a direct upwind
discretization of this system following the sign of the elements of A gives the semi-discrete
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scheme ∂tUi + A+Ui−Ui−1

∆x
+ A−Ui+1−Ui

∆x
= 0, while it can easily be proved that the previous

procedure (diagonalization, discretization, back to original variables) always leads to the
same scheme.

Projection of fR to the equilibrium E[ρR]:

Now fR is replaced by the equilibrium E[ρR] in (39-40) and we take the moments of (40)
to obtain the following scheme for the coupling (14-15)

∂tfL,i + hi
φi+ 1

2
(fL)− φi− 1

2
(fL)

∆x
+ hi

φi+ 1
2
(E[ρR])− φi− 1

2
(E[ρR])

∆x
= hiQ(fL,i + E[ρR,i]), (42)

∂tρR,i + (1− hi)
Fi+ 1

2
(ρR)− Fi− 1

2
(ρR)

∆x
+ (1− hi)

〈m(φi+ 1
2
(fL)− φi− 1

2
(fL))〉

∆x
= 0, (43)

where
Fi+ 1

2
(ρR) = 〈mφi+ 1

2
(E[ρR])〉

is a consistent approximation of F (ρR).
Note that fL,i = 0 for i ≥ ib and ρR,i = 0 for i ≤ ia, since the fluxes are cancelled by h

and 1− h in these zones.
Moreover, it is clear that this scheme preserves uniform flows (the same proof as that of

proposition 3.1 can be made).
In our numerical tests, the time variable is discretized by using a simple explicit Euler

method. However, very small time step restrictions can occur due to the kinetic part of the
model. Then a time stepping algorithm is used to advance differently the hyperbolic and
kinetic parts when necessary. If the time step ∆tK imposed by the kinetic part is much lower
than the time step ∆tH due to the hydrodynamic part, we solve the kinetic equation (42)
during N = [∆tH/∆tK ] time steps ∆tK with a constant hydrodynamic contribution. Then
the hydrodynamic equation (43) is solved with time step ∆tH .

Finally, integrals in the velocity variable are discretized by the rectangle formula.

5.2 Limit b− a = 0

In this section, we prove that when b − a → 0, the scheme given in section 5.1 gives a
scheme close to that proposed in [15] for coupling Boltzmann/Euler by an interface half-flux
condition.

The limit b − a = 0 can be considered by replacing h in scheme (42-43) by hδ(x) :=
h( b−a

δ
(x − a) + a). Indeed as δ → 0, hδ tends to the Heaviside function H(x − a), and the

buffer zone [a, a+ δ] tends to the interface x = a.
When δ < ∆x then hδi = 1 for i ≤ ia and 0 for i ≥ ia + 1. Consequently, the coupling

terms in (42-43) vanish, except v−E[ρR,ia+1] in (42) for i = ia and 〈mv+fL,ia〉 in (43) for
i = ia+1. Then a simple calculation shows that (42-43) gives in the limit δ = 0 the following
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scheme

∂tfL,i +
φi+ 1

2
(fL)− φi− 1

2
(fL)

∆x
= hiQ(fL,i), i ≤ ia,

∂tρR,i +
〈m(φi+ 1

2
(E[ρR])− φi− 1

2
(E[ρR]))〉

∆x
= 0, i ≥ ia + 1,

with ”interface half-flux condition”

v−fL,ia+1 = v−E[ρR,ia+1],

〈v+mE[ρR,ia ]〉 = 〈v+mfL,ia〉.

This scheme is close to the coupling method proposed in [15], and developed in [17].
Indeed, this can be viewed as an upwind scheme with kinetic flux vector splitting for the
coupled model

∂tf + v∂xf = Q(f), 0 ≤ x ≤ a,

∂tρ+ ∂xF (ρ) = 0, a ≤ x ≤ 1,

with interface half-flux condition

v−f |x=a = v−E[ρ]|x=a,

〈v+mE[ρ]〉|x=a = 〈v+mf〉|x=a.

In that sense, our method can be viewed as a justification (as well as an extension) of this
method.

Moreover, in higher dimension, when the interface is complicated, the method of [15, 17]
needs the implementation of the interface flux condition in a complicated way, while our
method based on the introduction of a smoothing function h transfers the geometry to the
PDE. This is an advantage, since it is then possible to solve the PDE in a regular geometry
while completely ignoring the real interface geometry. One just has to choose h first according
to the interface geometry initially, then forget about the geometry and solves the PDE on
regular grids.

6 Numerical results

In this section, we first present several numerical solutions of the coupling model (14-15)
corresponding to two kinetic models that can be written in form (1). These models are
considered in the domain [0, 1] with Neumann boundary conditions

∂xf(t, 0, v+) = 0 and ∂xf(t, 1, v−) = 0,

and an initial data in equilibrium state f(0, x, v) = E[ρ(x)].
For 1D problems, there are not to many different tests that can be made. Here, we mainly

study the propagation of shocks, which is typical of aerodynamical flows. In this case, it can
be assumed that the flow is close to equilibrium far from the shock, and in a non-equilibrium
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regime near the shock. Then it seems natural to use our coupling model with kinetic and
hydrodynamic zones located near and far from the shock, respectively. Traditionally in these
classical shock problems, the shock is considered to move from left to right: this makes it
necessary to reverse the order used in model (14-15) for our different zones. In other words,
we shall consider that the left region is in equilibrium and can be treated by a hydrodynamic
model, while the right region must be treated by a kinetic equation. For simplicity, we shall
take a hydrodynamic zone on the left side, a buffer zone around the initial position of the
shock, and a kinetic zone on the right side.

We shall successively consider the Jin-Xin relaxation approximation (18) of the Burgers
equation and a BGK model similar to (30) that is 1D in space but 3D in velocity. In the
first case, we shall experimentally demonstrate that the coupling method does not preserve
uniform flows, as was noticed in example 3.3. In the second case, we shall see that the
coupling method behaves satisfactorily.

We shall also present a test for the BGK model in two space dimensions. As explained
in section 5.2, this test shows our method also applies to 2D flows and behaves well.

Example 6.1. Numerical solution of the coupling method for the Jin-Xin relaxation ap-
proximation (18) of the Burgers equation.

Here we take ε = 0.01. We use 100 points to solve the kinetic model (18) in the entire
domain, and 100 points for the numerical approximation of the coupling model. The function
h is defined to be piecewise linear and continuous: 0 for x ≤ a, 1 for x ≥ b, and linear
between a and b. We use two choices of buffer zones: a = −0.1, b = 0.1; a = −0.05, b = 0.05
respectively.

On the different figures, the kinetic solution ρ = u+ v is plotted with a solid line, while
the density of the coupling model ρ = ρL + ρR is shown by the symbol ’o’. We also plot
the exact solution for the full hydrodynamic limit - that is Burgers equation in this case -
with dash-dotted line. The buffer zone is made clearly visible by two vertical dotted lines at
x = a and x = b.

We consider two tests corresponding to two different initial conditions for ρ:

(a) uniform: ρ = 1;

(b) shock wave: ρ = 1 in [0, 0.5] and ρ = 0.5 in [0.5, 1].

We compute both transient and steady state solutions.
We explained in example 3.3 that this coupling model cannot preserve uniform flows:

this is observed with data (a) in figures 1 and 2. At time t = 0.0225 (fig. 1), there is an
oscillation in the buffer zone. Then this oscillation is propagated outside the domain, but
at the steady state, there remains an oscillation at x = b (fig. 2). This oscillation becomes
larger as the length b− a becomes smaller.

For the shock wave, the numerical solution seems to be not very accurate for t ≤ 0.0450
(figure 3), and when the wave leaves the buffer zone (t = 0.3150, figure 4), we again observe
an oscillation inside, whereas the solution should be constant there. Again, this oscillation
is as large as the length b− a is small. Its influence outside the buffer zone is clearly visible
for the narrow buffer zone. We have observed the same phenomenon for a rarefaction wave.

As expected, these tests show that a coupling model that does not preserve uniform flows
cannot accurately approximate the original kinetic model.
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Example 6.2. Numerical solution of the coupling for the 1D BGK model.
Here we test the coupling model for the following BGK model of rarefied gas dynamics,

written in the dimensionless form:

∂t

(

F
G

)

+ v∂x

(

F
G

)

=
ν(ρ)

ε

(

M [ρ]− F
θM [ρ]−G

)

,

where M [ρ] = n√
2πθ

exp(− (v−u)2

2θ
) and

ρ = (n, nu, n
u2

2
+

3

2
nθ) = 〈(1, v, 1

2
v2)F + (0, 0, 1)G〉.

The collision frequency is ν(ρ) = µ
p
, where p = nθ is the pressure and µ = θ0.81 is the

viscosity.
This model is 1D in space and 2D in velocity, but it accounts for 3D velocity effects. It is

obtained with standard reduction technique of the full 3-dimensional BGK model of rarefied
gas dynamics (see [5]). It is of the form (1), and its hydrodynamic limit is the Euler system
of gas dynamics. A coupling model of form (14-15) can be derived, and it can be shown that
it preserves uniform flows.

First, we use the classical Sod problem, with the following initial data for density n,
velocity u, and pressure p:

(n, u, p) =

{

(1, 0, 1) −1 ≤ x ≤ 0
(0.125, 0, 0.1) 0 ≤ x ≤ 1

The function h is defined piecewise linear: 0 for x ≤ a, 1 for x ≥ b, and linear between a and
b. We use two choices of buffer zone: a = 0, b = 0.125; a = −0.125, b = 0.125 respectively.
We also use a Heaviside function h that makes the buffer zone reduce to the interface x = 0.
The Knudsen number ε is 2× 10−4.

To avoid numerical artifacts in the following comparison, we use a velocity grid of 100
points with bounds [-4,5.4], and a space grid of 10000 points. Such a fine space grid is
necessary to make a fair comparison between the models. Indeed, with 300 points only, the
numerical dissipation makes the full BGK and the coupling models artificially close.

On the following figures, we plot the numerical solutions for the density and the velocity
for the coupling model (solid line), full BGK model (dotted line), and full Euler system
(dash-dotted line). The buffer zone is made clearly visible by two vertical dotted lines at
x = a and x = b (only one at x = a for the case with Heaviside h). The BGK model is
solved with a scheme similar to that developed in [12, 13], and the Euler system is solved
with a kinetic scheme using the same flux splitting as in the hyperbolic part of the coupling
model.

On figure 5, we plot the results obtained with the first buffer zone, at t = 0.04. The
coupling model is closer to the BGK model than to the Euler solution in the buffer. For
x ≤ a, there is an oscillation in the coupling model which changes from the BGK to the
Euler curve. This suggests that the buffer zone is too narrow. At time t = 0.2 (figure 6),
there is still this oscillation, but the coupling model now is very close to the BGK model in
the buffer and in the right part. Note that, as expected, when the BGK model is uniform
away from the shock, this property is well preserved by the coupling model
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With the second (wider) buffer zone, at t = 0.04 (figure 7), the solution lies inside the
buffer, and the coupling and BGK models are in almost perfect agreement. At t = 0.2
(figure 8), this is also true, even outside the buffer zone and in particular in the left part.
Note that there is no oscillation with this buffer.

On figures 9 and 10, the results obtained with the Heaviside function h are plotted at
the same times. Surprisingly, there is no oscillation at the interface, as opposed to the case
with the narrow buffer zone (figure 5). This suggests that the oscillation is induced by the
transition from the Euler to the coupled model, rather than by the transition from Euler to
BGK. Apart from this fact, we observe that the results are very close to each model in their
respective zones.

Consequently, it seems that the most accurate results (that is the results that are the
closest to the full kinetic model) are obtained with the wide buffer zone.

Example 6.3. Numerical solution of the coupling for the 2D BGK model.
With this test, we compute the unsteady shock wave produced by the diffraction of a

plane moving shock wave that impinges upon a circular cylinder in a rarefied gas.
We point out that our goal here is not to make an accurate comparison between the

coupling and the full BGK model. Actually, the mesh we use is too coarse to make a fair
comparison: the numerical diffusion makes the results artificially close. In addition, our
buffer zone is not well suited to capture the non-equilibrium effects, since the shock rapidly
leaves the kinetic zone. However, we believe this test can illustrate the ability of our method
to easily treat 2D flows with arbitrary buffer zones.

The data of this computation are taken from [21]. The initial position of the shock
is located at x = −1. The initial conditions of the undisturbed right state are (in non-
dimensionalized form) n = 1, ux = 0, uy = 0, θ = 1. The conditions ahead of the
moving shock (left state) are given by the Rankine-Hudoniot conditions. The Knudsen
number is 0.005 based on the radius of the cylinder equal to 1. The shock Mach num-
ber is 2.81 (based on the shock speed and the temperature of the left state), and the wall
temperature of the cylinder is θ = 1. A diffuse reflection is used on this wall. Due to
the symmetry, only the half plane is computed and symmetry boundary conditions were
enforced. The space mesh is a curvilinear grid of 90 × 90 cells. The velocity grid is
10× 10 points. Finally, the buffer zone is defined by three rectangles given by the following
points: (−0.6, 0), (−1.3, 0), (−1.3, 2.3), (3.3, 2.3), (3.3, 0), (2.6, 0), (2.6, 1.6), (−0.6, 2.6). The
kinetic zone lies between the buffer and the cylinder, the hydrodynamic zone lies between
the buffer and the exterior of the domain.

On figures 11-13, we plot the density contours for the coupling model (continuous lines)
and the full BGK model (dotted lines) at six different times. The buffer zone is plotted with
dashed lines. Although the mesh is quite coarse, several shocks can be identified on this
figures (primary incident shock, reflected bow shock, Mach shock behind the cylinder, etc.).
Moreover, the results of the coupling and the full BGK model are very close.

Note that since the buffer zone is defined by straight lines, it is not aligned with the
mesh. Such an interface would be difficult to treat with coupling techniques by interface
half-flux conditions (see [15, 17]), while with our method, it does not require any particular
treatment. As explained in section 5.2, the geometry of the buffer zone is taken into account
by the function h itself in the model.
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7 Conclusion

In this work, we have proposed a new method to couple kinetic and hydrodynamic equations.
This method is an extension of a previous method proposed in [3] for coupling kinetic and
diffusion equations. Its main feature is that the two models are coupled in a small buffer
zone in which the true solution is approximated by adding up the solutions of each model.
The advantage of this coupling is that no boundary condition is needed, as is for a typical
domain decomposition method. This makes our method easy to use, since the geometry
of the interface is taken into account by the transition function itself in the equations. To
implement our method, there is no need to define logically different subdomains: we only
need to define the computational grid and a transition function which will be evaluated on
the grid. For instance, although it is not done in this paper, several kinetic subdomains with
non-connex buffer zones could easily be used without modifying the implementation.

This work is just a first step towards a complete coupling strategy, and an intensive
series of numerical tests should be done to measure the performances of our method. But
already, we have presented several tests in 1 and 2 space dimensions that show our method
behaves quite satisfactorily. We also mention that the kinetic and hydrodynamic zones were
fixed a priori in our tests, but it is also possible to use a physical criterion to determine the
“optimal” zones, as it has already be done for instance in [17, 19]

An important feature of our approach is that it preserves uniform flows for kinetic models
which have equilibrium states that are homogeneous functions of degree one with respect to
their moments. This property is satisfied by important models as Boltzmann like equations.
We have shown that if this property is not satisfied, then the method gives an incorrect
approximation of the original kinetic solution.

We also think our method could be extended to a coupling method with moving interfaces.
In this paper, we have derived the corresponding coupling model, but the numerical tests
are still to be done. In this case, the main problem will be to define how the transition
function should evolve in time. There exist a few cases in neutron transport or radiative
transfer where the evolution of the interface is known a priori. But in some others, as in
aerodynamics, other investigations are probably necessary. This will be the subject of an
ongoing project by the authors.
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Figure 1: The numerical solution of ρ for the Jin-Xin relaxation model (18) at t = 0.025
for the uniform initial condition, with narrow (top) and large (bottom) buffer zone. The
solid line is the (constant) solution of model (18), while ’o’ is the numerical solution of the
coupling model with 100 grid points.
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Figure 2: The numerical solution of ρ for the Jin-Xin relaxation model (18) at steady state
for the uniform initial condition, with narrow (top) and large (bottom) buffer zone. The
solid line is the (constant) solution of model (18), while ’o’ is the numerical solution of the
coupling model with 100 grid points.
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Figure 3: The numerical solution of ρ for the Jin-Xin relaxation model (18) at t = 0.0450
for the shock initial condition, with narrow (top) and large (bottom) buffer zone. The
solid line is the numerical solution of model (18), while ’o’ is the numerical solution of the
coupling model (100 grid points), and ’.-’ is the exact solution for the Burgers equation (full
hydrodynamic limit).

24



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

x

ρ

Hydro. Kinetic

B
uf

fe
r

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

x

ρ

Hydro. Kinetic

B
uf

fe
r

Figure 4: The numerical solution of ρ for the Jin-Xin relaxation model (18) at t = 0.3150
for the shock initial condition, with narrow (top) and large (bottom) buffer zone. The
solid line is the numerical solution of model (18), while ’o’ is the numerical solution of the
coupling model (100 grid points), and ’.-’ is the exact solution for the Burgers equation (full
hydrodynamic limit).
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Figure 5: The numerical solution of density (top) and velocity (bottom) for the BGK model
at t = 0.04 for the Sod problem (buffer [0, 0.125]). The solid line is the solution of the
coupling model, the dotted line is the BGK model, while the dot-dashed line is the Euler
system.
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Figure 6: The numerical solution of density (top) and velocity (bottom) for the BGK model
at t = 0.2 for the Sod problem (buffer [0, 0.125]). The solid line is the solution of the coupling
model, the dotted line is the BGK model, while the dot-dashed line is the Euler system.
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Figure 7: The numerical solution of density (top) and velocity (bottom) for the BGK model
at t = 0.04 for the Sod problem (buffer [−0.125, 0.125]). The solid line is the solution of the
coupling model, the dotted line is the BGK model, while the dot-dashed line is the Euler
system.
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Figure 8: The numerical solution of density (top) and velocity (bottom) for the BGK model
at t = 0.2 for the Sod problem (buffer [−0.125, 0.125]). The solid line is the solution of the
coupling model, the dotted line is the BGK model, while the dot-dashed line is the Euler
system.
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Figure 9: The numerical solution of density (top) and velocity (bottom) for the BGK model
at t = 0.04 for the Sod problem (buffer reduced to the interface x = 0 with the Heaviside
function). The solid line is the solution of the coupling model, the dotted line is the BGK
model, while the dot-dashed line is the Euler system.
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Figure 10: The numerical solution of density (top) and velocity (bottom) for the BGK model
at t = 0.2 for the Sod problem (buffer reduced to the interface x = 0 with the Heaviside
function). The solid line is the solution of the coupling model, the dotted line is the BGK
model, while the dot-dashed line is the Euler system.
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Figure 11: Shock diffraction around a circular cylinder in a rarefied gas, with Knudsen=0.005
and Mach shock=2.81. Density contours at different times for the coupling model (continuous
lines) and the BGK model (dotted lines). The buffer zone is between the dashed lines.
The function h is 1 in the zone close to the cylinder (kinetic), 0 in the exterior domain
(hydrodynamic), and between 0 and 1 in the buffer zone.
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Figure 12: sequel of fig. 11
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Figure 13: sequel of fig. 12
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