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Abstract. In this paper, we derive a one-dimensional convection-diffusion model for a
rarefied gas flow in a two-dimensional curved channel on the basis of the Boltzmann (BGK)
model. The flow is driven by the temperature gradient along the channel walls, which is
known as the thermal creep phenomenon. This device can be used as a micro-pumping
system without any moving part. Our derivation is based on the asymptotic technique of
the diffusion approximation. It gives a macroscopic (fluid) approximation of the microscopic
(kinetic) equation. We also derive the connection conditions at the junction where the curva-
ture is not continuous. The pumping device is simulated by using a numerical approximation
of our convection-diffusion model which turns to agree very well with full two dimensional
kinetic simulations. It is then used to obtain very fast computations on long pumping de-
vices, while the computational cost of full kinetic computations is still nowadays prohibitive
for such cases.
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1 Introduction

Recently, the possibility to make a pumping system for a rarefied gas in a curved channel has
been proposed by Aoki, Degond and Mieussens [2] and Aoki et al. [3]. This pumping effect is
generated by the well known thermal creep flow (also known as thermal transpiration in this
case) which is caused only by a temperature gradient applied to the walls of the channel.
This phenomenon is known since Reynolds [29]. It has first been used by Knudsen [22]
to design what is now called a Knudsen compressor. The technological advantage of such a
pumping system is that it uses no moving part nor mixing process but only this thermal creep
boundary effect that exists only for rarefied gases. It can be used for gases at atmospheric
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pressure if the size of the system is small enough. This is why recently interest in this kind of
flows is growing in connection with micro machine engineering, like Micro-Electro-Mechanical
Systems (MEMS).

The system proposed in [2, 3] uses a periodic temperature distribution of the channel
walls together with a change of their curvature. It is similar to a system proposed in [41, 5, 38]
but its geometry is simpler. It has been proved by numerical simulations that this system
can actually produces a pumping effect that makes it technologically promising. However,
large numerical simulations of rarefied gas problems are still a delicate issue, since this
always implies using a large number of degrees of freedom. Indeed, even for two-dimensional
plane flows, the distribution function of the particle velocities of the gas has six independent
variables. This is why in [2, 3], the length of the channel is quite limited, which also limits
the study of the device to relatively small pressure gains.

The purpose of this paper then is to derive a macroscopic model for the gas density in
a section of the channel when the width of this section is small as compared to its length.
The computational complexity of the problem is largely reduced, since this density has only
two independent variables. This macroscopic model, also called fluid approximation, is a one
dimensional non-linear convection-diffusion equation. However, the transport and diffusion
coefficients are not given by analytical formula, but are tabulated once for all by solving
auxiliary linear one dimensional steady kinetic problems.

This kind of derivation has first been rigorously proposed by Babovsky, Bardos and
P latkowski in [7] for free molecular flows and relies on the previous work by Babovsky [6].
These works have recently been used by Aoki and Degond [1] to formally derive a diffusion
model for the Knudsen pump studied in [41, 5]. The method is based on a diffusion ap-
proximation technique, using the boundary scattering operator as the forcing term towards
equilibrium. Here, we adapt the work of [1] to the case of our curved channel. The major
differences with [1] are the followings. First, the geometry of our channel requires using a
curvilinear coordinate system, which makes the transport operator more complicated. Sec-
ond, the collision operator we consider in this work is the Bathnagar-Gross-Krook (BGK)
model of the Boltzmann equation. While this simplification is not physically well justified,
it allows to easily reduce the computational complexities of collisions. Moreover, it is useful
to obtain qualitative information on a rarefied flow, and it is known to give accurate results
in some situations [16]. In [1], the collision model was only a simplified version of the BGK
model in which the distribution function is assumed to relax to a Maxwellian with zero
mean velocity and the same temperature as the wall temperature. However, we mention
that an extension of [1] to the Boltzmann and the full BGK models can be found in [4].
This approach has also been applied to gaseous mixtures [44]. Third, our diffusion model is
used for various numerical simulations and our approach is validated by comparisons with
full kinetic simulations. Two different systems are used for this validation: a ring shaped
channel in which we simulate a circulating flow, and a cascade system closed at both ends
for which the pumping effect is demonstrated. Then the potentiality of our diffusion model
is shown by an application to a very large cascade system of 100 units for which full kinetic
simulations would at present require prohibitive computational time and memory.
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Note that the geometry of our device is such that the curvature of the channel is discon-
tinuous at some points: this is taken into account by a kinetic transmission layer analysis
that was already used in [1]. It should also be stressed that, although the diffusion model is
applied only to the pump mentioned above in the present paper, it has potential applicability
to general gas flows through a curved channel.

Before we give the scope of the paper, we present a rapid bibliography about the thermal
creep flow phenomenon and its application to pumping systems. The reader is referred to,
e.g., [21, 32, 42, 27] for the thermal creep flow. Several analyses of temperature induced
flows in rarefied gases can be found in Sone [33, 34, 35]. A valuable source of information
about flows in micro-machines can be found in Karniadakis, Beskok and Aluru [20] and
Cercignani [10]. Exemples of experimental and simulation works on Knudsen compressors
and MEMS have been proposed by Pham-Van-Diep et al. [28], Sone, Waniguchi and Aoki [41],
Aoki et al. [5], Vargo and Muntz [45], Sone and Sugimoto [39], Han et al. [18].

The outline of the paper is the following. In section 2, the kinetic model is presented
both in Cartesian and curvilinear coordinates. After a dimensional analysis, the asymptotic
diffusion model is derived, and some formal justifications are given. The junction problem for
discontinuous curvature is also studied in section 3. In section 4, we give some information
about the numerical methods we use to approximate the diffusion model. Finally, we present
our simulation results in section 5.

2 Derivation of a diffusion model for rarefied flows in

a curved channel

2.1 Kinetic model

We consider a rarefied flow in a two-dimensional curved channel Ω of constant width D. To
describe the problem, we introduce the following coordinate system. The two-dimensional
position vector of the median curve C of the channel is parameterized by the curve length
s and denoted by X(s) which is supposed to be smooth. We denote the curvature of C by
κ(s), the unit tangent vector (in the positive direction of s) by τ (s) = dX/ds, and the unit
normal vector by n(s) such that the frame (τ ,n) is direct (see Figure 1). By the Frenet’s
formula, the following relations hold:

dτ/ds = κn, dn/ds = −κτ . (1)

We introduce the following curvilinear coordinate system associated with C:

x = X(s) + rn. (2)

For (x1, x2) ∈ R2 sufficiently close to C, the mapping F : (x1, x2) → (s, r) ∈ R2 is an
admissible change of variables. More precisely, we assume that F is a C∞ diffeomorphism
from an open neighborhood Ω of C into R×(−D/2, D/2). The 2-dimensional volume element
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in this new system of coordinates is given by dx = (1− κr) ds dr, and the Jacobian (1− κr)
is supposed to be positive.

The temperature of both walls is kept at Tw(s). Let (x1, x2, x3) denote the Cartesian
coordinates of a point x ∈ Ω. Physically, Ω describes a three-dimensional domain which has
translational invariance in a third direction x3 orthogonal to (x1, x2). Particles moving in
such a domain do in general have a non-zero velocity component along this third coordinate
and we are led to consider three dimensional velocity vectors v = (v1, v2, v3). Let now
f(x,v, t) denote the distribution function of the particles at position x ∈ Ω and time t > 0
with velocity v ∈ R3.

While in the rarefied regime f should be governed by the Boltzmann equation, we con-
sider here the simpler BGK relaxation model [8, 46]. The BGK collision operator retains
the quadratic structure of the Boltzmann operator but leads to much simpler asymptotic
computations. The BGK equation reads

∂tf + v · ∇xf = Acρ(M [ρ,u, 2RT ]− f), (3)

where Ac is a constant (physically, Acρ corresponds to the collision frequency), M [ρ,u, 2RT ]
is the Maxwellian equilibrium distribution

M [ρ,u, 2RT ] =
ρ

(2πRT )3/2
exp

(

−(v − u)2

2RT

)

, (4)

and ρ, u = (us, ur, 0), and T are respectively the density, the flow velocity and the temper-
ature of the gas defined by

ρ =

∫

fdv, ρu =

∫

vfdv, 3RρT =

∫

(v − u)2fdv.

Finally, R is the gas constant per unit mass, i.e., R = kB/m where kB is the Boltzmann
constant and m is the mass of a gas molecule.

By the translational invariance in the direction x3, we have v · ∇vf = v1∂x1f + v2∂x2f
and it can be assumed that there is no macroscopic velocity along x3, namely u3 = 0.

The interaction of the gas with the boundaries Γ± (see Figure 1) is classically assumed
to be well described by the following diffuse reflection

f(x ∈ Γ±,v, t) = M [1, 0, 2RTw(x)]

∫

v·n≷0
|v · n|f dv

∫

v·n≶0
|v · n|M [1, 0, 2RTw(x)] dv

, for v · n ≶ 0.

This means that molecules hitting the walls are re-emitted along a Maxwellian velocity
distribution with a temperature equal to that of the wall and with zero mean velocity. The
integral factor implies that all the particles are re-emitted, that is to say there is no mass-flux
across the walls. Finally, the BGK equation (3) must also be supplemented by an initial
condition fI = f(x,v, t = 0).
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Now we write the BGK equation in the curved coordinate system (r, s). We introduce a
local velocity coordinate system (vs, vr) according to:

vs = v · τ , vr = v · n . (5)

Denoting again by f(s, r, vs, vr, v3, t) the distribution f in these new variables, we have

Lemma 2.1. In the curved coordinate system (s, r), (3) is written in the following form:

∂tf + (1− κr)−1vs∂sf + vr∂rf + κ(1− κr)−1vrvs∂vsf

− κ(1− κr)−1v2
s∂vrf = Acρ(M [ρ,u, 2RT ]− f). (6)

The diffuse-reflection boundary condition is written as

f = ± 1

2π(RTw)2
exp

(

− v2

2RTw

)∫

vr≷0

vrfdv, for vr ≶ 0 at r = ±D
2
. (7)

Proof. Straightforward differential geometry shows that

∇xs = (1− κr)−1τ , ∇xr = n . (8)

Taking the gradients w.r.t. x of (5) and using (8) leads to

∇xvs = κ(1− κr)−1vrτ , ∇xvr = −κ(1− κr)−1vsτ . (9)

Using (8), (9) and the chain rule leads to (6). The other equations are straightforward.

Now, in order to identify the important parameters of the problem, we make a dimensional
analysis of the equation. We denote by Ls the typical length scale of variation of f in s
direction. In other words, the scale of variation of Tw and κ is Ls. We suppose that Ls
is much longer than the channel width D, i.e., ε = D/Ls � 1. Keeping this in mind, we
introduce the following dimensionless variables:

t′ =
t

t0
, r′ =

r

D
, s′ =

s

Ls
, v′ =

v

(2RT0)1/2
, f ′ =

(2RT0)3/2

ρ0

f, (10)

ρ′ =
ρ

ρ0

, u′ =
u

(2RT0)1/2
, T ′ =

T

T0

, T ′w =
Tw
T0

, κ′ = Dκ, (11)

where t0, T0, and ρ0 are the reference time, temperature, and the reference density, respec-
tively; in the present study, we choose the following timescale as the reference time:

t0 =
L2
s

D(2RT0)1/2

[

=
Ls

ε(2RT0)1/2

]

. (12)

This choice of timescale corresponds to equating the Strouhal number defined by Sh =
D/t0(2RT0)1/2 with ε2; it will be justified a posteriori at the end of section 2.2.1. With these
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variables, the BGK equation (6) is rewritten as (from now on, we drop the superscript ′ for
simplicity)

ε2∂tf + ε(1− κr)−1vs∂sf + vr∂rf + κ(1− κr)−1vrvs∂vsf

− κ(1− κr)−1v2
s∂vrf =

1

K0

ρ(M [ρ,u, T ]− f), (13)

where according to definition (4) we have

M [ρ,u, T ] =
ρ

(πT )3/2
exp

(

−(v − u)2

T

)

, (14)

and the macroscopic quantities now are defined by

ρ =

∫

fdv, ρu =

∫

vfdv,
3

2
ρT =

∫

(v − u)2fdv. (15)

Finally, K0 is the Knudsen number defined by

K0 =

√
π

2

`0

D
=

(2RT0)1/2

DAcρ0

, (16)

where `0 is the mean free path of the gas at equilibrium state at rest with temperature T0

and density ρ0. The boundary condition (7) is rewritten as

f = ± 2

πT 2
w

exp

(

− v
2

Tw

)∫

vr≷0

vrfdv, for vr ≶ 0 at r = ±1

2
. (17)

It is clear that, if the temperature distribution Tw and curvature κ of the channel walls
are given, problem (13)–(17) only depends on two parameters K0 and ε. We are interested
in the sequel in the limit ε→ 0 of this problem.

2.2 Diffusion model for smoothly varying curvature

Classically, an asymptotic model for (13) will necessarily be a macroscopic relation based on
a conservation law. Since we are interested in a limit where the width of the channel becomes
small, it is natural to expect an asymptotic model of the form of an integrated conservation
law in a section of the channel. Consequently, we first write such a conservation law for a
fixed ε.

Lemma 2.2. For every ε > 0, we have the continuity equation

∂t%+ ∂sj = 0, (18)

with

%(s, t) =

∫ 1/2

−1/2

∫

R3

f(1− κr) dvdr, (19)

j(s, t) =
1

ε

∫ 1/2

−1/2

∫

R3

vsf dvdr. (20)
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Proof. This relation is simply obtained by multiplying the BGK equation (13) by the Jaco-
bian (1− κr) of the transformation (x1, x2)→ (s, r) and then by integrating in the velocity
space R3 and in a section of the channel.

Equation (18) is the continuity equation which expresses that the time variation of the
total mass of gas in a given section of the channel must be balanced by the difference of the
fluxes through its boundaries.

In these relations, % is the gas density in a section of the channel, and j is the total mass
flux in the s-direction scaled by ε. This scaling is due to the time scale chosen in (10) and
is necessary to obtain a non-trivial dynamics in the asymptotic limit ε→ 0. Indeed, with a
perhaps more natural time scale as t0 = Ls/(2RT0)1/2 (the time needed by a particle with a
thermal velocity to travel on the typical length scale Ls), it can be seen that the mass flux
vanishes in the limit ε→ 0, which gives the trivial limit equation ∂t% = 0. This shows that
the time scale must be large enough to observe variations of the limit density.

Now we state in the following formal theorem what the asymptotic limit of (18) is.

Theorem 2.1 (formal). (i) f → f(0) = ρ(0)(s, t)M [1, 0, Tw(s)] as ε→ 0, where ρ(0)(s, t) is
a solution of the following nonlinear diffusion problem:

∂tρ(0) + ∂sj(1) = 0, (21)

j(1) =
√

TwMP∂sρ(0) +
ρ(0)√
Tw

(MP +MT )∂sTw, (22)

where MP and MT are nonlinear functions of ρ(0) defined through auxiliary linear kinetic
equations (see the proof of the theorem).

(ii) The diffusion coefficient MP is non-positive.
(iii) ρ(0) and j(1) are formally second order approximations of the density % and current

j associated to f :
%− ρ(0) = O(ε2), j − j(1) = O(ε2).

Expression (22) shows that the temperature gradient acts as a force field with a mo-
bility (1/

√
Tw)(MP + MT ). The resulting flow is called the thermal creep flow or thermal

transpiration flow (e.g. [35]).
For the proof of this theorem, we classically use the Hilbert procedure that can be sum-

marized as follows: the solution f is expanded as a power series of ε:

f = f(0) + εf(1) + ε2f(2) + ε3f(3) + · · · . (23)

Correspondingly, all the macroscopic quantities are also expanded:

ρ = ρ(0) + ρ(1)ε+ · · · , (24)

u = u(0) + u(1)ε+ · · · , (25)

T = T(0) + T(1)ε+ · · · . (26)
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The relations between f(m) and ρ(m), v(m) and T(m) are summarized in Appendix A. Then
these expansions are inserted into (13)–(17), and after using a Taylor expansion of the non-
linear terms, the coefficients f(0), f(1), . . . are determined so as terms of equal power in ε
cancel. More precisely, if we identify the different operators corresponding to the different
powers of ε in (13), we find the following four operators

order ε0 : A0f = vr∂rf + κ(1− κr)−1vrvs∂vsf − κ(1− κr)−1v2
s∂vrf, (27)

Q(f) =
1

K0

ρ(M [ρ,u, T ]− f), (28)

order ε1 : A1f = (1− κr)−1vs∂sf, (29)

order ε2 : A2f = ∂tf. (30)

Then by injecting the series (23) into (13) and using the previous notations, we find

A0f(0) −Q(f(0))

+ ε(A1f(0) +A0f(1) −DQ(f(0))(f(1)))

+ ε2(A2f(0) +A1f(1) +A0f(2) −DQ(f(0))(f(2))−
1

2
D2Q(f(0))(f(1), f(1)))

+ ε3(A2f(1) +A1f(2) +A0f(3) −DQ(f(0))(f(3))−D2Q(f(0))(f(1), f(2))

− 1

6
D3Q(f(0))(f(1), f(1), f(1)))

= O(ε4), (31)

whereDQ(f(0))(f(1)) denotes the first order derivative ofQ at f(0) applied to f(1), D
2Q(f(0))(f(1), f(2))

the second order derivative of Q at f(0) applied to the pair (f(1), f(2)), and similarly for
D3Q(f(0))(f(1), f(1), f(1)). Accordingly, boundary condition (17) gives

3
∑

m=0

εmf(m) =
3
∑

m=0

± 2

πT 2
w

exp

(

− v
2

Tw

)∫

vr≷0

vrε
mf(m)dv, for vr ≶ 0 at r = ±1

2
.

Then f(0), f(1), f(2), f(3) are defined so as each term in (31) cancels, that is

order ε0 : A0f(0) = Q(f(0)) (32)

order ε1 : (A0 −DQ(f(0)))f(1) = −A1f(0) (33)

order ε2 : (A0 −DQ(f(0)))f(2) =
1

2
D2Q(f(0))(f(1), f(1))−A2f(0) −A1f(1) (34)

order ε3 : (A0f(3) −DQ(f(0)))f(3) = D2Q(f(0))(f(1), f(2)) +
1

6
D3Q(f(0))(f(1), f(1), f(1))

−A2f(1) −A1f(2), (35)

with the boundary condition for m = 0, 1, 2, 3

f(m) = ± 2

πT 2
w

exp

(

− v
2

Tw

)∫

vr≷0

vrf(m)dv, for vr ≶ 0 at r = ±1

2
. (36)

The solving of problems (32)–(33) is the subject of the next two subsections, while the
theorem is proved in sections 2.2.3 to 2.2.4.
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2.2.1 Leading order ε0

Here, we have to find f(0) that solves problem (32) with boundary condition (36). This
problem is re-written here for clarity

vr∂rf(0) + κ(1− κr)−1vrvs∂vsf(0) − κ(1− κr)−1v2
s∂vrf(0)

=
1

K0

ρ(0)(M [ρ(0),u(0), T(0)]− f(0)), (37)

with boundary condition

f(0) = ± 2

πT 2
w

exp

(

− v
2

Tw

)∫

vr≷0

vrf(0)dv, for vr ≶ 0 at r = ±1

2
. (38)

We have the

Lemma 2.3. Any function of the form f = ρM [1, 0, Tw(s)] where ρ is a function of s and t
only is a solution of problem (37)–(38).

Proof. This can be seen either by coming back to original variables (x,v) in (37), or by a
direct computation. Indeed, since f is a Maxwellian, the right-hand side of (37) vanishes.
Moreover, since f is independent of r, the first term of the left-hand side vanishes too. Then
an easy computation shows that the velocity derivatives in the left-hand side cancel out (this
is a direct consequence of the isotropy of f with respect to v). Finally, it is clear that f
satisfies boundary condition (38).

In fact it can be proved that these solutions to problem (37)–(38) are the only ones. This
can easily be proved by using the entropy inequality, the Darrozès-Guiraud inequality (see [9]
for details about this inequality), and the conservation laws. Then we state the following
theorem (we shall not specify any regularity assumption, nor any function space because our
aim here is only a formal theory)

Theorem 2.2. Problem (37)–(38) admits a one-dimensional manifold of solutions given by
{f = ρ(s, t)M [1, 0, Tw(s)], ρ(s, t) ∈ R+}.

Consequently, we assume that f(0) is necessarily given by

f(0) = ρ(0)(s, t)M [1, 0, Tw(s)], (39)

where the density ρ(0) is still to be determined. Note that the corresponding “mass flux” is
necessarily zero:

j(0) :=

∫ 1/2

−1/2

∫

R3

vsf(0) dvdr = 0.

The other macroscopic quantities of f(0) are obviously

us(0) = ur(0) = 0, T(0) = Tw(s). (40)
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As explained at the beginning of section 2.2, this justifies a posteriori the use of a large
time scale. Moreover, from (25), we see that the flow velocity is of the first order in ε.
Consequently, the scale of typical flow velocity is ε(2RT0)1/2. Since the length scale we are
interested in is Ls, then the timescale given in (12) can be interpreted as

t0 =
Ls

ε(2RT0)1/2
=

length of our interest

typical flow velocity
. (41)

2.2.2 First order ε1

Here we want to find a solution f(1) of (33) with boundary condition (36). We can prove the
existence of f(1) with the following lemma (note that in the statement that follows, s and t
are simple parameters which are kept “frozen” and are simply omitted).

Lemma 2.4. (i) Let g = g(r, v) defined on [−1
2
, 1

2
]×R3 be given and L be the linear operator

(A0 −DQ(f(0))). Then, the equation
Lf = g, (42)

with boundary condition (36) is solvable if and only if g satisfies the solvability condition

〈g〉 = 0 , 〈g〉 :=

∫ 1/2

−1/2

∫

R3

g(1− κr) dv dr , (43)

Two such solutions differ by a term proportional to M [1, 0, Tw]. A unique solution can be
singled out if one requires that 〈f〉 = 0. This unique solution will formally be denoted by
f = L−1g (and L−1 is the “pseudo-inverse” of L).

(ii) If g is even or odd with respect to vs, then f = L−1g has the same parity.

Proof. We again stress the fact that the parameter s in Lemma 2.4 is frozen, and that
consequently, κ is just a constant parameter. For point (i), going back to the change of
variables (x,v) → (s, r, vs, vr, v3) according to (1), (2), and (5), we note that for f and κ
independent of s, we have

v · ∇xf = vr∂rf + κ(1− κr)−1vrvs ∂vsf − κ(1− κr)−1v2
s ∂vrf .

Therefore, back to the variables (x,v), problem (42) with boundary condition (36) is written

v · ∇xf −DQ(f0)(f) = g , x ∈ Ω′ × R ,

where now Ω′ is the domain comprised between two disks: Ω′ = {x ∈ R2 , κ−1− 1
2
≤ |x| ≤

κ−1 + 1
2
}. By adapting the theory of [7] and [13], the results follow easily. We note that the

factor (1 − κr) in the definition of 〈f〉 is just the Jacobian of the change of variables from
(x,v) to (s, r, vs, vr, v3).
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Point (ii) is a consequence of the fact that the linear operator L preserves the parity with
respect to vs: this is directly seen for A0 from (27), and for DQ(f(0)) this is the result of a
simple computation. Then f is decomposed into its odd and even parts and it is not difficult
by using point (i) of this lemma to see that the odd (or even) part of f is zero if g is even
(or odd, respectively).

Consequently, the existence of f(1) is guaranteed if the right-hand side of (33) satisfies the
solvability condition (43). From (39) and (29), it is clear that −A1f(0) is odd with respect
to vs and hence satisfies (43). Then we can denote by f(1) = −L−1f(0) the unique solution
of (33) with boundary condition (36).

Now we derive a more explicit expression for f(1) in order to obtain the value of j(1) in (22).
We also obtain expressions for the transport coefficients MP and MT that are important for
the numerical simulations.

Problem (33) can be written as

vr∂rf(1) + κ(1− κr)−1vrvs∂vsf(1) − κ(1− κr)−1v2
s∂vrf(1)

=
1

K0

ρ(0)(M(1) − f(1))− (1− κr)−1vs∂sf(0), (44)

M(1) = f(0)

[

ρ(1)

ρ(0)

+
2us(1)vs + 2ur(1)vr

Tw
+
T(1)

Tw

(

v2

Tw
− 3

2

)]

, (45)

f(1) = ± 2

πT 2
w

exp

(

− v
2

Tw

)∫

vr≷0

vrf(1)dv, for vr ≶ 0 at r = ±1

2
. (46)

From point (ii) of lemma 2.4, f(1) has the same parity (w.r.t. vs) as A1f(0) which is odd.
Consequently, ρ(1), ur(1) and T(1) are necessarily zero (see (113)–(116)). The second term of
the right-hand side of (44) is an inhomogeneous term because f(0) is known at this point (see
(39)). The explicit form of this inhomogeneous term reads

−(1− κr)−1vs∂sf(0) = −(1− κr)−1vsf(0)

[

∂s ln p(0) +

(

v2

Tw
− 5

2

)

∂s lnTw

]

,

where p(0) = ρ(0)Tw.
In order to simplify the study of this problem (as well as its numerical approximation),

we introduce the following variables:

φ(s, r, ζ, t) :=
f(1)

f(0)

, ζ :=
v√
Tw
. (47)
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The boundary-value problem for φ relevant to problem (44)–(46) is

ζr∂rφ+ κ(1− κr)−1ζrζs∂ζsφ− κ(1− κr)−1ζ2
s∂ζrφ

=
1

K
(Mφ − φ)− (1− κr)−1ζs

[

∂s ln p(0) +

(

ζ2

Tw
− 5

2

)

∂s lnTw

]

, (48)

Mφ = 2νζs, (49)

φ = ±2
√
π

∫

ζr≷0

ζrφEdζ, for ζr ≶ 0 at r = ±1

2
, (50)

where

ν =
us(1)√
Tw

=

∫

ζsφEdζ, (51)

and

E =
1

π3/2
exp(−ζ2). (52)

The variable K in (48) is a kind of local Knudsen number defined by

K =

√
Tw
ρ(0)

K0 =

√
Tw
ρ(0)

(2RT0)1/2

DAcρ0

=
(2RT dimw )1/2

DAcρdim(0)

, (53)

where we wrote by ρdim(0) = ρ0ρ(0) and T dimw = T0Tw the dimensional variables (we recall that

T0 and ρ0 are reference values). Since ρ(0) depends on s and t and Tw depends on s, K also
depends on s and t.

In view of linearity of the problem and dependence of the inhomogeneous term on ζ, we
can split φ into the following two (odd) parts:

φ(s, r, ζ, t) = φP (r, ζ; K(s, t), κ(s))∂s ln p(0) + φT (r, ζ; K(s, t), κ(s))∂s lnTw. (54)

The boundary-value problems for φP and φT can be expressed by introducing an index J
representing P or T as

ζr∂rφJ + κ(1− κr)−1ζrζs∂ζsφJ − κ(1− κr)−1ζ2
s∂ζrφJ =

1

K
(MφJ − φJ)− IJ (55)

IP = (1− κr)−1ζs, IT = (1− κr)−1ζs

(

ζ2 − 5

2

)

, (56)

MφJ = 2νJζs, (57)

with boundary conditions

φJ = ±2
√
π

∫

ζr≷0

ζrφJEdζ, for ζr ≶ 0 at r = ±1

2
, (58)

and with

νJ =

∫

ζsφJEdζ, (59)

12



By solving these problems numerically, the first order solution f(1) can be obtained:

f(1) = f(0)(φP∂s ln p(0) + φT∂s lnTw). (60)

The corresponding “mass flux” of f(1) then is

j(1) :=

∫ 1/2

−1/2

∫

vsf(1) dvdr =

∫ 1/2

−1/2

ρ(0)

√

Tw(νP∂s ln p(0) + νT∂s lnTw)dr

= ρ(0)

√

Tw(MP∂s ln p(0) +MT∂s lnTw) =
√

TwMP∂sρ(0) +
ρ(0)√
Tw

(MP +MT )∂sTw, (61)

where

MP (K,κ) =

∫ 1/2

−1/2

νPdr, MT (K,κ) =

∫ 1/2

−1/2

νTdr, (62)

Through their dependence on νJ and hence on φJ , they depend only on the two parameters
of problem (55)–(58) that are the local Knudsen number K and the curvature κ.

We give a short comment on auxiliary problems (55)–(58). Physically, equations (55)–
(58) with J = P describe a circulating flow between two coaxial circular cylinders driven by
a constant (small) pressure gradient in the circumferential direction, and those with J = T
a circulating flow in the same geometry driven by a constant (small) gradient of the surface
temperature of each cylinder in the circumferential direction. Such flows are physically
unrealistic because the pressure of the gas or the temperature of the cylinders becomes
multi-valued. However, equations (55)–(58) make sense mathematically, and MP and MT

are interpreted as the mass-flow rates of the artificial Poiseuille flow and thermal transpiration
induced in the circumferential direction between two co-axial circular cylinders. If we take
the limit of κ → 0 (zero curvature limit), problems (55)–(58) reduce to the problems of
the Poiseuille flow and thermal transpiration between two parallel plates, which have been
widely studied in the literature (e.g. [11, 25, 19, 24, 26, 36, 30, 37, 31, 12]).

2.2.3 Diffusion model satisfied at the limit ε = 0 and order of approximation
(proof of points (i) and (iii) of theorem 2.1)

It is now sufficient to solve problems (34) and (35), that is to say to compute the second
and third order terms f(2) and f(3) of the Hilbert expansion. However, these functions are
not necessary for the numerical simulation of the diffusion model. To simplify the reading
of this paper, these formal computations are deferred to appendix B.

Now we assume that f(2) and f(3) are known. From (31), it is clear that the third order
Hilbert approximation fε = f(0) + εf(1) + ε2f(2) + ε3f(3) satisfies the same equation as f up
to O(ε2) terms, namely

∂tfε + (1− κr)−1vs∂sfε + ε−1vr∂rfε + ε−1κ(1− κr)−1vrvs∂vsfε

− ε−1κ(1− κr)−1v2
s∂vrfε = ε−2Q(fε) +O(ε2).

13



Provided that the O(ε2) terms satisfy suitable estimates and that adequate initial and bound-
ary conditions are prescribed, then it is possible to (formally) prove that fε is an order ε2

approximation of f : f = fε +O(ε2) and hence f converges to f(0) as ε goes to 0.
Consequently, the density of f in a section of the channel satisfies % = ρ(0) +ερ(1) +O(ε2).

Since ρ(1) is zero by the odd parity of f(1) w.r.t. vs (see the remark after (46)), then we have
% = ρ(0) +O(ε2).

In a similar way, from the second order approximation of f by fε, we find that the mass
flux of f satisfies

j =
1

ε

∫ 1/2

−1/2

∫

R3

vs(f(0) + εf(1) + ε2f(2) +O(ε3)) dvdr

=
1

ε
j(0) + j(1) + εj(2) +O(ε2).

From appendix B, a parity argument again shows that the second-order mass flux j(2) is
zero. Since the zeroth-order flux j(0) is also zero, we simply obtain the second part of (iii).

Finally, for point (i), passing to the limit ε = 0 in the continuity equation (18) directly
gives the limit diffusion model (21)–(22) where coefficients MP and MT are given in (62).
Note that for numerically solving this equation, one just has to compute MP and MT for
various values of K and κ (see section 4.2).

2.2.4 Sign of the diffusion coefficient (proof of point (ii) of theorem 2.1)

We consider equation (55) with J = P . In order to make MP appear in the equation, we
multiply it by φPE(1−κr) and integrate in [−1

2
, 1

2
]×R3 with respect to r and ζ. This gives

∫ 1/2

−1/2

∫

R3

ζr∂r(
φ2
P

2
)E(1− κr) dζdr +

∫ 1/2

−1/2

∫

R3

κ

(

ζrζs∂ζs(
φ2
P

2
)− ζ2

s∂ζr(
φ2
P

2
)

)

E dζdr

=

∫ 1/2

−1/2

∫

R3

1

K
(2νP ζsφPE − φ2

PE)(1− κr) dζdr −MP . (63)

Now the idea is that the left-hand side is the flux across the boundaries of a section of
the channel of “particles” represented by the (positive) distribution φ2

PE . Since boundary
condition (58) and the odd parity of φP with respect to vs imply that

φP = 0 for ζr ≶ 0 at r = ±1

2
,

this means that the flux of these particles is non-negative. This can be proved explicitely
as follows. First a simple integration by parts of the first term of the left-hand side of (63)

14



gives
∫ 1/2

−1/2

∫

R3

ζr∂r(
φ2
P

2
)E(1− κr) dζdr

=

∫

R3

ζ+
r (1− κr)φ

2
P

2
|r= 1

2
E dζ −

∫

R3

ζ−r (1− κr)φ
2
P

2
|r=− 1

2
E dζ +

∫ 1/2

−1/2

∫

R3

κζr
φ2
P

2
E dζdr,

(64)

where ζ±r stand for the positive and negative parts of ζr. Then for the second term of the left-
hand side of (63), we note that the isotropy ofE with respect to ζ implies ζrζs∂ζsE−ζ2

s∂ζrE =
0. Therefore E can be put inside the derivatives, and an integration by parts gives

∫ 1/2

−1/2

∫

R3

κ

(

ζrζs∂ζs(
φ2
P

2
)− ζ2

s∂ζr(
φ2
P

2
)

)

E dζdr

=

∫ 1/2

−1/2

∫

R3

κ

(

∂ζs(ζrζs
φ2
P

2
E)− ζr

φ2
P

2
E − ∂ζr(ζ2

s

φ2
P

2
E)

)

dζdr

= −
∫ 1/2

−1/2

∫

R3

κζr
φ2
P

2
E dζdr. (65)

Consequently, we add up the results of (64) and (65) to obtain that the left-hand side of (63)
is

∫ 1/2

−1/2

∫

R3

ζr∂r(
φ2
P

2
)E(1− κr) dζdr +

∫ 1/2

−1/2

∫

R3

κ

(

ζrζs∂ζs(
φ2
P

2
)− ζ2

s∂ζr(
φ2
P

2
)

)

E dζdr

=

∫

R3

ζ+
r (1− κr)φ

2
P

2
|r= 1

2
E dζ −

∫

R3

ζ−r (1− κr)φ
2
P

2
|r=− 1

2
E dζ, (66)

which is non-negative (we remind that by assumption 1 − κr ≥ 0, see the beginning of
section 2.1).

Finally, it remains to prove that the first term of the right-hand side of (63) is non-
positive to conclude. This result is expected since this property is consequence of the fact
that the linear operator 1

f(0)
DQ(f(0)) is non-positive self-adjoint in space L2(R3dv). However,

we directly prove this assertion as follows. We remark that the integrand of the first term
of the right-hand side of (63) can be rewritten as follows

2νP ζsφPE − φ2
PE = −(2νP ζs − φP )2E + 4ν2

P ζ
2
sE − 2νP ζsφPE.

Using this relation and the fact that
∫

R3 ζ
2
sE dζ = 1

2
, we find that the first term of the

right-hand side of (63) turns to
∫ 1/2

−1/2

1− κr
K

[

−
∫

R3

(2νP ζs − φP )2E dζ + 2ν2
P − 2ν2

P

]

dr

= − 1

K

∫ 1/2

−1/2

∫

R3

(1− κr)(2νP ζs − φP )2E dζdr, (67)
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which is non-positive.
Consequently, relations (66) and (67) imply that −MP is non-negative, which proves

point (ii) of theorem 2.1 and concludes the proof of this theorem.

3 Diffusion model for discontinuous curvature

On the basis of the result in the previous section, we discuss the junction where the curvature
changes discontinuously. Let the position at the junction be s = 0. We suppose that the
temperature of the wall is continuous at the junction, i.e., Tw|s=0− = Tw|s=0+ (but the
derivative of Tw can be discontinuous there).

The condition at the junction at the kinetic level is

f |s=0− = f |s=0+. (68)

Then it is easily seen that the fluxes at both sides are equal:

∫ 1/2

−1/2

∫

R3

vsf |s=0+dvdr =

∫ 1/2

−1/2

∫

R3

vsf |s=0−dvdr, (69)

Now the diffusion model (21)–(22) must be replaced by a transmission problem of the two
following diffusion equations:

∂tρ
α
(0) + ∂sj

α
(1) = 0, (70)

jα(1) =
√

TwMP∂sρ
α
(0) +

ρα(0)√
Tw

(MP +MT )∂sTw, (71)

where the superscript α is L for the one-sided problem with s ∈]−∞, 0[ and R for the one
with s ∈]0,+∞[. This problem requires two transmission conditions that are given in the
following theorem.

Theorem 3.1. With the following junction conditions

ρR(0)|s=0+ = ρL(0)|s=0−, jR(1)|s=0+ = jL(1)|s=0−, (72)

the solution (ρα(0), j
α
(1)) of (70)–(71) is only a first order approximation of the density and

mass flux (ρ, j) of f .
A junction condition that preserves the second order approximation (away from s = 0) is

ρR(0)|s=0+ = (1 + εd)ρL(0)|s=0−, jR(1)|s=0+ = jL(1)|s=0−, (73)

where d is defined through an auxiliary linear kinetic problem which is given in the proof of
the theorem.
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3.1 Proof of theorem 3.1

For clarity, here and in what follows, ( )± put on functions of s stands for their values at
s = 0+ and s = 0− respectively. For one-sided functions with superscript R or L, this
superscript will be omitted when no confusion is possible. For instance ρR(0)|s=0+ is denoted

by ρ+
(0) and ρL(0)|s=0− by ρ−(0).

For the junction condition (72), we define the Hilbert approximation fαε of f as in sec-
tion 2.2.3, where fα(0) is defined by (39) with ρ(0) = ρα(0) in left or right subdomains. In the
same way, the higher order terms are defined as in the previous sections. Then according
to (72), fαε can satisfy the continuity relation (68) at s = 0 only up to first order. Indeed,
despite the fact that fα(0) satisfies (68) due to (72), this is not possible for fα(1), because the

curvature has a discontinuity at s = 0 and thus φ+
P 6= φ−P and φ+

T 6= φ−T . Therefore the same
arguments as in section 2.2.3 give that ρα(0) and jα(1) are only first order approximations.

The junction condition (73) is then constructed so as to maintain a second order approx-
imation of f at s = 0, that is to say to ensure that fαε satisfies (68) up to second order.
Here, we simply follow the derivation of [1]. In our case, the derivation is simpler since we do
not have reflections between the two sides of the junction, but the varying curvature makes
the computations a bit complicated. Classically, we introduce a pair of correctors, say gα,
superimposed onto the Hilbert approximation fε, which is needed only in a small region of
size ε around s = 0:

gα(y, r,v, t)→ 0 as y → ±∞, α = R,L , (74)

where y = s/ε. Here and in what follows, when the symbols ± and α are present in the same
expression, this must be understood as + and R or − and L. Then fε is now defined by fLε
if s < 0 and fRε if s > 0 as

fαε = fα(0) + ε(fα(1) + gα(s/ε)) +O(ε2), α = R,L .

Note that as opposed to the classical Hilbert expansion, fα(0) here is allowed to depend on ε

(as it can be seen in the first relation of (73)). Inserting this expansion into (13) and (17)
and separating the different order of ε, we find that fα(k) are given by the same relations as
in sections 2.2.1, 2.2.2, and appendix B for k = 0, 1, 2, 3 and α = L,R. Moreover, we also
find a relation satisfied by gα up to the order O(ε) in which we expand around y = 0 all the
coefficients that depend on s = εy. This gives the following equations:

(1− κ±r)−1vs∂yg
α + vr∂rg

α + κ±(1− κ±r)−1vrvs∂vsg
α

− κ±(1− κ±r)−1v2
s∂vrg

α =
1

K0

ρ±(0)(M̄
α − gα), (75)

gα =



















+
2

πT 2
w

exp

(

− v
2

Tw

)∫

vr>0

vrgdv, for vr < 0 at r = +
1

2
,

− 2

πT 2
w

exp

(

− v
2

Tw

)∫

vr<0

vrgdv, for vr > 0 at r = −1

2
,

(76)
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where we recall that α and the symbol ± stand for L and |y=0− when y < 0 and for R and
|y=0+ when y > 0. Moreover, M̄α is a linearized Maxwellian associated with gα:

M̄α = f±(0)

[

ρ̄

ρ±(0)

+
2ūsvs + 2ūrvr

Tw
+

T̄

Tw

(

v2

Tw
− 3

2

)

]

, (77)

ρ̄ =

∫

gαdv, ρ±(0)ūs =

∫

vsg
αdv, ρ±(0)ūr =

∫

vrg
αdv, (78)

3

2
ρ±(0)T̄ =

∫

v2gαdv − 3

2
ρ̄Tw. (79)

Finally, note that in the expressions above, Tw takes its value at s = 0.
Now we want a solution gα of (75)–(79) such that it vanishes for large y (see (74)), and

also such as fαε can satisfy the continuity relation (68) up to second order. It is then sufficient
to impose

(fR(0) + ε(fR(1) + gR))|y=0+ = (fL(0) + ε(fL(1) + gL))|y=0−. (80)

By using the form of fα(1) given by (60), it can be seen that this relation can be simplified
by introducing the following new unknowns

ψL = gL/f−(0) and ψR = gR/f−(0) +
ρ+

(0) − ρ
−
(0)

ερ−(0)

. (81)

Then the boundary value problem for gα can be written under the following equivalent
problem for ψα

(1− κ±r)−1ζs∂yψ
α + ζr∂rψ

α + κ±(1− κ±r)−1ζrζs∂ζsψ
α

− κ±(1− κ±r)−1ζ2
s∂ζrψ

α =
1

K±
(M̄ψα − ψα), (82)

ψα =



















+
√
π

∫

ζr>0

ζrψ
αEdζ, for ζr < 0 at r = +

1

2
,

−
√
π

∫

ζr<0

ζrψ
αEdζ, for ζr > 0 at r = −1

2
,

(83)

ψL|y=0− = ψR|y=0+ + λ(r, ζ), (84)

where K± = (
√
Tw/ρ

±
(0))K0 and

λ = σ[φ+
P (∂s ln p(0))

+ + φ+
T (∂s lnTw)+]− φ−P (∂s ln p(0))

− − φ−T (∂s lnTw)−, (85)
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with σ = ρ+
(0)/ρ

−
(0). The function M̄ψα is a linearized Maxwellian associated with ψα:

M̄ψα = ω̄ + 2ν̄sζs + 2ν̄rζr + τ̄

(

ζ2 − 3

2

)

, (86)

ω̄ =

∫

ψαEdζ, ν̄s =

∫

ζsψ
αEdζ, ν̄r =

∫

ζrψ
αEdζ, (87)

3

2
τ̄ =

∫ (

ζ2 − 3

2

)

ψEdζ, (88)

Refer to (47) and (52), respectively, for the definitions of ζ and E.
This problem is a double-sided Milne problem for which we assume that there exists a

unique bounded solution. Moreover, we assume this solution has the following behaviour for
large y

ψL → 0 as y → −∞, (89)

ψR → d as y → +∞, (90)

where d is a constant. Since our goal is only a formal theory, we do not give a proof of
the existence of ψα. Some elements of the theory of double-sided Milne problems can be
found in [15] where this kind of problem appeared for the first time. Some formal arguments
related to our problem can be found in [1].

Consequently, we can find a pair of boundary layer correctors (gL, gR) such that (80) is
satisfied, but these correctors must also vanish for large y. From (81), (89) and (90), this
can be satisfied only if

ρ+
(0) − ρ

−
(0) = d× ερ−(0),

which is the first relation of the junction condition (73), and d is the (computable) limit
of ψR for large y. The second relation of (73) is simply suggested by the continuity of j
in (69). Consequently, with these relations, the pair (ρL(0), ρ

R
(0)) and the correctors (gL, gR)

allow us to define the Hilbert approximation fαε which is now by construction a second order
approximation of f . The fact that (ρL(0), ρ

R
(0)) and (jL(1), j

R
(1)) are second order approximations

of ρ and j away from a tiny zone around s = 0 follows from the same arguments as in
section 2.2.3. This concludes the proof of the theorem.

Remark 3.1. The boundary-value problem (82)–(90) is specified if the values ofK±, κ±, and
λ are given: in fact, however, the linearity of the problem and the form of the inhomogeneous
term λ allow us to decrease the number of parameters by introducing the followings:

ψ = σ[ψP+(∂s ln p(0))
+ + ψT+(∂s lnTw)+]− ψP−(∂s ln p(0))

− − ψT−(∂s lnTw)−, (91)

d = σ[dP+(∂s ln p(0))
+ + dT+(∂s lnTw)+]− dP−(∂s ln p(0))

− − dT−(∂s lnTw)−. (92)

By substituting (91) and (92) into (82)–(90), we can split the problem into four problems
for ψq (q = P+, T+, P−, and T−), the explicit expressions are omitted here because they
are straightforward. Then, dq is a function of only four parameters K± and κ±. Moreover,
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dq(K
+, K−, κ±) − dq(K

−, K−, κ±) = O(ε) because ρ+
(0) − ρ−(0) = O(ε) from (73) and thus

K+−K− = O(ε). Accordingly, since d is multiplied by ε in (73), the condition preserves the
approximation up to second order in ε even if we replace dq(K

+, K−, κ±) by dq(K
−, K−, κ±)

(or by dq(K
+, K+, κ±)). Therefore, in the actual application in the following, we regard dq

as a function of three parameters K, κ±, i.e., dq = dq(K,κ
±).

3.2 Approximation of d

Since solving the two dimensional double sided Milne problem (82)–(90) is not an easy task,
we shall use a formula for approximated value of d, following the idea of [1]. This idea
already appeared in [14] and [15]; see also a review on this problem and further references
in [17]. The formula relies on the following lemma and assumption:

Lemma 3.1. For problem (82)–(90), we have

∫ 1/2

−1/2

∫

ζs(−φαP (r,−ζ; s = 0±))ψαEdζdr = C±, for y ≷ 0, (93)

where C− and C+ are constants.

Assumption 3.1. For boundary-value problem (82)–(90), ψα at y = 0 is supposed to be
such that

ψ|αy=0± = b±, b± = ±2
√
π

∫ 1/2

−1/2

∫

ζs≷0

ζsψ
α|y=0±Edζdr, for ζs ≶ 0, (94)

where b+ and b− are constants.

The proof of lemma 3.1 is a consequence of the boundedness of ψα. It can be found in a
straightforward way by referring to Appendix B of [1] and is omitted here. Assumption 3.1
gives an approximation of the outgoing distributions ψα at the junction s = 0 by equilibrium
states, which is often sufficient in many kinetic boundary layer computations.

Now if we perform the integration in (94) by using (84), it turns out that b+ = b− := b.
By computing C− at y = 0− by using (84) with ψα = b, we find

C− = bM−
P −

∫ 1/2

−1/2

∫

ζs<0

ζsλφP (r,−ζ; s = 0−)Edζdr.

On the other hand, we have C− = 0 from the condition (89) at y = −∞. Therefore

b = (M−
P )−1

∫ 1/2

−1/2

∫

ζs<0

ζsλφP (r,−ζ; s = 0−)Edζdr. (95)

Similarly, computations of C+ at y = 0+ and y =∞ give us

d = b+ (M+
P )−1

∫ 1/2

−1/2

∫

ζs>0

ζsλφP (r,−ζ; s = 0+)Edζdr. (96)

20



From (95) and (96), we obtain the formula for d:

d =

∫ 1/2

−1/2

∫

ζs>0

ζsλ
[

(M+
P )−1φP (r,−ζ; s = 0+)− (M−

P )−1φP (r,−ζ; s = 0−)
]

Edζdr. (97)

By inserting the explicit expression of λ (85) and the form of (92) into this formula, we can
also obtain the formulae for dq (q = P+, T+, P−, and T−).

4 Numerical approximation of the diffusion model

In this section we present the numerical approximation which will be used for the applica-
tions in the following section. First we will show the discretization scheme for the diffusion
model (21)–(22), then we will give a brief comment on how we calculate the numerical values
of the diffusion coefficients MP and MT .

4.1 Numerical scheme for the diffusion model

In the applications in the following section, we will consider the steady state, i.e., ∂/∂t ≡ 0.
In that case, the diffusion model reduces to

√

TwMP∂sρ+
ρ√
Tw

(MP +MT ) ∂sTw = j, (98)

where j is a constant (even in case of a discontinuous curvature, j is constant thoughout
the entire channel due to the continuity of j imposed by the second connection condition of
(73)). In this section, the subscripts (0) attached to ρ and (1) to j, which indicate the order
of expansion, are dropped to avoid complexity.

To obtain the numerical solution of (98), space variable s is discretized with grid points
s(i) = i∆s for i = 0, 1, . . . , imax. Values of the functions on the grid point s(i) are indicated
by the subscript (i) such as ρ(i) = ρ(s(i)) (which should not be confused with the subscript
for the expansion in the previous sections). We employ an iterative process to overcome
the nonlinearity of (98). That is, the numerical solution ρ(i) is obtained as the limit of the

sequence ρ
(n)
(i) (n = 0, 1, . . . , ) calculated by the the following scheme:

√

Tw(i)M
(n−1)
P (i) Dρ

(n)
(i) +

ρ
(n)
(i)

√

Tw(i)

(

M
(n−1)
P (i) +M

(n−1)
T (i)

)

(∂sTw)(i) = j, (99)

where

M
(n−1)
P (i) = MP (

√

Tw(i)

ρ
(n−1)
(i)

K0, κ(i)), M
(n−1)
T (i) = MT (

√

Tw(i)

ρ
(n−1)
(i)

K0, κ(i)), (100)
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and

Dρ
(n)
(i) =



















ρ
(n)
(i) − ρ

(n)
(i−1)

∆s
, or

3ρ
(n)
(i) − 4ρ

(n)
(i−1) + ρ

(n)
(i−2)

2∆s

(101)

The upper approximation is used for the points next to the boundary and the junction, and
the lower is taken otherwise.

At junctions, we have two limiting values of physical quantities such as ρ, κ, and derivative
of Tw. We let s = s(m) be the curvilinear abscissae of the junction, and denote by ( )±(m) the
physical quantities at the limit s = s(m)±. We adopt the following scheme for the junction:

ρ
+(n)
(m) = ρ

−(n)
(m) (1 + εd

(n−1)
(m) ), (102)

where d
(n)
(m) is computed in terms of the discretized version of (92):

d
(n)
(m) = d

(n)
P+(m)∇p

+(n)
(m) + d

(n)
T+(m)∇T

+
w(m) − d

(n)
P−(m)∇p

−(n)
(m) − d

(n)
T−(m)∇T

−
w(m), (103)

with

d
(n)
q(m) = dq(

√

Tw(m)

ρ
−(n)
(m)

K0, κ
±
(m)), (q = P+, T+, P−, and T−),

and

∇T±w(m) = ∓ 1

Tw(m)

3Tw(m) − 4Tw(m±1) + Tw(m±2)

2∆s
, (104)

∇p±(n)
(m) = ∇T±w(m) ∓

1

ρ
±(n)
(m)

3ρ
±(n)
(m) − 4ρ

(n)
(m±1) + ρ

(n)
(m±2)

2∆s
. (105)

If an analytical form of Tw is given, ∇T±w(m) can be replaced by the analytical expression of

∂s lnTw|s=s(m)± . Relation (105) gives an approximation of ∂s ln p = ∂s lnT + ∂s ln ρ. Note
that (103) is the discretized expression of (92) in which σ is replaced by unity: this does not

affect the approximation (102) up to the order of ε because σ = ρ+

ρ−
= 1 +O(ε). The solution

process starts by giving some values to ρ
(0)
(i) and j. When ρ

(n−1)
(i) is known, ρ

(n)
(i) is calculated

by (99) with the boundary condition at i = 0. The process is terminated when the results
of two successive iterations agree within a specified tolerance, typically of order 10−10. We
note that during this iteration process j is never updated. The more detail treatment of j
and the boundary condition is dependent on the physical situation. It will be mentioned in
section 5.

Incidentally, we have also tested an alternative scheme which excludes the iteration pro-
cess. More precisely, we replaced M

(n−1)
P (i) and M

(n−1)
T (i) in (99) by the following M̄

(n)
P (i−1) and

22



M̄
(n)
T (i−1):

M̄
(n)
P (i−1) = MP (

√

Tw(i)

ρ
(n)
(i−1)

K0, κ(i)), M̄
(n)
T (i−1) = MT (

√

Tw(i)

ρ
(n)
(i−1)

K0, κ(i)). (106)

Then, ρ
(n)
(i) can be calculated explicitly only with the boundary condition at i = 0 (without

iteration). We compared the results with the two different methods (iterative and non-
iterative methods) in detail. As a result, we found that the two methods converge to the
same solution as the grid is refined. However, the iterative method converges faster and
seems more accurate. Therefore we employ the iterative method throughout this paper.

4.2 Numerical computation of the transport coefficients

When we implement the numerical computation of the diffusion model (98), the numerical
data of the coefficients MP and MT are necessary. In the present work, we construct nu-
merical databases of these coefficients as functions of K and κ (see the end of section 2.2.2)
in the following way. First, we solve the auxiliary problem (55)–(58) numerically for many
sets of K and κ; the number of sets for each MJ (J = P, T ) is 732 in 0.02 ≤ K ≤ 1000 and
0.0001 ≤ κ ≤ 1.9 (the data for the special case of κ = 0 are taken from [36, 37]). We then
interpolate these discrete data by means of the cubic spline method to make the continuous
values of MP and MT available.

We employ a finite-difference method for the numerical analysis of the problem (55)–
(58). One technical difficulty in the finite-difference analysis is caused by the fact that the
distribution function φJ around r = 1/2 has discontinuities in the velocity space because
the boundary at r = 1/2 is convex (the distribution function around convex bodies gener-
ally contains discontinuities [40]). To capture the discontinuities accurately, we adopt the
technique developed by Sugimoto and Sone [43] for their study of strong evaporation from
cylindrical condensed phase. Since the whole procedure of the present finite-difference analy-
sis is a straightforward application of that described in [43], we omit the detailed description
of the scheme in the present paper, and only show the results of the analysis: Figures 3 and
4 are the three-dimensional plots of −MP (MP is non-positive, see point (ii) of theorem 2.1)
and MT as functions of K and κ.

Incidentally, we have also performed the asymptotic analyses for small and large Knudsen
numbers, in order to complement the data for K < 0.02 and K > 1000 where the direct
numerical analysis is not efficient. We omit the description of these analyses, however,
because the numerical data obtained by the finite-difference analysis are sufficient for the
application in the present paper.

If we use the connection condition at junctions up to the order of ε (see (73)), we also
need a database for the jump coefficients dq with q = P+, T+, P−, and T− (or d, see (92)).
However, since dq is a function of three parameters K and κ± (see Remark 3.1), it is not
an easy task to construct a database of it for whole range of the parameters. Thus, in the
present work, we pick up a few sets of κ± which are necessary for the applications in the
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following section, and evaluate dq by means of the formula (97) (with (85) and (92)) for 30
values of K in 0.02 ≤ K ≤ 1000 for each set of κ±. By interpolating those values with the
cubic spline method, we make the database of dq as a continuous function of K.

5 Application : simulation of two different devices

In this section, we apply the diffusion model and connection conditions to specific problems
and show some numerical results. In section 5.1, we consider a ring-shaped channel, where a
circulating flow is induced. To validate the present diffusion model, we compare the flux of
the induced flows—as well as the macroscopic quantities—obtained by the diffusion model,
with those by the direct numerical analysis of the BGK equation (obtained by a method
presented by the first three authors of this paper in [2]). Then, in section 5.2, we investigate
the pumping effect of the circulating flow created in a cascade system made of a number of
basic units, each of which is the part of the ring-shaped channel. We examine the effect of
the parameters, such as the curvature, Knudsen number, and the number of units, on the
performance of the pump.

5.1 Circulating flow

We consider a gas in a (two-dimensional) ring-shaped channel with a uniform width, con-
sisting of two straight channels and two semi-circular channels. A schematic of the problem
is shown in Figure 5 (top), where s is the (dimensional) coordinate along the median line,
D is the width of the channel, L is the length of the straight segments, and Rc is the radius
of the median line of the semi-circular segments. The temperature distribution along the
channel walls, which is a function of (dimensional) s (see section 2.1), is shown in Figure 5
(bottom), where TL is the temperature of the walls at positions A and C, and TH (> TL) is
that at positions B and D. We investigate the steady behavior of the gas in the circuit on the
basis of the diffusion model, as well as the direct numerical analysis of the BGK equation.

To apply the diffusion model to this problem, we specify some notations used in section 2.
We define the length scale along the median line of the channel as Ls := L + πRc, which
is relevant because the temperature of the walls indeed varies with this length scale (note
that the curvature is constant except at the positions A, B, C, and D). We take TL and the
average density over the whole ring ρav as the reference temperature T0 and reference density
ρ0, respectively.

If we formulate the problem by means of the dimensionless variables in (10) and (11),
we find that it is characterized by the four dimensionless parameters: Knudsen number K0

[= (2RTL)1/2/(DAcρav)]; (dimensionless) curvature of the semicircular segments κ (= D/Rc);
the ratio of the straight segments to the whole length of the median line B (= L/Ls); and
the temperature ratio TH/TL. It should be noted that the small parameter ε (= D/Ls) is
not independent of above parameters; a simple calculation shows that the following relation
holds:

ε = κ(1−B)/π. (107)
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We briefly give some information supplemental to section 4.1 about the numerical scheme
for the diffusion model. Because the geometry is symmetric with respect to the center O
of the ring, we can restrict the computational space to 0 ≤ s ≤ 1 (in what follows, s
indicates the dimensionless abscissa along the median line of the channel normalized by Ls),
by imposing the periodic boundary condition at s = 0 and s = 1. We seek the solution to
(98) that satisfies the periodic boundary condition in the following way. First, we choose an
arbitrary value of j and solve (98) numerically by means of the iterative method described
in section 4.1 (here and in what follows in this section, subscripts (0) attached to ρ and
(1) attached to j in the diffusion equation (21)–(22) are dropped). The obtained solution
generally does not satisfy the periodic condition, i.e., ρ(s = 0) 6= ρ(s = 1). Thus we try
again with a value of j slightly different from the previous one; the new value of j is sought
so that the difference ∆ρ = |ρ(s = 0)−ρ(s = 1)| becomes smaller. We repeat this procedure
until ∆ρ drops under a certain value, typically 10−10. In addition to the periodic condition,
we have the normalizing condition for ρ, i.e.,

∫ 1

0
ρ ds = 1. This condition is numerically

enforced by the following method: for the first step of the iteration described in section 4.1,
we choose an arbitrary value of ρ(s = 0), then, we multiply the obtained ρ(0 ≤ s ≤ 1) by a
constant so that the normalizing condition is satisfied. From the next step of the iteration,
we use the value of ρ(s = 0) of the previous step.

In Figure 6, we show the distribution of the dimensionless density ρ, temperature T ,
and pressure p (= ρT ), of the gas, averaged over the cross-section, for the following set of
parameters: K0 = 0.5, B = 0.5, TH/TL = 3, and κ = 1 (a), 0.5 (b), and 0.2(c). In the figure,
the corresponding results of the direct numerical analysis of the BGK equation [2] are also
shown for comparison. According to relation (107), the corresponding values of ε to κ = 1,
0.5, and 0.2 are 0.159, 0.0796, and 0.0318, respectively. Therefore, the diffusion model, which
is derived under the assumption ε � 1, gives better approximation in Figure 6(c) than in
Figure 6(a). In every case, however, the diffusion model shows sufficient agreement with the
results of the direct numerical analysis.

Let us denote by M the dimensionless mass-flow rate of the gas across one section (per
unit time and unit thickness in the x3 direction):

M(s) =

∫ 1/2

−1/2

∫

R3

vsfdvdr. (108)

From (20), we see that M(s) = εj(s) which is approximated by εj(1) with the diffusion
model. In the present problem, the circulating flow is induced in the clockwise direction.
Since the coordinate s is taken in the counterclockwise direction (Figure 5), the mass-flow
rateM is negative. We show in Figure 7 the mass-flow rate obtained by the diffusion model
for different Knudsen numbers and curvatures in the case of B = 0.5 and TH/TL = 3. More
specifically, −M versus K0 is plotted by � in the figure, for κ = 1, 0.5 and 0.2. When
the curvature is large or the channel is thick (κ = 1), the mass-flow rate is large, and as
the curvature decreases (or the channel becomes thinner), the mass-flow rate decreases. In
the figure, we also plot the corresponding mass-flow rate obtained by the direct numerical
analysis of the BGK equation [2]. The result of the diffusion model differs from that of
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the direct numerical analysis when κ is large (or ε is large) as in Figure 6, but two results
approach each other asymptotically with the decrease of κ (or ε).

Although the mass-flow rate in the steady state is independent of s theoretically, its
numerical values show some fluctuations due to the numerical error in the direct numerical
analysis. The position of the error bars shown in Figure 7 indicates the value averaged over
0 ≤ s ≤ 1, and the length of the vertical error bar indicates the standard deviation from the
average, which is an estimation of the numerical error.

5.2 Pumping effect

In this section, we consider a cascade system as shown in Figure 8 to investigate the pumping
effect of the circulating flow examined in the previous section. The system consists of two
kinds of basic units jointed alternately, one is the part ABC of Figure 5 (top) and the other is
the mirror image of the part CDA with respect to the line CD. We let s be the dimensionless
coordinate normalized by Ls along the median line of the channel, whose origin is located
at the upper end in Figure 8. Accordingly, the lower end is located at s = N when N basic
units are jointed.

We first consider the case where both ends of the channel are closed by diffusely reflecting
walls kept at temperature TL. In this case, a pressure difference at two ends is expected
instead of the circulating flow. We compare the steady pressure distribution obtained by
the diffusion model with that obtained by the direct numerical analysis of the full BGK
equation, in order to prove the validity of the diffusion model.

If we take the same quantities for the reference values as in the previous subsection, and
formulate the problem by means of the dimensionless variables given in (10) and (11), we
also have the same dimensionless parameters that should be assigned to specify the physical
situation: K0, κ, B, and TH/TL, supplemented with N in this problem.

We mention the boundary conditions that should be imposed in the diffusion model for
the present problem. Since both ends are closed, we have j = 0 at s = 0 and s = N . From
this condition, we can easily see that j ≡ 0 throughout the channel because we consider the
steady state (see (98) and the sentence just after). In addition, we have the normalizing

condition
∫ N

0
ρ ds = 1. The solution procedure for the diffusion model here is simpler than

that described in the previous subsection, because now we know the value of j (= 0); it
suffices to implement the iteration procedure as described in section 4.1 with making the
normalizing condition satisfied in each iteration step.

In Figs. 9 and 10 we show the steady pressure distribution along the channel for κ = 1
and 0.2, respectively, in the case of K0 = 0.5, B = 0.5, TH/TL = 3. The results for N = 1
(a), 2 (b), 4 (c), and 8 (d) with κ = 1 are shown in Figure 9, and the results for N = 1 (a), 2
(b), and 4 (c) with κ = 0.2 are shown in Figure 10. In each figure, the corresponding results
by the direct numerical analysis of the BGK equation are also plotted by ◦ for comparison.
The results show very good agreement in the case of κ = 0.2. However, the discrepancy of
two results is rather large in the case of κ = 1. This is again because from relation (107)
the larger κ is, the larger ε is and accordingly the less accurate the approximation of the
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diffusion model is. From these results, it is seen that κ must be small to obtain an accurate
approximation by the diffusion model. We may expect, however, that the diffusion model
does provide sufficient information, even for the case of κ = 1, when we investigate the
basic features of the device, such as dependence of the pressure difference on the physical
parameters. Therefore we proceed to further investigation of the pumping effect of the
cascade system by means of the diffusion model.

From now on, we slightly change the problem for convenience in examining the pressure
difference at two ends: we consider the case where the end at s = N is closed by diffusely
reflecting walls kept at temperature TL, and the end at s = 0 is open and kept at pressure
pe. Correspondingly, we choose ρe = pe/(RTL) (i.e. the density at s = 0) as the reference
density rather than the average density over the channel. In this case, we have the boundary
condition ρ = 1 at s = 0, instead of the normalizing condition and we can directly implement
the iterative procedure described in section 4.1.

Some results based on the diffusion model for the pressure distribution along the channel
are shown in Figs. 11 and 12. Figure 11 shows the case of N = 1: (a) shows the dependence
of the results on K0; (b) on κ; (c) on TH/TL; and (d) on B. From Figure 11(a), we see
that the pressure difference is the largest at some intermediate Knudsen number around
K0 = 2. Figures 11(b) and (c) tell us that that the larger curvature provides larger pressure
difference, and so does the larger temperature ratio. In contrast, the length ratio B of
the straight part and the semicircular part does not have significant effect on the pressure
difference (Figure 11(d)). Figure 12 shows the case of N = 100 for three different values of
the curvature κ = 1 (a), 0.5 (b), and 0.2 (c). In each figure, the results of three different
values of Knudsen number K0 are shown. It seems, from the figure, that there exists an
optimal value of K0 for gaining a large pressure difference, and the value is dependent on
the curvature.

In order to examine the dependence of the pressure difference on the Knudsen number in
more detail, we have carried out the computations for many values of K0 each with N = 100,
the results of which are shown in Figure 13. In this figure, following the idea of [41] (see also
[5, 3]), p(s + 1)/p(s) and K(s + 1) are plotted in the vertical axis as functions of the local
Knudsen number K(s) (see (53)) for integer values of s. The curve is obtained as the union
of several overlapping pieces of curves obtained for various values of K0 each with N = 100.
Moreover, for each position s, since p is discontinuous, the right value p(s+) is chosen for
calculations of p(s + 1)/p(s). From the figure, we see that there is a minimum value of the
pressure ratio at a value of K(·), and the value (≈ 0.97) is almost the same for different
values of κ; in other words, the degree of pressure difference we can attain is almost the same
for different κ if we use some appropriate region of K(·), although, as is seen from Figure 7,
the flux of the circulating flow induced in the ring-shaped channel is smaller for small κ (see
also [3]).

Even if the curves in Figure 13 have been obtained with a 100 unit device only, it is
observed that the results obtained with a larger number of units lie on the same curves (see
also [41]). Consequently these curves can be used to estimate the pressure ratio when two
reservoirs are connected by the cascade system composed of an arbitrarily large number (say
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N ) of the basic units in the following way (cf. [41, 5, 3]). Let s = 0 be the entrance of the high-
pressure side. If we know the local Knudsen number at the entrance K(0), we can read the
values of pairs [p(1)/p(0), K(1)] from the figure, Then, with the aid of the K(1), we can read
the next pair [p(2)/p(1), K(2)]. By continuing this procedure until we know p(N )/p(N −1),
we can know the series of values p(1)/p(0), p(2)/p(1), . . . , p(N )/p(N − 1), and then the
pressure ratio of the two sides p(N )/p(0) can be obtained by simple multiplications of them.

6 Conclusion

We have presented a one-dimensional fluid model for a rarefied gas flow produced—as a result
of the effect of thermal creep as well as that of pressure difference—in a two-dimensional
curved channel. This model is a non-linear convection-diffusion equation that relies on
a diffusion approximation of a kinetic model. The transport coefficients are numerically
obtained from the geometry and the characteristics of the flow.

By using a numerical approximation of our fluid model, it has been shown that it com-
pares very well with the original kinetic model. Moreover, it allows to very fast simulate a
pumping device made of a very long cascade system, as opposed to full kinetic simulations.
Consequently, we feel that this model may be very useful for further studies of this Knudsen
compressor. In particular, since an intensive optimization study is necessary to determine
the optimal parameters of our device so as to maximize the compression ratio, the numerical
computation needed for such a study can be efficiently made with our model.

We also mention that this new device is the core of a large project in which we also
have investigated efficient numerical solving of the full kinetic equation (see [2]) and also the
applicability of other kind of fluid approximations (see [23]).

For a practical application of our device, it should be equally (or even more) impor-
tant to use a pipe instead of a plane channel. The behavior of the device may be slightly
different in this case since, as it has been noted in [5], the pipe resistance to the pressure
is larger than that of a plane channel. This results in a device with a weaker flow, but a
stronger compression ratio. For such a system, the use of a macroscopic model is even more
important, since simulations of the kinetic equation would require heavy three-dimensional
computations. For the derivation of the fluid model related to this case, we point out that
the construction of the database of the transport coefficients will be more complex since the
auxiliary problems will have to be solved on a two-dimensional circular section instead of
one-dimensional section only. This will be the subject of a future work.
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A Macroscopic quantities of Hilbert expansion

Here we give the expressions of the macroscopic quantities of the Hilbert expansion by means
of f(0) and f(1):

ρ(0) =

∫

f(0)dv, (109)

ρ(0)us(0) =

∫

vsf(0)dv, (110)

ρ(0)ur(0) =

∫

vrf(0)dv, (111)

3

2
ρ(0)T(0) =

∫

(v − u(0))
2f(0)dv, (112)

ρ(1) =

∫

f(1)dv, (113)

ρ(0)us(1) =

∫

vsf(1)dv − ρ(1)us(0), (114)

ρ(0)ur(1) =

∫

vrf(1)dv − ρ(1)ur(0), (115)

3

2
ρ(0)T(1) =

∫

(v − u(0))
2f(1)dv −

3

2
ρ(1)T(0), (116)

B Computation of f(2) and f(3)

From lemma 2.4, the existence of the solutions f(2) and f(3) of problems (34) and (35) is
proved if the right-hand sides of these equations satisfy the solvability condition (43).

For problem (34), this condition is nothing but the diffusion equation (21)–(22) which is
satisfied by ρ(0) and j(1).

For problem (35) the solvability condition (43) must be satisfied by A2f(1) + A1f(2),
since the velocity integral of the derivatives of Q vanish. This is mainly obtained by parity
arguments. Since f(1) is odd w.r.t. vs, so is A2f(1) (see (30)), and hence its velocity integral
vanishes too. Finally, for A1f(2), it is sufficient to prove that f(2) is even, since A1 inverts
the parity (see (29)). This can be deduced from (34): indeed since f(1) is odd, then a simple
calculation shows that D2Q(f(0))(f(1), f(1)) is zero, while A2f(0) and A1f(1) are readily seen
to be even. Then point (ii) of lemma 2.4 implies that f(2) is even, hence A1f(2) too.

Note that this parity of f(2) implies that j(2) is necessarily zero, which was used in
section 2.2.3.
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Figure 1: Two-dimensional curved channel Ω and the curvilinear coordinate system.
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Figure 2: Junction with discontinuous curvature.
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Figure 3: Plot of −MP for 0.02 ≤ K ≤ 1000 and 0 ≤ κ ≤ 1.9. All the data are obtained by
means of the present finite-difference analysis except for those with κ = 0 which are taken
from Ref. [37].
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Figure 4: Plot of MT for 0.02 ≤ K ≤ 1000 and 0 ≤ κ ≤ 1.9. See the caption of Figure 3.
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Figure 5: Geometry (top) and temperature distribution (bottom) of the ring-shaped channel.
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Figure 6: The distribution of the dimensionless density ρ, temperature T , and pressure p
(= ρT ) of the gas, averaged over the cross-section, in the case of ring-shaped geometry.
K0 = 0.5, B = 0.5, TH/TL = 3, and κ = 1 (a), 0.5 (b), and 0.2 (c). The solid line indicates
the results by the diffusion model (21)–(22) with the connection condition (73), and the
symbol ◦ the corresponding results by the direct numerical analysis of the BGK equation
[2].

39



Figure 7: The mass-flow rate −M versus the global Knudsen number K0 for three different
curvatures κ = 1, 0.5, and 0.2, in the case of B = 0.5 and TH/TL = 3. � indicates −M
obtained by the diffusion model (21)–(22) with connection condition (73). The position of
the error bar indicates the corresponding mass-flow rate obtained by the direct numerical
analysis of the BGK equation [2], averaged along the channel; the length of the vertical error
bar indicates the standard deviation from the average.
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Figure 8: Geometry of the cascade system.
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Figure 9: Dimensionless pressure p versus s for N = 1 (a), 2 (b), 4 (c), and 8 (d), in the case
of κ = 1, K0 = 0.5, B = 0.5, and TH/TL = 3. The solid line indicates the result obtained
by the diffusion model (21)–(22) with connection condition (73), and ◦ indicates the results
obtained by the direct numerical analysis of the BGK equation [2].
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Figure 10: Steady pressure distribution along the channel for N = 1 (a), 2 (b), 4 (c), in the
case κ = 0.2, K0 = 0.5, B = 0.5, and TH/TL = 3. See the caption of Figure 9.
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Figure 11: Dimensionless pressure p versus s for N = 1, in the case of (a) κ = 0.5, B = 0.5,
TH/TL = 2, and K0 = 0.05, 0.1, 0.5, 1, 2, 5, and 10; (b) K0 = 1, B = 0.5, TH/TL = 2, and
κ = 1, 0.5, and 0.2; (c) κ = 0.5, K0 = 1, B = 0.5, and TH/TL = 1.5, 2, 3, and 5; and (d)
κ = 0.5, K0 = 1, TH/TL = 2, and B = 0.8, 0.6, 0.5, 0.4, and 0.2. The dashed line used for
some cases is just for legibility.
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Figure 12: Dimensionless pressure p versus s in the case of N = 100. The results for
K0 = 0.1, 0.5, and 1 are shown in each figure; B = 0.5, TH/TL = 2, and κ = 1 (a), 0.5 (b),
and 0.2 (c).
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Figure 13: p(· +1)/p(·) versus K(·) together with K(· +1) versus K(·) in the case of B = 0.5,
TH/TL = 2, and κ = 1 (a), 0.5 (b), and 0.2 (c).
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