
Dissertation

presented to obtain the
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Introduction

The numerical simulation of particle systems as described by the kinetic theory is used in
various fields: let us mention, for instance, rarefied gas dynamics, neutron transport, and
radiative transfer. Many researchers in numerical analysis and scientific computing have
been working on these fields for a long time. Nowadays, the kinetic theory is applied to
new fields as population dynamics or vehicular traffic: these fields also require researches in
numerical simulation.

The main difficulty presented by these simulation problems is the large complexity of the
underlying mathematical models: they are often integro-differential equations with a large
number of variables. For instance, many problems in the kinetic theory of gases contain
one time variable, three space variables, and three velocity variables, while there are even
more complex cases (polyatomic molecules, multi-species gases, variable size particles, etc.).
Furthermore, there is another kind of difficulty: kinetic problems often contain very different
time and space scales. For instance, for photon transport in a heterogenous medium, the time
scale may have large variations depending on the opacity of the medium. In the equations,
these different scales generate stiff terms that induce very strong constraints on the numerical
parameters.

Such difficulties require to design efficient numerical methods so that modern comput-
ers can make accurate simulations for a reasonable computational time. Of course, many
approaches have been proposed: generally speaking, they are all based on techniques of
acceleration of the kinetic computations by suitable algorithms, or on simplifications of the
physical model. It is important to mention that all these approaches are linked together:
many of them can make use of an improvement of some others. Let us give below a non
exhaustive list of these different approaches.

Generally, the simplification of a kinetic model is based on the following idea: in regimes
where there are numerous collisions, the system is close to an equilibrium state, and the
kinetic model can be replaced by a macroscopic model, which is much simpler to solve
numerically. This is how are obtained the classical equations of fluid mechanics or the
diffusion equations of linear transport and radiative transfer. There are also some methods
to extend the validity domain of the macroscopic models to the regions where the system
is less close to the equilibrium (higher order asymptotic models, moment models, boundary
layer corrections). This is still a very active field, in particular with the recent researches in
microfluidics or in plasma physics.

When there are different scales in different zones of the computational domain, it is
natural to speed up the simulation by using the kinetic and macroscopic models in their
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respective validity domains. The difficulty is here to identify the different domains, and to
find a way to correctly match the two descriptions. If the transition between the two domains
is not localized enough, either the macroscopic model is required to be extended beyond the
equilibrium regime (this has been mentioned above), or the kinetic solving must be efficient
enough in near equilibrium zones.

This last constraint is taken into account by the “Asymptotic Preserving” (AP) scheme
theory. The goal is here to design methods that are stable and accurate, uniformly with re-
spect to the scaling parameters of the problem. To obtain the uniform stability, in particular
the time stability, an essential tool is the time implicit discretization. This is a technique
which is known to somehow “filter” the fast time variations, and which is used, for instance,
for equations with stiff source terms (like in case of numerous collisions) or for diffusion
equations (where the stiffness is due to high frequencies). However, this technique requires
to solve very large linear or nonlinear systems. This may be why it was used only recently
in kinetic theory, while it has been used for a long time in Computational Fluid Dynamics,
for instance. Due to recent advances in matrix numerical analysis (sparse linear solvers,
Newton-Krylov methods, etc.), it is now possible to efficiently make use of these implicit
techniques.

Finally, we mention the problem of efficient algorithms for collision computations. This
is mainly important for nonlinear problems like the Boltzmann equation where the particles
collide each others. The goal is then to obtain algorithms that are fast (their complexity
should be proportional to the number of particles) and that preserve the physical properties
(like conservation and entropy properties). Various methods, that are still the subject of
investigations, give more or less satisfying results: probabilistic methods like the Direct
Simulation Monte Carlo, or deterministic methods like multigrid or spectral approaches.
Another possibility, much simpler, consists in modifying the collision operator, generally by
using a relaxation model.

This report gathers the results I have obtained, in collaboration with various people, in
the different fields mentioned above. Almost all those works contain new simulation methods
for the kinetic theory, and their potentialities are illustrated by various numerical tests.
The proposed approximations are sometimes justified by mathematical results (stability,
preservation of conservation and entropy properties), but the rigorous mathematical analysis
of these methods is a wide project that is still to be investigated. Chapter 1 is devoted to
new implicit schemes for the Landau equation. This kinetic equation contains a diffusion-
like source term that induced a spectral stiffness. We study the possibility to design implicit
schemes that yield fast and conservative methods. In chapter 2, we present two new coupling
methods in which the idea is to avoid the interface boundary condition. The second method
is a rather general multiscale approach which takes the kinetic description into account so
as to locally refine a macroscopic model. This idea is also used in chapter 3 to develop
AP schemes: it allows to discretize differently the different scales of the problem to obtain
very efficient schemes. Chapter 4 gathers several results for the numerical simulation of
a new micropump system. We have proposed different techniques (deterministic kinetic
simulations, macroscopic modeling by a diffusion approximation) and have used existing
techniques (DSMC, compressible Navier-Stokes equations). Finally, chapter 5 contains more
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independent works devoted to some simplified models like the BGK model (construction and
discretization) and the SHE model (numerical comparisons).

To close this introduction, I specify a few facts about the presentation of this report.
Numerical citations like [1], [2], etc., refer to the list of my publications given page 63. The
other references like [CBKM00] refer to the general bibliography given page 65. To preserve
a kind of homogeneity, the notations used in this document are sometimes different from
these used in the corresponding articles. Finally, each section ends with a few numerical
results given to illustrate the properties of the method, but note that the corresponding
articles contain various other results.





Chapter 1

Time implicit schemes for the Landau
equation [1, 2, 3]

The Fokker-Planck-Landau equation (FPL) is a kinetic equation that models particle sys-
tems in plasma physics. The main numerical difficulty of this equation is that the collision
operator contains diffusion terms with respect to the velocity variable. Consequently, the
space homogeneous FPL equation (which is considered in the standard time splitting scheme,
for instance) is nothing but a convection-diffusion equation with non-local coefficients. Any
time discretization of this equation must then face the classical problem of the numerical sta-
bility of approximations of diffusion equations. Usually, this kind of equations is discretized
with a time implicit scheme, which remove the stiffness induced by the diffusion. However,
because of the complexity of the FPL equation, using implicit schemes is rather difficult,
and has been studied only quite recently.

In this chapter, we summarize the results obtained in collaboration with M. Lemou and
published in the SIAM Journal of Scientific Computing in 2005 [2] (see also Note [1] and
a slightly extended version in proceedings [3]). In section 1.1, we propose several new time
numerical schemes for which we try to combine the implicit time discretization with the
following two properties

• preservation of the conservation properties: we guarantee these properties, even if
our schemes contain linear systems that are solved by iterative linear solvers only
approximatively (section 1.2);

• fast algorithms: by using the entropy property, we construct symmetric methods that
allow to use fast linear solvers like the Conjugate Gradient.

These schemes are applied to the isotropic FPL equation in section 1.3. Finally, we give
some perspectives for the three-dimensional case in section 1.4.

Note that we do not consider here the problem of the velocity discretization: we use
existing methods, even if this subject is worth to be developed.



10 1. Time implicit schemes for the Landau equation

1.1 Time implicit schemes for the space homogeneous

Landau equation

The space homogeneous FPL equation is written in the Landau form

∂tf(t, v) = Q(f)(v) = ∇ ·
∫

Rd

Φ(v − v∗) (f(v∗)∇f(v) − f(v)∇f(v∗)) dv∗, (1.1)

where f is the distribution function of particle velocities, that depends on time t and velocity
v ∈ R

d (d = 2, 3). The kernel Φ(w) is the following d × d matrix:

Φ(w) = C|w|γ+2S(w) = C|w|γ+2

(

Id −
w ⊗ w

|w|2
)

.

In this expression, C is a positive constant and γ is a parameter leading to the standard
classification in hard potentials (γ > 0), Maxwellian potential (γ = 0) and soft potentials
(γ < 0). This last case includes the most physically interesting case, the Coulombian case
(γ = −3). The d × d matrix S(w) is simply the orthogonal projection onto the plane
orthogonal to w. For all w 6= 0, Φ(w) is a positive matrix whose null-space is Ker Φ(w) = Rw.
It is also useful to write the collision operator Q(f) under the following equivalent form (called
“Log” form)

Q(f)(v) = ∇ ·
∫

Rd

Φ(v − v∗)f(v)f(v∗) (∇ log f(v) −∇ log f(v∗)) dv∗. (1.2)

With this formulation, we can easily prove the conservation and entropy properties: for every
positive g, we have

∫

Rd

(1, v,
1

2
|v|2)Q(g) dv = 0 and

∫

Rd

Q(g) log(g) dv ≤ 0.

The previous inequality implies that for the solution f of (1.1), the entropy H(f) =
∫

f log fdv
is a non-increasing function of t, while the quantities

∫

(1, v, 1
2
|v|2)f dv are constant. More-

over, this inequality becomes an equality if and only if f is a Maxwellian

feq(v) =
ρ

(2πT )
d
2

exp

(

−|v − u|2
2T

)

, (1.3)

where ρ, u and T are parameters independent of the velocity. This is formally equivalent to
the fact that f is an equilibrium state, that is to say Q(f) = 0.

Note that equation (1.1) is a convection-diffusion equation that can be written under the
form

∂tf = ∇ · (D(f)∇f + F (f)f) , (1.4)

where D(f) =
∫

Rd Φ(v − v∗)f(v∗) dv∗ and F (f) =
∫

Rd Φ(v − v∗)∇f(v∗) dv∗. It can then be
expected that for an explicit time discretization of this equation (like the simple backward
Euler), the time step must be satisfy a stability constraint of type ∆t = O(∆v2), where ∆v
is the velocity discretization step. Of course, this is prohibitive, in terms of computational
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cost, when ∆v is small. Usually, when time implicit schemes are used, such constraints
disappear, since implicit schemes are uniformly stable with respect to the mesh size.

However, one must satisfy several severe constraints to obtain an efficient implicit scheme.
For instance, it is essential that the numerical method satisfies the properties of conservation
and entropy. Moreover, it is necessary to use fast linear solvers to insure that the implicit
method is faster that a simple explicit scheme.

To illustrate the difficulty of this problem, we cite the outstanding work of Chacón,
Barnes, Knoll and Miley [CBKM00] who use the diffusion form (1.4) and compute the
coefficients D and F by the Rosenbluth method: in the Coulombian case, these coefficients
are written with Poisson integrals that can be efficiently computed by a fast Poisson solver.
This makes their method very fast, but the conservation and entropy properties are not
preserved. This implies that a thin enough velocity discretization has to be used so as to
avoid too many numerical errors.

In this work, we have proposed to use the Landau form (1.1) or the “Log” form (1.2),
in order to obtain implicit schemes that naturally satisfy the conservation properties, and
for some of them, the entropy property (which is much more difficult to obtain). Moreover,
most of our schemes are linear, in order to obtain fast computations. We rapidly describe
below these different schemes and their properties (see [2] for details). As it is usual, f n

denotes, in the following, an approximation of the distribution f at time tn = n∆t, where
∆t is a given time step.

A first class of numerical schemes is obtained by using linearized forms of the operator
Q written on the Landau form. Namely, the bilinear products are approximated so that
only one term of the product is evaluated at time tn+1. This linearization preserves the
symmetries that induce the conservation properties. Our schemes are the followings.

contracted scheme:

fn+1 − fn

∆t
= qc(fn, fn+1), with (1.5)

qc(f, g) = ∇ ·
∫

Rd

Φ(v − v∗) (f∗∇g − f∇g∗) dv∗, (1.6)

where we note f∗ = f(v∗) and f = f(v). This scheme is first order in time, and is conserva-
tive.

θ-scheme:
fn+1 − fn

∆t
= Q(fn) + θq(fn, fn+1 − fn), (1.7)

where θ ∈ R and q(f, .) is the linearized of Q at f , given by

q(f, g) = ∇ ·
∫

Rd

Φ(v − v∗) (f∗∇g − f∇g∗ + g∗∇f − g∇f∗) dv∗

= qc(f, g) + qc(g, f).

(1.8)

This scheme is second order in time for θ = 1
2
, and first order for other values of θ. It is

conservative.
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For these two schemes, we cannot prove the entropy property. Then we propose another
class of schemes, based on the “Log” form (1.2). Our first scheme, which is nonlinear, is

log scheme:

fn+1 − fn

∆t
= qlog(fn, fn+1) = ∇ ·

∫

Rd

Φ(v − v∗)f
nfn

∗
(

∇ log fn+1 −∇ log fn+1
∗
)

dv∗. (1.9)

This is scheme is first order in time, conservative, and has a non-increasing entropy. To
obtain a linear scheme, the logarithm in qlog is linearized, which yields the

log-linear scheme:

fn+1 − fn

∆t
= Q(fn) + ql(fn, fn+1 − fn), with (1.10)

ql(f, g) = ∇ ·
∫

Rd

Φ(v − v∗)ff∗

(

∇
(

g

f

)

−∇
(

g

f

)

∗

)

dv∗. (1.11)

This scheme is first order in time and conservative. It has very strong properties, like the
entropy decay and a symmetry property, as it is stated in the following proposition

Proposition 1.1. (i) Weak form of ql :

∫

Rd

ql(f, g)φdv

= −1

2

∫

Rd

∫

Rd

Φ(v − v∗)ff∗

(

∇
(

g

f

)

−∇
(

g

f

)

∗

)

· (∇φ −∇φ∗) dvdv∗.

(1.12)

(ii) The collisional part of scheme (1.10) dissipates an entropy, in the following sense:

∫

Rd

(Q(f) + ql(f, g))(log f +
g

f
) dv ≤ 0.

(iii) Discrete H-theorem: the entropy sequence Hn =
∫

Rd fn log fn dv is non-increasing if

inf
n∈N,v∈Rd

(

fn+1

fn

)

≥ 1

2
. (1.13)

(iv) For every positive f , the linear operator g 7→ ql(f, g) is self-adjoint non-positive, in the
following sense:

〈ql(f, g), h〉 1
f

:=

∫

Rd

ql(f, g)h
dv

f
= 〈ql(f, h), g〉 1

f
, and 〈ql(f, g), g〉 1

f
≤ 0,

for every g and h.
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This proposition can be proved by classical arguments: integration by parts, symmetry
between v and v∗, convexity.

Note that property (iv) is very important, at the algorithmic level, since it allows to
compute fn+1 by using the Conjugate Gradient solver, provided that the weight f n used in
the definition of the inner product is positive. This property is remarkable, since the FPL
equation contains convection terms that generally do not lead to symmetric linear systems.
For instance, the method of [CBKM00] has no symmetry property and cannot makes use of
the Conjugate Gradient.

However, it is not possible to guarantee that the weight f n remains positive. Conse-
quently, from the algorithmic point of view, none of the first two classes of schemes are
completely satisfying. Then, we propose a third class of schemes based on the use of the
Maxwellian equilibrium feq: the first argument of q and ql in (1.7) and (1.10) is replaced
by feq. Since these terms are of the order of ∆t, this modification preserves the consistency
of our schemes. Moreover, this allows to obtain self-adjoint operators for the weight 1/feq,
which is always positive. This property is known for the operator q(feq, .) which is nothing
but the linearized Landau operator at equilibrium feq. For the operator ql(feq, .), this prop-
erty has already been given in a general frame in proposition 1.1. Moreover, the conservation
properties are naturally preserved. Our schemes are the followings.

equilibrium θ-scheme:

fn+1 − fn

∆t
= Q(fn) + θq(feq, f

n+1 − fn). (1.14)

equilibrium log-linear scheme:

fn+1 − fn

∆t
= Q(fn) + ql(feq, f

n+1 − fn). (1.15)

Now, we briefly explain how we solve the linear systems included in the schemes presented
above.

1.2 Linear solvers

In this section, we assume that the velocity variable has been discretized (with N points),
so that the discrete collision operator also satisfies the conservation and entropy properties.
The previous schemes can then be applied without any modification to this discrete version
of the FPL equation, and they have the same properties as their continuous versions. Then
schemes (1.5), (1.7), (1.10), (1.14), and (1.15) can be seen as linear systems in which the
unknown is the vector fn+1. By using simple calculations, all these schemes can be written
under the following incremental form

(I − ∆tL) δfn = ∆tQ(fn), (1.16)

where δfn = fn+1 − fn and L is the linear operator used in the scheme (L = qc(fn, .),
θq(fn, .), ql(fn, .), q(feq, .) or ql(feq, .)).
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The numerical solving of such a system presents two difficulties. First, this is classical, the
algorithm must be fast enough. In particular, since L is usually a dense matrix, using a direct
solver like Gauss method is excluded. It is therefore reasonable to use an iterative solver, in
which we can also make use of the existing fast algorithms to evaluate the collision operator:
such algorithms reduce the cost of a matrix-vector product as if L was a sparse matrix. The
other difficulty is due to the conservation properties: even if the solution of the linear system
cannot be computed exactly, is it possible to preserve the conservation properties exactly ?
We have then proved in [2] that all the Krylov solvers (like the Conjugate Gradient) satisfy
this property. It relies on very simple arguments that are given below.

First, note that the conservation properties can be simply written by using the following
matrix formalism: let M be the matrix which, for every vector f ∈ R

N (supposed to approx-
imate a distribution function), associates its moments Mf ∈ R

d+2. For instance, one can set
Mf =

∑N
i=1(1, vi,

1
2
|vi|2)T fi ∆vd for a regular Cartesian velocity grid. Then, in this discrete

frame, the conservation properties of Q and of the linear operators defined above read

MQ(f) = 0 and ML = 0, ∀f ∈ R
N .

Consequently, the linear system (1.16) reads as the general form

Ax = b, (1.17)

where the matrix A satisfies the property MA = M and the right-hand-side b satisfies
Mb = 0 (this allows to obtain Mx = 0, that is to say that the moments of f n+1 are those of
fn).

Now, we consider an iterative Krylov solver for system (1.17): it can always be put under
the following form (see [Saa03])

Algorithm 1.1. 1. give x(0) such that Mx(0) = 0 and set r(0) = b − Ax(0);

2. for k = 1 to K, find x(k) in the affine subspace x(0) + Kk, where

Kk = {r(0), Ar(0), . . . , Ak−1r(0)}.

The idea then is: if the initial data is well chosen, that is to say such that Mx(0) = 0
(generally, one takes x(0) = 0, which means that the solver is initialized with f n), then the
affine subspace inherits this property, and therefore, every iterate x(k) satisfies Mx(k) = 0.
More precisely, we have the following proposition.

Proposition 1.2. All iterative methods that can be set under the form of algorithm 1.1 are
conservative. This means that we have Mx(k) = 0 for every k.

Proof. Using the conservation properties on x(0), b, and A, yields

Mr(0) = M(b − Ax(0)) = 0 − Mx(0) = 0,

and therefore MApr(0) = MAAp−1r(0) = MAp−1r(0) = . . . = Mr(0) = 0 for every p ≥ 1.
Consequently, we have MKk = {0}, and necessarily x(k) ∈ x(0) + Kk implies Mx(k) = 0.

However, we mention that it seems much more difficult to obtain a similar property for
the entropy dissipation. For the moment, this question remains open.
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1.3 Application to the isotropic Landau equation

The method presented in the previous sections can be efficiently used as soon as one has a
discretization of the velocity variable for which the discrete collision operator is conservative
and entropic, and can be rapidly computed. In this section, we restrict ourselves to the case of
the isotropic Landau equation. In this model, f depends only on the kinetic energy ε = |v|2.
In [2] and [3], we have used a finite-difference discretization proposed by Berezin, Khudic
and Pekker [BKP87] (and also used by Buet and Cordier [BC02]), as well as a multi-wavelet
approximation proposed by Antoine and Lemou [AL03]. For these two approximations, the
complexity of one evaluation of Q(f) is in O(N), where N is the number of discretization
energy points.

Here, we give two significative results in the case of the Coulombian potential. In fig-
ure 1.1, we compare the evolution of the entropy obtained with a backward Euler explicit
scheme to that obtained with the contracted scheme (1.5). The time step used for the im-
plicit scheme is 50 times as large as that of the explicit scheme, and we observe that the
dynamics is correctly described by the implicit scheme. In figure 1.2, we plot the CPU time
used by these two schemes as a function of the number of discretization points N . According
to our analysis, the CPU time of the explicit scheme is O(N 3), while that of the implicit
scheme is O(N 2).
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Fig. 1.1: Evolution of the entropy for
two explicit (-) and implicit (o) schemes.
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Fig. 1.2: CPU time for two explicit (-) and implicit
(o) schemes, as a function of N .

1.4 Perspectives

To apply the previous methods to the three-dimensional Landau equation, we are currently
working in the following three directions.

Preconditioning.
It is fundamental to include an efficient preconditioner in our linear solvers. Actually, in three
dimensions (3D) with N discretization points, the cost of one simulation for a given physical
time is of the order of KN for an implicit scheme, where K is the number of iterations of the
linear solver, while it is of the order of N 5/3 for an explicit scheme. Then K must be much
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lower than N to obtain an efficient scheme. If one does not use any preconditioner, K can
be of the order of N , which makes the corresponding implicit scheme slower than a simple
explicit scheme. However, an efficient preconditioner can render K virtually independent
of N . The difficulty in the design of such a preconditioner is that, in addition to the usual
constraints, it also must satisfy the conservation properties in order to preserve these of the
linear solver. Our idea is then to construct ad hoc preconditioners based on the Landau
operator itself, rather than using standard algebraic preconditioners (like incomplete LU)
that have no reason to preserve the conservation properties. In the isotropic case, we have
tested a preconditioner given by the Landau operator with a Maxwellian potential. It has all
the required properties, since it is known that the Maxwellian potential makes the operator
linear and local, hence easily invertible, and conservative. Then, it allows to strongly decrease
the number of iterations of the linear solver. However, this operator is not self-adjoint;
consequently, it cannot be used in the Conjugate Gradient.

Velocity discretization.
The problem of the velocity discretization of the Landau operator is much more difficult
in 3D than in 1D. In particular, for a finite difference approximation, it seems that only a
discretization on the “Log” form gives stable schemes (see [BC99]). This allows to use the log-
linear scheme (or its equilibrium version), but not the contracted or θ-schemes. In addition,
the approximation of the 3D Landau operator must be computable with fast algorithms. At
present, we use the multipole method adapted to the FPL equation by Lemou [Lem98]: with
this method, the complexity of one evaluation of Q(f) is O(N log N) instead of O(N 2) for
a direct evaluation. It would be interesting to test the spectral method of Pareschi, Russo
and Toscani [PRT00], and we also think to a possible extension of the multi-wavelet method
of Antoine et Lemou [AL03].

Non-linear implicit schemes.
Finally, we mention the fact that the only linear implicit scheme that we have tested in
3D for the moment (the log-linear scheme) does not seem to be very efficient: it looks as
if it is stable only for small time steps, which makes it not very competitive. At present,
by using the ideas presented in this work, we study a completely non-linear scheme based
on the “Log” form, which includes a Newton method whose Jacobian matrix is self-adjoint,
and hence invertible by the Conjugate Gradient. This scheme seems more robust than the
previous ones.



Chapter 2

Coupling kinetic and fluid models

The simulation of particle systems is a typical example of multiscale problems. Indeed an
accurate description of such systems is given by the kinetic theory. But when the system is
close to an equilibrium state, it is much simpler and often accurate enough to use macro-
scopic models like fluid mechanics or diffusion theory. A rough indicator of the validity of
a macroscopic approximation is often called the Knudsen number, which can be defined as
the ratio of the mean free path of the particles to a typical macroscopic length.

Until a recent period, macroscopic approximations (that we call ”fluid” in this article)
were used even for systems far from equilibrium, since microscopic theories were too compu-
tationally expensive. Nowadays, modern super-computers are able to treat many problems
at the kinetic level, but there are still very challenging problems, like that involving different
scales. For instance, we mention the simulation of re-entry problems in aerodynamics, where
the particles are close to equilibrium far from the re-entry body, while non-equilibrium effects
are very large close to the body. For radiative transfer problems, this can occur when the
material is composed of several parts of very different opacities. The difficulty is that the
computational effort is generally increasing with the inverse of the Knudsen number. Then
a large part of the computational time is due to a part of the system (close to equilibrium)
that could be more efficiently described by a simpler macroscopic model.

Consequently, it seems very natural to try to solve each model wherever it is appropriate,
the main problem being to correctly match the two description at the interfaces of the differ-
ent domains. This is especially attractive when the particles are in an equilibrium state in
the major part of the domain. This idea has been largely explored in the past few years. For
problems involving diffusive fluid models (like for neutron and radiative transfer problems)
we mention for instance the works of Bal and Maday [BM02], Degond and Schmeiser [DS99],
Golse, Jin and Levermore [GJL03], Klar [Kla98a], and Klar and Siedow [KS98]. For rarefied
gas dynamics, we mention the works of Bourgat, Le Tallec and Tidriri [BTT96], of Bour-
gat, Le Tallec, Malinger, and Qiu [Qiu93, TM97], Neunzert, Struckmeier, Klar [KNS00],
Schneider [Sch96]. The main common feature of these approaches is that they are typical
domain decomposition techniques where the fluid and kinetic models are solved in different
subdomains. The coupling relations are defined through suitable boundary conditions at the
interface between the subdomains.

Very recently, a different approach has been proposed by Degond and Jin [DJ05] for
matching kinetic and diffusion problems. In this work the idea was still to use a domain
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decomposition method but in which the coupling is through the equations rather than the
boundary conditions.

In this chapter, we present several works that are based on this approach. In section 2.1,
we describe an extension of the method of [DJ05] to nonlinear problems, for a hydrodynamic
scaling (also called “hyperbolic” scaling). We show a property of homogeneity that must
be satisfied by equilibrium distributions to obtain an accurate method. In section 2.2, this
approach is extended to a dynamic coupling (i.e. in which the kinetic and fluid domains
can change as the time evolves). In section 2.3, this method is deeply modified by using a
decomposition of the distribution function into macroscopic and microscopic parts (the so
called “micro-macro” decomposition): this allows to obtain a more flexible approach which
is closer to multiscale-like approaches than to domain decomposition methods.

2.1 Kinetic/fluid coupling by domain decomposition

without interface boundary condition [4]

Here we present a joint work with P. Degond and S. Jin, published in the Journal of Com-
putational Physics in 2005 [4].

Let f(t, x, v) be the density of particles that, at time t, have position x ∈ Ω and velocity
v ∈ R

N or any bounded or discrete subset of R
N . The evolution equation of f is

∂tf + v · ∇xf =
1

ε
Q(f), (2.1)

with initial data f(0, x, v) = f0(x, v). The left-hand side of (2.1) describes the motion of
the particles of velocity v, while the operator Q takes into account the collisions between
particles. The parameter ε is the ratio of the microscopic to the macroscopic scales.

In the sequel, we denote the integral of every vectorial or scalar function f = f(v) by
〈f〉 =

∫

f(v) dv. The collision operator Q is supposed to satisfy the conservation property

〈mQ(f)〉 = 0 for every f,

where m(v) = (mi(v))d
i=1 are the locally conserved quantities. Consequently, multiply-

ing (2.1) by m and integrating w.r.t v, we find the local conservation laws

∂t 〈mf〉 + ∇x · 〈vmf〉 = 0.

Finally, we assume that the local equilibria of Q (i.e., the solutions of Q(f) = 0) are the
equilibrium distributions E[ρ], implicitly defined by their moments through the relation
ρ = 〈mE[ρ]〉. We do not specify boundary conditions for the moment. When ε tends to
0, (2.1) implies that f converges, formally, towards E[ρ], where ρ(t, x) is a solution to the
system

∂tρ + ∇x · F (ρ) = 0, (2.2)

with initial data ρ|t=0 = 〈mf0(x, v)〉. The flux F (ρ) is the equilibrium kinetic flux

F (ρ) = 〈vmE[ρ]〉 . (2.3)
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This asymptotic model is often called a “fluid” or macroscopic model, by analogy with the
kinetic theory of rarefied gases, in which this asymptotics is nothing but the system of Euler
equations of fluid mechanics.

Generally speaking, in the coupling strategy by domain decomposition, it is assumed
that the domain Ω can be decomposed into two subdomains: one subdomain contains near
equilibrium particles, while the other one contains particles that are far from the equilibrium
state. This assumption allows to describe the system by a fluid model like (2.2) in the first
subdomain, while the kinetic model (2.1) is more adapted to describe the other subdomain.
Generally, this strategy requires, for each model, to define specific boundary conditions at
the interface between the subdomains.

Now, we briefly describe below the idea of Degond and Jin [DJ05], rewritten in the hydro-
dynamic scaling framework, that has been proposed to avoid interface boundary conditions.
We introduce un “buffer” zone ΩB around the interface, so that the domain Ω is now decom-
posed into three (non overlapped) parts: Ω = ΩF ∪ΩB ∪ΩK . The “fluid” domain (i.e. where
the fluid approximation is correct) is denoted by ΩF and the kinetic domain is denoted by
ΩK (see figure 2.1). Then we introduce a transition function h defined by







h(x) = 1, for x ∈ ΩK ,
h(x) = 0, for x ∈ ΩF ,
0 ≤ h(x) ≤ 1 for x ∈ ΩB.

(2.4)

With this function, f is decomposed into a “kinetic” part fK = hf and a “fluid” part
fF = (1− h)f . Note that fK and fF satisfy the following properties: they are defined in the
whole Ω, we have f = fK + fF , and finally, by construction of h, these quantities are equal
to f in their respective domains ΩK and ΩF (see figure 2.2).

ΩK

ΩB

ΩF

Fig. 2.1: Decomposition of the computational
domain Ω into three non-overlapped zones:
fluid (ΩF ), kinetic (ΩK), and buffer (ΩB).

Ω F ΩKΩ B

xh=0

h=1

Kf
Ff f

buffer KineticFluid

Fig. 2.2: The distribution function f , the tran-
sition function h, and the kinetic and fluid parts
fK and fF (1D view).

It is then easy to obtain the following evolution equations for fK and fF :

∂tfK + hv · ∇xfK + hv · ∇xfF =
1

ε
hQ(fK + fF ), (2.5)

∂tfF + (1 − h)v · ∇xfF + (1 − h)v · ∇xfK =
1

ε
(1 − h)Q(fK + fF ), (2.6)
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with initial data fK |t=0 = hf0 and fF |t=0 = (1 − h)f0. This system is formally equivalent to
the original equation (2.1).

Then we use the assumption of equilibrium in ΩF and ΩB to describe the fluid part with
macroscopic parameters. This assumption means fF = E[ρF ] in ΩF and ΩB, which allows,
by taking the moments of (2.6), to transform (2.5)–(2.6) into the coupled system

∂tfK + hv · ∇xfK + hv∇x · E[ρF ] =
1

ε
hQ(fK + E[ρF ]), (2.7)

∂tρF + (1 − h)∇x · F (ρF ) + (1 − h)∇x · 〈mvfK〉 = 0, (2.8)

with initial conditions fK |t=0 = hf0 and ρF |t=0 = (1− h)ρ0 = 〈mf0〉. This model appears as
a kinetic equation and a fluid equation, coupled by convection and collision terms. Due to
the fluid approximation, this model is no longer equivalent to the original kinetic equation:
it simply gives an approximation of f by fK + E[ρF ]. The justification, even formal, of the
passing from (2.5)–(2.6) to (2.7)–(2.8) is not very clear. It would probably require that ε
depends on x so as to be small in ΩF and of order 1 in ΩK (see [6] for such an analysis for
a slightly different model).

Now, we explain the properties of this model. First, an important property is that the
kinetic part fK remains zero in the fluid domain ΩF , while the fluid part ρF remains zero
in the kinetic domain ΩK . Actually, from the definition of h, (2.7) implies ∂tfK = 0 in
ΩF , and (2.8) implies ∂tρF = 0 in ΩK . The initial data of (2.7) and (2.8) then imply the
announced result. Therefore, in the kinetic domain ΩK , model (2.7)–(2.8) degenerates into
the equation

∂tfK + v · ∇xfK =
1

ε
Q(fK), (2.9)

which is nothing but the original kinetic equation (2.1). In the fluid domain ΩF , the model
degenerates into

∂tρF + ∇x · F (ρF ) = 0, (2.10)

which is nothing but the fluid approximation (2.2). This is only in the buffer zone ΩB

that the coupling (2.7)–(2.8) is really effective. This shows that this model indeed allows a
transition of the kinetic model towards the fluid model, from one domain to the other one,
without any interface boundary conditions.

The advantage of this approach, as compared to the classical coupling by interface bound-
ary conditions, is mainly the following. When the interface is complicated, the method
of [Qiu93, TM97] needs the implementation of the interface flux condition in a complicated
way, while our method based on the introduction of a smoothing function h transfers the
geometry to the PDE. This is an advantage, since it is then possible to solve the PDE in
a regular geometry while completely ignoring the real interface geometry. One just has to
choose h first according to the interface geometry initially, then forget about the geometry
and solves the PDE on regular grids. This geometry is taken into account only for the con-
struction of h. Then, in practice, in the computational code, it is sufficient to test the value
of f to know if one solves (2.9), (2.10), or (2.7)–(2.8). This approach also allows to make
the kinetic and fluid domains change as the time evolves, as it will be shown in section 2.2.
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Finally, a last important property is that this model is also able to correctly describe
the system if it is in an equilibrium state in the whole Ω: actually, if ε tends to 0 in (2.7)–
(2.8), we easily prove that the sum of the moments 〈mfK〉+ ρF satisfy at the limit the fluid
equation (2.2).

However, we have remarked in [4] that this approach as an important drawback: the uni-
form states are preserved only for some specific kinetic models. For other models, ocsillations
can be generated. Namely, we have the following proposition:

Proposition 2.1. Assume the mapping ρ 7→ E[ρ] is homogeneous of degree 1, that is

E[λρ] = λE[ρ] (2.11)

for every λ ≥ 0 and every ρ in the definition domain of E. If the initial condition f 0 is a
constant equilibrium E[ρ], then fK = hE[ρ] and ρF = (1 − h)ρ are solutions of the coupled
model (2.7)–(2.8), and fK + E[ρF ] = E[ρ].

This property is satisfied by the collision operators based on the Maxwell-Boltzmann
statistics. But this is not true for the Fermi-Dirac statistics, or even simply for the following
toy model

∂tu + ∂xu =
1

ε
(M1[ρ] − u), ∂tv − ∂xv =

1

ε
(M2[ρ] − v), (2.12)

where the equilibrium is (M1[ρ],M2[ρ]) = 1
2
(ρ + f(ρ), ρ − f(ρ)), with f(ρ) = 1

2
ρ2 and ρ =

u + v. This model has the same form as (2.1) with discrete velocities v = ±1 and the
collisional invariant m(v) = 1. It can be proved that it converges to the Burgers equation
∂tρ + ∂xf(ρ) = 0 when ε → 0. It is clear that the equilibrium is not a homogeneous function
of ρ. In that case, simple calculations show that the conclusions of proposition 2.1 are false.
As a consequence, the coupled model derived from this system cannot correctly describe the
solution where it is constant. This will be shown at the end of this section.

From the numerical point of view, we have proposed a simple discretization of (2.7)–
(2.8), obtained in the following way. First, we discretize the kinetic equation (2.1) with a
standard finite-volume scheme, explicit in time, with upwinding. Then we apply to this
scheme the same derivation as explained above in the continuous case (splitting of f into fK

and fF , then using the fluid approximation in ΩF ∪ ΩB). To simplify, we write below the
scheme we obtain in one space dimension:

fn+1
K,i − fn

K,i

∆t
+ hi

φi+ 1
2
(fn

K) − φi− 1
2
(fn

K)

∆x
+ hi

φi+ 1
2
(E[ρn

F ]) − φi− 1
2
(E[ρn

F ])

∆x
= hiQ(fn

K,i + E[ρn
F,i]), (2.13)

ρn+1
F,i − ρn

F,i

∆t
+ (1 − hi)

Fi+ 1
2
(ρn

F ) − Fi− 1
2
(ρn

F )

∆x
+ (1 − hi)

〈

m
(

φi+ 1
2
(fn

K) − φi− 1
2
(fn

K)
)〉

∆x
= 0,

(2.14)

where the numerical flux is defined by φi+ 1
2
(g) = v−gi+1+v+gi, and the numerical equilibrium

flux is Fi+ 1
2
(ρF ) = 〈mφi+ 1

2
(E[ρF ])〉, which is a consistent approximation of F (ρF ) (of kind

”kinetic flux splitting”, see [MD94]).
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Finally, we mention a remarkable property of our method: when the buffer zone reduces
to an interface, we could have proved simply that our scheme can be written as a coupling
method by half-fluxes like that of [Qiu93, TM97] (see [4]).

Before we conclude this section, we show two comparisons between a fully kinetic sim-
ulation and a result obtained with our coupling method. In figure 2.3, we plot the results
obtained with two different initial data: one is constant (left), and the other one is discontin-
uous (right). In both cases, the test is carried out for the toy model (2.12): one can clearly
see, in the buffer zone, the jump artificially generated by the non preservation of uniform
flows. In figure 2.4, we plot the results obtained with the BGK model of the rarefied gas
dynamics, on a two-dimensional test. We observe the diffraction of a plane shock wave on a
cylinder: the results of the full kinetic model and of the coupled model are very close. Note
that the boundaries of the kinetic and fluid domains are not aligned on the mesh (which
is curvilinear): the flexibility of our method allows to treat this complex geometry in a
transparent way.

As a conclusion, however, we mention two important drawbacks of our method. It must
be noted that the preservation of uniform flows requires, at the numerical level, that the
macroscopic fluxes F (ρF ) and 〈mvfK〉 in (2.8) are discretized with the same method. This
is indeed satisfied with the discretization detailed above, but this cannot be true if F (ρF ) is
discretized with a standard scheme of the Computational Fluid Dynamics (Roe, Osher, etc.).
One can try to neglect these effects due to the non-preservation of uniform flows (they are
of the order of the discretization step), but one then has to face another problem, namely an
artificial “cavitation” problem: by construction, the density associated to ρF becomes very
small for x close to ΩK . It is therefore necessary to use a scheme which is robust for such
a phenomenon (like the kinetic discretization presented above, but not like the Roe scheme,
for instance). The method presented in [6] (see section 2.3) gives a solution to these two
problems.
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Fig. 2.3: Comparison between the kinetic model (2.12) and the coupled model (2.7)–(2.8). Sta-
tionary result for a constant initial data (left), result at t = 0.3150 for a discontinuous initial data
(right). Legend: kinetic (-), coupling (o), fluid (.-).
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Fig. 2.4: Diffraction of a shock on a cylinder in a rarefied gas, with Knudsen=0.005 and
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2.2 Kinetic/fluid coupling with a moving interface [5]

We summarize below, very briefly, the joint work with P. Degond and G. Dimarco, to appear
in the Journal of Computational Physics [5].

We have already shown in [4] that it is possible to make domains ΩK and ΩF evolve by
using a transition function h that also depends on time. Following the same approach as in
section 2.1, we get the following coupled model

∂tfK + hv · ∇xfK + hv∇x · E[ρF ] =
1

ε
hQ(fK + E[ρF ]) − (fK + E[ρF ])∂th, (2.15)

∂tρF + (1 − h)∇x · F (ρF ) + (1 − h)∇x · 〈mvfK〉 = (ρF + 〈mfK〉)∂th, (2.16)

where the only differences, in comparison to system (2.7)–(2.8), are the new terms ∂th in
the right-hand sides. This model can be discretized in the same way as the model with
a steady h (see (2.13)-(2.14)), but with the following approximation for the new terms:

(fn
K,i + E[ρn

F,i])
hn+1

i −hn
i

∆t
and (ρn

F,i +
〈

mfn
K,i

〉

)
hn+1

i −hn
i

∆t
.

The main difficulty is to define how the transition function h can evolve. There exist a
few cases in neutron transport or in radiative transfer where the evolution of the interface
is known apriori. But in other cases, like in aerodynamics, this evolution is not known.
In [5], we addressed this problem for the (Boltzmann-BGK)/Euler coupling. We proposed
an evolution of h following two criteria :

• a microscopic criterion, based on the work by Dimarco and Pareschi [DP], which gives
some measure β of the distance between the distribution function and its local equilib-
rium: for a distribution function f and its Maxwellian M [f ], we compute the largest
value β such that βM [f ] is lower that f for every v. Due to its cost, this criteria is
used only in ΩK ;

• a macroscopic criterion of kind “local Knudsen number” that compares a macroscopic
distance, based on a “gradient length” and a microscopic distance like the mean free
path.

A combination of these two criteria allows to compute a new h at each time step.

We conclude this section by two numerical results taken from [5]. In figure 2.5, we show
the evolution of a 1D shock, reflected by a wall located at x = 0. At t = 0, the computational
domain is divided into one kinetic zone and one fluid zone. After the reflection, when the
shock is sufficiently far from the wall, the gas is sufficiently close to the equilibrium upstream
from the shock: then, the algorithm automatically creates a second fluid zone. One can then
see the different zones moving as the time evolves. In figure 2.6 is shown the classical Sod
test, computed with two fluid zones and one kinetic zone. We observe that the kinetic
zone follows the shock and the contact discontinuity, but not the rarefaction wave, that is
described by the fluid model. In both tests, we do not observe any difference between the
full kinetic simulation and our coupling, whereas the full fluid model shows some differences
in the kinetic zones.
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Fig. 2.5: Reflected shock: density at t = 0.002
(top), t = 0.02 (middle), t = 0.04 (bottom).
Comparison coupling (-) and Euler (.).
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Fig. 2.6: Sod test: density at t = 0.002 (top),
t = 0.015 (middle), t = 0.03 (bottom). Com-
parison coupling (-) and Euler (.).



26 2. Coupling kinetic and fluid models

2.3 Fluid model with local kinetic upscalings [6]

Here, we summarize the joint work with P. Degond and J.-G. Liu, and published in SIAM
Multiscale Modeling & Simulation in 2006 [6].

Although this new method was first designed as a slight modification of the method
presented in section 2.1 (so as to avoid the drawback of non-preservation of uniform flows),
it finally appears as a very different approach. The model we obtain can actually be seen as
a fluid model, used in the whole domain Ω, which is locally corrected by a kinetic upscaling
in non-equilibrium zones. This upscaling is obtained by solving a kinetic equation for the
non-equilibrium part of the distribution function. This equation is solved only locally and
is related to the fluid equation through a downscaling effect. This approach is mainly based
on two ideas:

• the micro-macro decomposition is used to separate f in the whole domain into an
equilibrium part (called fluid, or macroscopic), and a non-equilibrium part (kinetic, or
microscopic);

• the transition function h, introduced section 2.1, is used to localize the non-equilibrium
part.

We briefly detail below how we apply these two ideas. Since this method can be applied
to hydrodynamic and diffusion scalings, we first consider a general kinetic equation, written
in a dimensional form:

∂tf + v · ∇xf = Q(f), (2.17)

with the initial data f(0, x, v) = f0(x, v). The collision operator satisfies the classical prop-
erties given in section 2.1. The micro-macro decomposition of f is

f = E[ρ] + g, (2.18)

where E[ρ] is the local equilibrium associated to the moments ρ = 〈mf〉, and g is the
difference between f and E[ρ]. We easily get the following proposition:

Proposition 2.2. If ρ = 〈mf〉 and g = f − E[ρ], then they satisfy the following coupled
equations:

∂tρ + ∇x · F (ρ) + ∇x · 〈vmg〉 = 0, (2.19)

∂tg + v · ∇xg = Q(E[ρ] + g) − (∂t + v · ∇x)E[ρ], (2.20)

where F (ρ) = 〈vmE[ρ]〉 is the equilibrium flux vector. The associated initial data are

ρ|t=0 = ρ0 = 〈mf0〉 and g|t=0 = f0 − E[ρ0].

Reciprocally, if ρ and g satisfy this system, then f = E[ρ] + g satisfies the kinetic equa-
tion (2.17), and we have ρ = 〈mf〉 and 〈mg〉 = 0.
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Then equation (2.19) can be seen as a fluid model with a “kinetic upscaling” ∇x · 〈vmg〉.
Note that this model can be made more elegant if the time derivative ∂tE[ρ] is eliminated
in (2.20). This has been done in [7], after the present work, for the construction of asymptotic
preserving schemes (see section 3.1).

Next, we use the transition function h defined by (2.4) (section 2.1), as well as the
domains ΩF , ΩB, and ΩK . This function is used to localize the non-equilibrium part g: the
method described section 2.1 is then applied to separate g into g = gK + gF , with gK = hg
and gF = (1 − h)g, and we obtain te following model

∂tρ + ∇x · F (ρ) + ∇x · 〈vmgK〉 + ∇x · 〈vmgF 〉 = 0, (2.21)

∂tgK + hv · ∇xgK + hv · ∇xgF = hQ(E[ρ] + gK + gF ) − h(∂t + v · ∇x)E[ρ], (2.22)

∂tgF + (1 − h)v · ∇xgF + (1 − h)v · ∇xgK = (1 − h)Q(E[ρ] + gK + gF )

− (1 − h)(∂t + v · ∇x)E[ρ]. (2.23)

which is also equivalent to (2.17). The non-equilibrium part is then localized by using the
assumption of equilibrium in ΩF ∪ ΩB: contrary to the method of section 2.1, this does not
mean that gF is replaced by E[ρF ] but rather that gF is small, which is a consequence of the
definition of g. Practically, the calculations needed for this localization procedure depend
on the scaling (hydrodynamic or diffusion). We give below the results obtained for both
scalings.

For the hydrodynamic scaling, we use new time and space variables x′ = εx and t′ = εt,
which is equivalent to replace Q by 1

ε
Q in the previous relations. Using the equilibrium as-

sumption in ΩF ∪ΩB, gF is then eliminated from equations (2.21)–(2.23) (see some arguments
in section 3.2 of [6]) to obtain the following model:

∂tρ + ∇x · F (ρ) + ∇x 〈vmgK〉 = 0, (2.24)

∂tgK + hv · ∇xgK =
h

ε
Q(E[ρ] + gK) − h(∂t + v · ∇x)E[ρ], (2.25)

where the kinetic part gK plays a role only in ΩK ∪ ΩB that should be seen as a union of
small zones in which a kinetic description is necessary. In the other parts of the domain,
only the fluid equation (2.24) with gK = 0 is solved. In this interpretation, the notion of
domain decomposition almost completely disappears. Since, by construction, the function
h is not applied to the fluid part, it is then not surprising that, contrary to the method of
section 2.1, this model is uniform flow preserving, whatever the collision operator.

For the diffusion scaling, we considered two examples in [6]: the linear transport and
the radiative heat transfer (both in one space dimension only). This scaling requires the
new variables x′ = εx and t′ = ε2t, which means that ∇x and ∂t are replaced by ε∇x and
ε2∂t in equations (2.21)–(2.23). For the linear transport, the collision operator is Q(f) =

σ(
∫ 1

−1
f dv−f) and only the density ρ = 〈f〉 is conserved. Without going into details, we give
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below the kinetic model, the fluid limit (diffusion), the fluid model with kinetic upscaling
(system with ρ, g), and the fluid model with localized kinetic upscaling (system with ρ, gK) :

kinetic model:

ε∂tf + v∂xf =
1

ε
Q(f),

fluid limit:

∂tρ − ∂x

(

1

3σ
∂xρ

)

= 0.

fluid model with kinetic upscaling:

ε∂tρ + ∂x 〈vg〉 = 0,

ε2∂tg + εv∂xg = −σg − 1

2
(ε2∂t + εv∂x)ρ,

fluid model with localized kinetic upscaling:

∂tρ − ∂x

(

1

3σ
∂xρ

)

+ ∂x

(

1

3σ
h∂xρ +

1

ε
〈vgK〉

)

= 0,

ε2∂tgK + εhv∂xgK + εhv∂xgF = −σgK − 1

2
h(ε2∂t + εv∂x)ρ,

where gF is

gF = −ε
1

2σ
(1 − h)v∂xρ.

This last model is obtained by using a Hilbert expansion of the kinetic equation associated
to gF = (1 − h)g (see details in [6]). Again, we observe that the model is a fluid equation
set in the whole domain Ω: it has the same form as the diffusion equation, but is locally
corrected in ΩK . In comparison with the hydrodynamic scaling, the local correction here
contains a macroscopic term.

The radiative heat transfer equation is a more complex model that contains a macroscopic
equation for the matter temperature. Our method nevertheless also applies to this case, but
we refer to [6] for more details.

At the numerical level, the discretization of our fluid models with kinetic upscalings can
be obtained as in the previous method. This is even more flexible here: since the localization
does not affect the fluid part, the macroscopic fluxes can be approximated with any method,
without generating oscillations or cavitation phenomena.

We conclude this section with two numerical results. In figure 2.7, we plot the results
obtained with the same test as in figure 2.3 (page 23). We clearly see that, with this new
method, the coupling gives the same result as the kinetic model: the jump at the interface
has disappeared, as a consequence of the preservation of uniform flows by the new method.
In figure 2.8, we show a comparison between the radiative heat transfer model, our fluid
model with localized kinetic upscaling, and the limit diffusion equation. The matter has two
very different opacities, and the zones ΩF , ΩB, and ΩK are located accordingly. We observe
a perfect agreement between the kinetic solution and our fluid model, while the diffusion
limit is completely wrong.
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Fig. 2.7: Toy model (2.12) (to be compared
with figure 2.3 (page 23)): kinetic solution (-),
fluid model with localized kinetic upscaling (o),
and fluid limit (.-).
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2.4 Perspectives

Due to the strong properties of the kinetic upscaling method of section 2.3 (generality, flexi-
bility, robustness), a few extensions of this method will be considered, rather than extensions
of the method presented in section 2.1.

Two-dimensional computations
A first project (a joint work in progress with G. Dimarco) is an extension of our method to
two space dimension cases (2D). It only requires to adapt the 2D code written for the first
method.

Dynamical coupling
It is also important to propose an extension of this approach to the dynamical coupling, by
using the ideas proposed in [5]. More intensive researches on the localization criteria should
be necessary, as well as deeper investigations at the algorithmic level (in [5], the mesh is too
systematically used by the algorithm to define the function h).

Boltzmann/Navier-Stokes coupling
In the case of the hydrodynamic coupling, this method has been applied to the Boltz-
mann/Euler coupling only. In a work in progress with J.-G. Liu, we try to extend it to a
Boltzmann/Navier-Stokes coupling, which is very important for applications.

Using “Asymptotic Preserving” schemes
To obtain a sufficiently accurate method, the buffer zone must be located where the particles
are close to the equilibrium. Consequently, the discretization of the kinetic equation must be
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efficient both in the kinetic and fluid regimes. This property is typically that of “Asymptotic
Preserving” (AP) schemes. Such a scheme has for instance been proposed by Degond and
Jin for their coupling method [DJ05]. In a framework similar to that of section 2.3, we have
shown, with M. Bennoune and M. Lemou, that the micro-macro decomposition presented in
this chapter allows to construct AP schemes (see next chapter). Consequently, using these
schemes in our coupling method looks very natural.



Chapter 3

Asymptotic preserving numerical
methods for kinetic equations in the
fluid limit

In this chapter, we are still interested in the same problem: how to efficiently simulate a
particle system when the computational domain contains both non equilibrium zones and
fluid zones? While this problem was investigated in chapter 2 by the coupling strategy,
we are interested here in constructing numerical approximations of kinetic equations that
“mimic” the asymptotic behaviors of the equations. That is to say, these approximations
should, somehow, turn into approximations of the asymptotic fluid model when the scaling
parameter tends to 0, without any restrictive condition on the numerical parameters of the
method. More precisely, we look for numerical schemes that have two essential properties:

• uniform stability in time with respect to ε;

• the schemes obtained in the fluid regime (ε ¿ 1 and ε = 0) must be consistent with
the corresponding fluid models.

Such schemes are called “Asymptotic Preserving” (AP) schemes, following the terminology
introduced by Jin in [Jin99].

In both works presented here, we have proposed new AP schemes, by using the micro-
macro decomposition already mentioned in chapter 2. Note that the preservation of the
diffusion limit at the numerical level has been widely investigated, in particular by Klar
in [Kla98b, Kla99a, Kla99b], and by Jin (with other collaborators) in [JPT98, Jin99, JPT00,
JP01, JP00]. Klar uses a decomposition of the distribution function which is close to the
micro-macro decomposition, but he does not fully use the macroscopic nature of the equi-
librium part of f . Moreover, he classically uses a time splitting scheme for the collisions.
Jin uses a decomposition related to the symmetry of the collision operator (even-odd sym-
metry). Again, this decomposition is close to the micro-macro decomposition, but it is less
general. The stiffness of the collision operator is also treated by the splitting method, and
the stiffness due to the transport is removed by the relaxation schemes theory.
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Even if the methods presented in those works are quite close to ours, they do not make
use of the micro-macro decomposition as systematically as we do. Moreover, we show that
it is not necessary to use the classical time splitting to treat the collisions. Finally, our
approach is general enough to allow for both hydrodynamic (section 3.1) and diffusion limits
(section 3.2).

3.1 Numerical scheme for the Boltzmann equation

preserving the compressible Navier-Stokes asymp-

totics [7]

This work is a part of the thesis of my Ph.D. student M. Bennoune (co-advised with M.
Lemou). The corresponding article [7] has been accepted in 2007 for publication in the
Journal of Computational Physics.

The Boltzmann equation of gas dynamics under non-dimensional form is

∂tf + v · ∇xf =
1

ε
Q(f, f), t > 0, (x, v) ∈ R

d × R
d, (3.1)

where the collision operator Q is a bilinear functional and acts only on the velocity depen-
dence of the distribution function f . In all that follows, we use the notations

m(v) = (1, v,
|v|2
2

), and 〈g〉 =

∫

Rd

g(v) dv (3.2)

for any scalar or vector function g = g(v). The Boltzmann operator Q(f, f) satisfies the
conservation properties of the density, momentum, and energy, the entropy inequality, and
possesses Maxwellian equilibrium states.

When ε tends to 0, it is known that the moments of f (denoted by U = (ρ, ρu, 1
2
ρ|u|2 +

d
2
ρT ) = 〈mf〉) satisfy at the limit the compressible Euler equations

∂tU + ∇x · F (U) = 0, (3.3)

where F (U) = 〈vmM(U)〉 are equilibrium fluxes and M(U) is the local Maxwellian equi-
librium corresponding to f . For a finite ε, the Chapman-Enskog method allows to prove
that the moments of f are approximated, up to ε2, by the solution of the compressible
Navier-Stokes equations (CNS)

∂tU + ∇x · F (U) = −ε





0
∇x · σ

∇x · (σu + q)



 , (3.4)

where σ = −µ
(

∇xu + (∇xu)T − 2
d
∇x · uI

)

and q = −κ∇xT are the shear stress tensor and

the heat flux, divided by ε. The diffusive fluxes in the right-hand sides of these equations
are of the order of ε and can be viewed as approximations, up to ε2, of the difference
〈vm(f − M(U))〉 of the fluxes of f and its associated Maxwellian. We refer to the paper by
Bardos, Golse, and Levermore [BGL91] for details on this construction.
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It is not very difficult to design a numerical scheme for (3.1) that preserves the Euler
asymptotics (3.3): it is sufficient to use a splitting between the transport and the collision,
then to solve the collision step by a scheme uniformly stable with respect to ε. We refer to
the method of Perthame and Coron [CP91] for the case of the BGK operator, and to the
more recent work of Gabetta, Pareschi, and Toscani [GPT97] for the Boltzmann operator.
However, we have shown in [7] that such a scheme cannot preserve the CNS asymptotics (3.4):
more precisely, there is no term of the order of ε in the discrete fluid asymptotics.

Let us rapidly prove this assertion in the case of the BGK equation ∂tf + v · ∇xf =
1
ε
(M(U) − f). To simplify, we keep the space variable continuous: the scheme of [CP91]

consists in one transport step

fn+ 1
2 − fn

∆t
+ v · ∇xf

n = 0,

followed by a collision step which is exactly solved

fn+1 = e−∆t/εfn+ 1
2 + (1 − e−∆t/ε)M(Un+ 1

2 ).

Since this step conserves the moments, we have M(Un+ 1
2 ) = M(Un+1) and we can write

fn+1 as

fn+1 = M(Un+1) + e−∆t/ε(fn+ 1
2 − M(Un+ 1

2 )).

Now, since e−∆t/ε tends to 0 faster than any power of ε, it is therefore impossible to obtain
a flux difference 〈vm(f − M(U))〉 that is of the order of ε, which gives the result. We
have proved in [7] that this drawback can be corrected by replacing the exact solving of
the collision phase by a forward Euler implicit scheme: the factor e−∆t/ε is then replaced
by 1

1+∆t/ε
that has the correct asymptotic behavior. However, using the same trick for the

Boltzmann operator seems more difficult, and is the subject of an ongoing work.

Then we have proposed a different method, based on the micro-macro decomposition: our
idea is to introduce in the Boltzmann equation, without approximation, the decomposition

f = M(U) + εg, (3.5)

where the Maxwellian M(U) associated to f represents the macroscopic part of the system,
while g represents the microscopic (or non-equilibrium) part. Next, using the projection op-
erator ΠM(U) onto the kernel of LM(U) (which is the linearized Boltzmann operator around
M(U)), the quantities U and g are separated to obtain the following coupled system, equiv-
alent to the Boltzmann equation (3.1):

∂tU + ∇x · F (U) + ε∇x · 〈vmg〉 = 0, (3.6)

∂tg + (I − ΠM(U))(v · ∇xg) =
1

ε
LM(U)g + Q(g, g) − 1

ε
(I − ΠM(U))(v · ∇xM(U)). (3.7)

This system looks like the one obtained section 2.3. The difference is due to the use of
the projection ΠM(U) which allows to eliminate the time derivative of the Maxwellian. This
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decomposition also allows to obtain the CNS equations in a very natural way, since (3.7)
directly gives the following expression of the non equilibrium flux of (3.6) :

ε 〈vmg〉 = ε
〈

vmL−1
M(U)(I − ΠM(U))(v · ∇xM(U))

〉

+ O(ε2).

Classical calculations show that this expression is nothing but the diffusive fluxes of the
CNS equations (see for instance [Lev96]). Up to our knowledge, this projection technique
has been first presented with this formalism by Degond and Lemou in [DL01], even if similar
ideas have already been proposed by Caflisch in [Caf80].

Now, we introduce a time discretization of (3.6)–(3.7) in which the fewest implicit terms
are used. The main stiffness is due to the collision term 1

ε
LM(U)g which is taken implicit,

while the term 1
ε
(I − ΠM(U))(v · ∇xM(U)) is kept explicit. Then, in order to obtain correct

diffusion terms in the Chapman-Enskog expansion, the non-equilibrium fluxes ∇x · 〈vmg〉
in the fluid equation (3.6) are taken implicit. Consequently, we obtain the following semi-
discrete scheme

Un+1 − Un

∆t
+ ∇x · F (Un) + ε∇x ·

〈

vmgn+1
〉

= 0, (3.8)

gn+1 − gn

∆t
+ (I − ΠM(Un))(v · ∇xg

n) =
1

ε
LM(Un)g

n+1 + Q(gn, gn)

− 1

ε
(I − ΠM(Un))(v · ∇xM(Un)). (3.9)

As in the continuous case, it is therefore very easy to prove that this scheme gives, up to
O(ε2), a time explicit scheme which is consistent with the CNS equations.

Finally, in the simplified one-dimensional case, we propose a discretization with staggered
grids (which is classical for discretizing second order derivatives). The macroscopic quantities
are discretized by Ui = U(xi) at points xi = i∆x, while the microscopic part is discretized
by gi+ 1

2
= g(xi+ 1

2
) with xi+ 1

2
= (i + 1

2
)∆x. To obtain a stable scheme in the kinetic regime

(ε = 1), we use an upwind discretization of the transport term (I −ΠM)(v ·∇xg). The other
gradients are discretized with central differences, so as to obtain a correct approximation of
the diffusion terms in the CNS equations. The scheme we obtain is the following:

Un+1
i − Un

i

∆t
+

Fi+ 1
2
(Un) − Fi− 1

2
(Un)

∆x
+ ε

〈

vm
gn+1

i+ 1
2

− gn+1
i− 1

2

∆x

〉

= 0, (3.10)

gn+1
i+ 1

2

− gn
i+ 1

2

∆t
+ (I − Πn

i+ 1
2
)

(

v+
gn

i+ 1
2

− gn
i− 1

2

∆x
+ v−

gn
i+ 3

2

− gn
i+ 1

2

∆x

)

=
1

ε
LMn

i+1
2

gn+1
i+ 1

2

+ Q(gn
i+ 1

2
, gn

i+ 1
2
) − 1

ε
(I − Πn

i+ 1
2
)(v

Mn
i+1 − Mn

i

∆x
), (3.11)

where, to simplify these relations, we denote

Mn
i = M(Un

i ), Mn
i+ 1

2
= M(Un

i+ 1
2
), and Πn

i+ 1
2

= ΠMn

i+1
2

.
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The divergence ∇x · F (U) can be approximated by any usual scheme, which is not precised
here. Then we can prove that this scheme is asymptotically equivalent, up to ε2, to a time
explicit scheme, which is consistent with the CNS equations, and in which the diffusive fluxes
are approximated up to second order in space by

ε

∆x

〈

vm

(

L−1
Mn

i+1
2

(I − Πn
i+ 1

2
)(v

Mn
i+1 − Mn

i

∆x
) − L−1

Mn

i− 1
2

(I − Πn
i− 1

2
)(v

Mn
i − Mn

i−1

∆x
)

)〉

.

In [7], the scheme is fully discretized and implemented in the simplified case of the BGK
equation.

We complete this section by a numerical illustration of the results mentioned above. In
figure 3.1, we plot the heat flux profile (divided by ε) for the Sod test case, with different

values of ε and for different schemes. This quantity is 1
ε
〈 |v−u|2

2
(v − u)f〉 in the kinetic

description, and −κ∂xT for the CNS equations. It is clear that the splitting scheme of [CP91]
does not capture this profile for ε of the order of 10−4: due to the term e−∆t/ε mentioned
above, the heat flux is very small. At the contrary, our scheme gives a heat flux which is
very close to that obtained with the CNS equations, as well as the modified splitting scheme.
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Fig. 3.1: Sod test: heat flux divided by ε as a function of x ∈ [0, 1] for the scheme (3.10)–(3.11)
(referred to as AP) and the modified splitting scheme (referred to as Si)—that both preserve the
CNS asymptotics—and for a standard scheme for the CNS equations (referred to as NS), and also
for the splitting scheme of [CP91] (referred to as Se). Time t = 0.16, and ε = 2 × 10−3 (left) and
ε = 2 × 10−4 (right). The time step is ∆t = 2 × 10−3.

Remark 3.1. It can be noted that to correctly capture the CNS regime, the space grid
step must satisfy ∆x ≤ ε, and that consequently, the CFL stability condition due to the
transport requires a time step ∆t = O(∆x) = O(ε). This means that our scheme has the
same constraint as a standard explicit scheme in this regime. However, a essential difference
is that our scheme is uniformly stable and accurate with respect to ε. An explicit scheme can
indeed describe the CNS regime, but in the case of a variable regime (like in an atmospheric
reentry problem), this scheme cannot be used up to the Euler regime. At the contrary, the
splitting scheme of [CP91] can capture the Euler regime, but not the CNS regime. Up to
our knowledge, our scheme if the only one that can uniformly describe all these regimes.
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3.2 A numerical scheme for the linear transport equa-

tion preserving the diffusion asymptotics [8]

In this section, we summarize a joint work with M. Lemou accepted for publication in
the SIAM Journal of Scientific Computing [8].

We have tried to apply the strategy described in the previous section to linear equations
for which the suitable scaling is the diffusion one. To simplify this summary, let us consider
the one-dimensional transport equation in slab geometry

∂tf +
1

ε
v∂xf =

σS

ε2
(ρ − f), (3.12)

where the density ρ is the average of f defined by ρ = 〈f〉 = 1
2

∫ 1

−1
f dv, and v ∈ Ω = [−1, 1]

is the cosine of the angle between the propagation speed of the particles and the axis x. It
can be proved that when ε tends to 0, this density converges to the solution of the diffusion
equation

∂tρ − ∂x(κ∂xρ) = 0, (3.13)

where κ = 1
3σS

.
In comparison with the hyperbolic limit, the main numerical difficulty of the diffusion

scaling is that the equation contains an additional stiff term: the transport term 1
ε
v∂xf . It

is therefore not very clear whether the method of section 3.1 can be directly and successfully
applied. However, this approach works very well, as it is explained below.

The micro-macro decomposition adapted to problem (3.12) is

f = ρ + εg, (3.14)

where g is such that 〈g〉 = 0. The projection on the kernel of the collision operator is defined
here by Πϕ = 〈ϕ〉. Then our micro-macro formulation of equation (3.12) is

∂tρ + ∂x 〈vg〉 = 0, (3.15)

∂tg +
1

ε
(I − Π)(v∂xg) = −σS

ε2
g − 1

ε2
v∂xρ. (3.16)

Using the same time and space discretization as that proposed section 3.1, we find the scheme

ρn+1
i − ρn

i

∆t
+

〈

v
gn+1

i+ 1
2

− gn+1
i− 1

2

∆x

〉

= 0, (3.17)

gn+1
i+ 1

2

− gn
i+ 1

2

∆t
+

1

ε∆x
(I − Π)

(

v+(gn
i+ 1

2
− gn

i− 1
2
) + v−(gn

i+ 3
2
− gn

i+ 1
2
)
)

(3.18)

= −
σSi+ 1

2

ε2
gn+1

i+ 1
2

− 1

ε2
v
ρn

i+1 − ρn
i

∆x
.

It should be remarked that the stiff term 1
ε
(I − Π)v∂xg in (3.16) is approximated by an

explicit term in (3.18). However, the collision term − σS

ε2 g, which is stiffer, is taken implicit.
It appears that this is sufficient to ensure a uniform stability with respect to ε.
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Indeed, we could have proved this property in the simplified case of the telegraph equation
(also called Goldstein-Taylor model). This equation reads

ε∂tu + ∂xu =
1

2ε
(v − u),

ε∂tv − ∂xv =
1

2ε
(u − v).

(3.19)

It can be viewed as model (3.12) for the “velocity” set Ω = {−1, 1}, where σS = 1, dv is the
Lebesgue measure associated to Ω, and f is the vector (u, v). The density is ρ = 1

2
(u + v)

while the “micro” part is g = ( 1
2ε

(u−v), 1
2ε

(v−u)). Then g can be replaced by j = 1
2ε

(u−v),
and after simple calculations, scheme (3.17)–(3.18) applied to this equation reads

ρn+1
i − ρn

i

∆t
+

1

∆x
(jn+1

i+ 1
2

− jn+1
i− 1

2

) = 0, (3.20)

jn+1
i+ 1

2

− jn
i+ 1

2

∆t
− 1

2ε∆x
(jn

i+ 3
2
− 2jn

i+ 1
2

+ jn
i− 1

2
) = − 1

ε2
jn+1
i+ 1

2

− 1

ε2

ρn
i+1 − ρn

i

∆x
. (3.21)

We have then proved, by using a simple Von Neuman analysis, the following stability result.

Theorem 3.1. Scheme (3.20)–(3.21) is l2-stable, i.e.

∑

i

(ρn
i )2 + (εjn

i+ 1
2
)2 ≤

∑

i

(ρ0
i )2 + (εj0

i+ 1
2
)2

for every n, if ∆t satisfies the following condition

∆t ≤ 1

2

(

∆x2

2
+ ε∆x

)

. (3.22)

The stability condition given in this theorem is an average of the transport and diffusion
CFL conditions. For large and small ε regimes, we recover these classical CFL, but with a
time step which is twice as small as that given by these conditions. Note that for ε ¿ ∆x, the
time step is no more constrained by ε, hence the uniform stability. Practically, we observed
that a similar CFL condition ensures the stability for the linear transport equation.

Contrary to the work presented section 3.1, we have studied in [8] the boundary condition
(BC) approximations. To simplify, the presentation below is restricted to the case of a
Dirichlet BC, at the left side x = 0: in our micro-macro formulation, the BC on f translates
to

ρ(t, 0) + εg(t, 0, v) = fL(t, v), ∀v > 0. (3.23)

The difficulty of this study relies in the fact that the BC is given only for incoming velocities:
therefore, it is not possible to decouple ρ and g in this relation. Moreover, the central
discretization of the flux in (3.15) requires to know g at the boundary for every velocities,
while the Dirichlet BC gives a relation for positive v only. Finally, the behavior of our
scheme in case of boundary layers generated by non-isotropic BC has to be investigated. We
summarize below some responses to these questions.
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First, we give some notations. We consider the bounded domain [0, 1] discretized by the
staggered grids {xi = i∆x}N

i=0 with x0 = 0 and xN = 1 that are the boundary points, and
{xi+ 1

2
= (i + 1

2
)∆x}N

i=−1 with x− 1
2

= −1
2
∆x and xN+ 1

2
= 1 + 1

2
∆x that are two outer points.

Assuming that ρ and g are known at every points at time tn, we compute the same quantities
at tn+1 by the following algorithm:

1. Computing g at inner points.Apply (3.18) to find gn
i+ 1

2

for i = 0 to N only.

2. Computing ρ at inner points. Apply (3.17) to find ρn+1
i for i = 1 to N − 1 only.

3. Computing ρ at boundary points. Apply (3.17) for i = 0, by using the following
definition for gn+1

− 1
2

:

• for incoming velocities, BC (3.23) is approximated by ρn+1
0 + ε

2
(gn+1

− 1
2

+ gn+1
1
2

) = fL,

which gives the value

gn+1
− 1

2

=
2

ε
(fL − ρn+1

0 ) − gn+1
1
2

, v > 0. (3.24)

• for outgoing velocities, use the artificial Neuman BC

gn+1
− 1

2

(v) = gn+1
1
2

(v), v < 0. (3.25)

Note that the 1
ε

stiffness of (3.24) does not cause any problem, since this term is implicit.
The value at the right boundary is obtained similarly.

4. Computing g at outer points. Since ρn+1
0 is known, it is then sufficient to apply

relations (3.24)–(3.25) to obtain gn+1
− 1

2

.

Now, it can easily be seen that the BC obtained at the limit ε = 0 for ρn+1
0 is

ρn+1
0 =

∫ 1

0
vfL dv
∫ 1

0
v dv

. (3.26)

But it is known that the BC of the diffusion equation (3.13) is in fact

ρ(t, 0) = lim
y→+∞

χ(t, y, v),

where χ is the bounded solution of the Milne problem

v∂yχ = σS(〈χ〉 − χ), y > 0,

χ(t, 0, v) = fL(t, v), v > 0.
(3.27)

When fL is isotropic (= ρL), we find ρ(t, 0) = ρL, which is the same as the limiting numerical
BC (3.26). Thus our scheme indeed captures the solution at the boundary for isotropic BC. If
fL is not isotropic, then formula (3.26) corresponds to the approximation of (3.27) obtained
by equating the half-fluxes of χ in 0 and +∞, which is not always a sufficient approximation.

To conclude this section, we show numerical illustrations of the previous results. Fig-
ure 3.2 shows the behavior of our method (referred to as LM in the legend) in a kinetic
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Fig. 3.2: Linear transport, kinetic regime
(ε = 1): comparison explicit/LM schemes
(LM with 25 and 200 points), at different
times.
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Fig. 3.3: Linear transport, diffusion regime
(ε = 10−8): comparison diffusion equa-
tion/LM scheme (25 and 200 points), at dif-
ferent times.

regime, while figure 3.3 shows the results obtained in the diffusion regime for different BC.
The reference solutions are obtained with an explicit scheme with a very fine mesh for the ki-
netic regime, and with a classical approximation of the diffusion equation for the asymptotic
regime.

We mention that in [8], our method is carefully compared to the methods of Klar [Kla98b]
and Jin, Pareschi and Toscani [JPT00]: it globally appears that the results obtained with
our approach are close to that obtained with the other methods.

3.3 Perspectives

We would like to continue these works in the following directions.

Multi-dimensional problems.
In order to fully demonstrate the efficiency of our method, it is necessary to extend it to
multi-dimensional problems. The only difficulty is to obtain a suitable multi-dimensional
discretization with staggered grids: in particular, an important problem is to find central
differences for the gradients ∇xρ and ∇xg in the linear case, or ∇xM(U) and ∇xg in the
Boltzmann/CNS case, such that the diffusion term is well approximated by the limiting
scheme. In other words, the discretized version of ∇x · 〈v.〉 applied to the discretized version
of v ·∇x must be a correct approximation of te Laplace operator ∆x. In Cartesian geometry,
several simple discretizations can be tested. For an arbitrary geometry, it is attractive to
consider the recent theory developed by Domelevo and Omnès [DO05]: it allows to generalize
the notion of staggered grids for arbitrary meshes, and contains a discretization “in duality”
of the divergence and gradient operators which seems very well suited to our problem.

Numerical boundary conditions.
The previous project will require a careful study of the discretization of the BC. We have
shown in section 3.2 that, even in one dimension, this discretization is not so obvious.
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This problem is still to be solved for our CNS asymptotic preserving scheme (presented
section 3.1). It is not clear that the BC approximation used for the linear transport is
applicable to this case.

Inversion of the collision operator.
In our approach, an important issue is to obtain an efficient inversion of the linear (or
linearized) collision operator that appears in the equation for the “micro” part g. This issue
is common to every AP methods (like ours or the others cited in the introduction). For the
Boltzmann case, the Wild sum approach could be efficient, as it has been shown in [GPT97]
or in [JP00]. Similar techniques as those we have developed for the Landau operator (see
chapter 1) could also be investigated.

Mathematical analysis.
It would be interesting for the mathematical foundations of our method to extend the stabil-
ity result, proved in the case of the telegraph equation, to the linear transport problem. This
has already been done by Klar and Unterreiter [KU02] for a method close to that of [Kla98b]
and [JPT00]. An analysis in the same spirit seems possible.

Other asymptotics.
Finally, we mention three possible extensions of our method that could be rapidly studied.
First, a natural extension is to obtain a scheme for the Boltzmann equation that preserves
the incompressible Navier-Stokes asymptotics. In this asymptotics, the distribution function
is supposed to be close to an absolute Maxwellian, and the fluid limit is obtained with a
diffusion scaling. Again, an AP scheme has already been obtained by Klar in [Kla99a].
We would like to prove that our scheme presented section 3.1 also allows to obtain the
incompressible Navier-Stokes asymptotics.

Another extension in the diffusion limit framework is that of the “Spherical Harmonics
Expansion” (S.H.E). This limit appears for kinetic models for which the collision operator
makes the distribution isotropic, like in semi-conductors for instance. The equilibrium states
are therefore more general than for more usual models: they are functions of the energy.
The limit model is a drift-diffusion equation with a generalized gradient defined on the
variables of position and energy (se Degond and Ben Abdallah [BAD96] for an introduction
to these models). Our approach using the micro-macro decomposition directly applies to this
problem. The only difficulty is to find a discretization of the position and energy variables
that gives a correct approximation of the generalized drift-diffusion term in the limiting
scheme.

Finally, we are interested in studying AP schemes for problems in which the diffusion
limit is induced by the collisions at the boundary. A typical case is that of the thermal creep
flow, produced in a gas confined between two plates with diffuse reflection conditions. The
following chapter is devoted to such a physical situation, without studying the AP scheme
problem.



Chapter 4

Models and numerical computations
for a problem of microfluidics

In this chapter, we summarize several joint works with P. Degond and a few members of K.
Aoki’s team.

Following the recent works by Sone and co-authors [SWA96, AST+01], we have proposed
a new system of micro-pump which is based on the thermal creep effect, as described by the
kinetic theory of gases. This system is made of a curved channel along which is applied a
periodic temperature field. This field induces a gas flow into the direction of the temperature
gradient, without using any mechanical part, which is very interesting for obvious technolog-
ical reasons. In order to demonstrate the efficiency of our device, we have proposed various
modeling and numerical simulation techniques.

In section 4.1, we give some explanations on the thermal creep flow, and on its potential
applications to the design of micro-pumps (called Knudsen compressors). Then in section 4.2,
we present our numerical simulation method and a few numerical results. In section 4.3, we
propose a macroscopic model of our problem, by using the diffusion approximation induced
by the collisions with the walls, for a channel with a small width. The numerical results
obtained with this model are compared to the kinetic results. Finally, we briefly describe in
section 4.4 another macroscopic model obtained in the small Knudsen number limit.

4.1 Thermal creep flow and Knudsen compressors

The thermal creep flow is generated by the interaction of a gas with the boundaries, in the
rarefied regime: a temperature gradient applied on the walls induces a gas flow in the direc-
tion of the gradient. This phenomenon has first been discovered by Reynolds [Rey79], then
studied by Maxwell [Max79], Knudsen [Knu09], and recently, for instance, by Sone [Son66],
and Ohwada, Sone and Aoki [OSA89].

Without describing these theories into details, we give below a simplified explanation of
this phenomenon (taken from [Son02]). Consider a point A of the boundary (see figure 4.1)
and the molecules that impact this point. Since the boundary is hotter at the right side of
A than at the left side, then the molecules coming from the right have a greater average
kinetic energy than those coming from the left. Consequently these molecules transfer a
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momentum to A which is greater than the momentum transfered by left molecules. On
the other hand, the molecules reflected diffusely on the boundary do not contribute to the
tangential momentum transfer. Therefore the gas transfers a momentum to the boundary
in the opposite direction to the temperature gradient direction (to say from the right to
the left). Finally, since the boundary is at rest, by reaction it transfers a force to the gas
directed from the left to the right. This produces a flow directed in the temperature gradient
direction. This flow is called thermal creep flow.
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low temperature TL high temperature TH

momentum

momentum transfered to the wall by the molecules

momentum
of "hot" molecules

of "cold" molecules

thermal creep flow

A

Fig. 4.1: Physical mechanism of the thermal creep flow.

This effect suggests that it is possible to create a flow in a pipe or a channel without
any mechanical part. Since this idea has first been suggested by Knudsen, the devices
that use the thermal creep flow are often called Knudsen compressors. However, this is
only recently, with the development of the micro-mechanics (in particular the micro-electro-
mechanical system technology, or MEMS), that it has been possible to construct Knudsen
compressors sufficiently small to work with not too small pressures. For instance, for the
air in atmospheric pressure, the gaz is sufficiently rarefied only if the characteristic size of
the device is of the order of 1 micron. Recently, different kinds of compressors have been
proposed: our device uses some ideas developed by Sone, Waniguchi and Aoki [SWA96], and
Sone and Sato [SS00] (see other references in [9]).

Like [SWA96], we use a cascade structure, already proposed by Knudsen: since the
pumping effect induced by the thermal creep is proportional to the temperature gradient,
the power of the pump is necessarily limited, except if a very strong temperature gradient
is applied, which is technologically difficult. The idea is then to form a device composed of
similar units connected together. Each unit is composed of a pipe divided into two parts,
along which are applied two opposed temperature gradients, so that there is no gradient on
average in the unit. A net flow can be generated in the device if one can find a way to avoid
the compensation of the two opposed thermal creep flows generated in each unit.

In our system, this is obtained by a geometrical effect. As it is shown in figure 4.2, this
unit has a hook shape: a temperature gradient (TH −TL)/LS is applied to the straight part,
and an opposed gradient (TL −TH)/(πR) is applied on the curved part. Due to the different
geometries of the two parts, it can be expected that the two thermal creep flows will not have
the same magnitude, and hence one flow should be stronger than the other. This geometry
is simpler than in [SWA96] and should be easily feasible on a MEMS. Note that to limit
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the computational cost of our simulations, our study has been restricted to two-dimensional
plane geometries: then figure 4.2 represents a plane channel instead of a pipe.

In the studies described in the next sections, two different tests have been considered.
The first one is described in figure 4.3: on unit is connected to its symmetric image so as
to make a ring. This test is designed to show a steady circulating flow. The other test is
designed to measure the pumping effect by using a cascade as described in figure 4.4. One
unit is connected to its mirror image to form a “S” shape, then N units are connected as a
cascade system. The device is closed at both ends, and the pressure difference is computed
at steady state.
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TH

R

TL

TL

A

Fig. 4.2: Basic unit of our devices : a hook
shaped channel.
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TL TH

Fig. 4.3: Ring shaped channel to generate a
circulating flow.
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Fig. 4.4: Closed cascade device to generate
a pumping effect.
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4.2 Two-dimensional steady Boltzmann-BGK simula-

tion with an implicit scheme [9, 10]

In this section, we summarize the joint work with K. Aoki and P. Degond, and submitted in
2007 [9]. We briefly detail our deterministic numerical method used to simulate the devices
presented in the previous section. At the end of this section, our results are compared to
these obtained with a standard stochastic simulation. These results are taken from a joint
work with K. Aoki, P. Degond, M. Nishioka, and S. Takata, which has been presented in
2006 at the 25th Rarefied Gas Dynamics Symposium [10].

The Boltzmann equation is still computationally very expensive: this is why this study
uses the simpler BGK model. This choice has been justified by our results (see the end of
this section). In this model, the gas is described by the distribution functions f(t,x,v),
where x = (x, y, z) is the position variable and v = (vx, vy, vz) is the velocity variable, and
the evolution of f is given by the kinetic equation

∂tf + v · ∇xf =
1

τ
(M [ρ,u, 2RT ] − f), (4.1)

where M [ρ,u, 2RT ] is the Maxwellian equilibrium distribution defined by M [ρ,u, 2RT ] =
ρ

(2πRT )3/2 exp(− |v−u|2
2RT

). The macroscopic quantities as the mass density ρ, the mean velocity

u, and the temperature T are defined by

(ρ, ρu,
1

2
ρ|u|2 +

3

2
ρRT )(t,x) =

∫

R3

(1,v,
1

2
|v|2)f(t,x,v) dv. (4.2)

For plane flows, f is independent of z, and the complexity of (4.1) is classically reduced by the
following method. We define the reduced distributions (F,G)(t, x, y, vx, vy) =

∫

R
(1, 1

2
v2

z)f dvz,
and it is easy to prove that F and G satisfy the coupled system of kinetic equations

∂tU + v · ∇x,yU = Q(U), (4.3)

where U = (F,G) and Q(U) = ( 1
τ
(M[ρ, u, 2RT ] − F ), 1

τ
(RT

2
M[ρ, u, 2RT ] − G)). In this

equation, v = (vx, vy) denotes the two-dimensional velocity variable. By symmetry, the
macroscopic velocity u has no component along z, then we note u = (ux, uy) its component
in the plane (x, y). Finally, M[ρ, u, 2RT ] is the Maxwellian defined by

M[ρ, u, 2RT ] =

∫

R

M [ρ,u, T ] dvz =
ρ

2πRT
exp(−|v − u|2

2RT
),

and the macroscopic quantities can be obtained through F and G by

ρ =

∫

R2

F dv, ρu =

∫

R2

vF dv, T =
1

3
2
ρR

∫

R2

(
1

2
|v − u|2F + G) dv. (4.4)
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To approximate the stationary solution of the BGK equation (4.1), we have extended
to the reduced system (4.3) the method that I have developed in my thesis (see [Mie00a,
Mie00b]). The main ingredients of this method are:

(a) velocity discretization: with a Cartesian grid of Nv points {vk}, the Maxwellian
is approximated so as to preserve the conservation and entropy properties of the collision
operator. The rigorous mathematical basis of this approximation have not been studied in [9],
but this study can easily be made by using my previous works: existence of the approximation
in [Mie00a] and [14] (see also chapter 5), and convergence in [Mie01]. In what follows, we
note Uk and Qk(U) the corresponding approximations of U(vk) and Q(U)(vk).

(b) space discretization: with an upwind finite-volume scheme on a curvilinear struc-
tured grid of Nx,y nodes (x, y)i. To give a simple idea of this scheme, we give below the
corresponding approximation in one space dimension only:

∂tUi,k + v+
k

Ui,k − Ui−1,k

∆x
+ v−

k

Ui+1,k − Ui,k

∆x
= Qk(Ui),

where v±
k are the positives and negatives parts of vk.

(c) time discretization: with a linearized implicit scheme which can rapidly converge to
the stationary solution (with large time steps). With the previous notations, this reads

Un+1
i,k − Un

i,k

∆t
+ v+

k

Un+1
i,k − Un+1

i−1,k

∆x
+ v−

k

Un+1
i+1,k − Un+1

i,k

∆x
= Qk(Un

i ) + DQk(Un
i )(Un+1

i − Un
i ),

where DQk(V ) is the derivative of Qk computed at V .

(d) linear solver: the previous relation is a linear system for the unknown U n+1, which
is a vector of R

2NvNx,y . This system can be written under the following matrix form

(

I

∆t
+ T + Rn

)

δUn = RHSn, (4.5)

where δUn = Un+1 − Un, I is the unit matrix, T is the matrix that discretizes the operator
v · ∇x,y, −Rn is the Jacobian matrix of Qk at Un, and RHSn is the matrix that discretizes
−v ·∇x,yU +Q(U) at time n. Since the size of this system is very large, it cannot be inverted
by a direct method, and the matrices cannot even be stored. It is therefore solved by an
original iterative solver that makes use of the sparse structures of T (local with respect to
x, y) and Rn (local with respect to v).

In comparison to [Mie00a, Mie00b], the main innovation proposed with this scheme relies
on a new algorithm to treat the boundary conditions (BC) in the linear solver. Up to this
work, the BC were treated explicitly, even in the implicit scheme: the coefficients correspond-
ing to these BC in the matrix T were replaced by 0, in order to preserve the multi-diagonal
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structure of the matrix. The convergence of our algorithm has been improved by using an
implicit treatment of the BC that has the following advantages:

• its implementation requires only very slight modifications of the linear solver;

• the additional computational cost per iteration in neglectable;

• the induced speed-up of the global algorithm is very important.

Since a detailed explanation of this approach requires to introduce a large number of nota-
tions, we refer to [9] to limit the length of this summary.

Using this algorithm, I wrote the computational code CORBIS (COde Raréfié Bidimen-
sionel Implicite Stationnaire) in Fortran 90. It uses the shared memory parallel programming
interface OpenMP. The results below have been obtained with 6 processors of the SGI Altix
3700 of the scientific grouping CALMIP (see http://www.calmip.cict.fr ).

In figure 4.5, we plot the velocity field and the streamlines obtained with this code for
the ring shaped channel described figure 4.3 (p.43). We observe that the flow generated by
the curved boundary is stronger than that of the straight part, which remains confined in
two small recirculation zones. A global net flow is indeed generated, in the indirect sense.
In figure 4.6, we plot the temperature, density, pressure, and velocity fields obtained for the
pumping test described figure 4.4 (p.43) with a 16 units channel. We observe the pressure
difference which is obtained between both ends of the channel. In figure 4.7 is given a
comparison of the results obtained with the deterministic code CORBIS to these obtained
with the DSMC method (computations made by M. Nishioka in [10]) : we observe that even
with the simple BGK model, the agreement with DSMC (which is supposed to approximate
the Boltzmann equation) is surprisingly good, at least for 2 to 8 units channel. Note that for
this last computation, the advantage of our deterministic simulation is striking: it required 7
days of computation, while the DSMC simulation took around 4 months. Finally, figure 4.8
shows the convergence speed-up obtained with the implicit treatment of the BC.
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Fig. 4.5: Velocity field (left), streamlines and magnitude of the velocity field (right) in half of the
ring shaped channel.
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Fig. 4.6: Macroscopic fields in the 16 units pump.
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Fig. 4.7: Comparison between BGK (-) and DSMC (o): pressure (averaged in a section) along
the channel, for a pump with 1, 2, 4, and 8 units.
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Fig. 4.8: Convergence to the stationary solution for a 8 unit (left) and a 16 unit channel (right),
for our scheme wit explicit and implicit BC.
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4.3 Diffusion approximation induced by the collisions

with the boundaries [11, 12]

Here, we present a joint work with K. Aoki, P. Degond, S. Takata, and H. Yoshida, accepted
in 2007 for publication in SIAM Multiscale Modeling & Simulation.

In the previous study, due to the large computational cost, our simulations are limited
to channels with a small number of units. A simpler modeling is then essential to study the
behavior of our channel for larger numbers of units (around 100).

In this section, we obtain a macroscopic approximation of the BGK equation (4.1) for
channels with a width smaller than a characteristic length (like the length of one unit).
Usually, the fact that a kinetic equation can be approximated by a diffusion equation is due
to the structure of the collision operator: it makes the distribution tend to an equilibrium
state of zero mass flux. This implies that the asymptotic analysis must be done with a time
scale sufficiently long to observe a nontrivial dynamics. In our case, this role is, somehow,
played by the reflection boundary condition: the particles are diffusely reflected, at the wall
temperature, with a zero average velocity. Then, when the channel is very thin, the mass
flux of the gas becomes very small. This phenomenon has been studied by Babovsky [Bab86]
and Babovski, Bardos and PÃlatkowski [BBP91] in the case of a collisionless gas, in a one-
dimensional straight channel. More recently, Aoki and Degond [AD03] have extended this
method to the case of a straight channel with a linear collision operator, in order to simplify
the study of the Knudsen compressor proposed in [SWA96, AST+01]. Here, we use the same
strategy applied to the curved channel. In comparison to [AD03], the differences are the
followings:

• the geometry requires a study with curvilinear coordinates;

• the collision operator is nonlinear;

• we use the diffusion model for various numerical simulations: a database for the diffu-
sion coefficients is constructed, the diffusion model is discretized, and it is compared
to the kinetic simulations presented in the previous section.

In what follows, these different points are detailed.

Let us consider again the BGK equation (4.1) studied in the previous section. Here, the
relaxation time is equal to (Acρ)−1 where Ac is a constant. This equation is set in a plane
domain Ω with a curved boundary, and of constant width D. With the coordinate system
(r, s) defined in figure 4.9, the BGK equation can be written as

∂tf + (1 − κr)−1vs∂sf + vr∂rf + κ(1 − κr)−1vrvs∂vsf

− κ(1 − κr)−1v2
s∂vrf = Acρ(M [ρ,u, 2RT ] − f). (4.6)

where κ is the curvature of the median line C of the channel, (vs, vr) are the velocities in the
tangent and normal directions to C in s, and (1 − κr) is the Jacobian of the Cartesian/cur-



4.3 Diffusion model 49

vilinear transformation. The diffuse reflection condition at the walls reads

f = ± 1

2π(RTw)2
exp

(

− v2

2RTw

)∫

vr≷0

vrfdv, for vr ≶ 0 at r = ±D

2
, (4.7)

where Tw(s) is the wall temperature in s.

D

Ω

C

x

s = 0

s

r

Fig. 4.9: Plane channel Ω and the associated curvilinear coordinate system.

The assumption of a small width channel is made visible with new non-dimensional
variables for which equation (4.6) reads

ε2∂tf + ε(1 − κr)−1vs∂sf + vr∂rf + κ(1 − κr)−1vrvs∂vsf

− κ(1 − κr)−1v2
s∂vrf =

1

K0

ρ(M [ρ,u, T ] − f), (4.8)

where K0 is the Knudsen number, and the boundary condition is now written at r = ± 1
2
.

Up to some constants, this changing of variables means that we use the following time and
space variables t′ = ε2t and s′ = εs, where ε = D

Ls
is the ratio of the width of the channel to

a characteristic length scale of variation of Tw and κ.

Integrating (4.8) on the velocity space and on a section of the channel, we find the
following continuity equation:

∂t% + ∂sj = 0, (4.9)

where

%(s, t) =

∫ 1/2

−1/2

∫

R3

f(1 − κr) dvdr et j(s, t) =
1

ε

∫ 1/2

−1/2

∫

R3

vsf dvdr

are the mass density on the section, and the mass flux across the section, divided by ε.

First, we have found the limit of this equation as ε tends to 0. We mention that the results
of [9] that are summarized below are formal: we do not specify any regularity assumption,
nor any function space.
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Theorem 4.1. (i) f → f(0) = ρ(0)(s, t)M [1, 0, Tw(s)] as ε → 0, where ρ(0)(s, t) is a solution
of the nonlinear diffusion problem

∂tρ(0) + ∂sj(1) = 0, (4.10)

j(1) =
√

TwMP ∂sρ(0) +
ρ(0)√
Tw

(MP + MT )∂sTw, (4.11)

where MP and MT are nonlinear functions of ρ(0) defined through auxiliary linear kinetic
equations (see the proof of the theorem).

(ii) The diffusion coefficient MP is non-positive.
(iii) ρ(0) and j(1) are second order approximations of the density % and current j associated

to f : % − ρ(0) = O(ε2), j − j(1) = O(ε2).

Sketch of the proof. Classically, we look for an approximation of the solution f under the
form of a third order Hilbert expansion f(0) + εf(1) + ε2f(2) + ε3f(3). This approximation is
inserted into (4.8) and into the corresponding boundary conditions, and the nonlinear terms
are expanded. Then, we use the following notations: Q(f) = 1

K0
ρ(M [ρ,u, T ] − f) is the

collision operator and DQk(f(0)) its derivatives with respect to f in f(0), and we introduce
the the following operators:

A0 = vr∂r + κ(1 − κr)−1vrvs∂vs − κ(1 − κr)−1v2
s∂vr L = A0 − DQ(f(0))

A1 = (1 − κr)−1vs∂s A2 = ∂t.

It is easily found that the Hilbert approximation satisfies (4.8) up to ε4 if f(0), f(1), f(2), and
f(3) satisfy

A0f(0) = Q(f(0)) (4.12)

Lf(1) = −A1f(0) (4.13)

Lf(2) =
1

2
D2Q(f(0))(f(1), f(1)) −A2f(0) −A1f(1) (4.14)

Lf(3) = D2Q(f(0))(f(1), f(2)) +
1

6
D3Q(f(0))(f(1), f(1), f(1))

−A2f(1) −A1f(2), (4.15)

and the corresponding boundary conditions.
For the zeroth order in ε (4.12), we assume that f(0) is necessarily given by

f(0) = ρ(0)(s, t)Mw, (4.16)

where the density ρ(0) has to be determined, and Mw = M [1, 0, Tw(s)]. Note that this
assumption could easily be proved by using the conservation laws and the entropy and
Darrozès-Guiraud inequalities. Also note that the corresponding mass flux is necessarily
zero, which a posteriori justifies our new time scale.

For the first order in ε (4.13), it can easily be proved that the linear operator L is
invertible on the set of functions that have a zero averaged density on a section. Then, after
the expansion of A1f(0), we find

f(1) = L−1
(

−(1 − κr)−1vsMw

)

∂sρ(0) + L−1
(

−(1 − κr)−1vsMw(
v2

Tw

− 3

2
)
)∂sTw

Tw

ρ(0). (4.17)
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Now, if we assume that f(0) + εf(1) is indeed an approximation of f , then relations (4.9),
(4.16) and (4.17) are sufficient to obtain the diffusion equation (4.10)–(4.11): we find j(1) =
∫ 1/2

−1/2

∫

R3 vsf(1) dvdr, and the coefficients MP and MT are defined by

MP =

∫ 1/2

−1/2

∫

R3

vs
1√
Tw

L−1
(

−(1 − κr)−1vsMw

)

dvdr (4.18)

MT =

∫ 1/2

−1/2

∫

R3

vs
1√
Tw

L−1
(

−(1 − κr)−1vsMw(
v2

Tw

− 5

2
)
)

dvdr. (4.19)

The other parts of the proof are classical: f(2) and f(3) are computed like f(1), then we
show that, by construction, the approximation fε = f(0) + εf(1) + ε2f(2) + ε3f(3) satisfies the
same equation as f up to O(ε2). This allows to prove that fε approximates f up to O(ε2)
(provided that the remainder can be correctly estimated), and gives points (i) and (iii) of the
theorem. Point (ii) is mainly due to the fact that the operator 1

f(0)
DQ(f(0)) is non-positive

self-adjoint in L2(R3dv). In [9], a direct proof of this point is given.

In [9], the formula for MP and MT are a bit different: actually the inversion of L requires
to solve one-dimensional stationary kinetic problems, which cannot be analytically made.
These problems have then been numerically solved, in order to tabulate MP and MT . To
do so, it must be found which independent parameters these coefficients depend on. This is
why we have introduced the functions

φP (s, r, ζ, t) =
1

Mw

L−1(−(1 − κr)−1vsMw),

φT (s, r, ζ, t) =
1

Mw

L−1
(

−(1 − κr)−1vsMw(
v2

Tw

− 5

2
)
)

,

and the variable ζ = v/
√

Tw. Then we could have proved that φP and φT are solu-
tions of linear problems that depend only on two parameters: the curvature κ and the
local Knudsen number K =

√
TwK0/ρ(0). The coefficients MP and MT then read MP =

∫ 1/2

−1/2

∫

R3 ζsφP E dζdr and MT =
∫ 1/2

−1/2

∫

R3 ζsφT E dζdr. They depend on s only through the

parameters κ and K. They could have been tabulated once for all by solving the linear
problems associated to φP and φT for many values of κ and K.

Whereas the sign of MP is easily obtained, this is more difficult for the friction coefficient
MP + MT . However, such a result is interesting since it allows to obtain monotonicity
properties for the pressure and density profiles. In [12], by using a linearized version of
the BGK model, in a straight channel, at steady state, we could have proved the following
inequalities: MP ≤ 0, MP + MT ≤ 0, and MT ≥ 0. We then have proved that the pressure
and temperature gradients have the same sign, while the density gradient has an opposed
sign.

We have also studied the diffusion approximation when the curvature is discontinuous,
since the channels presented section 4.2 have indeed a discontinuous curvature at the junction
between the circular and straight parts. In this case, we can make again a Hilbert expansion,
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but, separately, on left and right parts of the discontinuity (which is supposed to be located at
s = 0). Then we obtain two diffusion equations for the densities at the left and right sides of
the discontinuity, that must be coupled by two transmission conditions to get a well-posed
problem. By a boundary layer analysis, we could have found the following transmission
conditions

ρ(0)|s=0+ = (1 + εd)ρ(0)|s=0− , j(1)|s=0+ = j(1)|s=0− ,

that are necessary to preserve the second order of the approximation. An approximated
expression has been obtained for the constant d, that has been tabulated like MP and MT .

The numerical solving of the diffusion equation (4.10)–(4.11) at steady state has been
made with a standard finite difference method. We give below two numerical results obtained
with this asymptotic model. In figure 4.10, we compare the pressure profiles, computed along
channels with 1, 2 and 4 units, to these obtained with the deterministic kinetic simulation
described section 4.2. The agreement is clearly very good. After this validation, we can
use the asymptotic model to compute the pressure profile in a channel with many units: in
figure 4.11, we show the result obtained with 100 units. Between both ends, the pressure
is increased by a factor 6, which is huge. Note that making such a computation with a
two-dimensional kinetic code is really difficult.
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Fig. 4.10: Pressure profile along a channel with 1, 2, and 4 units: comparison between the diffusion
model (-) and two-dimensional BGK simulations (o).
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Fig. 4.11: Pressure profile along a channel with N = 100 units.
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4.4 Approximation by a hydrodynamic model [13]

In this section, we summarize the joint work with K. Aoki, P. Degond, and C. J. T. Laneryd,
presented at the 25th Rarefied Gas Dynamics Symposium [13].

In [9] and [11], we have observed that it is difficult to accurately measure the thermal
creep flow as the Knudsen number is small. It is therefore natural to look for an asymptotic
model of the stationary BGK equation in the small Knudsen number limit. These kinds of
asymptotics have been largely investigated by Sone and his co-authors [Son02] by the Hilbert
method, associated to boundary layer analyses. For the thermal creep flow, the asymptotic
limit has been obtained by Sone, Aoki, Takata, Sugimoto, and Bobylev [SAT+96]. This limit
looks like the incompressible Navier-Stokes equations, but there are a few differences: the
momentum equation contains a thermal stress term, the density is not constant, and the
boundary condition for the velocity is a kind of slip condition. These differences are mainly
due to the finite temperature gradient assumption.

Then, with a finite-volume discretization of this model, we have made numerical simula-
tions of the thermal creep flow, for more test cases than in the previous sections. We could
have checked that there is indeed a thermal creep flow, but it disappears as the Knudsen
number tends to 0. However, even at the limit Knudsen= 0, this effect still has an influence
on the temperature profile: this quantity is not described by the heat equation of the incom-
pressible Navier-Stokes model: this is an example of the (“ghost effect”) widely investigated
by Sone and co-authors (see [Son02]).

4.5 Perspectives

The next step of this project will be mainly devoted to the simulation of a three-dimensional
Knudsen compressor in a pipe geometry. This is physically more realistic, and the behavior
of such a system may be quite different from that of the plan compressor: for instance, it
has been noted in [AST+01] that the pipe resistance to the pressure is larger than that of a
plane channel. This work will be divided into two parts.

Construction of the diffusion model.
All the calculations presented section 4.3 must be done for a three-dimensional domain Ω of
constant circular section to obtain a new one-dimensional diffusion model.

Computation of the transport coefficients.
The main difficulty will be the computation of MP and MT : they are defined through two-
dimensional auxiliary linear kinetic problems that have to be solved for a large number of
values of the parameters, in order to build a database. This is a heavy computational task.
We aim to modify our code CORBIS described section 4.2 to make it a linear version that
could be used to make the database rapidly enough.





Chapter 5

Construction and comparisons of
some simplified kinetic models

This chapter contains three works realized between 1999 and 2004. They are not related
together, except that they all deal with simplified kinetic models, like the BGK model of gas
dynamics and the SHE model of semi-conductor physics. Contrary to the works presented
in the other chapters, these do not make part of long-term projects. This is why this chapter
is not completed with a “perspective” section.

5.1 Velocity discretization of a BGK model for the

polyatomic gases [14]

This section summarizes a first step towards an extension of my thesis (on the BGK equation
for rarefied gases) to the case of polyatomic gases. These results have been obtained in
collaboration with B. Dubroca, and have been published in 1999 in ESAIM: proceedings [14].
In this article, we have proposed a velocity discretization that preserves the conservation
and entropy properties, for a polyatomic gas model.

We consider the following model

∂tf + v · ∇xf =
1

τ
(M tr[ρ] − f),

∂tg + v · ∇xg =
1

τ
(M int[ρ] − g),

(5.1)

where f and g are distribution functions of mass and internal energy that depend on time t,
on position x ∈ R

D, and on the velocity v ∈ R
D. The translational and internal equilibrium

distributions are defined by

M tr[ρ] = M [ρ], M int[ρ] = δ
2
θM [ρ], (5.2)

and M [ρ] is the usual Maxwellian M [ρ] = ρ
(2πθ)D/2 exp(− |v−u|2

2θ
). The corresponding macro-

scopic quantities are the density ρ, the velocity u, and the temperature θ defined by

ρ = (ρ, ρu, 1
2
ρ|u|2 + D+δ

2
ρθ) = 〈mf + eg〉, (5.3)
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where we use the notation 〈.〉 =
∫

RD . dv, and where m(v) = (1, v, 1
2
|v|2) and e = (0, . . . , 0, 1).

The parameter δ is the number of internal degrees of freedom of a molecule. This model
can be deduced form the BGK model with an internal energy variable ε(I) = I2/δ (which
mainly represents the rotational energy of the molecule), after a classical variable reduction
technique (see section 4.2 for the same technique applied to the reduction of the variable vz).
Perthame [Per99] has proved that this system has the following entropy

H(f, g) = 〈f log
f

g
δ

δ+2

− f〉. (5.4)

The local equilibria of the system can then been viewed as the minimizers of this en-
tropy, under the constraint that moments (5.3) must be realized. Furthermore, they can
be written as M tr[ρ] = exp(α · m(v)) and M int[ρ] = δ

2
[− 1

α(D+1) ] exp(α · m(v)) where

α = (α(i))D+1
i=0 =

(

log
(

ρ
(2πθ)D/2

)

− |u|2
2θ

, u
θ
,−1

θ

)

∈ R
D+2 is related to the Lagrange multi-

plier of this minimization problem.

For the velocity discretization, we use a Cartesian grid of N velocities vk and of step ∆v,
and the approximations fK = (fk)k∈K and gK = (gk)k∈K of f and g on the grid. We naturally
define the approximation of the macroscopic quantities (5.3) by

ρK = 〈mfK + egK〉K =
∑

k∈K
(mfk + egk) ∆vD.

Our problem is to find an approximation of the Maxwellians M tr[ρ] and M int[ρ] on the
grid, so as to preserve the conservation and entropy properties at the discrete level. Fol-
lowing [Mie00a], we have proposed to define these approximations by the following discrete
formulation of the entropy minimization problem:

(PK) HK(M tr
K [ρK],M int

K [ρK]) = min
XρK

{

HK(f̃ , g̃) = 〈f̃ log
f̃

g̃
δ

δ+2

− f̃〉K
}

,

with XρK
=
{

f̃ ≥ 0 and g̃ > 0 ∈ R
N s.t. 〈mf̃ + eg̃〉K = ρK

}

.

(5.5)

The main contribution of this work was to determine the conditions for which this approx-
imation is well defined. As it can be seen in the following theorem, there are two different
conditions: one on the grid, and the other one on the vector ρK.

Theorem 5.1. Let ρK be a vector of R
D+2. Assume that the grid V is such that

{m(vk), k ∈ K} is of rank D + 2, (5.6)

then the following assertions are equivalent

(i) problem (PK) has a unique solution (M tr
K [ρK],M int

K [ρK]), and there exists a unique
vector αK ∈ R

D+2 such that, for every k ∈ K,

M tr
k [ρK] = exp(αK · m(vk)) and M int

k [ρK] = δ
2
[− 1

α
(D+1)
K

]M tr
k [ρK]; (5.7)
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(ii) ρK is strictly realizable on V, i.e.

∃(f̃ , g̃) ∈ XρK
such that f̃ , g̃ > 0. (5.8)

In practice, the approximations (M tr
K [ρK],M int

K [ρK]) are given by (5.7) after comput-
ing αK, which is the solution of the nonlinear system of equations 〈m exp(αK · m) +
e δ

2
[− 1

α
(D+1)
K

] exp(αK · m)〉K = ρK given by the realizability constraints. This theorem in-

sures the existence of αK under reasonable conditions, that are for instance satisfied if the
transport operator of system (5.1) is approximated by a standard explicit scheme. Then we
obtain a robust, conservative, and entropic discretization of (5.1). We conclude this section
with a sketch of the proof of this theorem.

Sketch of the proof. This result is very close to that given in [Mie00a] for the monoatomic
case. The demonstration consists in proving that the function

J(γ) = 〈exp(γ · m)〉K − γ · ρK − δ

2
log(−2

δ
γ(D+1))ρ

(0)
K ,

deduced from the Lagrangian of problem (PK), has a unique minimum in its definition
domain D = {γ ∈ R

D+2, γ(D+1) < 0}. It is sufficient to prove that J is strictly convex
and coercive on D.

The assumption on the grid (5.6) easily gives the strict convexity. The coercivity is a
consequence of (5.6) and of the strict realizability (5.8) of ρK. More precisely, when the
behavior of J along the line {γ = β + sω, s > 0} is considered, for β ∈ D and ω ∈ SD+1 in
the case ωD+1 < 0, then one has to compare the quantities

exp(sω · m(vk)) and − sω · ρK.

The two assumptions (5.6) and (5.8) of the theorem are used in the case ω · m(vk) ≤ 0
for every k. Then the assumption on the grid (5.6) implies that there exists k0 such that
ω · m(vk0) < 0, hence the assumption of strict realizability (5.8) implies ω · ρK < 0. This
means that the polynomial part of J dominates the other terms and tends indeed to infinity.
The other cases do not require any assumption and are solved without any difficulty.

The explanation above is only a “directional” coercivity: that is to say J tends to infinity
on every line {β + sω, s > 0} as s grows. There remains to prove that this property implies
the usual coercivity. This is in fact a general property which is stated in the following lemma:

Lemma 5.1. Every function J defined on D = {γ ∈ R
D+2, γ(D+1) < 0} which is con-

tinuously differentiable, convex and coercive along every direction, is necessarily coercive in
D.

In [14], we have proved this lemma by mainly using a parameterization of the level sets
of J .
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5.2 Construction and numerical approximation of BGK

models with velocity dependent collision frequency

[15, 16]

Here we summarize a joint work with H. Struchtrup, announced in 2004 in the 24th Rarefied
Gas Dynamics Symposium [15] and published in 2004 in Physics of Fluids [16].

For simulating rarefied gas flows, we have proposed some BGK-like models that give
correct transport coefficients in the hydrodynamic limit, by using collision frequencies that
depend on the molecular velocity. These models have been numerically compared to existing
models: BGK and Ellipsoidal models, and Boltzmann equation.

The BGK equation is
∂tf + v · ∇f = ν(M − f)

where the Maxwellian M is defined by M = ρ
(2πRT )3/2 exp(− |v−u|2

2RT
) and ρ, u, and T are the

macroscopic quantities defined by the first moments of f with respect to v. In this model,
the collision frequency ν depends on ρ and T only. It is well known that the viscosity
and thermal conductivity coefficients µ and κ (obtained by a Chapman-Enskog expansion)
are such that the Prandtl number Pr = 5

2
Rµ

κ
is equal to 1, while the value given by the

Boltzmann equation if 2
3
, for monoatomic gases.

To obtain relaxation models that have proper Prandtl numbers, the general idea is to
add another parameter in the model, so as to adjust µ and κ independently. In the Ellip-
soidal BGK model (ES-BGK), proposed by Holway [Hol66], this is obtained by replacing the
Maxwellian M by an anisotropic Gaussian. Following Struchtrup [Str97], we have considered
in this work a different strategy: we preserve the isotropic structure of M , but allow for a
velocity dependence of the collision frequency. More precisely, we consider the models

∂tf + v · ∇f = ν(E − f)

where ν = ν(ρ, T, |v − u|) depends on the peculiar velocity v − u, and E is a Maxwellian

E = ρ̂

(2πRT̂ )3/2 exp(− |v−û|2
2RT̂

) with parameters ρ̂, û, and T̂ that are defined so as to preserve

the conservation properties. Note that these parameters are generally not equal to ρ, u and
T . However, if they exist, we could have proved that this model also satisfies the entropy
property.

By a Chapman-Enskog expansion, we have proved that the Prandtl number given by this
model is

Pr =

∫

η6

ν(η)
e−η2

dη

∫ η4(η2− 5
2)

2

ν(η)
e−η2dη

,

where η = 1√
2RT

(v − u). By using functions ν(η) that depend on two parameters, it is

therefore possible to make Pr equal to 2
3
. Introducing the notation ν̂ = µ

ρRT
ν, we have

constructed five simple frequencies that satisfy this constraint:

ν̂1 (η) = 0.431587 η1.791288, ν̂2 (η) = 0.0268351
(

1 + 14.2724η2
)

,

ν̂3 (η) = 0.0365643
(

1 + 10η2.081754
)

, ν̂4 (η) = 0.1503991
(

1 + 0.92897η4
)

,
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and ν̂5 (η) = (0.2590894 if η ≤ 1.2, and 0.8288236 else). Note that using in our model the

collision frequency νHS(η) = c(e−η2
+

√
π

2
( 1

η
+ 2η)erfη), obtained for the Boltzmann equation

with the hard-sphere potential, does not give a correct Prandtl number.

By adapting the numerical method that I proposed in [Mie00a, Mie00b], we have tested
these different models for the classical Couette (slow and fast) and stationary shock tests
(Mach=1.4 to 8) from transitional regimes (Knudsen= 10−2) to rarefied regimes (Knudsen=1),
with comparisons to the BGK and ES-BGK models, and to the Boltzmann equation simu-
lated by the DSMC method [Bir94]. The conclusions of this study are the followings

• for the transitional regime, as opposed to the standard BGK model, all the models
that have a correct Prandtl number give results close to DSMC;

• for the rarefied regime, the results given by our BGK models with velocity dependent
collision frequencies are quite different from DSMC, while BGK and ES-BGK look
more accurate.

It would have been interesting to further work on the structure of the collision frequency:
for instance, it seems that the functions studied in this work overestimate the collision
frequency of fast particles, while that of slow particles is underestimated. However, this
work has been continued by Struchtrup and Zheng [ZS05] who have combined the ES-BGK
model and our idea of a velocity dependent collision frequency: the results look more correct
in that case.

5.3 Numerical comparison for a kinetic equation and

two Spherical Harmonics Expansion models [17]

Here, we summarize the joint work with J.-P. Bourgade and A. Mellet, and published in
Mathematical and Computer Modeling in 2004 [17].

In semi-conductor physics, there exist some situations where the collisions of particles
with the medium are mainly elastic. In this case, an asymptotic analysis shows that the
diffusion approximation of the problem is a kind of intermediate between the kinetic equa-
tion and the usual drift-diffusion model. This approximation (called Spherical Harmonics
Expansion, or SHE) is a diffusion equation in which the unknown is a function that depends
of the particle energy.

This kind of model is often used, since it generally gives very accurate approximations of
the kinetic solution. In order to improve its validity in more inelastic regimes, Degond [Deg01]
has proposed a modified version called “coupled energy SHE model”. This model had never
been validated before our study.

In [17], we have presented a numerical comparison of two SHE models with a linear
Boltzmann equation, in a very simplified situation: one space and velocity dimension, with-
out external field. We rapidly present below these different models and the conclusions we
obtained from this study.
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The kinetic model, in the diffusion scaling, is

∂tf +
1

ε
v∂xf =

1

ε2
Q(f), x ∈ [0, 1]

=
1

ε2
(1 − β)Q0

el(f) +
1

ε2
βQin(f),

(5.9)

with standards boundary conditions. The parameter β measures the relative importance of
elastic and inelastic collisions, as modeled by the operators

Q0
el(f) = ν([f ] − f), and Qin(f) = ν(〈f〉M − f),

where [f ](v) = (f(v) + f(−v))/2, 〈f〉 =
∫

R
f(v) dv, and M(v) = c exp(−m|v|2

2kT
).

Since the operator Qin can also be written under the form ν
∫

(f(v′)M(v)−f(v)M(v′)) dv′,
it can be seen that the microscopic collision mechanism of this operator consists in changing
the velocity v into v′. The fact that two different SHE models can be obtained is based
on the following observation: the collision can be decomposed, by two different ways, into
an elastic collision (i.e. in which the modulus of v is conserved) and an inelastic collision.
Indeed, writing v = s

√
2E , where E = |v|2/2 is the energy and s = sign(v) is the “direction”

of v, we can decompose the collision v → v′ into

v = (E , s)
elastic coll.−−−−−−→

local
(E , s′)

inelastic coll.−−−−−−−→ (E ′, s′) = v′,

or into
v = (E , s)

inelastic coll.−−−−−−−→ (E ′, s)
elastic coll.−−−−−−→
non local

(E ′, s′) = v′,

where the name “local/non local” for the elastic collision highlights the fact that the collision
is local or non local with respect to E .

Then the first decomposition translates into Qin by the following:

Qin(f) = ν([f ] − f) + ν(〈f〉M − [f ])

= Q0
el(f) + Q0

in(f).

If β is supposed to be of the order of ε2 (β = ε2β̃), equation (5.9) reads

∂tf +
1

ε
v∂xf =

1

ε2
Q0

el(f) + β̃Q0
in(f),

and we prove that it gives, at the limit ε = 0, the following SHE model:

∂tF + ∂xJ = νβ̃(〈F 〉M − F ),

J = −
√

2E
ν

∂xF,

where F depends only on E . The advantage of such a model is more obvious in a multi-
dimensional case, since F depends on one scalar energy variable, while f depends on a
three-dimension velocity variable.
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The second decomposition translates into Qin by:

Qin(f) = ν
(

〈f〉M − 2

∫ ∞

0

f(sv′) dv′
)

+ ν
(

2

∫ ∞

0

f(sv′) dv′ − f
)

= Q1
el(f) + Q1

in(f).

This decomposition is then combined, in a convex way, to the previous one to obtain

Q =
(

(1 − αβ)Q0
el + αβQ1

el

)

+ β((1 − α)Q0
in + αQ1

in) ,

= Qα
el + βQα

in.

If we assume that the inelastic part is second order in ε, equation (5.9) reads

∂tf +
1

ε
v∂xf =

1

ε2
Qα

el(f) + β̃Qα
in(f),

and we prove that it gives at the limit ε = 0 the coupled SHE model

∂tF + ∂xJ = νβ̃(〈F 〉M − F ),

J(E) = −Dαβ(E)∂xF (E) − 〈∆αβ(E , .)∂xF )〉

where the coefficients Dαβ and ∆αβ can be computed explicitly. Here the diffusion operator
is non-local in energy, which is due to the elastic collision operator that also couples different
energies.

These three models have been discretized with standard numerical methods, and several
numerical tests with different collision regimes have been considered. We have observed the
following facts:

• generally, the SHE and coupled SHE models are very close to Boltzmann, from elastic
to inelastic regimes, even for times that are smaller than the diffusion time;

• for some regimes, the coupled SHE model is more accurate than the standard SHE
model.

As a conclusion, these models give very accurate descriptions of the physical model, and their
validity domain is wider than expected (since the asymptotic analysis assumes a quasi-elastic
regime). However, this result should be compared to more realistic studies, with external
forces, and in multi-dimensional cases.
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