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Abstract. Devices involved in engineering applications, such as vacuum pumps or MEMS, may be made of several moving
parts. This raise the issue of the simulation of rarefied gas flow around moving boundaries. We propose a simple process,
known as cut cell method, to treat the motion of a solid body inthe framework of the deterministic solving of a kinetic
equation. Up to our knowledge, this is the first time that thisapproach has been used for this kind of simulations. The method
is illustrated by the 2D and 3D simulations of a Crookes radiometer.
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INTRODUCTION

Current engineering developments make possible the conception of more and more complex nano-micro devices. The
simulation of rarefied gas micro flows in these devices becomes a challenging issue when they are made of several
moving parts. Their size my induce specific phenomena, like the radiometric effect [1]. This classical phenomenon
can also be observed in the famous Crookes radiometer [2]. Itis characterised by a force exerted on a thin obstacle
immersed in a rarefied gas, and caused by temperature difference between the sides of the obstacle. Previous studies
already investigate the properties of the force in different configurations [3, 4, 5, 6]. In this work we are interested in
the transient motion of plate resulting from this force because it is a perfect example of rarefied gas flow acting on
solid moving structures.

Tacking into account boundary motion within this frameworkis mainly treated by the use of Lagrangian [7] and
semi-Lagrangian [8] scheme for one dimensional problems. For higher dimensional problems, immersed boundary
methods [9, 10] and moving mesh approach [11] have been proposed. However, the former class of method is not
conservative and the latter one could need costly remeshingalgorithms in case of complex shaped solid objects.
Another way for the computation of incompressible viscous flows with moving boundaries is the cut cell method [12].
This method consists in building an unstructured mesh, based on a primary Cartesian grid by cutting the cells that
are crossed by the boundary. The main advantages of the approach is that it avoids remeshing strategy. Moreover the
numerical scheme is fully conservative. In this paper, the method is used to design a deterministic solver for rarefied
gas flows and is illustrated by the simulation of the Crookes radiometer. To decrease the computational resources
required by the 3D simulation, an adaptive mesh refinement (AMR) technique is implemented to refine the Cartesian
grid in the region close to the boundary.

DESCRIPTION OF THE FLOW

The Crookes radiometer is made of a spherical glass bulb containing four rectangular flat vanes. Each left side of these
vanes is black, while their right sides are white. Once put inthe light, the black sides become hotter than the white
sides. Because of this temperature difference, the torque exerted from the gas to the vanes increases and the vanes are
rotating. In this paper, the length of the diagonal of the vanes is denotedL. Their thickness isL/10 and the radius
of the main sphere is 2L. Let its center be the origin of the coordinate system : then,the center of the four vanes are
respectively set to(0.75L,0,0), (0,0.75L,0), (−0.75L,0,0) and(0,−0.75L,0). The temperature of the white side of
the vanes is assumed to be the same as that of the sphere, and isdenoted byT0. The black side of a vane is twice as hot
as its white side. Both 2D and 3D simulations are investigated. The 2D problem consists in the slice of the 3D problem
at z-coordinate equal to zero, see figure 1. Note that the transient motion of a similar two dimensional problem has



already been studied with a moving mesh approach [6]. In thispaper, the 2D simulations are proceeded as a basis for
3D computations.

FIGURE 1. 2D and 3D shapes of the Crookes radiometer.

GOVERNING EQUATIONS

The gas surrounding the four vanes is governed by the BGK equation [13] :
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wheref and~v are the distribution function and the microscopic velocity, while ρ ,~u andT are the density, macroscopic
velocity and temperature of the gas. The variableR is ratio between the Boltzmann constant and the mass of a gas
particle and the relaxation timeτ relies on the Knudsen number Kn= λ/L, where the mean free path is computed by
the relationλ = (2/

√
π)(ρ/ρ0)

√
2RT0τ, with ρ0 setting for the initial density. Equation (1a) is more convenient for

our purpose when integrated over a volumeV which may be moving with an arbitrarily velocity. Denoting the surface
of V by Sand the outward normal onSby~n, this equation reads :
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In this expression,~w stands for the velocity of the surfaceS. This velocity comes from the integration of the time
derivative with the Reynolds transport theorem.

The boundary conditions are diffuse reflections and are computed in a standard way :
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where∂Ω is the boundary of the vanes. The normal vector~n to the boundary at coordinate~x is pointed to the wall
and the incoming and outgoing velocities are defined byVin = {~v ∈ R

3|(~v−~uw) ·~n < 0} andVout = R
3/Vin. The

temperatureTw of the wall is eitherT0 or 2T0 depending on which side of the vanes is located~x. Note that the boundary
condition strongly depends on the velocity~uw of the point~x. It is related to its the angular velocitẏθ of the vane, that
is~uw = r θ̇ (sinθ ,cosθ ), wherer is the distance between~x and its orthogonal projection on the rotational axis.



To close the system of equations, the angular velocity is computed from the conservation of the angular momentum,
which reads :

J∆
dθ̇
dt

=

(

∫

∂Ω
r σ~n

)

· (0,0,1)

σ =
∫

Vout

(~v−~uw)⊗ (~v−~uw) f d~v+
∫

Vin

(~v−~uw)⊗ (~v−~uw)M [ρw,~uw,Tw]d~v,
(4)

where the right hand side of the first equation is the torque and J∆ is the moment of inertia of the vanes. It is set
to ρ0Ld+2∫

Ω(
r
L )

2d~x, whered is the spatial dimension of the flow (two or three). This meansthat the density of the
vanes is the same as the initial density of the gas. We empathize that this choice is not necessarily relevant from a
physical point of view, but this feature only plays a role during the transient flow. The moment of inertia for the 3D
computations differs from that for the 2D ones because the shape of the vanes depends on the dimension of the flow :
the integral

∫

Ω(
r
L )

2d~x is equal to 97/750 for the 3D simulations, and to 97/397 for the 2D ones. In (4),σ denotes the
stress tensor at the solid surface.

CUT CELL METHOD

First, the velocity space is discretized with a discrete velocity method on a Cartesian grid. LetNv be the number of
discrete velocities in each direction. Then for allk ∈ [0,N3

v −1], there is a single triplet(k1,k2,k3) ∈ [0,Nv−1]3 such
thatk= k3×N2

v +k2×Nv+k1, and the kth discrete velocity is denoted~vk = (vk1,vk2,vk3) =~v0+(k1,k2,k3)∆v, where
∆v is the velocity step.

Then, the cut cell method is applied for the space discretization. This method is based on a finite volume approach
on a fixed Cartesian grid of cellCi . Because mesh does not fit with the physical boundary, a special treatment has to
be applied on cells that are cut by the boundary. Now, consider a cuboid cellCi which is sliced by the boundary. It is
assumed that this cell is small enough so that its intersection with the boundary can be approximated by a single plane.
A virtual cellCi(t) is associated to the cuboid cell and correspond to the part ofCi that contains gas. This virtual cell is
therefore a polyhedra that has at most 7 faces, and the surface of each face is are denoted bySp. The indexp goes from
1 to 7 : between 1 and 6, it corresponds respectively to the right, back, top, left, front and bottom faces that fit with the
cuboid cell; the indexp= 7 refers to the face of the virtual cell that fit with the boundary. For a better understanding,
see figure 2. We empathize that since the boundary is moving, the virtual cell depends on time.
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FIGURE 2. The cuboid cellCi is plotted on the left with straight lines. It is cut by the blue boundary. The virtual cellCi associated
to Ci is represented on the right with the index of several faces.

Finally, the time step is denoted∆t andtn = n×∆t. We introduce the average value of the distribution function f n
i,k

and the macroscopic quantities (1b) are estimated by replacing the integral with respect to the velocity with a
summation over the wall range of discrete velocities :
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In the definition of the average value of the distribution function,Vn
i denotes the volume ofCi(tn). The integrated BGK

equation (2) is solved for every discrete velocity, and the time derivative is approximated with a standard backward
Euler scheme. The set ofN3

v equations hence reads :
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whereF n
i,k(Sp) =

∫
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k (~x)dS is the numerical flux across the facep, and~w the velocity of this face. The
discrete MaxwellianMk is computed following the procedure described in [14]. To compute the fluxes, note that~w ·~n
is zero for the six faces of the virtual cell that fit with the initial cuboid cell (p≤ 6) and that~w is close to the velocity
~uw of the boundary for the last face (p= 7). Therefore, a standard upwind scheme leads to
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In these expressions,ip stand for the index of the neighbouring cells ofCi , |Sp| is the area ofSp andMk[ρw,~uw,Tw] is
the boundary condition, whereρw is computed with (3). Note that for faces 1 to 6, the normal thethe face is either
(±1,0,0), (0,±1,0) or (0,0,±1), hence the normal velocity is±vk1, ±vk2, ±vk3. This is taken into account by the
compact notationvkp for p≤ 3 andvkp−3 for 4≤ p≤ 6. The velocity of the wall is also computed with a backward
Euler scheme, and eq. (4) yields
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Note that the global process may induced the generation of very small virtual cells. This leads to very restrictive
CFL condition. In order to avoid this problem, virtual cellsCi(tn) which volumes are lower than the half of a cuboid
cell are merged with a neighbouring virtual cellCi′ . The control volume for the scheme (5) is in this case defined by
the unionCi(t)∪Ci′ . This merging procedure also enables the treatment of appearing/disappearing virtual cell. For
example, consider a cellCi that is cut by the boundary attn and completely immersed in the solid at the next time
step. DespiteCi(tn+1) is empty, the control volume for this time step is not empty sinceCi(t) is merged. Therefore,
the quantity contained inCi(tn) is automatically transferred to the merged cell.

The cut cell method can be applied to 2D computations. In thatcase, virtual cells are no more polyhedra but
polygons. Their volumes are now area and their 7 faces are replaced by 5 edges. For 3D simulations as well as for 2D
ones, the intersection points between the boundary and the edges of a cuboid cell are computed thanks to a level-set
function stored in the vertex of the cell. From this intersection points, volume, surfaces and normal are computed with
Green formula. To end this section, we summarize the different steps of the computation :

• Initialisation :
– Time : n= 0 andt0 = 0
– Vane parameters :θ 0 = 0 andθ̇ 0 = 0
– Distribution function :f 0

i,k = Mk[ρ0,~u0,T0]

• Do while tn < tmax :
– Virtual cell parameters :Vn

i , Sp and~un
w = r θ̇ n (sinθ n,cosθ n)

– Computation ofVn+1
i after motion of the vanes :θ n+1 = θ n+∆tθ̇ n,

– Scheme in three steps :
* Boundary condition :Mk[ρn

w,~u
n
w,T

n
w ]

* Flux F n
i,k(Sp) : eq. (6)

* Distribution functionf n+1
i,k : eq. (5)

– Update of the angular velocitẏθ n+1 : eq. (4)
– tn+1 = tn+∆t andn= n+1



NUMERICAL RESULTS

An efficient parallel code has been implemented in order to make expensive computations. Both space and velocity
meshes are treated with parallel algorithms. To give an idea, 2D simulations are launch on less than 64 processors
while up to 200 of them are used for the 3D computations.

First consider 2D simulations. The reference solution is obtained on a very thin mesh, that is 5002 cells in space and
503 velocity points. The angular velocitẏθ (t) of the vanes is plotted in figure 3 for three different Knudsennumbers.
As time goes on, this velocity tends to a finite stationary angular velocity. And as expected, at equilibrium, the higher
is the Knudsen number, the faster move the vanes. When we lookcloser to the transient motion, it may be surprising
to see that after a rapid increase, the velocity suddenly decreases before increasing again. This might be explain by the
temperature discontinuity at initial time along the hot side of the vanes. The same phenomena is observed in [6].

If 2D computations are quite feasible with relatively fine discretization, the same requirement cannot be fulfilled
in 3D because of the computational cost (time and memory). Inorder to make 3D computations, we are looking at
the coarser 2D mesh that recovers the reference solution with sufficient accuracy . Then, by adding the same number
of cell in the third dimension than in the two others, the 3D simulation should be converged. It is found that with
2002 cells in space and 213 velocity points, the difference between the stationary velocity and the reference one is
less than 2%. For coarser mesh, the length of cell edges is toolong as compared to the thickness of the vanes to get
accurate results. Adding 200 cells in the third dimension would lead to too prohibitively expensive 3D computations.
To tackle this problem, AMR procedure based on quadtree and octree algorithm is implemented. The refinement
criterion is only based on the distance between the cell and the nearest vane. This means than the mesh will be thinner
in the vicinity of the vanes than far from it. The refinement seems sufficient because the main part of the flow is
located near the four vanes. The cut cell method is well adapted to the quadtree/octree structure because every cells
are rectangular/cuboid. Therefore, the scheme presented before is still valid. For a primary mesh made of 502 cells and
two levels of refinement (figure 3) the relative error of the final angular velocity is less than 5%. The equivalent 3D
mesh contains approximatively 2.4×105 which much less than the initial 3D cartesian grid of 2003 = 8×106 cells.
The gain factor is more than 30 which is really significant and3D computations are now possible. Note that even if it
is too costly to check the convergence, it is hoped that the error is of the same order of magnitude than in 2D.
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FIGURE 3. Results for the 2D computations. On the left is plotted the angular velocity of the vanes for three different Knudsen
number. On the right, the computational mesh generated by the AMR procedure is represented.

For the 3D computations, the angular velocityθ̇ (t) of the vanes is plotted in figure 4 for the same three Knudsen
numbers as before. The transient motion is similar to the 2D simulations, but the magnitude of the velocity is higher
than the previous simulations. They are summarized in figure4 for three different Knudsen numbers. Finally, two
pictures of the flow are illustrated in figure 5 at distinct times.
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FIGURE 4. On the left is plotted the angular velocity of the vanes in function of time for the 3D computations. On the right,
stationary angular velocity obtained with 2D simulations and the one obtained with 3D simulations are compared.

FIGURE 5. 3D radiometer : temperature field for two distinct times.

CONCLUSION

We have presented a numerical method for solving rarefied gasflow around moving obstacles. This method is an
immersed boundary technique on Cartesian grid based on the cut cell approach and a finite volume scheme. Like every
immersed boundary technique, it is easy to use with moving obstacles, but the cut cell and finite volume approach
lead to a scheme which is fully conservative. Our method can be adapted to an AMR structure to gain efficiency in 3D
computations, and is designed to work efficiently on parallel computers. This method works both for 2D and 3D flows,
and has been used to simulate a 3D Crookes radiometer: up to our knowledge, such simulation was never presented
before in the literature.
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