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Abstract. Devices involved in engineering applications, such aswacpumps or MEMS, may be made of several moving
parts. This raise the issue of the simulation of rarefied gag round moving boundaries. We propose a simple process,
known as cut cell method, to treat the motion of a solid bodyhi framework of the deterministic solving of a kinetic
equation. Up to our knowledge, this is the first time that #pproach has been used for this kind of simulations. Theadeth

is illustrated by the 2D and 3D simulations of a Crookes rawiter.
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INTRODUCTION

Current engineering developments make possible the ctinngd more and more complex hano-micro devices. The
simulation of rarefied gas micro flows in these devices besamehallenging issue when they are made of several
moving parts. Their size my induce specific phenomena, likeradiometric effect [1]. This classical phenomenon
can also be observed in the famous Crookes radiometer [B]ctiaracterised by a force exerted on a thin obstacle
immersed in a rarefied gas, and caused by temperature difeletween the sides of the obstacle. Previous studies
already investigate the properties of the force in diffemmfigurations [3, 4, 5, 6]. In this work we are interested in
the transient motion of plate resulting from this force hesmit is a perfect example of rarefied gas flow acting on
solid moving structures.

Tacking into account boundary motion within this framew@knainly treated by the use of Lagrangian [7] and
semi-Lagrangian [8] scheme for one dimensional problerashigher dimensional problems, immersed boundary
methods [9, 10] and moving mesh approach [11] have been pedpdiowever, the former class of method is not
conservative and the latter one could need costly remediggithms in case of complex shaped solid objects.
Another way for the computation of incompressible viscoowd with moving boundaries is the cut cell method [12].
This method consists in building an unstructured mesh,dagea primary Cartesian grid by cutting the cells that
are crossed by the boundary. The main advantages of theagbpithat it avoids remeshing strategy. Moreover the
numerical scheme is fully conservative. In this paper, tle¢hmd is used to design a deterministic solver for rarefied
gas flows and is illustrated by the simulation of the Croolaiameter. To decrease the computational resources
required by the 3D simulation, an adaptive mesh refinemeltAtechnique is implemented to refine the Cartesian
grid in the region close to the boundary.

DESCRIPTION OF THE FLOW

The Crookes radiometer is made of a spherical glass bullacong four rectangular flat vanes. Each left side of these
vanes is black, while their right sides are white. Once puh@light, the black sides become hotter than the white
sides. Because of this temperature difference, the torgereesl from the gas to the vanes increases and the vanes are
rotating. In this paper, the length of the diagonal of theesis denoted.. Their thickness id /10 and the radius

of the main sphere isl2 Let its center be the origin of the coordinate system : titte® center of the four vanes are
respectively set t¢0.75L,0,0), (0,0.75L,0), (—0.75L,0,0) and (0, —0.75L,0). The temperature of the white side of
the vanes is assumed to be the same as that of the spheredandtsd byly. The black side of a vane is twice as hot

as its white side. Both 2D and 3D simulations are investijatee 2D problem consists in the slice of the 3D problem

at z-coordinate equal to zero, see figure 1. Note that theiganhmotion of a similar two dimensional problem has



already been studied with a moving mesh approach [6]. Inpdier, the 2D simulations are proceeded as a basis for
3D computations.
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FIGURE 1. 2D and 3D shapes of the Crookes radiometer.

GOVERNING EQUATIONS

The gas surrounding the four vanes is governed by the BGKtiemid 3] :
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wheref andv are the distribution function and the microscopic velqaitkiile p, GandT are the density, macroscopic
velocity and temperature of the gas. The varidBlis ratio between the Boltzmann constant and the mass of a gas
particle and the relaxation tinerelies on the Knudsen number KnA /L, where the mean free path is computed by
the relationA = (2/+/1)(p/po)v/2RTo T, with pg setting for the initial density. Equation (1a) is more cameat for

our purpose when integrated over a voluvhehich may be moving with an arbitrarily velocity. Denotirdtgetsurface

of V by Sand the outward normal d®by A, this equation reads :
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In this expressioni stands for the velocity of the surfa& This velocity comes from the integration of the time
derivative with the Reynolds transport theorem.
The boundary conditions are diffuse reflections and are cetkin a standard way :
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wheredQ is the boundary of the vanes. The normal vectao the boundary at coordinakeis pointed to the wall
and the incoming and outgoing velocities are defined/hy= {V € R3|(v Uw) - i < 0} and Yout = RS /Y. The
temperaturd,, of the wall is eithefTy or 2T depending on which side of the vanes is locateote that the boundary
condition strongly depends on the velodily of the pointX. It is related to its the angular veloc@of the vane, that
isUy=r6 (sinB,cosB), wherer is the distance betweeiand its orthogonal projection on the rotational axis.



To close the system of equations, the angular velocity ispeded from the conservation of the angular momentum,

which reads :
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where the right hand side of the first equation is the torqueJans the moment of inertia of the vanes. It is set
to poL9+2 fQ({)zdi, whered is the spatial dimension of the flow (two or three). This metias the density of the
vanes is the same as the initial density of the gas. We enzeatthat this choice is not necessarily relevant from a
physical point of view, but this feature only plays a roleidgrthe transient flow. The moment of inertia for the 3D
computations differs from that for the 2D ones because thpesiof the vanes depends on the dimension of the flow :
the integralfg (f)?dX is equal to 97750 for the 3D simulations, and to 8397 for the 2D ones. In (4]7 denotes the
stress tensor at the solid surface.

CUT CELL METHOD

First, the velocity space is discretized with a discret@ei®y method on a Cartesian grid. Lk be the number of
discrete velocities in each direction. Then forkatt [0,NZ — 1], there is a single tripletky, ko, k3) € [0,Ny — 1] such
thatk = ka3 x N2 +kz x Ny +kq, and the K' discrete velocity is denotett = (Vi » Vicy» Vig) = Vo + (K1, k2, k3)Av, where
Av is the velocity step.

Then, the cut cell method is applied for the space discr@tizaT his method is based on a finite volume approach
on a fixed Cartesian grid of cdll. Because mesh does not fit with the physical boundary, aapgesatment has to
be applied on cells that are cut by the boundary. Now, consideboid cellC; which is sliced by the boundary. It is
assumed that this cell is small enough so that its intexseetith the boundary can be approximated by a single plane.
A virtual cell Cj(t) is associated to the cuboid cell and correspond to the p@xttbat contains gas. This virtual cell is
therefore a polyhedra that has at most 7 faces, and the sufaach face is are denoted &y The indexp goes from
1to 7 : between 1 and 6, it corresponds respectively to thm, tigck, top, left, front and bottom faces that fit with the
cuboid cell; the inde) = 7 refers to the face of the virtual cell that fit with the bound&or a better understanding,
see figure 2. We empathize that since the boundary is movwiagittual cell depends on time.
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FIGURE 2. The cuboid celC; is plotted on the left with straight lines. It is cut by the &looundary. The virtual cel; associated
to G is represented on the right with the index of several faces.

Finally, the time step is denotéd andt" = n x At. We introduce the average value of the distribution funcfig,
and the macroscopic quantities (1b) are estimated by replabe integral with respect to the velocity with a
summation over the wall range of discrete velocities :
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In the definition of the average value of the distributiondtion,V;" denotes the volume &; (t"). The integrated BGK
equation (2) is solved for every discrete velocity, and theetderivative is approximated with a standard backward
Euler scheme. The set b equations hence reads :
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where 7} (Sp) = fsp (V—w) - f(X) dSiis the numerical flux across the fapgandw the velocity of this face. The
discrete MaxwelliarMy is computed following the procedure described in [14]. Tmpate the fluxes, note thet- A
is zero for the six faces of the virtual cell that fit with thétial cuboid cell (p < 6) and thatv is close to the velocity
Uy of the boundary for the last facep & 7). Therefore, a standard upwind scheme leads to

|Sp| x (Max(0, Vi) i +min(0, vig,) 7 1) forp<3,
F(Sp) i= { 1Spl x (Max(0,vig, 5) i +min(0, vk, ) fi%) for p<86, (6)
|SP| X (ma)<oa (vk - Ej\l;lv) ' ﬁ) fil:lk + min(ov (vk - l_-’i\t;]v) ’ ﬁ)Mk[valv U\?vaTVC]) for p= 7.

In these expressionk, stand for the index of the neighbouring cells®f |S| is the area o, andMy|pw, Uw, Tw] iS
the boundary condition, whem, is computed with (3). Note that for faces 1 to 6, the normalttieeface is either
(£1,0,0), (0,%+1,0) or (0,0,+1), hence the normal velocity i&Vvy,, =Vk,, £Vi,. This is taken into account by the
compact notatiomw, for p <3 andvkpf3 for 4 < p < 6. The velocity of the wall is also computed with a backward
Euler scheme, and eq. (4) yields
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Note that the global process may induced the generationrgfsraall virtual cells. This leads to very restrictive
CFL condition. In order to avoid this problem, virtual celgt") which volumes are lower than the half of a cuboid
cell are merged with a neighbouring virtual c€Jl. The control volume for the scheme (5) is in this case defined b
the unionC;(t) UCy. This merging procedure also enables the treatment of apgédisappearing virtual cell. For
example, consider a cdl; that is cut by the boundary &t and completely immersed in the solid at the next time
step. Despit&; (t"*1) is empty, the control volume for this time step is not emphce(Ci(t) is merged. Therefore,
the quantity contained iG; (t") is automatically transferred to the merged cell.

The cut cell method can be applied to 2D computations. In ¢hae, virtual cells are no more polyhedra but
polygons. Their volumes are now area and their 7 faces alecegby 5 edges. For 3D simulations as well as for 2D
ones, the intersection points between the boundary anditpeseof a cuboid cell are computed thanks to a level-set
function stored in the vertex of the cell. From this intetgatpoints, volume, surfaces and normal are computed with
Green formula. To end this section, we summarize the diftesgeps of the computation :

« Initialisation :
— Time:n=0andt®=0
— Vane parametersg® = 0 and6® = 0
— Distribution function :f8, = M[po, Uo, To]
« Do whilet" < tmax: ’ _
— Virtual cell parametersV;", S, andtj, =r 8" (sin6",cos6")
— Computation o#/"** after motion of the vanesg™! = 6"+ Ato",
— Scheme in three steps :
» Boundary condition M[p{}, G0, T.7]
» Flux 7 (Sp) : eq. (6)
~ Distribution functiom‘irj‘;rl 1eg. (5)
— Update of the angular veIocit‘}”Jrl 1eq. (4)
—t™l=t"4 Atandn=n+1




NUMERICAL RESULTS

An efficient parallel code has been implemented in order tkengxpensive computations. Both space and velocity
meshes are treated with parallel algorithms. To give an, i@dBasimulations are launch on less than 64 processors
while up to 200 of them are used for the 3D computations.

First consider 2D simulations. The reference solution isinked on a very thin mesh, that is 30glls in space and
50° velocity points. The angular veloci§(t) of the vanes is plotted in figure 3 for three different Knudsambers.

As time goes on, this velocity tends to a finite stationaryudaugvelocity. And as expected, at equilibrium, the higher
is the Knudsen number, the faster move the vanes. When weclosér to the transient motion, it may be surprising
to see that after a rapid increase, the velocity suddenisedses before increasing again. This might be explain by the
temperature discontinuity at initial time along the hotesal the vanes. The same phenomena is observed in [6].

If 2D computations are quite feasible with relatively finsagetization, the same requirement cannot be fulfilled
in 3D because of the computational cost (time and memoryyrdier to make 3D computations, we are looking at
the coarser 2D mesh that recovers the reference solutibrswiticient accuracy . Then, by adding the same number
of cell in the third dimension than in the two others, the 3Bugiation should be converged. It is found that with
207 cells in space and 2lvelocity points, the difference between the stationarpeiy and the reference one is
less than 2%. For coarser mesh, the length of cell edges istgoas compared to the thickness of the vanes to get
accurate results. Adding 200 cells in the third dimensionlddead to too prohibitively expensive 3D computations.
To tackle this problem, AMR procedure based on quadtree atr@e algorithm is implemented. The refinement
criterion is only based on the distance between the celllamdéarest vane. This means than the mesh will be thinner
in the vicinity of the vanes than far from it. The refinemen¢rss sufficient because the main part of the flow is
located near the four vanes. The cut cell method is well adbfat the quadtree/octree structure because every cells
are rectangular/cuboid. Therefore, the scheme preseatecths still valid. For a primary mesh made of5lls and
two levels of refinement (figure 3) the relative error of thefiangular velocity is less than 5%. The equivalent 3D
mesh contains approximatively2x 10° which much less than the initial 3D cartesian grid of 2608 x 1 cells.

The gain factor is more than 30 which is really significant 8@dcomputations are now possible. Note that even if it
is too costly to check the convergence, it is hoped that tter & of the same order of magnitude than in 2D.
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FIGURE 3. Results for the 2D computations. On the left is plotted thgudar velocity of the vanes for three different Knudsen
number. On the right, the computational mesh generatedeofMiR procedure is represented.

For the 3D computations, the angular veloditt) of the vanes is plotted in figure 4 for the same three Knudsen
numbers as before. The transient motion is similar to theigidlations, but the magnitude of the velocity is higher
than the previous simulations. They are summarized in figuier three different Knudsen numbers. Finally, two
pictures of the flow are illustrated in figure 5 at distinctéisn
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FIGURE 4. On the left is plotted the angular velocity of the vanes inction of time for the 3D computations. On the right,
stationary angular velocity obtained with 2D simulationsl ghe one obtained with 3D simulations are compared.
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FIGURE 5. 3D radiometer : temperature field for two distinct times.

CONCLUSION

We have presented a numerical method for solving rarefiedlgasaround moving obstacles. This method is an
immersed boundary technique on Cartesian grid based onitlceltapproach and a finite volume scheme. Like every
immersed boundary technique, it is easy to use with movirggamltes, but the cut cell and finite volume approach
lead to a scheme which is fully conservative. Our method esadapted to an AMR structure to gain efficiency in 3D
computations, and is designed to work efficiently on paretéenputers. This method works both for 2D and 3D flows,
and has been used to simulate a 3D Crookes radiometer: up tmmowledge, such simulation was never presented

before in the literature.
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