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Abstract. The unified gas kinetic scheme (UGKS) was initially designed to address multiscale challenges in rarefied gas
dynamics and then extended to radiative transfert theory, as described by BGK like relaxation models. In this work, we extend
its application to linear kinetic models with non isotropic scattering collision operators, as well as Fokker-Planck models . These
problems typically exhibit a fully diffusive nature in the optically thick limit (corresponding to a small Knudsen number). It
still leads to an asymptotic preserving (AP) property not only in this diffusive regime but also in the free transport limit. A
series of numerical experiments confirm the effectiveness of the approach.
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Introduction.
Kinetic models play a fundamental role in describing particle system dynamics across various

domains, such as rarefied gas dynamics (RGD), neutron transport, semiconductor physics, and
radiative transfer.

From a numerical perspective, solving accurately these models presents significant challenges.
The computational cost is driven by the necessity to capture the smallest microscopic scales, which
constrain spatial discretization and, consequently, time steps for stability. The Knudsen number,
denoted by ε, represents the ratio of the mean free path of particles to a macroscopic length scale
and characterizes the transition between collision-dominated and free-streaming regimes. As ε
tends to zero, a global diffusive behavior emerges at the macroscopic level. However, standard
numerical schemes for moment models do not necessarily recover the correct macroscopic diffusion
equation in this limit so that asymptotic-preserving (AP) numerical methods have been developed,
ensuring stability and consistency across different regimes [8, 7, 9, 10, 2, 11, 13, 1, 3, 4, 6, 12, 16].

A notable AP approach is the Unified Gas Kinetic Scheme (UGKS), originally introduced by
Xu and Huang [19] in the context of rarefied gas dynamics. UGKS leverages a finite volume
framework where numerical fluxes incorporate information from the collision operator, allowing it
to bridge different regimes. Instead, UGKS makes use of the relaxation form of the BGK collision
operator to derive an approximation of the interface flux by using a Duhamel representation of
the solution. In other words, this representation allows for an approximation of the solution of the
generalized Riemann problem at the interface that accounts for collisions. Since its conception,
UGKS has been extended to more complex gas flows [14, 20] and applied to linear models with
a diffusion limit [16, 17]. A key advantage of UGKS is that it does not require decomposition
of the distribution function (like the micro-macro or the odd-even decomposition), thus avoiding
issues related to boundary conditions, and it operates without staggered grids, facilitating multi-
dimensional implementations.

By construction, the extension of UGKS to non relaxation operators is not obvious. Among
these collision operators, we mention the original Boltzmann operator and Fokker-Planck models of
Rarefied Gas Dynamics, and non isotropic scattering and Fokker-Planck models in neutron trans-
port and radiative transfer, for instance. A first attempt [17] was to use the relaxation technique
of Filbet-Jin ([5]): the UGKS is applied to a asymptotically consistent BGK operator, while the
deviation to the original collision operator is used as a source terme. However, this was proved to
induce a non physical statbility constraint on the collision kernel, at least for the diffusion regime.
Another related extension was proposed by Liu et al. for rarefied gas Dynamics ([15]), where the
BGK model is still used for the UGKS flux, while a the collision operator is replaced by a con-
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vex combination between the Boltzmann operator and the BGK one. Here, we propose a related
approach that looks more general, in which we make use of the eigenvalue of the pseudo-inverse
of the collision operator to derive a new relaxation form. Combined with the UGKS approach,
and various simplifications, this allows to capture the correct diffusion limit without any stability
restriction, for both non isotropic scattering collision operator and the Fokker-Planck operator as
well. We demonstrate that UGKS offers a robust framework for AP numerical schemes in the
context of the diffusive limit. By leveraging kinetic-inspired flux approximations, UGKS enables
a seamless transition between kinetic and macroscopic scales, making it a promising approach for
modeling various physical phenomena.

The rest of this work is organized as follows: first, the continuous and semi-discrete (in velocity)
models are presented, and their diffusion limit is discussed. In the second section, the new UGKS
framework is presented and the AP property is verified. Section 3 proposes some possible extensions
and links with the UGKS scheme are discussed. Then, in Section 4, some numerical results are
presented to illustrate the capabilities of the new approach.

1. Continuous models. In this section, we present models at continuous level and discretized
level: some properties and the difusion limit are given.

1.1. Linear collision operators with continuous velocities. We consider the equation on
the particle density function f(t, x, v) which depends on time t ≥ 0, position x ∈ [0, L] ⊂ R (L > 0)
and velocity v ∈ [−c, c] ⊂ R (with c a typical velocity of the phenomena):

(1.1) η∂tf + v∂xf =
σ

ε
Df,

ε and η being two parameters that will vary according to limit one considers. σ is the characteristic
collision frequency. The collision operator D can be given by:

(1.2) Df(v) :=
∫ c

−c
k(v, v′)(f(v′)− f(v)) dv′,

or

(1.3) Df(v) = ∂v

(
(c2 − v2)∂vf

)
.

The collisional kernels in (1.2) and (1.3) respectively correspond to a simple scattering model
(including the BGK model for k = 1) and a Fokker-Planck-like model projected in the v direction.
The function k : (v, v′) → k(v, v′) is the probability of passing from state v to state v′ and is
symmetric so that ⟨k(v, ·), 1⟩ = 1, ∀v ∈ [−c, c], with ⟨f, g⟩ =

∫ c
−c f(v)g(v)dv for two v-dependent

functions f, g.
It is well known (see [13, 2, 6, 10, 7]) that in the diffusion limit, ie η = ε tends to zero, the

function f(t, x, v) matches the Chapman-Enskog expansion

(1.4) f(t, x, v) = ρ(t, x) +
ε

σ
D+(v)∂xρ(t, x) +O(ε2),

where D+ denotes the pseudo-inverse of D and the density ρ(t, x) =
∫ c
−c f(t, x, v)dv satisfies the

following diffusion equation:

(1.5) ∂tρ+ ∂x(κ∂xρ) = 0,

where κ = ⟨v,D+v⟩. The operator D+ is defined for functions with zero mean by the following
condition: for any function ϕ such that ⟨ϕ⟩ = 0, the function ψ = D+ϕ is the unique solution of
Dψ = ϕ such that ⟨ψ, 1⟩ = 0.
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1.2. Continuous Problem with Discrete Velocities.
We denote Fj(t, x) = F (t, x, vj) for j = 1, . . . , 2N , where vj is a symmetric regular velocity grid

with step size ∆v =
2c

2N
=

c

N
, with vj = −c + ∆v

2
+ (j − 1)∆v that ranges from −c to c, and

F (t, x) ∈ R2N is the solution of the following equation:

(1.6) ∂tFj +
1

η
vj∂xFj =

σ

ηε
⟨ej , DF ⟩,

where D ∈ M2N,2N (R) is a matrix discretizing a collision operator D (diffusion (1.3) or scattering
(1.2)), ej is the j-th vector of the canonical basis of R2N , and for U,W ∈ R2N we denote ⟨U,W ⟩ =∑2N

k=1 UkWk (let us remark the same notation as in the continuous case is used). Let also introduce
the notation V ∈ R2N which is the vector of discrete velocities

(1.7) V =
(
v1 . . . v2N

)T ∈ R2N ,

which satisfies
∑2N

k=1 vk = 0.
From now on we choose c = 1 so that ∆v = 1

N .
First of all, we recall some useful properties for the matrix D that are common to discretization

of operators like (1.3) and (1.2) (see subsections 4.3 and 4.4 for examples of such discretization
matrices). We assume the matrix D to be symmetric, negative, and its kernel is Ker D = Span(1),
with

(1.8) 1 =
(
1 . . . 1

)
∈ R2N .

It implies that ∀i,
∑2N

j=1Di,j =
∑2N

j=1Dj,i = 0.

Moreover, we introduce the following notations:
• λk, k = 0, . . . , N ′ the eigenvalues of D, with N ′ ≤ 2N − 1 and λ0 = 0.

• P0 the orthogonal projector onto Ker D: P0 =
1
2N

1 . . . 1
...

...
1 . . . 1

, associated with the eigen-

value λ0 = 0,
• P1, . . . , PN ′ the orthogonal projectors onto the other eigenspaces (N ′ ≤ 2N − 1) associated
with eigenvalues λ1, . . . , λN ′ .

We also assume that the matrix D satisfies:
• A positiveness condition:

Di,j ≥ 0 for i ̸= j(1.9)

.
• D is somehow ”irreducible”: there exists δ0 > 0 such that ∀δ such that 0 ≤ δ ≤ δ0, I+δD is
an irreducible bistochastic matrix: it implies that there is a sequence k0, ....., kn of integers
between 1 and 2N that contains all the integers between 1 and 2N such that 2 consecutive
terms are different (kj ̸= kj+1) and Dkj ,kj+1

> 0

Then, we recall some useful properties in the following proposition that can be proved using
standard linear algebra tools for symmetric matrices.

Proposition 1.1. Let consider a matrix D ∈ M2N,2N (R) symmetric, negative, and such that
Ker D = Span(1) with 1 defined in (1.8). Then, we have
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• the orthogonal projectors Pk associated with the eigenvalues λk of D satisfy

N ′∑
k=0

Pk = I,

N ′∑
k=0

λkPk =

N ′∑
k=1

λkPk = D, and PkPj = 0 if k ̸= j, N ′ ≤ 2N − 1.

• the pseudo-inverse D+ satisfies

D+ :=

N ′∑
k=1

1

λk
Pk and D+D = DD+ = I − P0.

• there exists a unique U ∈ R2N such that ⟨U,1⟩ = 0 and DU = V , being given by (1.7). We
define λ⋆ as:

(1.10) λ⋆ :=
⟨V, V ⟩

⟨D+V, V ⟩
=

⟨DU,DU⟩
⟨U,DU⟩

.

the pseudo-eigenvalue. We have U = V/λ⋆ when DV = λV .

Remark 1.1. Let us perform some remarks regarding Proposition 1.1 The pseudo-eigenvalue
λ⋆ is always negative since D is negative. For the BGK operator, we have λ⋆ = −1 whereas for the
Fokker-Planck operator, we have λ⋆ = −2, V being an eigenvector in both cases. Besides, last item
leads to the second principle on the semi-discrete equation (1.6).

1.3. Generic Properties of the discrete model and its Diffusive limit. In view of
deriving a suitable Duhamel formula, we introduce a λ⋆-relaxation term in (1.6) to get the equivalent
following form (let recall that λ⋆ is negative) : in other words, we rewrite D as D = (D−λ⋆I)+λ⋆I
so that the discrete equation is

(1.11) ∂tFj +
1

η
vj∂xFj = ⟨ej ,

σ

ηε
[(D − λ⋆I)F + λ⋆F ]⟩.

Then, from (1.11), the relaxation term λ⋆F is used to write a Duhamel-type formula

Fj(t, x) = exp

(
λ⋆σt

ηε

)
Fj

(
0, x− vjt

η

)
+⟨ej ,

∫ t

0

σ

ηε
exp

(
λ⋆σ

ηε
(t− t′)

)
(D − λ⋆I)F

(
t′, x+

vj(t
′ − t)

η

)
dt′⟩.

We then perform the change of variable u = σ(t−t′)
ηε in the integral term to get

Fj(t, x) = exp

(
λ⋆σt

ηε

)
Fj

(
0, x− vjt

η

)
+⟨ej ,

∫ σt

ηε

0
exp (λ⋆u) (D − λ⋆I)F

(
t− ηεu

σ
, x− vjεu

σ

)
du⟩.(1.12)

From the latter expression, we can formally derive a Chapman-Enskog expansion for Fj in the
diffusion limit thanks to the second principle:

Proposition 1.2 (Second principle). The following equivalences hold:
1. DF = 0,
2. F = ρ1, with ρ =

∑2N
j=1 Fj∆v.
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3. ⟨DF, ln(F )⟩ = 0.

Proof. Using the properties of D, the two first assertions are equivalent. The first assertion
clearly leads to the third one. It remains to prove that last assertion implies the second one. To
do so, let us expand the scalar product: ⟨DF, ln(F )⟩ = ⟨F,D ln(F )⟩

⟨DF, ln(F )⟩ =
∑

1≤i,j≤2N

FiDi,j ln(Fj)

Since D1 = 0 and D is symmetric, one gets that ∀i,Di,i = −
∑

j ̸=iDi,j = −
∑

j ̸=iDj,i so that

⟨DF, ln(F )⟩ =
∑

1≤i ̸=j≤2N

FiDi,j ln(Fj)−
∑

1≤i ̸=j≤2N

FiDi,j ln(Fi)

=
∑

1≤i ̸=j≤2N

FiDi,j ln(Fj/Fi)

=
1

2

∑
1≤i ̸=j≤2N

FiDi,j ln(Fj/Fi) +
1

2

∑
1≤i ̸=j≤2N

FjDi,j ln(Fi/Fj)

=
1

2

∑
1≤i ̸=j≤2N

(Fi − Fj)Di,j ln(Fj/Fi)

If the scalar product ⟨DF, ln(F )⟩ is equal to zero, we get that as soon as Di,j > 0 Fi = Fj since
(x, y) → (y − x) ln(x/y) is a negative function which is equal to zero only when x = y.

Since there is a sequel k0, ....., kn of integers between 1 and 2N that contains all the integers
between 1 and 2N such that 2 consecutive terms are different (kj ̸= kj+1) and Dkj ,kj+1

> 0, all Fi

are equal leading to the fact that F = ρ1.

1.4. Diffusion Limit. We now study the diffusion limit ε = η → 0 using Duhamel formula
(1.12).

1.4.1. Zero-th Order . Passing to the limit ε = η → 0 in (1.12), we obtain from the domi-
nated convergence theorem (recalling that λ⋆ < 0)

Fj(t, x) → ⟨ej , (D − λ⋆I)F (t, x)

∫ ∞

0
exp(λ⋆u)du⟩

= − 1

λ⋆
⟨ej , (D − λ⋆I)F (t, x)⟩.(1.13)

Hence, at the zero-th order, the last relation rewrites as F (t, x) =
(
I − 1

λ⋆
D
)
F (t, x), so that

(1.14) DF (t, x) = 0.

From the properties of D (see Proposition 1.2), we deduce thatF (t, x) = ρ(t, x)1 with ρ(t, x) =∑2N
j=1 Fj(t, x)∆v.

1.4.2. First order. We now go to the next order by performing a Taylor expansion of F in
(1.12):

F
(
t− ηεu

σ
, x− vjεu

σ

)
= F (t, x)− ηεu

σ

vj
η
∂xF (t, x) +O(ηε)

= F (t, x)− εuvj
σ

∂xρ(t, x)1+O(ηε),
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where we used the zero-th order approximation of F to set ∂xF (t, x) = ∂xρ(t, x)1 + O(ε). Thus,
the term in the integral in (1.12) becomes (recalling that D1 = 0):

⟨ej , (D − λ⋆I)F
(
t− ηεu

σ
, x− vjεu

σ

)
⟩

=⟨ej , (D − λ⋆I)F (t, x)⟩ −
εu

σ
∂xρ(t, x)⟨ej , (D − λ⋆I)vj1⟩+O(ε2)

=⟨ej , (D − λ⋆I)F (t, x)⟩+
εu

σ
∂xρ(t, x)λ⋆vj +O(ε2).

Multiplying the latter expression by exp(λ⋆u) and integrating over u ∈ [0,+∞[, equation (1.12)
becomes:∫ ∞

0
exp(λ⋆u)(D − λ⋆I)F

(
t− ηεu

σ
, x− vjεu

σ

)
du =(

I − 1

λ⋆
D

)
F (t, x) +

ε

λ⋆σ
∂xρ(t, x)V +O(ε2),

where we used
∫ +∞
0 u exp(λ⋆u)du = 1/λ2⋆ and

∫ +∞
0 exp(λ⋆u)du = −1/λ⋆. Consequently, since the

first term in (1.12) tends to zero exponentially fast, (1.12) becomes, as ε→ 0

F (t, x) =

(
I − 1

λ⋆
D

)
F (t, x) +

ε

λ⋆σ
∂xρ(t, x)V +O(ε2),

or after simplifying F (t, x) on both sides and multiplying by λ⋆

(1.15) DF (t, x) =
ε

σ
∂xρ(t, x)V +O(ε2).

Applying the pseudo-inverse D+ (whose properties are recalled in Proposition 1.1) leads to

F (t, x) = ρ(t, x)1+
ε

σ
∂xρ(t, x)D

+V +O(ε2),(1.16)

which is indeed the discrete counterpart of the desired result (1.4).

Remark 1.2. In (1.12), The Duhamel formula has been written on the time interval [0, t] but
it can also be written on the time interval [tn, t]. In this case, it comes

Fj(t, x) = exp

(
λ⋆σ(t− tn)

ηε

)
Fj

(
tn, x− vj(t− tn)

η

)
+ ⟨ej ,

∫ σ(t−tn)

ηε

0
exp(λ⋆u)(D − λ⋆I)F

(
t− ηεu

σ
, x− vjεu

σ

)
du⟩.(1.17)

2. Numerical scheme. In this section, we will describe a generalized UGKS for linear equa-
tions of the form (1.6). First of all, we introduce a uniform spatial mesh xi = i∆x is introduced
and denote xi+1/2 = (xi + xi+1)/2 the interface between two cells. The spatial interval being
x ∈ [0, L], L > 0, the mesh step is defined as ∆x = L/Nx, Nx being the number of cells. Moreover,
we introduce the time discretization tn = n∆t,∆t > 0, n ∈ N.

To derive a UGK scheme, one of the main ingredient relies on a suitable interface value
Fj(t, xi+1/2), usually based on a Duhamel formula (see [19, 16]), that will serve in the finite volume
formulation as a flux approximation of the space derivative in (1.6). Another ingredient is the
space reconstruction of Fj(t, x) in the integral term of Duhamel formula (1.17). After recalling
the UGKS, we will present some spatial reconstructions and we will see that the general context
considered here induces some difficulties.
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2.1. UGKS. Our goal is to design a UGKS type numerical scheme for a general class of linear
equations (1.1). Let recall the basics of UGKS framework (see [19, 16]). First, starting from (1.6),
we define the averages of the density and distribution function on cell i at time tn(

ρni
Fn
i,j

)
=

1

∆x

∫ xi+1/2

xi−1/2

(
ρ(tn, x)
Fj(tn, x)

)
dx,

and the macroscopic and microscopic numerical fluxes across the interface xi+1/2(
Φi+1/2

ϕi+1/2,j

)
=

1

η∆t

∫ tn+1

tn

(∑2N
j=1 vjFj(t, xi+1/2)∆v

vjFj(t, xi+1/2)

)
dt.

The finite volume formulations of the macroscopic and kinetic equations are thus

ρn+1
i − ρni

∆t
+

1

∆x
(Φi+1/2 − Φi−1/2) = 0,(2.1)

Fn+1
i,j − Fn

i,j

∆t
+

1

∆x
(ϕi+1/2,j − ϕi−1/2,j) =

σ

ηε
DFn+1

i,j ,(2.2)

where the collision term is implicit for stability reason.
As we can see, the interface value of Fj(t, xi+1/2) plays an important role since it enables to

compute the numerical fluxes of the finite volume method. As mentioned above, the main idea of
UGKS relies on the suitable approximation of the interface value of Fj(t, xi+1/2) obtained from a
space approximation of a Duhamel formula. Indeed, the interface value is obtained from a suitable
space approximation of the Duhamel formula of the original equation. Here, we will use the Duhamel
formula (1.17) which includes a penalization procedure with the factor λ⋆ and we will discuss the
space approximation that ensures consistency and good asymptotic behavior. Contrary to the
BGK case studied in [19, 16] where the distribution function Fj(t, x) and the density ρ(t, x) have
to be reconstructed, the general case considered here only involves Fj(t, x). In the sequel, different
reconstructions are discussed and we will see that some choices require the full knowledge of the
spectral decomposition of the linear collision operator, which is not acceptable from a computational
point of view. Indeed, our goal is to design a UGKS scheme which is computationally efficient,
preserves the diffusion limit η = ε→ 0 and the collisionless limit η fixed and ε→ ∞.

2.2. Spatial Approximation: first attempt. A first (natural) reconstruction of Fj on the
spatial mesh is:

(2.3) Fj(t, x) = Fi+1/2,j(t) +
Fj(t, xi+1)− Fj(t, xi)

∆x

(
x− xi+1/2

)
, x ∈ [xi, xi+1].

The reconstruction is inserted in (1.12) to get an approximation of the interface value Fi+1/2,j(t) ≈
Fj(t, xi+1/2). Using the reconstruction (2.3), the integral term in (1.12) evaluated at x = xi+1/2

enables to get the following approximation

F

(
t− ηε(u− tn)

σ
, xi+1/2 −

vjεu

σ

)
≈ F

(
t, xi+1/2 −

vjεu

σ

)
= Fi+1/2(t) +

Fi+1(t)− Fi(t)

∆x

(
xi+1/2 −

εvju

σ
− xi+1/2

)
= Fi+1/2(t)−

vjεu

σ

Fi+1(t)− Fi(t)

∆x
.(2.4)

Let us remark that in the first approximation the shift in time has been neglected, as usual in the
UGKS for the diffusion regime.
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Regarding now the first term in (1.12), we consider a first order approximation in space based
on the sign of vj . We thus obtain

(2.5) Fj

(
tn, xi+1/2 −

vj(t− tn)

ηε

)
≈ Fn

i,j1vj>0 + Fn
i+1,j1vj<0,

where 1vj<0 denotes the Heaviside function which is equal to one if vj < 0 and zero else (same for
1vj>0).

Thus, evaluating (1.17) at x = xi+1/2 and using the previous approximations (2.4) and (2.5),
we obtain the following approximation Fi+1/2,j(t) of the interface value Fj(t, xi+1/2):

Fi+1/2,j(t) := exp

(
λ⋆σ(t− tn)

ηε

)(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
+⟨ej ,

∫ σ(t−tn)

ηε

0
exp (λ⋆u) (D − λ⋆I)

[
Fi+1/2(t)−

εvju

σ

Fi+1(t)− Fi(t)

∆x

]
du⟩.(2.6)

This approximation can be inserted in (2.2) to get a first version of the scheme but we can observe
the resulting scheme will couple the space and velocity indices so that the calculation of Fn+1

i,j will

be very costly. Moreover, as observed in (1.4), capturing the correct asymptotic behavior requires
to introduce D+ which is not the case with this first attempt. Thus, we will next try to work only
with Fi+1/2(t) and not with Fi(t) and Fi+1(t).

2.3. Spatial Approximation: second attempt. Thus, instead of the reconstruction (2.3),
we propose the following reconstruction:

(2.7) Fj(t, x) = Fi+1/2,j(t) +
Fn
i+1,j − Fn

i,j

∆x

(
x− xi+1/2

)
,

where we neglect the temporal variations of spatial gradients (tn ≤ t ≤ ∆t). Thus, evaluating
(1.17) at x = xi+1/2, using the reconstruction (2.7) for the integral term and (2.5) for the first
term, we obtain:

Fi+1/2,j(t) := exp

(
λ⋆σ(t− tn)

ηε

)(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
+⟨ej ,

∫ σ(t−tn)

ηε

0
exp (λ⋆u) (D − λ⋆I)

[
Fi+1/2(t)−

εvju

σ

Fn
i+1 − Fn

i

∆x

]
du⟩.(2.8)

From the relation (2.8), Fi+1/2(t) can now be expressed as the solution of the following linear system
(which is local in space):

M(t)Fi+1/2(t) = S(t),(2.9)

where the j-th component of the source term S(t) is:

Sj(t) = exp

(
λ⋆σ(t− tn)

ηε

)(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
+ ⟨vjej ,

∫ σ(t−tn)

ηε

0
exp (λ⋆u) (D − λ⋆I)

[
−εu
σ

Fn
i+1 − Fn

i

∆x

]
du⟩,(2.10)

and the matrix M(t) is given by

M(t) = I −
∫ σ(t−tn)

ηε

0
exp (λ⋆u) (D − λ⋆I)du

= exp

(
λ⋆σ(t− tn)

ηε

)
I +

(
1− exp

(
λ⋆σ(t− tn)

ηε

))(
1

λ⋆
D

)
.(2.11)

8



Some important properties of the matrix M(t) are given in the following proposition.

Proposition 2.1. The matrix M(t) defined by (2.11) is positive definite and thus invertible
and its inverse is given by

M(t)−1 =

N ′∑
k=0

A−1
k Pk,(2.12)

where N ′ is the number of eigenvalues, Pk denotes the orthogonal projectors associated to the
eigenvalues λk of D, and Ak ∈ R are defined as follows

(2.13) Ak = exp

(
λ⋆σ(t− tn)

ηε

)
+

(
λk
λ⋆

)(
1− exp

(
λ⋆σ(t− tn)

ηε

))
.

Proof. One can observe that M(t) is a convex combination of the two positive matrices I and
1
λ⋆
D (since λ⋆ < 0 and D is negative). Moreover, it is always positive definite since I is,

(
1
λ⋆
D
)

is positive, and the coefficient in front of I is always strictly positive, so the system will always be
numerically invertible.

Concerning the inverseM(t)−1, we recall the projector properties from Prop. 1.1:
∑N ′

k=0 Pk = I

and
∑N ′

k=1 λkPk = D. Indeed, using these relations in (2.11), one has

M(t) = exp

(
λ⋆σ(t− tn)

ηε

) N ′∑
k=0

Pk +

(
1− exp

(
λ⋆σ(t− tn)

ηε

)) N ′∑
k=1

(
λk
λ⋆

)
Pk,

which reads: M(t) =
∑N ′

k=0AkPk. The expression (2.12) of the inverse of M(t) is deduced from
this latter form.

Let us remark that the case k = 0 in (2.12) will play an important role since λ0 = 0 and for k = 0,

we have A0 = exp
(
λ⋆σ(t−tn)

ηε

)
.

2.3.1. Computation of the Interface Value. From the relation (2.9) satisfied by the in-
terface value Fi+1/2(t) and the expressions (2.10) of S(t) and (2.12) of M(t)−1, we will compute
explicitly the interface value Fi+1/2(t). In order to avoid the explicit calculation of the projectors
Pk and thus to get a simple numerical scheme, some approximations will be performed.

First, let introduce some useful notations. The half densities associated with positive and
negative velocities are

(2.14) ρ−,n
i =

1

2N

N∑
j=1

Fn
i,j = ∆v

N∑
j=1

Fn
i,j and ρ+,n

i =
1

2N

2N∑
j=N+1

Fn
i,j .

Then, we introduce the coefficient

C(t) = λ⋆

∫ σ(t−tn)

ηε

0
exp (λ⋆u)udu =

1

λ⋆

[
1 +

(
λ⋆σ(t− tn)

ηε
− 1

)
exp

(
λ⋆σ(t− tn)

ηε

)]
.(2.15)
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We now compute the interface value Fi+1/2 using the expressions (2.10) of S(t) and (2.12) ofM(t)−1:

Fi+1/2(t) =M(t)−1S(t)

= P0

{
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

}
j=1,...,2N

− εC(t)
σ

1

2N
⟨(DV − λ⋆V ),

Fn
i+1 − Fn

i

∆x
⟩1

+

N ′∑
k=1

A−1
k Pk

{
exp

(
λ⋆σ(t− tn)

ηε

)(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)}
j=1,...,2N

+

N ′∑
k=1

A−1
k Pk

{
⟨vjej ,

C(t)
λ⋆

(D − λ⋆I)

[
− ε

σ

Fn
i+1 − Fn

i

∆x

]
⟩
}

j=1,...,2N

,

= a○ + b○ + c○ + d○,(2.16)

where we used the notations {wj}j=1,...,2N the vector w ∈ R2N and we remind Ak is defined by

(2.13). Let us now detail how we deal with terms a○, b○, c○, d○.

2.3.2. Computation of the terms a○ and b○. Let consider in this part the first two terms
a○ and b○. First, from the definition (2.14) of the half densities, one has for a○

(2.17) a○ =
(
ρ+,n
i + ρ−,n

i+1

)
1.

Second, we provide some details regarding b○. Recalling (D − λ⋆I) is symmetric and from the
definition (2.15) of C, one has

b○ = −λ⋆
ε

σ

1

2N
⟨(D − λ⋆I)V,

C(t)
λ⋆

Fn
i+1 − Fn

i

∆x
⟩1

= λ⋆
1

2N
⟨(D − λ⋆I)V,

∫ σ(t−tn)

ηε

0
exp (λ⋆u)

[
−εu
σ

Fn
i+1 − Fn

i

∆x

]
du⟩1

= λ⋆
1

2N
⟨V, (D − λ⋆I)

∫ σ(t−tn)

ηε

0
exp (λ⋆u)

[
−εu
σ

Fn
i+1 − Fn

i

∆x

]
du⟩1

= λ⋆
1

2N

2N∑
k=1

⟨vkek,
∫ σ(t−tn)

ηε

0
exp (λ⋆u) (D − λ⋆I)

[
−εu
σ

Fn
i+1 − Fn

i

∆x

]
du⟩1.(2.18)

Let us remark that this term is independent of j so that it has no contribution in the diffusion
limit.

2.3.3. Computation of the terms c○ and d○. Now, we will consider the terms c○ and d○
for which some approximations will be performed to avoid the explicit calculation of the projectors
Pk.

First let recall the expression of the term c○

c○ =

N ′∑
k=1

A−1
k Pk exp

(
λ⋆σ(t− tn)

ηε

){
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

}
j=1,...,2N

.

On the one side, we observe that the term c○ decays exponentially fast and thus does not contribute
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in the diffusion limit. On the other side, in the transport limit ε→ +∞, one has

N ′∑
k=1

A−1
k Pk =

N ′∑
k=1

1

exp
(
λ⋆σ(t−tn)

ηε

)
+ λk

λ⋆

(
1− exp

(
λ⋆σ(t−tn)

ηε

))Pk

=

N ′∑
k=1

Pk +O(1/ε) = (I − P0) +O(1/ε).(2.19)

Hence, from these asymptotic behaviors, and in view of constructing a method which does not
require the knowledge of Pk, we propose the following approximation for c○

(2.20) c○ ≈ (I − P0) exp

(
λ⋆σ(t− tn)

ηε

){
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

}
j=1,...,2N

.

Let now consider the term d○ and first, let recall its expression

(2.21) d○ =

N ′∑
k=1

A−1
k Pk

{
⟨vjej ,

C(t)
λ⋆

(D − λ⋆I)

[
− ε

σ

Fn
i+1 − Fn

i

∆x

]
⟩
}

j=1,...,2N

.

Then, we observe that in the diffusion limit, we have, for any arbitrary q ∈ N:

N ′∑
k=1

A−1
k

λ⋆
Pk =

N ′∑
k=1

1

λk
Pk +O(εq) = D+ +O(εq),(2.22)

since from the definition (2.13) of Ak, we deduce A−1
k tends to λ⋆/λk as ε→ 0 and from Prop. 1.1,

we have D =
∑N ′

k=1 λkPk. However, little can be said about the term in braces in (2.21) except
that lim

η=ε→0
C(t) = 1/λ⋆. Moreover, using the approximation (2.22) imposes the term into braces to

be orthogonal to 1 which is not the case due to the presence of Fn
i+1 − Fn

i . Hence, the calculation
of the term d○ would require the knowledge of the projectors Pk which we want to avoid since it
may be very costly in the general case. Hence, in the next subsection, we will consider another
reconstruction which will avoid the knowledge of the projectors Pk.

2.4. Spatial Approximation: third attempt. Due to the obstacle observed previously, we
thus consider the following reconstruction for Fj(t, x)

(2.23) Fj(t, x) = Fi+1/2,j(t) +
ρni+1 − ρni

∆x
(x− xi+1/2).

As before, assessing (1.17) at x = xi+1/2, using reconstruction (2.23) for the integral term and (2.5)
for the first term, we get the following interface relation for Fi+1/2,j(t)

Fi+1/2,j(t) = exp

(
λ⋆σ(t− tn)

ηε

)(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
+⟨ej ,

∫ σ(t−tn)

ηε

0
exp (λ⋆u) (D − λ⋆I)

[
Fi+1/2(t)−

εvju

σ

ρni+1 − ρni
∆x

1

]
du⟩.(2.24)

The same calculations as the ones done before can be performed since the expression of M(t)−1

given by (2.12) is unchanged, but the expression of S(t) in (2.10) is slightly modified since its
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expression is now

Sj(t) = exp

(
λ⋆σ(t− tn)

ηε

)(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
+ ⟨vjej ,

∫ σ(t−tn)

ηε

0
exp (λ⋆u) (D − λ⋆I)

[
−εu
σ

ρni+1 − ρni
∆x

1

]
du⟩.(2.25)

So now Fi+1/2 satisfies Fi+1/2(t) =M(t)−1S(t) and decompose Fi+1/2(t) = a○ + b○ + c○ + d○ as:

a○ = P0

{
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

}
j=1,...,2N

b○ = −εC(t)
σ

1

2N
⟨(DV − λ⋆V ),

ρni+1 − ρni
∆x

⟩1

c○ =

N ′∑
k=1

A−1
k Pk exp

(
λ⋆σ(t− tn)

ηε

){
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

}
j=1,...,2N

d○ =

N ′∑
k=1

A−1
k Pk

{
⟨vjej ,

C(t)
λ⋆

(D − λ⋆I)

[
− ε

σ

ρni+1 − ρni
∆x

1

]
⟩
}

j=1,...,2N

.

As previously, we now deal with the decomposition. Since a○ and c○ do not depend on the gradient
reconstruction, they are unchanged and respectively given by (2.17) and (2.20); we focus on c○ and
d○.

2.4.1. Calculation of the term b○. Regarding the term b○, we now have the following
expression

b○ = −εC(t)
σ

1

2N
⟨(D − λ⋆I)V,

ρni+1 − ρni
∆x

⟩1

= −εC(t)
σ

1

2N
⟨V, (D − λ⋆I)

ρni+1 − ρni
∆x

⟩1

=
ελ⋆C(t)
σ

1

2N
⟨V,

ρni+1 − ρni
∆x

⟩1 =
ελ⋆C(t)
σ

1

2N

2N∑
k=1

vk
ρni+1 − ρni

∆x
1 = 0,

since the velocity grid satisfies
∑2N

k=1 vk = 0 by assumption.

2.4.2. Calculation of the term d○. Let now investigate the term d○. Using the reconstruc-
tion (2.24), the term d○ becomes

d○ =

N ′∑
k=1

A−1
k Pk

{
⟨vjej , C(t)(D − λ⋆I)

[
− ε

σ

ρni+1 − ρni
∆x

1

]
⟩
}

j=1,...,2N

= D+

{
⟨vjej , C(t)(D − λ⋆I)

[
− ε

σ

ρni+1 − ρni
∆x

1

]
⟩
}

j=1,...,2N

+O(εq)

= C(t)λ⋆D+

{
⟨vjej ,

ε

σ

ρni+1 − ρni
∆x

1⟩
}

j=1,...,2N

= C(t)λ⋆D+

[
ε

σ

ρni+1 − ρni
∆x

]
V

= C(t)λ⋆
[
ε

σ

ρni+1 − ρni
∆x

]
U,(2.26)

where we used D1 = 0 and D+V = U . We can observe that with the reconstruction (2.24), the
knowledge of the projectors Pk can be avoided but as we will see, the asymptotic behavior can still
be recovered.
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2.4.3. Computation of the Interface value. All in all, inserting the expressions (2.17),
(2.20) and (2.26) of a○, c○ and d○ (recalling that b○ = 0) in (2.16) leads to the following expression
for the interface value:

Fi+1/2(t) =
(
ρ+,n
i + ρ−,n

i+1

)
1

+ (I − P0) exp

(
λ⋆σ(t− tn)

ηε

){
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

}
j=1,...,2N

+ λ⋆C(t)
[
ε

σ

ρni+1 − ρni
∆x

]
U

= exp

(
λ⋆σ(t− tn)

ηε

){
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

}
j=1,...,2N

+

(
1− exp

(
λ⋆σ(t− tn)

ηε

))(
ρ+,n
i + ρ−,n

i+1

)
1+ λ⋆C(t)

[
ε

σ

ρni+1 − ρni
∆x

]
U.(2.27)

This expression of Fi+1/2(t) will be inserted in the finite volume scheme which will lead to a new
UGKS described hereafter.

2.5. New UGKS. The complete scheme consists of considering (2.1)-(2.2) with the following
definition for the flux ϕi+1/2,j

ϕi+1/2,j =
1

η∆t

∫ tn+1

tn

vjFi+1/2,j(t)dt,

where the expression (2.27) is used for the interface value Fi+1/2,j(t). Some calculation enables to
get the following explicit expression for the flux:

ϕi+1/2,j =
1

η∆t

∫ tn+∆t

tn

vj

[
exp

(
λ⋆σ(t− tn)

ηε

)(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
+

(
1− exp

(
λ⋆σ(t− tn)

ηε

))(
ρ+,n
i + ρ−,n

i+1

)
+ λ⋆C(t)

ε

σ

ρni+1 − ρni
∆x

Uj

]
dt

= A(∆t, σ, η, ε)
(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
vj +C(∆t, σ, η, ε)

(
ρ+,n
i + ρ−,n

i+1

)
vj

+D(∆t, σ, η, ε)
ρni+1 − ρni

∆x
λ⋆Ujvj ,(2.28)

where the coefficients A,C,D are given by (using the notation w = λ⋆σ∆t/(ηε)):

A(∆t, σ, η, ε) =
1

ηw
(ew − 1)(2.29)

C(∆t, σ, η, ε) =
1

η
−A(∆t, σ, η, ε)(2.30)

D(∆t, σ, η, ε) =
ε

σλ⋆
(C(∆t, σ, η, ε)−A(∆t, σ, η, ε)) +

ε

ησλ⋆
ew.(2.31)

This exactly matches the scheme proposed by Mieussens in [16] for the BGK operator, if the
interface value for the density used in [16] is set to (ρni + ρni+1)/2. Once the fluxes have been

written, it remains to define the scheme satisfied by Fn+1
i ∈ R2N from (2.2)(

I − σ∆t

εη
D

)
Fn+1
i = Fn

i − ∆t

∆x

(
ϕi+1/2 − ϕi−1/2

)
.(2.32)
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Due to the implicit treatment of the collision operator D, a linear system has to be inverted for
each spatial cell, which is fully aligned with other strategies for stiff kinetic problems.

Let us now consider the macroscopic flux Φi+1/2 which is defined by

Φi+1/2 =
1

2N

2N∑
j=1

ϕi+1/2,j ,

where the (microscopic) flux ϕi+1/2,j is given by (2.28). Some simple calculations enable to get

Φi+1/2 = A(∆t, σ, η, ε)(J+,n
i + J−,n

i ) + D(∆t, σ, η, ε)
λ⋆
2N

ρni+1 − ρni
∆x

⟨U, V ⟩,

with J±,n
i are given by

J−,n
i =

1

2N

N∑
j=1

vjF
n
i,j and J+,n

i =
1

2N

2N∑
j=N+1

vjF
n
i,j .

But from Prop. 1.1, one has λ⋆⟨U, V ⟩ = ⟨V, V ⟩ so that the macroscopic flux Φi+1/2 finally becomes

Φi+1/2 = A(∆t, σ, η, ε)(J+,n
i + J−,n

i ) +
D(∆t, σ, η, ε)

2N

ρni+1 − ρni
∆x

⟨V, V ⟩,(2.33)

and the macroscopic density is updated by as

(2.34)
ρn+1
i − ρni

∆t
+

Φi+1/2 − Φi−1/2

∆x
= 0.

Remark 2.1.
• Let us remark that, contrary to the standard UGKS applied to the BGK equation, the update
of ρn+1 is not required to update the kinetic unknown Fn+1 in (2.32). Indeed, in this version
of UGKS, Fn+1 is updated from (2.32) and then, ρn+1 is computed from (2.34).

• Solving (2.32) requires a linear solver (Conjugate Gradient method in this paper) in each
spatial cell if D has no clear properties. When D comes from BGK model, the trick is to
update ρ through (2.34): the system becomes diagonal. When D is linked to FP model, one
has to use Thomas algorithm for tridiagonal matrices for more efficiency and precision (the
matrix is badly conditioned for Conjugate Gradient method).

3. Asymptotic behavior. Here, we formally investigate the asymptotic behavior of the new
UGKS (2.32)-(2.28)-(2.34)-(2.33) presented above. First, we study the free transport regime ε →
+∞ and then the diffusion limit η = ε→ 0 is studied.

3.1. Free transport regime. The asymptotic behavior follows from the ones of the coeffi-
cients defined in (2.29), (2.30), (2.31).

Proposition 3.1. When ε→ +∞ (and η constant), one has
• A(∆t, σ, η, ε) tends to 1

η .

• C(∆t, σ, η, ε) tends to 0.
• D(∆t, σ, η, ε) tends to 0.

As a consequence, the flux (2.28) verifies when ε→ +∞

ϕi+1/2,j →
vj
η

(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
,
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and the scheme becomes

Fn+1
i,j − Fn

i,j +
vj∆t

η∆x

(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
= 0,

which is the standard first order upwind scheme for the free transport equation ∂tf + v
η∂xf = 0.

3.2. Diffusion regime. We now investigate the diffusion limit η = ε→ 0.

Proposition 3.2. When η = ε→ 0, one has
• A(∆t, σ, η, ε) tends to 0,
• D(∆t, σ, η, ε) tends to 1

σλ⋆
.

As a consequence, the macroscopic flux Φi+1/2 defined by (2.33) satisfies, as η = ε→ 0

Φi+1/2 →
1

2N

ρni+1 − ρni
∆x

⟨V, V ⟩
σλ⋆

.(3.1)

Hence, the equation (2.34) becomes

ρn+1
i − ρni

∆t
+

⟨V, V ⟩/(2N)

σλ⋆

ρni+1 − ρni + ρni−1

∆x2
= 0.

But from the definition (1.10) of λ⋆, we get ⟨V, V ⟩/λ⋆ = ⟨D+V, V ⟩ which is consistent with the
diffusion coefficient κ occurring in (1.5).

4. Extensions and remarks. We now present some extensions and remarks.

4.1. Implicit diffusion. The version where the limit scheme is implicit is obtained simply by
modifying the flux as:

ϕi+1/2,j = A(∆t, σ, η, ε)
(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
vj

+ C(∆t, σ, η, ε)
(
ρ+,n
i + ρ−,n

i+1

)
vj +D(∆t, σ, η, ε)

ρn+1
i+1 − ρn+1

i

∆x
λ⋆Ujvj .(4.1)

However, to compute ρn+1
i , the macroscopic fluxes Φi+1/2,j are now obtained by summing on j the

microscopic fluxes (4.1). From the previous calculations, we get

Φi+1/2 =
1

2N

2N∑
j=1

ϕi+1/2,j

= A(∆t, σ, η, ε)(J+,n
i + J−,n

i+1 ) +
⟨V, V ⟩
2N

D(∆t, σ, η, ε)
ρn+1
i+1 − ρn+1

i

∆x
,(4.2)

so that the scheme on ρ finally becomes (with the notations Jn
i+1/2 = J−,n

i+1 + J+,n
i ):

ρn+1
i − ρni

∆t
= −A(∆t, σ, η, ε)

Jn
i+1/2 − Jn

i−1/2

∆x
− ⟨V, V ⟩

2N
D(∆t, σ, η, ε)

ρn+1
i+1 − 2ρn+1

i + ρn+1
i−1

∆x2
,

where A and D are given by (2.29) and (2.31).

Remark 4.1. Since we have an implicit diffusion in space, one needs first to solve ρn+1 through
a linear solver and then solve Fn+1.

15



4.2. Some remarks for the BGK operator. In the BGK case, the computations simplify
significantly. Indeed, first, all the eigenvalues λk(k ≥ 1) are equal to λ⋆ = −1, and λ0 = 0. Hence,
the coefficients Ak defined in (2.13) becomes independent of k and can be written as

Ak = exp

(
λ⋆σ(t− tn)

ηε

)
+
λk
λ⋆

(
1− exp

(
λ⋆σ(t− tn)

ηε

))
= 1,

so that the inverse M(t)−1 defined in (2.12) of M(t) defined in (2.11) becomes:

M(t)−1 = exp

(
−λ⋆σ(t− tn)

ηε

)
P0 +

N ′∑
k=1

A−1
k Pk = exp

(
−λ⋆σ(t− tn)

ηε

)
P0 + (I − P0).

Besides, in the BGK case, one can observe that D = P0+λ⋆I or D−λ⋆I = P0. It turns out that for
the BGK case, the second reconstruction (2.7) and the third reconstruction (2.23) gives the same
expression for S(t) defined by (2.10) and (2.25) respectively. Indeed, the reconstruction gives (2.7)

Sj(t) = exp

(
λ⋆σ(t− tn)

ηε

)(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
+ ⟨vjej ,

∫ σt

ηε

0
exp (λ⋆u)P0

[
−εu
σ

Fn
i+1 − Fn

i

∆x

]
du⟩

= exp

(
λ⋆σ(t− tn)

ηε

)(
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

)
+

C(t)vj
λ⋆

ε

σ

ρni+1 − ρni
∆x

,(4.3)

which is the expression that we would have obtained using the third reconstruction (2.23) (let recall
the definition (2.15) of C(t)). We can observe that the second term in (4.3) is collinear to V , ie
orthogonal to Ker D or P0V = 0. Solving the system M(t)Fi+1/2(t) = S(t) thus leads to:

Fi+1/2(t) =M(t)−1S(t)

= P0

{
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

}
j=1,...,2N

+ 0

+(I − P0) exp

(
λ⋆σ(t− tn)

ηε

){
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

}
j=1,...,2N

+
ε

σ

ρni+1 − ρni
∆x

C(t)V
λ⋆

=

(
1− exp

(
λ⋆σ(t− tn)

ηε

))(
ρ+,n
i + ρ−,n

i+1

)
1

+exp

(
λ⋆σ(t− tn)

ηε

){
Fn
i,j1vj>0 + Fn

i+1,j1vj<0

}
j=1,...,2N

+
ε

σ

ρni+1 − ρni
∆x

C(t)V
λ⋆

.

We observe that this expression and the one obtained in [16] match except for the last term in
which half-slopes reconstructions have been used for ρ in [16]. This is due to the fact that in [16],
the BGK model requires a reconstruction for F and for ρ which is not the case in this work.

4.3. Some remarks for the Fokker-Planck operator. To apply our scheme to Fokker-
Planck operator, we need to give a discretization of D. Moreover, we discuss how the interface
value Fi+1/2(t) behave in this case.

4.3.1. Discretization of the collision operator. First, let recall that for the continuous
Fokker-Planck operator defined by (1.3), the eigenvalues are λk = −k(k + 1), k ∈ N. The zero
eigenvalue is labelled by k = 0 and the eigenvalue λ1 is associated with the eigenfunction v (which
can easily recovered from (1.3)). Let us remark that we will choose λ⋆ = λ1 since this is the
eigenvalue which enables to get the correct diffusion limit.
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Second, let introduce a velocity discretization D of D given by (1.3). With the definitions
introduced above, we use (we recall that we have chosen c = 1 )

(4.4) (Df)(vj) ≈ (DF )j =
1

∆v2

(
(1− v2j+1/2)(Fj+1 − Fj)− (1− v2j−1/2)(Fj − Fj−1)

)
,

where we defined vj+1/2 = (vj + vj+1)/2. Using this approximation, one can check that the first
two eigenvalues λ0 = 0 and λ1 = −2 are exactly recovered.

Proposition 4.1. The discretization (4.4) satisfies D1 = 0 and DV = −2V . Besides D is
symmetric, its non diagonal coefficients are positive and I + δD is bistochastic for δ > 0 small
enough.

Proof. The fact that λ0 = 0 is true is a direct consequence of the conservative form of the
discretization (4.4) so that D1 = 0.

Regarding the relation, let replace Fj by vj in (4.4):

(DV )j =
1

∆v2

(
(1− v2j+1/2)(vj+1 − vj)− (1− v2j−1/2)(vj − vj−1)

)
=

1

∆v2

(
(1− v2j+1/2)∆v − (1− v2j−1/2)∆v

)
=

1

∆v
(−v2j+1/2 + v2j−1/2) = −2vj ,

so that DV = −2V and V is an eigenvector associated to the eigenvalue λ⋆ = −2.
By construction, we clearly have that D is symmetric, its non diagonal coefficients are positive

and I + δD is a bistochastic matrix for δ > 0 small enough.

4.3.2. Interface value. In the Fokker-Planck case, the eigenstructure of D is more involved
than in the BGK case so that the third reconstruction (2.23) is required to avoid the knowledge
of the projectors Pk. However, it can be noticed that for the second reconstruction (2.7), the term
b○ defined in (2.18) vanishes. Indeed, thanks to Prop. 4.1, one has (D − λ⋆I)V = 0, even if Fn

i,j is
employed for the gradient.

4.4. Some remarks for the scattering operator. For scattering operator defined by (1.2),
the resulting matrixD must be symmetric negative with only 1 in the kernel and positive coefficients
apart on the diagonal. Spectrum and projectors are not always exactly known, thus λ⋆ has to be
numerically determined from (1.10) and in this case reconstruction (2.24) is fully justified. Up to
our knowledge, there is no physically relevant non isotropic 1D collision operator. Therefore, to
test our approach, we artificially define the following scattering matrix D = 1

10D1 with D1 the
periodic Laplacian matrix given by :

(D1)i,j =
1

∆v2

{
−2, if i = j,

1, if i = j − 1[Nv] or i = j + 1[Nv] (Nv = 2N)

which owns the required properties (negativity, kernel, positive coefficients). The factor 1/10 is
chosen so that the λ⋆ value in this case is between the one of BGK model and the one FP model.
The eigenvalues of D1 are known:

λk = − 2

∆v2

(
1− cos

(
2πk

Nv

))
, k = 0, 1, . . . , Nv − 1.

The numerical value for λ⋆(D) is obtained by the code for Nv = 100 is roughly −1.49835.
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Remark 4.2. The vector V is not an eigenvector since eigenvectors are discrete Fourier modes.
Using Fourier analysis one gets that when ∆v tends to zero:

• D1 tends to the Laplacian so that U obeys to U ′′(v) = v (v ∈ [−1, 1]) with periodic boundary

conditions U(1) = U(−1), U and satisfies 1
2

∫ 1
−1 U(v)dv = 0 (to be in the orthogonal of the

constants). The solution U is U(v) = 1
6v

3 − 1
6v.

• One can compute the corresponding pseudo-eigenvalue λ⋆ by considering the limit as ∆v → 0
in (1.10). Using

∫ 1
−1 U(v)vdv = −1/45 and

∫ 1
−1 v

2dv = 1/3, one has

λ⋆(D1) :=
⟨V, V ⟩
⟨U, V ⟩

−→
∆v→0

(
1

2

∫ 1

−1
v2dv

)/(
1

2

∫ 1

−1
U(v)vdv

)
= −15.

Since D = 1
10D1, λ⋆(D) converges to λ∞⋆ (D) = −1.5 in the continuous limit.

5. Numerical results. We now provide some numerical results to illustrate the properties
of the new UGKS to solve (1.1) for generalized collision kernels, namely the scattering operator
(1.2) and the Fokker-Planck operator (1.3). In all cases presented below, the equation (1.1) is
equipped with periodic conditions in space (more details on other boundary conditions can be
found in [16] and the new scheme only needs slight adaptations on the boundaries). The initial
particle distribution function and density are chosen far from equilibrium:

f0(x, v) = exp
(
−(x− 0.5)2 − 10(1− v)2

)
, 0 ≤ x ≤ 1, −1 ≤ v ≤ 1.

ρ0(x) =
1

2

∫ 1

−1
f0(x, v) dv = C exp

(
−(x− 0.5)2

)
,

with C =
1

2

∫ 1

−1
exp

(
−10(1− v)2

)
dv ≈ 0.14 (see figure (5.1)).

Fig. 5.1. Initial density x 7→ ρ0(x)

The exact solution of the transport problem without any collision is

(5.1) f(t, x, v) = f0
(
(x− vt) mod 1, v

)
= exp

(
−
(
(x− vt) mod 1− 0.5

)2 − 10(1− v)2
)
,

while the exact solution for density in the diffusive limit with diffusion coefficient κ =
1

3σ|λ⋆|
is:

(5.2) ρ(t, x) = C

∫ 1

0

 ∞∑
j=−∞

1√
4πκt

exp

(
−(x− y + j)2

4κt

) exp
(
−(y − 0.5)2

)
dy.
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.
In the sequel, we focus on the comparison of different collision operators and their corresponding

diffusion coefficients κ: the scattering operator (1.2) for which κ = 2
9σ (since λ⋆ = −3/2), the

Fokker-Planck operator (1.3) for which κ = 1
6σ (since λ⋆ = −2) and BGK operator for which

κ = 1
3σ (since λ⋆ = −1). Regarding the stability, it is empirically found that the new UGKS has

the same stability condition as the standard one studied in [16, 18]. The time step is thus chosen
so that the natural condition ∆t = C1∆x

2 + C2η∆x is empirically satisfied. We refer to the work
of Vigier ([18]) for more discussions on the subject.

In the following tests, the mesh in space uses Nx = 100 cells whereas Nv = 100 cells in velocity
(N = 50) are considered. The quantity σ will always be set to one. Hence, from the empirical CFL
condition, the time step is set to ∆t = 10−5.

The next subsections investigate the three different regimes (transport, intermediate and diffu-
sive) for the three models at different times. In the legends BGK means BGK model, FP means
Fokker-Planck model and SC refers to the scattering model.

5.1. Transport regime: η = 1 and ε = 100. First, we consider the so-called transport
regime in (1.1) with η = 1 and ε = 100. In this regime, the collision part is weakened due to
the large value of ε and we capture the transport of the density: initially the mean velocity of
the distribution is uniform and strictly positive so that a translation of the bump to the right is
expected. In Figure 5.2, we can observe that due to the first order scheme in transport, diffusion
in space and smoothing of the bump occur. In this regime, there is almost no collisions so that
consequently the three kernels of collisions give the same results at intermediate time ti = 0.05 and
final time tf = 0.1.

Fig. 5.2. Transport regime (ε = 100, η = 1): density x 7→ ρ(t, x) for ti = 0.05, tf = 0.1 computed by UGKS for BGK,
Fokker-Planck and scattering collision kernels.

We can also compare with exact solution of the transport solution given by (5.1) and denoted
by Transp at intermediate time and final time: we can see in Figure 5.3 that the three models have
exactly the same behavior and that the error comes from the first order upwind scheme.
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Fig. 5.3. Transport regime (ε = 100, η = 1): density x 7→ ρ(t, x) for ti = 0.05, tf = 0.1 computed by UGKS for BGK,
Fokker-Planck and scattering collision kernels compared with the exact solution.

5.2. Intermediate regime: η = 0.1 and ε = 0.1. Now, we investigate the intermediate
regime for which η = ε = 0.1 in (1.1). In this regime both transport and collisions are acting:
transport is initially acting (the bump has stopped moving at time ti = 0.05) and afterwards the
bump is only damped till tf = 0.1. Consequently, due to the transport part which is the same for
all the models, the bump goes to the right but due to the different diffusion coefficient, the damping
is different according to the collision operator: the diffusion coefficient of the Fokker-Planck model
is half the one of BGK model and three quarters of the scattering model. Thus, one can observe
on Figure 5.4 that the BGK solution (black bullets) is more flattened than the one obtained by the
scattering operator (orange stars) which is itself more flattened than the Fokker-Planck operator
(blue squares) at time tf = 0.1.
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Fig. 5.4. Intermediate regime (ε = η = 0.1): density x 7→ ρ(t, x) for ti = 0.05, tf = 0.1 computed by UGKS for BGK,
Fokker-Planck and scattering collision kernels.

5.3. Diffusive regime η = 10−4 and ε = 10−4. We finally consider the diffusion regime
η = ε = 10−4. In this regime, the effect of the transport is negligible and the solution is supposed
to be closed to the one of the diffusion model (1.5) for which the diffusion coefficient is different
according to the collision operator. As a consequence, since the diffusion coefficient in the Fokker-
Planck model is half the one of the BGK model, the Fokker-Planck model at time tf should be very
close to the BGK model at time ti = tf/2. This is observed in Figure 5.5 where the Fokker-Planck
density (blue squares) is superimposed with the BGK one (black circles). Moreover, in Figure
5.5, the densities obtained by the three collision operators at ti and tf are gradually damped from
Fokker-Planck at ti to BGK at tf .
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Fig. 5.5. Diffusive regime (ε = η = 10−4): density x 7→ ρ(t, x) for t = 0.05 and t = 0.1 computed by UGKS for BGK,
Fokker-Planck and scattering collision kernels.

Similarly, if we set tf = 0.075, the scattering model (orange stars) at time tf gives very similar
result as the BGK model (black circles) at time ti = 0.05 as observed in Figure 5.6. Indeed, the
diffusion coefficient for the scattering operator is λ⋆,SC = −1.5 whereas λ⋆,BGK = −1 for the BGK,

so that tf
λ⋆,SC

= ti
λ⋆,BGK

.

Fig. 5.6. Diffusive regime (ε = η = 10−4): density x 7→ ρ(t, x) for t = 0.05 and t = 0.075 computed by UGKS for BGK,
Fokker-Planck and scattering collision kernels.
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5.3.1. Comparison with exact solution. We can also compare the exact solutions of the
Fokker-Planck and scattering operators with their respective analytical solutions (5.2), denoted by
DIFFFP and DIFFSC , at the final time t = 0.1 . In Figure 5.7, one can observe that the results
are quite satisfactory after 104 time steps, given the small number of velocity points and the use
of a first-order time scheme.

Fig. 5.7. Diffusive regime (ε = η = 10−4): density x 7→ ρ(t, x) for t = 0.1 computed by UGKS for Fokker-Planck and
scattering collision kernels compared with their exact solutions.

Conclusion. In this work, we have developed and analysed a generalized Unified Gas Kinetic
Scheme (UGKS) designed to handle linear kinetic equations in the diffusive limit, with a particular
focus on extending the original framework to accommodate a broad class of collision operators, such
as the BGK, Fokker–Planck, and scattering models. Building on the asymptotic preserving (AP)
structure of the classical UGKS, our formulation is based on a penalized Duhamel representation
and a suitable spatial reconstruction that preserve the essential asymptotic behaviors without
relying on costly spectral decomposition.

From the theoretical standpoint, we formally established the preservation of the diffusion limit
as ε = η → 0. In particular, we showed that the scheme yields the appropriate diffusion equation
for each collision operator. The practical effectiveness of the method was demonstrated through
several numerical experiments covering a range of physical regimes.

The implicit treatment of the stiff collision term leads to local linear systems that are well-posed,
and can be solved using standard solvers. The proposed interface value computation, essential for
flux evaluations, preserves both accuracy and efficiency.

These results collectively demonstrate that the generalized UGKS scheme provides a versatile
numerical framework for simulating general kinetic models across multiple scales. As a future work,
we may explore the extension of the scheme to nonlinear problems and rigorous stability analysis.
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