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Abstract
The Unified Gas-Kinetic Scheme (UGKS) stands out from traditional deterministic numerical approaches to gas
dynamics by enabling the resolution of flow regimes ranging from rarefied to continuum, within a simulation time
independent of the regime. Its effectiveness in solving complex flows has primarily been demonstrated with Shakhov
or Rykov models. Furthermore, it has also been applied to ES-BGK type models, even if its application has so far
been limited to purely monoatomic effects.

In this paper, we aim to explore the application of the unified gas-kinetic scheme to ES-BGK models in greater
depth, extending its use from monoatomic to polyatomic gases by employing recent formulations. Particular at-
tention will be given to validating this adaptation through numerical comparisons with simulation codes from the
literature, such as SPARTA for non-vibrating gas flows and PIClas for other cases, as it can handle polyatomic
ES-BGK models, including vibrational phenomena.
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1 Introduction
The kinetic theory of gases relies primarily on the Boltzmann equation to describe the behavior of a gas at the
microscopic scale. This fundamental equation governs the time evolution of the mass distribution of gas in phase
space, accounting for variations in position, particle velocity, and, when necessary, internal energy such as rotation
or vibration. Despite its complexity, the Boltzmann equation provides a framework for modeling gases across the
entire range of rarefaction, from the free molecular to the continuum flow regimes. One of its most remarkable
features lies in its natural asymptotic behavior in low Knudsen number where it naturally derives to hydrodynamic
models such as the Euler and Navier-Stokes equations. This property not only bridges microscopic and macroscopic
descriptions of gas dynamics but also emphasizes the singular and essential importance of this fundamental equation
in both the multi-scale and multi-regime modeling.

Nevertheless, the Boltzmann equation presents significant challenges, both in terms of theoretical analysis [9]
and numerical resolution. These difficulties have naturally motivated the development of simplified models that
preserve the fundamental properties of the original equation such as its asymptotic behavior, conservation of mass,
momentum and total energy, and the dissipation of entropy. One of the earliest simplified models of the Boltzmann
equation is the Bhatnagar-Gross-Krook (BGK) model [5, 41]. It was developed to enable simpler and faster
numerical simulations of transport phenomena within a monoatomic gas in a transitional state between rarefied
and continuous regimes. Although the BGK model successfully reproduces many of the fundamental properties
of the Boltzmann equation, it is limited to simulating gas flows with a unitary Prandtl number. As a result,
it cannot accurately reproduce the experimentally observed propagation of thermal effects relative to dynamic
effects in the hydrodynamic limit. To address this limitation, more advanced models such as the Ellipsoidal-
Statistical BGK (ES-BGK) model [17] and the Shakhov-BGK model [36] were introduced. These models are
capable of correctly recovering a Prandtl number of 2/3 for monoatomic gases, thereby providing a more physically
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accurate representation of thermal dynamics and a more realistic continuous asymptotic limit behavior. Unlike
the Shakhov model, the monoatomic ES-BGK model ensures the positivity of the mass distribution, and satisfies
the H-theorem [2]. Consequently, it retains the same fundamental properties as the original BGK model and
the Boltzmann equation. This model has subsequently been extended to diatomic gases [2] and has undergone
various modifications, such as modeling the rotation and vibration energy distribution and their induced relaxation
processes toward equilibrium [13, 26, 33].

To resolve rarefied gas flows, several methodologies have been considered in the literature. One of the most
widely used is certainly the Direct Simulation Monte-Carlo (DSMC) [6], which emulates the physics described by the
Boltzmann equation by alternatively simulating the transport and collisions of numerical particles, each representing
an agglomeration of real gas molecules. While DSMC is centered on detailed collision models, other particle
stochastic approaches focus on simpler treatments of particles interactions induced by simplified considerations
as ES-BGK models [1, 8, 16, 34, 39]. Although such both particle-based methods mimic physical processes and
yield excellent results in the free molecular regime, they face significant limitations in simulating gas flow in the
continuum regime. In particular, they are constrained by strict time-step and mesh-size constraints and subject to
statistical noise inherently associated with stochastic sampling.

In contrast to particle-based methods, deterministic approaches rely on the numerical discretization of kinetic
models and dedicated numerical schemes. Most of theses methods employ a Discrete Velocity Model (DVM) or
Discrete Ordinate Method (DOM) [18], in which the continuous velocity space is discretized, yielding to a system of
coupled partial differential equations. Due to the conservation properties inherent in kinetic models, finite volume
schemes are generally preferred. Several deterministic solvers which use for most of them the DVM technique can
be found in the review [27]. When combined with high-order spatial reconstructions, these schemes can achieve high
accuracy free of statistical noise. Moreover, an implicit or semi-implicit time discretization is commonly adopted to
handle the particle interaction term of the model equation which can become stiff in the continuum regime. However,
for a long time, the numerical fluxes of these finite volume solvers were derived from a purely kinetic viewpoint,
treating transport and collision processes separately. This methodology significantly impairs the accuracy of the
schemes in the hydrodynamic limit where the Navier-Stokes equations apply. Indeed, for this type of scheme in
this regime, extra numerical diffusion is commonly observed in addition to the physical diffusion induced by the
Navier-Stokes asymptotics. With these schemes, accurate results free from this diffusion can only be obtained
when the mesh size and time step resolve the kinetic scales, making simulations prohibitively expensive as the flow
approaches the continuum regime. In some sense, this deterministic splitting and its consequences can be compared
with the particle-based splitting methods.

Since 2010, the research group led by K. Xu has been developing a unified method known as the “Unified
Gas-Kinetic Scheme” [43, 46]. This method introduces a coupled treatment of transport and collision processes
within the flux evaluation, enabling accurate simulations across all flow regimes with a computational cost that is
independent of the gas rarefaction and free from extra-diffusion phenomena. Crucially, UGKS naturally recovers
both the correct free molecular and hydrodynamic behavior described by the Navier-Stokes equations without
requiring kinetic-scale resolution making it an Asymptotic Preserving (AP) scheme. Furthermore, it also naturally
leads to a truly multi-scale scheme making it particularly well-suited for configurations involving strong variations
in the degree of rarefaction such as those encountered downstream of a nozzle in atmospheric reentry or space
propulsion applications, where continuum and rarefied regimes coexist.

The UGKS has only been applied so far to monoatomic ES-BGK models [11, 24]. Here, we propose to extend it
to phenomena typical of diatomic models, such as rotation and vibration energy exchanges, as described by [2, 13,
26, 33]. This extension raises two main difficulties: first, the incorporation of the pseudo-equilibrium of ES-BGK
models into the construction of UGKS fluxes; and second, the development of a robust temporal approximation for
the stiff relaxation operator. Indeed, a naive application of the UGKS approach fails here, in the near-continuum
regime, where we observe some instabilities. In this work, we analyze the sources of this lack of robustness and we
propose various approximations that make our scheme much more robust.

The outline of the paper is as follows. Section 2 is dedicated to the presentation of various ellipsoidal statistical
BGK models. Section 3 presents and adapts the unified gas kinetic scheme to ES-BGK models. The results of
numerical simulations conducted on several test cases are provided in Section 4. Finally, Section 5 presents the
conclusions of this paper.
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2 The model

2.1 Mass distribution and relationship with macroscopic quantities
To describe the dynamics of a polyatomic gas, a microscopic distribution of mass F is used. It is defined over
the phase space (t,x,v, ϵ, i) ∈ R+ × RDx × RDv × R+ × N such that, at any time t ∈ R+, F (t,x,v, ϵ, i) dx dvdϵ
represents the mass of gas with vibration energy associated with the ith discrete excitation level, in the volume
dxdvdϵ centered at the spatial point x, the particle velocity v and the rotational energy ϵ. Formally, Dx and Dv

represent the number of spatial and kinetic dimensions, respectively, and δ will denote the number of continuous
rotational degrees of freedom.

In practice, Dx and Dv are typically set to 3, as particles can exist and move in three-dimensional space, and δ is
set to 2 for diatomic molecules. For such molecules, the harmonic oscillator model is commonly used to determine
the vibration energy distribution, relying on a gas-characteristic vibration temperature T0. In this model, the
vibration energy of the ith excitation level is iRsT0, where Rs is the constant of the gas. In more general cases
(δ ⩾ 2), the vibration energy could be modeled by a summation over multiple harmonic oscillators corresponding
to multiple vibration modes. For the purposes of this paper, only diatomic molecules are considered.

The density, momentum, and total energy, which are macroscopic quantities depending on space and time only,
are recovered as velocity and internal energy moments of the microscopic distribution:

ρ = ⟨F ⟩v,ϵ,i, ρu = ⟨vF ⟩v,ϵ,i, E = Ec + Etr + Erot + Evib, (1)

Ec =
1

2
ρ|u|2, Etr =

〈
1

2
|v − u|2F

〉
v,ϵ,i

, Erot = ⟨ϵF ⟩v,ϵ,i , Evib = ⟨iRsT0F ⟩v,ϵ,i , (2)

with ⟨χ⟩v,ϵ,i =
∑+∞

i=0

∫
R+

∫
RDv χdvdϵ for any distribution χ(v, ϵ, i). Moreover, additional quantities, such as the

temperatures associated with the different energy modes, can be derived as follows:

Etr =
Dv

2
ρRsTtr, Erot =

δ

2
ρRsTrot, Evib = ρ

RsT0
exp (T0/Tvib)− 1

. (3)

In these expressions, Ec is the density of kinetic energy and the subscripts tr, rot and vib refer to the translational,
the rotational and the vibrational modes of energy. The equilibrium temperature Teq is associated with all these
internal modes simultaneously:

Etr + Erot + Evib =
Dv

2
ρRsTeq +

δ

2
ρRsTeq + ρ

RsT0
exp (T0/Teq)− 1

. (4)

Finally, for further needs, we introduce the following invertible energy functions with respect to any positive
temperature T :

etr(T ) =
Dv

2
RsT, erot(T ) =

δ

2
RsT, evib(T ) =

RsT0
exp(T0/T )− 1

, (5)

so that:
Etr = ρetr(Ttr), Erot = ρerot(Trot), Evib = ρevib(Tvib). (6)

2.2 The Ellipsoidal-Statistical BGK models for diatomic gases
The distribution F is governed by a Boltzmann type of equation for dilute polyatomic gas in the absence of any
external force field:

(∂tF + v · ∇xF )(t,x,v, ϵ, i) = Q(F (t,x, ·, ·, ·))(v, ϵ, i). (7)

The right-hand term of this equation is the collision operator, which is the term modeled to simplify and speed
up simulations of rarefied flows. In the ES-BGK models framework [2, 13, 17, 26, 33], it is proposed to model the
collision operator as a relaxation toward a local anisotropic equilibrium:

Q(F (t,x, ·, ·, ·))(v, ϵ, i) = 1

τ
(G[F ]− F )(v, ϵ, i), (8)
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where G[F ](v, ϵ, i) is a combination of multiple pseudo-equilibrium distributions, each corresponding to a specific
energy mode. In the most general case, accounting for translational, rotational, and vibrational degrees of freedom
of particles, the near-equilibrium state G[F ] is expressed as the product of Gtr, Grot, and Gvib defined as follows:

Gtr(v) =
ρ√

det(2πT )
exp

(
−1

2
(v − u)⊤T −1(v − u)

)
, (9)

Grot(ϵ) =
Λδ

(RsT rel
rot )

δ/2
ϵ

δ−2
2 exp

(
− ϵ

RsT rel
rot

)
, (10)

Gvib(i) = (1− exp(−T0/T rel
vib )) exp

(
−i

T0
T rel
vib

)
. (11)

Here, the constant Λδ is defined in terms of the standard gamma function as Λδ = 1/Γ(δ/2). The terms T rel
rot and

T rel
vib represent the rotational and vibrational relaxation temperatures, respectively, while T /Rs denotes a relaxation

temperature tensor. These three last quantities describe the exchange of energy between translational, rotational
and vibrational modes. The tensor T /Rs is related to the anisotropic tensor of temperature Θ/Rs, the Prandtl
number Pr, and the relaxation translational temperature T rel

tr as follows:

T = RsT
rel
tr I +

(
1− 1

Pr

)
[Θ−RsTtrI], Θ =

1

ρ
⟨(v − u)⊗ (v − u)F ⟩v,ϵ,i, (12)

where I is the unit tensor of RDv , and the modal relaxation temperatures are defined by:

T rel
tr = e−1

tr (ereltr ), T rel
rot = e−1

rot(e
rel
rot), T rel

vib = e−1
vib(e

rel
vib). (13)

While the previous expressions are common to all ES-BGK models, relaxation modal energies ereltr , e
rel
rot and erelvib

need to be defined. In fact, they differ from one ES-BGK model to another, depending on the energy relaxation
process modeled.

The first ES-BGK model was proposed by Holway [17]. Since it focuses solely on monoatomic gases, the
rotational and vibrational modes of particles are not considered. Thus, the phases ϵ and i of distributions F and
G in (7–8) are omitted, and Grot, Gvib, erelrot and erelvib are not taken into account. As a result, only the relaxation
translation energy ereltr needs to be defined:

Holway [17] : ereltr = etr(Ttr). (14)

Notably, the monoatomic BGK model can be also formulated within this formalism simply by considering a unitary
Prandtl number in the Holway model. Thus, the BGK model is considered here as belonging to the “ES-BGK class
of models”, and all the concepts developed in this paper naturally apply to it.

In the Andriès model [2], polyatomic molecules are described using only continuous internal degrees of freedom,
thereby generally neglecting vibrational excitation. Consequently, phase i of distributions F and G in (7–8) is
omitted, and Gvib and erelvib are not taken into account. As a result, only translational and rotational energies
remain and are modeled to relax toward their equilibrium state with a characteristic time τrot = Zrotτ , where Zrot

is interpreted as the average number of collisions required to involve energy exchange with the rotational mode.
Thus, the Andriès model [2] is constructed to satisfy the following local relaxation laws:

Andriès [2] :


d

dt
etr(Ttr) =

1

Zrotτ
[etr(Teq)− etr(Ttr)] ,

d

dt
erot(Trot) =

1

Zrotτ
[erot(Teq)− erot(Trot)] ,

(15)

and thus, the corresponding energy relaxation terms must be defined as:

Andriès [2] :


ereltr = etr(Ttr) +

1

Zrot
[etr(Teq)− etr(Ttr)] ,

erelrot = erot(Trot) +
1

Zrot
[erot(Teq)− erot(Trot)] .

(16)

The Dauvois model [13] is based on the same concepts as the Andriès model. Moreover, it additionally in-
corporates the vibrational mode of energy, which relaxes toward its equilibrium state with a characteristic time
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τvib = Zvibτ . The parameter Zvib also serves a similar role of that of Zrot. However, the relaxation dynamic of
translational and rotational modes differs from the Andriès model. It is generally accepted that the vibrational
mode relaxes more slowly than the two others. Consequently, the translational and rotational modes are supposed
to reach a pseudo-equilibrium state of temperature Ttr,rot accounting for these modes only, before relaxing toward
the final equilibrium state. Thus Ttr,rot is defined such as:

etr(Ttr,rot) + erot(Ttr,rot) = etr(Ttr) + erot(Trot), (17)

and this model is constructed to satisfy the following local relaxation laws:

Dauvois [13] :



d

dt
etr(Ttr) =

1

Zrotτ
[etr(Ttr,rot)− etr(Ttr)] +

1

Zvibτ
[etr(Teq)− etr(Ttr,rot)] ,

d

dt
erot(Trot) =

1

Zrotτ
[erot(Ttr,rot)− erot(Trot)] +

1

Zvibτ
[erot(Teq)− erot(Ttr,rot)] ,

d

dt
evib(Tvib) =

1

Zvibτ
[evib(Teq)− evib(Tvib)] .

(18)

Hence, the corresponding energy relaxation terms are:

Dauvois [13] :



ereltr = etr(Ttr) +
1

Zrot
[etr(Ttr,rot)− etr(Ttr)] +

1

Zvib
[etr(Teq)− etr(Ttr,rot)] ,

erelrot = erot(Trot) +
1

Zrot
[erot(Ttr,rot)− erot(Trot)] +

1

Zvib
[erot(Teq)− erot(Ttr,rot)] ,

erelvib = evib(Tvib) +
1

Zvib
[evib(Teq)− evib(Tvib)]

(19)

Finally, the last and certainly most recent ES-BGK model for diatomic gases is the Pfeiffer model [26, 33]. As the
previous kinetic model, it also involves vibrational modes of energy based on the simple harmonic oscillator model.
However, relaxation processes differ. As realized in the description of relaxations [32] and in DSMC methods [6],
relaxation times τrot and τvib are defined relative to a collision time τC rather than the ES-BGK model relaxation
time τ . Moreover, the rotation and vibration energy modes do not relax directly toward their equilibrium state, but
toward their state associated with the translational temperature. This results in reproducing the following local
Launder-Teller and Jeans relaxation laws:

Pfeiffer [26, 33] :



d

dt
etr(Ttr) = − d

dt
erot(Trot)−

d

dt
evib(Tvib),

d

dt
erot(Trot) =

1

ZrotτC
[erot(Ttr)− erot(Trot)] ,

d

dt
evib(Tvib) =

1

ZvibτC
[evib(Ttr)− evib(Tvib)] ,

(20)

and the corresponding energy relaxation terms:

Pfeiffer [26, 33] :


ereltr = etr(Ttr)−

τ

ZrotτC
[erot(Ttr)− erot(Trot)]−

τ

ZvibτC
[evib(Ttr)− evib(Tvib)] ,

erelrot = erot(Trot) +
τ

ZrotτC
[erot(Ttr)− erot(Trot)] ,

erelvib = evib(Tvib) +
τ

ZvibτC
[evib(Ttr)− evib(Tvib)] .

(21)

The mean collision time τC is defined through a collision model, such as the VSS model [21] in which it is related
to the pressure p, the fluid viscosity µ, the viscosity index ω, and the diffusion factor α by the following expression:

τV SS
C =

α(5− 2ω)(7− 2ω)

5(α+ 1)(α+ 2)

µ

p
. (22)

In practice, Zrot and Zvib typically range from 3 to 20 and from 50 to 100,000, respectively. These values can
either be treated as constants or expressed as functions of the translational temperature, as described in [25, 31,
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32]. In the same way, the Prandtl number Pr can be taken as constant, tabulated, or computed using the heat
capacity ratio γ and the Eucken formula:

Pr =
4γ

9γ − 5
. (23)

Furthermore, the relaxation time τ of ES-BGK models is related to the fluid viscosity and the pressure as follows:

τ =
µ

Prp
, p = ρRsTtr. (24)

Finally, all these models have been proven [2, 13, 26], under reasonable conditions, to be well defined, conserve
mass, momentum, and total energy, and admit the “Maxwellian state” M below as full equilibrium:

M [F ](v, ϵ, i) =Mtr(v)Mrot(ϵ)Mvib(i), (25)

with

Mtr(v) =
ρ

(2πRsTeq)Dv/2
exp

(
−|v − u|2

2RsTeq

)
, (26)

Mrot(ϵ) =
Λδ

(RsTeq)δ/2
ϵ

δ−2
2 exp

(
− ϵ

RsTeq

)
, (27)

Mvib(i) = (1− exp(−T0/Teq)) exp
(
−i

T0
Teq

)
. (28)

They also yield correct transport coefficients and Prandtl number in the hydrodynamic limit, and satisfy the H-
theorem.

2.3 The reduced models
As presented previously, the microscopic distribution F is defined through variables (t,x,v, ϵ, i) ∈ R+×RDx×RDv×
R+ × N. Directly solving an ES-BGK model (8) can be computationally expensive due to unnecessary memory
storage and computation of all phases. Indeed, for most aerodynamic problems, only macroscopic quantities such as
mass density, velocity, temperature of different energy modes, pressure, stress, or heat flux are generally sufficient.
Thus, the internal energy phases can be ignored in computations by using a reduction technique, that reduces the
number of phases without any approximation. This kind of technique was primary used in [12] to reduce velocity
space from R3 to R in the study of 1D shock problems with the monoatomic BGK model, and also used in [19] for
a polyatomic model. Here, following the work realized by [13, 26], we introduce three reduced distributions:fg

h

 (t,x,v) =

+∞∑
i=0

∫
R+

 1
ϵ

iRsT0

F (t,x,v, ϵ, i)dϵ. (29)

The macroscopic quantities can be exactly recovered from f, g and h as follows:

ρ = ⟨f⟩, ρu = ⟨vf⟩, E = ⟨ 12 |v|
2f⟩︸ ︷︷ ︸

Ec+Etr

+ ⟨g⟩︸︷︷︸
Erot

+ ⟨h⟩︸︷︷︸
Evib

, Θ = 1
ρ ⟨(v − u)⊗ (v − u)f⟩, (30)

where ⟨ψ⟩ is defined as
∫
RDv ψdv for any distribution ψ(v). Complementary macroscopic quantities, such as

temperatures, are still computed using the relations (3) and finally, the reduced equations derived for f , g, and h
are:

∂tf + v · ∇xf =
1

τ
(Gtr − f), (31)

∂tg + v · ∇xg =
1

τ
(erelrotGtr − g), (32)

∂th+ v · ∇xh =
1

τ
(erelvibGtr − h). (33)

All mathematical properties of the original model are maintained in the reduced one. Furthermore, additional
reduced distributions can be introduced in a similar way for 2D or 1D flows to reduce the memory footprint and
speed up their numerical resolution.
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3 The Unified-Gas Kinetic Scheme
The numerical method will be presented in a 1D spatial framework for simplicity, though it can be extended to 2D
or 3D either by a directional splitting approach, as used in the numerical experiments section of this paper and in
[20], or through a truly multi-dimensional construction as in [45] for the Gas-Kinetic Scheme (GKS). We begin by
outlining the framework before constructing the UGKS for an unreduced ES-BGK model that includes vibration
energy [13, 26]. This approach naturally lends itself to the development of a practical scheme compatible with any
chosen reduction technique, including, for instance, the one exposed previously. Note that the same methodology
could be applied to ES-BGK models accounting solely for translational or translational-rotational energy [2, 17].

3.1 A Discrete Velocity Model and Finite Volume framework
The ES-BGK model is an integro-differential equation expressed in an advection-relaxation form, which makes the
finite volume framework intrinsically well suited. In that sense, the time space R+ and the physical space RDx

(Dx = 1) are divided into intervals [tn, tn+1] and [xi−1/2, xi+1/2], respectively. For simplicity, the spatial interval
length will be constant, denoted as ∆x = xi+1/2 − xi−1/2. Finally, following the methodology of Discrete Velocity
Models (DVM), we consider a finite velocity set V ⊂ RDv and projection of the model equation (7–8) on this set:

∀vk ∈ V, (∂tF + vk · ∇xF )(t,x,vk, ϵ, i) =
1

τ
(G[F ]− F )(t,x,vk, ϵ, i). (34)

Note that we use the italic font for the index i of a space cell, while the roman font is used for the ith excitation
level of vibrational energy.

In association with the velocity set V, we choose a quadrature rule on the velocity phase that enables the
computation of the moments of the microscopic distributions set. The choice of the quadrature is not the primary
focus here; it can be, for example, a midpoint rule or a Newton-Cotes quadrature. Nevertheless, care must be taken
in defining the discrete equilibrium distribution to ensure the conservation of moments and the decrease of entropy
[28, 29]. In the following, ⟨·⟩V will denote the velocity quadrature rule integration of a distribution ψ(v), while
⟨·⟩V,ϵ,i will refer to the combination of this velocity quadrature rule integration, continuous integration over the
phase ϵ, and summation over the phase i of a distribution Ψ(v, ϵ, i).

As is common in finite volume methods, we introduce the distributions Fn
i,k(·, ·) and Gn

i,k(·, ·) defined as the
mean values of F and G on a spatial cell [xi−1/2, xi+1/2] at time tn, and velocity vk:

Fn
i,k(ϵ, i) =

1

∆x

∫ x
i+1

2

x
i− 1

2

F (tn, x,vk, ϵ, i)dx, Gn
i,k(ϵ, i) =

1

∆x

∫ x
i+1

2

x
i− 1

2

G(tn, x,vk, ϵ, i)dx. (35)

Integrating (34) over the spatial volume [xi−1/2, xi+1/2] for the time interval [tn, tn+1] leads to the classical finite
volume formulation:

Fn+1
i,k (ϵ, i)− Fn

i,k(ϵ, i) +
∆t

∆x

[
ϕni+ 1

2 ,k
− ϕni− 1

2 ,k

]
(ϵ, i) =

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

G− F

τ
(t, x,vk, ϵ, i)dxdt, (36)

ϕni+ 1
2 ,k

(ϵ, i) =
1

∆t

∫ tn+1

tn
vkF (t, xi+ 1

2
,vk, ϵ, i)dt. (37)

Finally, for further need, we also introduce the discrete moments W n
i of Fn

i,k(·, ·) with respect to the operator
⟨·⟩V,ϵ,i:

W n
i =

〈
mk(ϵ, i)F

n
i,k(ϵ, i)

〉
V,ϵ,i

, mk(ϵ, i) =


1
vk

vk ⊗ vk

ϵ
iRsT0

 . (38)

Integrating (36–37) with ⟨·⟩V,ϵ,i naturally leads to a finite volume scheme on moments W .
The finite-volume formulation (36–37) is an exact expression. However, the relaxation and flux terms must be

approximated. Generally, they are considered separately using a splitting method. The relaxation term is commonly
approximated by a quadrature method in time (e.g., forward Euler, backward Euler, trapezoidal formula), while
the flux term is estimated either by a high-order reconstruction or by characteristic techniques, applied to the
collisionless transport equation of F .
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3.2 The UGKS fluxes
3.2.1 A multi-scale formulation of the flux part of the numerical scheme

The key idea of the UGKS [43] is to use the entire model equation (7–8) to express the evolution of the distribution F
during the time interval [tn, t] at cell interface position (xi±1/2,vk, ϵ, i), which is required to compute the numerical
fluxes (37). This approach differs from conventional methods by accounting not only for free transport of F but
also for its relaxation toward equilibrium during its transport itself. Specifically, by using the characteristic method
on the model equation (7–8), for a time-independent τ over the interval [tn, t] and for any (x,v, ϵ, i), we get:

F (t,x,v, ϵ, i) = exp

(
− t− tn

τ

)
F (tn,x− v(t− tn), ϵ, i) +

∫ t

tn
exp

(
− t− s

τ

)
1

τ
G(s,x− v(t− s),v, ϵ, i)ds. (39)

The above equation, which expresses the distribution F at (t,x,v, ϵ, i), is a balance between the diminishing
collisionless transport of the initial distribution and the transport of the emerging equilibrium distribution. This
balance is governed by the time difference t − tn and the relaxation time τ . The larger the time difference and
the smaller the relaxation time, the greater the influence of the equilibrium distribution on the instantaneous
microscopic distribution.

3.2.2 Second order reconstruction of both microscopic and macroscopic parts of the flux

An exact numerical flux based on equation (39) would require knowledge of the distributions F and G at any
(t,x,v, ϵ, i). For practical computations, approximations must be made. To develop a second-order scheme, these
distributions are approximated by linear reconstructions based on discretized distributions (35). A common as-
sumption in the finite volume framework is to consider these mean values at the center of the spatial cells. In the
UGKS framework [43], τ is considered constant near the interface, reconstructions for F are performed for each
cell, while reconstructions for G are realized for each cell interface as illustrated in Figure 1 and formalized below:

F (tn, x,vk, ϵ, i) ≈ Fn
i,k(x, ϵ, i) = Fn

i,k(ϵ, i) + δxF
n
i,k(ϵ, i)(x− xi),

G(t, x,vk, ϵ, i) ≈ Gi+ 1
2 ,k

(t, x, ϵ, i) = Gn
i+ 1

2 ,k
(ϵ, i) + δxG

n
i+ 1

2 ,k
(ϵ, i)(x− xi+ 1

2
) + δtG

n
i+ 1

2 ,k
(ϵ, i)(t− tn), (40)

where δxFn
i,k, and (G, δxG, δtG)

n
i+1/2,k should be discrete approximations of microscopic and equilibrium distribu-

tions, and their partial derivatives.

x

Fn
i,k,Gn

i,k

· · · |
xi−1

•

xi− 1
2

Fn
i−1,k

Gn
i− 1

2 ,k

|
xi xi+ 1

2

•
Fn
i,k

Gn
i+ 1

2 ,k

|
xi+1

•
Fn
i+1,k

· · ·

•

•
•

•

Figure 1: Spatial reconstructions at time tn and fixed ϵ, i of microscopic and equilibrium distributions in the UGKS
framework.

For stability purposes, δxF is defined in each cell as a limited slope based on forward and backward slope and
a Total Variation Diminishing (TVD) limiter ξ:

δxF
n
i,k(ϵ, i) = ξ

(
Fn
i,k(ϵ, i)− Fn

i−1,k(ϵ, i)

∆x
,
Fn
i+1,k(ϵ, i)− Fn

i,k(ϵ, i)

∆x

)
. (41)
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The choice of the limiter is arbitrary. A multitude of possibility exists in the literature. Commonly, the van Leer
limiter is used by the authors of UGKS [10, 40, 43]. Then, the microscopic part of (39) is replaced by the appropriate
linear approximation of the microscopic distribution, depending on the cell location of x − v(t − tn). By the way
and for further need, the slope of F at the cell interface is defined by the following upwind approximation:

δxF
n
i+ 1

2 ,k
(ϵ, i) =


δxF

n
i,k(ϵ, i) if vk,x ⩾ 0,

δxF
n
i+1,k(ϵ, i) if vk,x < 0.

(42)

For the macroscopic part of (39), we first define Gn
i+1/2,k(ϵ, i). This term is entirely determined by the moments

W n
i+1/2 of F at the cell interface i+1/2 and time tn, see (8–13). Consequently, the linear reconstructions Fn

i,k and
Fn
i+1,k are employed to approximate this distribution and its moments:

F (tn, xi+ 1
2
,vk, ϵ, i) ≈ Fn

i+ 1
2 ,k

(ϵ, i) =


Fn
i,k(xi+ 1

2
, ϵ, i) if vk,x ⩾ 0,

Fn
i+1,k(xi+ 1

2
, ϵ, i) if vk,x < 0,

(43)


ρ
ρu

ρu⊗ u+ ρΘ
Erot

Evib

 (tn, xi+ 1
2
) ≈ W n

i+ 1
2
=
〈
mk(ϵ, i)F

n
i+ 1

2 ,k
(ϵ, i)

〉
V,ϵ,i

. (44)

Finally, (T , erelrot, e
rel
vib)

n
i+1/2 are determined when necessary, using W n

i+1/2, and the appropriate formulation of
the relaxation energies and tensor (12, 14, 16, 19) or (21), after which Gn

i+1/2,k(ϵ, i) can be deduced.

3.2.3 Construction of discrete macroscopic derivative terms δxG and δtG and numerical flux induced

The remaining terms in (40) to be approximated are the discrete derivative components of G, denoted by δxG and
δtG. For the BGK model, spatial derivatives of the equilibrium distribution are computed on both sides of the
interface as proposed in [43] and illustrated in Figure 1. This approach is inherited from a modification introduced
in [42] of the original Gas-Kinetic Scheme (GKS). Applying this approach to ES-BGK models naturally yields:

δxG
n
i+ 1

2 ,k
(ϵ, i) =


δ−x G

n
i+ 1

2 ,k
(ϵ, i) if vkx ⩾ 0,

δ+x G
n
i+ 1

2 ,k
(ϵ, i) if vkx < 0,

(45)

where δ−x G and δ+x G are defined as follows. Using an exponential form of the continuous stateG = ϵ(δ−2)/2 exp(m·β)
with m = (1,v,v⊗v, ϵ, iRsT0)

⊤ and β a vector related to macroscopic quantities, it can be shown that the derivative
of the continuous pseudo-equilibrium state G with respect to x is the inner product of m and a macroscopic vector:
∂xG = (m · ∂xβ)G. This property results from the independence of the phases v, ϵ, i with respect to x. So, we are
looking for discrete derivatives δ±x G in the form:

δ±x G
n
i+ 1

2 ,k
(ϵ, i) = mk(ϵ, i) · δ±x βn

i+ 1
2
Gn

i+ 1
2 ,k

(ϵ, i). (46)

Using a chain rule, we get ∂xβ = ∂Wβ ∂xW , where W are the moments of F with respect to the microscopic
vector of moments m and the quadrature rule ⟨·⟩V,ϵ,i (38), and ∂Wβ is a Jacobian matrix that can be derived
analytically. Thus, δ±x β is computed as:

δ±x βn
i+ 1

2
=
[
∂Wβ

]n
i+ 1

2

δ±x W n
i+ 1

2
, (47)

where the left and right-sided discrete derivatives of W are:

δ−x W n
i+ 1

2
=

W n
i+ 1

2
−W n

i

∆x/2
, δ+x W

n
i+ 1

2
=

W n
i+1 −W n

i+ 1
2

∆x/2
. (48)
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For the temporal derivative, the same methodology applies. We set:

δtG
n
i+ 1

2 ,k
(ϵ, i) = mk(ϵ, i) · δtβn

i+ 1
2
Gn

i+ 1
2 ,k

(ϵ, i), (49)

with
δtβ

n
i+ 1

2
=
[
∂Wβ

]n
i+ 1

2

δtW
n
i+ 1

2
. (50)

For the discrete temporal macroscopic derivative δtW , which is the discrete equivalent of ∂tW = ∂t⟨mF ⟩v,ϵ,i, we
proceed as follows. Taking the moments of (7–8), we have:

∂tW = −⟨m (v · ∇xF )⟩v,ϵ,i +
1

τ
(V −W ) , (51)

where V is the vector of moments of G with respect to m. Consequently, we set at the discrete level:

δtW
n
i+ 1

2
= −

〈
mk(ϵ, i)vkxδxF

n
i+ 1

2 ,k
(ϵ, i)

〉
V,ϵ,i

+
1

τn
i+ 1

2

(W − V )
n
i+ 1

2
. (52)

This completes the construction of the discrete derivative terms of the pseudo-equilibrium G. Substituting these
terms, together with the previously constructed quantities (42–44) entering the Taylor-similar expansion (40), into
the numerical flux definition (37) leads to:

ϕni+ 1
2 ,k

= vkx [q1G+ q2vkxδxG+ q3δtG+ q4F + q5vkxδxF ]
n
i+ 1

2 ,k
(ϵ, i), (53)

where the coefficients (qj)1⩽j⩽5 are defined later.

3.2.4 Approximation of the discrete macroscopic derivative terms δxG and δtG by δxM and δtM

Constructing the discrete spatial and temporal derivatives of (40) is a major step in assembling the flux of the
UGKS. The previous section described the natural way to construct them, following the procedure applied in [43]
for the BGK model. However, while this strategy performs well in the rarefied regime, numerical instabilities appear
in the continuum regime when ∆t≫ τ , often leading to simulation failure.

Our interpretation is that, in the continuum regime with ∆t≫ τ , due to the behavior of coefficients (qj)1⩽j⩽5,
the UGKS numerical flux (53) constructed with δxG and δtG becomes asymptotically equivalent to:

ϕni+ 1
2 ,k

≈ vkx

[
G+

∆t

2
δtG− τ(δtG+ vkxδxG)

]n
i+ 1

2 ,k

(ϵ, i). (54)

In this expression, the discrete derivative terms play two roles: they contribute to the viscous part associated with
the Navier-Stokes asymptotic behavior, and the temporal derivative enables second-order accuracy by providing
an indirect approximation of the pseudo-equilibrium G at time tn + ∆t/2. This approximation can be viewed as
a forward Euler step applied to Gn using δtGn. However, the pseudo-equilibrium G permanently relaxes toward
the Maxwellian M with relaxation time τ . Consequently, when ∆t ≫ τ , a forward Euler prediction based on δtG
may yield an excessively far state, unrepresentative of the true evolution of G between tn and tn+1. In strongly
anisotropic flows, this may even result in a non-positive G at time tn + ∆t/2, as illustrated in Figure 2a. This is
precisely the consequence of the stiff relaxation term that appears in the construction of δtW in (52), which is then
used to defined δtG. As we can see in (52), this term is not negligible in the final numerical flux in case of strong
anisotropy and large numerical step ∆t≫ τ .

Hence, the key idea employed here to prevent instabilities is to replace the pseudo-equilibrium derivatives δxG
and δtG with those of the corresponding Maxwellian distribution, namely δxM and δtM . As illustrated in Figure 2b,
this strategy naturally avoids an “over-relaxation” of G toward M and effectively assumes that G evolves consistently
with the trend of M . Since the characteristic evolution time of M is the same as that of the conservative quantities,
it is in practice of the same order as ∆t, which ensures a properly scaled time-derivative term.

Furthermore, this substitution remains sufficiently accurate to preserve the benefits brought by the UGKS.
First, it is important to note that the continuous states G and M differ by O(τ), and therefore their derivatives
also differ by O(τ). This follows from the classical Chapman-Enskog analysis (see, e.g., [2]). As a result, during
a large time step ∆t ≫ τ , from a continuous point of view, the average time derivative of M is very close to the
average time derivative G, with an error depending on τ ≪ ∆t. Second, the discrete derivative contribution in the
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G

t− tn

M

δtG

•

|
τ

|

∆t/2

|

∆t

(a) Based on δtG,

G

t− tn

M

// •

//
δtM

•

|
τ

|

∆t/2

|

∆t

(b) Based on δtM ,

Figure 2: Approximation of G at time tn+∆t/2 by using a forward Euler method starting from time tn, illustrated
in the case of an homogeneous relaxation (δtM = 0). The bullet points represent the approximated states at time
tn +∆t/2 and the shaded regions represent their corresponding time integrations over the time step ∆t.

numerical fluxes is mostly important in the continuum regime and express mainly the viscous phenomena of the
Navier-Stokes equation. Thus, an approximation of O(τ) on the derivatives of equilibrium is fully consistent with
the Chapman-Enskog expansion.

For these reasons, δxG and δtG are replaced respectively by δxM and δtM in (40) in the following. At the
contrary, the leading term G in (40) is conserved and not replaced by its Maxwellian equivalent since this term is
essential to capture the correct Prandtl number in the Navier-Stokes asymptotics. Section 4.2 provides an example
that highlights the importance of this formulation for ensuring the asymptotic property and the correct behavior in
the hydrodynamic limit of the scheme. Note that although the construction of the discrete derivative terms for the
Shakhov and the monoatomic ES-BGK model is not explicitly detailed in [11, 44, 24], a similar substitution was
applied to the Rykov model in [23] without any justification.

3.2.5 Construction of discrete macroscopic derivative terms δxM and δtM

Here, the discrete spatial derivatives of the Maxwellian distribution are defined in the same manner as for the
pseudo-equilibrium G in Section 3.2.3. We set:

δxM
n
i+ 1

2 ,k
(ϵ, i) =


δ−x M

n
i+ 1

2 ,k
(ϵ, i) if vkx ⩾ 0,

δ+xM
n
i+ 1

2 ,k
(ϵ, i) if vkx < 0,

(55)

where δ−x M and δ+xM are defined as follows. The equilibrium state M can be written as an inner product between
the velocity-internal energy dependent vector η = (1,v, 12 |v|

2 + ϵ+ iRsT0)
⊤ and a vector α related to conservative

quantities, namely: M = ϵ(δ−2)/2 exp(η ·α). Since η is independent of x, the continuum derivative of the equilibrium
state M with respect to x takes the form: ∂xM = (η · ∂xα)M . Accordingly, we seek discrete derivatives δ±x M of
the form:

δ±x M
n
i+ 1

2 ,k
(ϵ, i) = ηk(ϵ, i) · δ±x αn

i+ 1
2
Mn

i+ 1
2 ,k

(ϵ, i). (56)

Using a chain rule, we get ∂xα = ∂Uα ∂xU , where U = (ρ, ρu, E)⊤ are the conservative moments defining the
Maxwellian state (25) and ∂Uα is a Jacobian matrix that can be derived analytically. The vector U can be deduced
from W and is both used to compute Mn

i+1/2,k using (25) and δ±x α as:

δ−x αn
i+ 1

2
=
[
∂Uα

]n
i+ 1

2

Un
i+ 1

2
−Un

i

∆x/2
, δ+x α

n
i+ 1

2
=
[
∂Uα

]n
i+ 1

2

Un
i+1 −Un

i+ 1
2

∆x/2
. (57)
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For the time derivative, the same technique is applied. However, we first have to construct a discrete tem-
poral macroscopic derivative δtU , which is the discrete equivalent of ∂tU = ∂t⟨ηF ⟩v,ϵ,i = −⟨η (v · ∇xF )⟩v,ϵ,i.
Consequently, we set at the discrete level:

δtU
n
i+ 1

2
= −

〈
ηk(ϵ, i)vkxδxF

n
i+ 1

2 ,k
(ϵ, i)

〉
V,ϵ,i

, (58)

δtα
n
i+ 1

2
=
[
∂Uα

]n
i+ 1

2

δtU
n
i+ 1

2
, (59)

δtM
n
i+ 1

2 ,k
(ϵ, i) = ηk(ϵ, i) · δtαn

i+ 1
2
Mn

i+ 1
2 ,k

(ϵ, i). (60)

3.2.6 Conclusion on the flux part of the scheme

All terms of the Taylor-similar expansion (40) have been defined previously. Injecting the expansion in the numerical
flux definition (37) leads to a linear combination of terms weighted by coefficients (qj)1⩽j⩽5:

ϕni+ 1
2 ,k

= vkx [q1G+ q2vkxδxM + q3δtM + q4F + q5vkxδxF ]
n
i+ 1

2 ,k
(ϵ, i). (61)

The coefficients (qj)1⩽j⩽5 are also defined at the cell interface i+ 1/2 and at time tn. They depend locally on
the time step ∆t and the relaxation time τni+1/2 as described below:

1. qn
1,i+ 1

2

= 1− τ
∆t (1− e−∆t/τ ),

2. qn
2,i+ 1

2

= −τ(1 + e−∆t/τ ) + 2 τ2

∆t (1− e−∆t/τ ),

3. qn
3,i+ 1

2

= ∆t
2 − τ + τ2

∆t (1− e−∆t/τ ),

4. qn
4,i+ 1

2

= τ
∆t (1− e−∆t/τ ),

5. qn
5,i+ 1

2

= τe−∆t/τ − τ2

∆t (1− e−∆t/τ ),

where, for readability, τ stands for τni+1/2. These non-constant coefficients determine the behavior of the scheme.
The more the flow is in the continuum regime and ∆t≫ τ , the more the macroscopic part of the scheme dominates.
Conversely, the more the flow is rarefied and ∆t≪ τ , the more the microscopic part of the scheme takes over. Thus,
the numerical flux of the scheme is a sophisticated combination of equilibrium and non-equilibrium components,
automatically adapting to the nature of the flow and the mesh resolution to achieve optimal accuracy.

3.3 The UGKS relaxation part
3.3.1 The trapezoidal formula

Following [24, 43], a trapezoidal formula is employed for the relaxation term. This approach can handle the stiffness
of this term, particularly in the continuum regime while maintaining second-order accuracy. The numerical scheme
for the microscopic distribution is therefore:

Fn+1
i,k (ϵ, i) = Fn

i,k(ϵ, i)−
∆t

∆x

[
ϕn
i+

1
2 ,k

− ϕn
i− 1

2 ,k

]
(ϵ, i) +

∆t

2

[(
G− F

τ

)n

i,k

+

(
G− F

τ

)n+1

i,k

]
(ϵ, i). (62)

In the above microscopic scheme (62), the pseudo-equilibrium state G at time tn+1 is required. To overcome
this issue, a finite volume scheme on macroscopic quantities W is first used to predict them, which then serve to
compute G at time tn+1 [43]. This is obtained by applying the quadrature rule ⟨·⟩V,ϵ,i on the microscopic scheme
(62). This approach leads to the following macroscopic scheme:

W n+1
i = W n

i − ∆t

∆x

[
Φn

i+
1
2

−Φn

i− 1
2

]
+

∆t

2

[(
V −W

τ

)n

i

+

(
V −W

τ

)n+1

i

]
, (63)
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where Φ is the numerical flux of macroscopic quantities W and V is the vector of moments of G with respect to the
microscopic vector of moments m and the quadrature rule ⟨·⟩V,ϵ,i (38). Formally, these quantities are both defined
as:

Φ = ⟨mϕ⟩V,ϵ,i, V = ⟨mG⟩V,ϵ,i. (64)

From the macroscopic scheme (63), the mass density, momentum, and total energy at time tn+1 can be easily
determined. Indeed, since these quantities are collision invariants, the relaxation term in (63) vanishes for them,
rendering their computation fully explicit. This simplification does not apply to the calculation of Θ and the modal
energies at time tn+1, making their resolution implicit. To solve these, we use the relationship between V and W
induced by the definition of T in (12) and T rel

tr in (14, 16, 19) or (21). This resolution is locally iterative since the
relaxation time τ is a non-linear function of Ttr, as can also be Zrot [14, 25, 32], Zvib [31, 32], or T in the Pfeiffer
model [26, 33]. At this point, all necessary terms for determining the microscopic distribution F at time tn+1 are
known and the microscopic scheme (62) can be used to compute it. Ultimately, both microscopic and macroscopic
unknowns, F and W , at time tn+1 are fully determined with second-order accuracy using this natural technique.

3.3.2 The deficiency of the trapezoidal formula

In a strong non-equilibrium situation, the methodology presented above could lead to a non-positive tensor Θ
and could alter the calculation of a realistic equilibrium Gn+1. To illustrate this behavior, let us consider the
energy relaxation processes of a monoatomic gas described by the Holway model (12–14). In an adiabatic bath, the
macroscopic evolution of W given by (63) reduces to:

W n+1
i = W n

i +
∆t

2

[(
V −W

τ

)n

i

+

(
V −W

τ

)n+1

i

]
. (65)

This ensures the conservation of mass density, momentum and total energy for the same reason as previously. Since
the evolution of macroscopic and microscopic quantities are spatially located, the index i is omitted in the following.
Regarding the anisotropic tensor of temperature, the induced scheme is:

Θn+1 = Θn +
∆t

2

[(
T −Θ

τ

)n

+

(
T −Θ

τ

)n+1
]
. (66)

Since we are focusing on the Holway model (12–14), the translational temperature is equal to the equilibrium
temperature and is conserved during the relaxation process. Thus, the relaxation time τ is constant in time and its
index n is omitted. Moreover, using the expression of T leads to the following scheme:

T n+1 = RsTtrI +

(
1− 1

Pr

)
1− ζ

1 + ζ
[Θn −RsTtrI]. (67)

where ζ is a time ratio parameter defined as:

ζ =
∆t

2τPr
> 0. (68)

Similar manipulations to those in [2] carried out on (67), yields that T n+1 is unconditionally positive-definite for
realistic Prandtl number (Pr ⩽ 1), provided that Θn is as well. In details, if (tp)1⩽p⩽Dv denote the eigenvalues of
T n+1, realizability of Θn ensures that they satisfy the following constraints:

• For ζ ⩽ 1, (tp/(RsTtr))p are bounded between Dv − Dv−1
Pr and 1/Pr;

• For ζ > 1, (tp/(RsTtr))p are bounded between 2− 1/Pr and 2−Dv + Dv−1
Pr .

These bounds are represented in Figure 3 for both numerical resolutions ζ ⩽ 1 and ζ > 1. In both cases, and for a
realistic Prandtl number (Pr ⩽ 1), Figure 3 illustrates that the eigenvalues of T n+1 lie between 0 and Dv, provided
that the eigenvalues of Θn do as well. This ensures that T n+1 is positive-definite which is essential for ensuring the
computation of a consistent equilibrium state Gn+1 even for large numerical steps ∆t.

However, in contrast to T n+1, Θn+1 is not guaranteed to be positive-definite for arbitrary ∆t, even if Θn is. This
behavior is a consequence of the fact that the trapezoidal formula is not L-stable. The issue becomes particularly
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Dv

Dv−1
Dv

0
Pr

tp/(RsTtr)

1−

1
|
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domain

Dv − Dv−1
Pr

1
Pr

(a) ζ ⩽ 1,

Dv

Dv−1
Dv

0
Pr

tp/(RsTtr)

1−

1
|

Reachable
domain

2− 1
Pr

2−Dv + Dv−1
Pr

(b) ζ > 1,

Figure 3: Reachable values of the eigenvalues of T n+1 computed using (67) and a realizable Θn.
The monoatomic ES-BGK model is well-defined only for Pr ⩾ (Dv − 1)/Dv [2].

pronounced under strong anisotropic conditions, or whenever a specific direction is strongly favored in Θ, with its
corresponding eigenvalue exceeding 2RsTtr. For example, let us assume Θn to be the following anisotropic tensor:

Θn =

5/2 0 0
0 1/4 0
0 0 1/4

RsTtr. (69)

In this particular case, Θn+1 would be:

Θn+1 =
1

4(1 + ζ)

10− 2ζ 0 0
0 1 + 7ζ 0
0 0 1 + 7ζ

RsTtr. (70)

For this case, it clearly appears that Θn+1 is symmetric positive-definite if and only if ζ < 5. That is to say ∆t is
less than 10τPr, which is a too restrictive numerical constraint for the UGKS which aims to use a numerical time
step ∆t≫ τ , especially in the continuum regime.

In conclusion, even if Θ is positive-definite at time tn, the tensor Θn+1 may become non-positive. This indicates
that the mass distribution Fn+1 is not guaranteed to remain positive everywhere, and that T n+2 may also lose
positivity, either of which may lead to a failure of the simulation.

3.3.3 The explicit predictive-corrective approach

In [11], the relaxation part of the ES-BGK model is treated differently. As in [24, 43], the relaxation term in the
microscopic scheme follows a trapezoidal formulation:

Fn+1
i,k (ϵ, i) = Fn

i,k(ϵ, i)−
∆t

∆x

[
ϕn
i+

1
2 ,k

− ϕn
i− 1

2 ,k

]
(ϵ, i) +

∆t

2

[(
G− F

τ

)n

i,k

+
G⋆

i,k − Fn+1
i,k

τ⋆i,k

]
(ϵ, i). (71)

However, in contrast to (62), the equilibrium state G at time tn+1 is replaced in (71) by an alternative equilibrium
state, denoted by G⋆. To ensure consistency with the ES-BGK model, G⋆ has to approximate Gn+1. Thus, a
prediction step is realized to determine G⋆ via the estimation of macroscopic quantities W ⋆. In [11], this prediction
is performed by replacing the trapezoidal term in the macroscopic scheme (63) with a forward Euler relaxation
term, as expressed in the following formulation:

W ⋆
i = W n

i − ∆t

∆x

[
Φn

i+
1
2

−Φn

i− 1
2

]
+∆t

[
V −W

τ

]n
i

. (72)
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Once G⋆ is determined, equation (71) is used to compute the microscopic distribution function F at time tn+1.
Finally, the macroscopic variables W n+1 are obtained from Fn+1 using (38) to ensure consistency between the
microscopic and macroscopic levels of description. Since ρ, ρu, and E are collision invariants, they remain unaffected
by the numerical relaxation term. Thus, they are already determined and equal to their predicted values ρ⋆, (ρu)⋆,
and E⋆ ; still, corrections are required for Θ and the modal energies.

Unfortunately, this scheme has major deficiencies, as it is neither A-stable nor L-stable. Indeed, the necessary
condition to compute the equilibrium state requires T ⋆ to be positive-definite. However, by following the same
reasoning as before, one can see that ζ must be less than 1/(2− 2Pr) for realistic Prandtl numbers (Pr ⩽ 1). This
is once again too restrictive a condition for the UGKS.

3.3.4 The implicit predictive-corrective approach

We propose to modify the previous predictive-corrective approach by using a backward Euler scheme for the macro-
scopic relaxation term. The corresponding formulation reads:

W ⋆
i = W n

i − ∆t

∆x

[
Φn

i+
1
2

−Φn

i− 1
2

]
+∆t

[
V −W

τ

]⋆
i

. (73)

As before, the relaxation term affects only the evolution of non-conservative quantities. Compared to the previous
approach, the predicted starred states Θ⋆ and T ⋆, as computed from (73), exhibit favorable properties. In the case
of an adiabatic bath, they remain positive-definite and less anisotropic than Θn and T n, respectively, for any ζ > 0.
This behavior is consistent with the relaxation process described by ES-BGK models. Moreover, this enable the
evaluation of a realizable equilibrium state G⋆, which is required in (71) for the computation of Fn+1.

Once again, consistency between the microscopic and macroscopic levels requires correcting the evolution of the
anisotropic tensor of temperature using the updated distribution Fn+1. In the case of an adiabatic bath, this is
equivalent to:

Θn+1 = Θn +
∆t

2

(
T n −Θn

τn
+

T ⋆ −Θn+1

τ⋆

)
. (74)

However, this correction does not ensure the positivity of Θn+1, even if Θn is positive-definite. Indeed, substituting
the relation between T ⋆ and Θ⋆, the prediction of Θ⋆ given by (73), and the definition of ζ in (68), we obtain:

[1 + Prζ] Ξn+1 =
1

1 + 2ζ

[
1 + Prζ − 2ζ2

]
Ξn. (75)

where Ξ denotes the deviator tensor of Θ, that is:

Ξ = Θ−RsTtrI. (76)

Relation (75) clearly shows that Ξ converges monotonically to zero for small values of ζ. Indeed, whenever:

ζ <
1 +

√
1 + 8/Pr2

4
Pr, (77)

the scaling factor of Ξn in (75) remains strictly positive, and in this case, relation (75) yields:

|Ξn+1| < 1

(1 + Prζ)(1 + 2ζ)
[1 + Prζ] |Ξn| = 1

1 + 2ζ
|Ξn|. (78)

Thus, under condition (77), Θn+1 is a relaxation of Θn toward RsTtr, and therefore preserves symmetric positive
definiteness whenever Θn is as well, which enables (but not guaranties) the realizability of Fn+1. However, the
monotone decay of Ξ is not reproduced for larger value of ζ, since an asymptotic analysis of (75) shows that:

Ξn+1 ∼
ζ→+∞

− 1

Pr
Ξn. (79)

Consequently, because the Prandtl number is typically set to 2/3 or 0.7, this approach may induce unbounded
oscillations of Θ for sufficiently large values of ζ, which may in turn produce a non positive prediction of Θ and
thereby causing the simulation to fail.

In conclusion, this scheme cannot be used in its current form within the UGKS framework, whose key feature
is the use of a time step ∆t≫ τ in the continuum regime.
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3.3.5 A more robust method

As mentioned before, an implicit treatment is mandatory to handle the stiffness of the relaxation term, particularly
in the continuum regime. This involves computing an approximation of Gn+1, which requires a predicted tensor
T ⋆ ≈ T n+1 to be positive-definite. The trapezoidal formula cannot guarantee this condition for the entire simulation,
as Θn+1 is not ensured to be positive even if Θn is. The implicit predictive-corrective approach has the advantage
of producing predicted approximations Θ⋆ and T ⋆ that are positive-definite whenever Θn is, even with large ∆t.
However, ensuring consistency between the microscopic and macroscopic levels necessitates correcting the prediction
Θ⋆ to obtain Θn+1, which is not guaranteed to remain positive definite.

Thus, we adopt an implicit predictive non-corrective approach, using (71) and (73), while enforcing Θn+1 = Θ⋆

at the macroscopic level. In the adiabatic bath case at least, this ensures that Θ and T remain positive definite
for any positive-definite initial tensor Θ0. In general cases, this approach remains consistent with the ES-BGK
model, has only a minor impact on the evolution of conservative quantities, and does not alter the results in steady
simulations. Although this is achieved at the cost of a macro-micro inconsistency in the non-conservative quantities,
in practice only small discrepancies are observed between the imposed Θn+1 and the one obtained as the moment
of Fn+1.

Because of the complex structure of the numerical fluxes, establishing a rigorous theoretical proof of the ro-
bustness and stability of this approach is challenging. In practice we observe improved robustness in very strongly
anisotropic flows, such as those occurring in unsteady unresolved strong shocks, compared with the original trape-
zoidal formula. However, for common aerodynamic flows, adequate results can still be obtained with the trapezoidal
formula.

3.4 Summary of the UGKS for ES-BGK models
The UGKS for ES-BGK models can be summarized through the following relations. First, as described in Section
3.2, the microscopic numerical fluxes ϕ are defined through a sophisticated formulation involving the distributions
F , G and M :

ϕni+ 1
2 ,k

= vkx [q1G+ q2vkxδxM + q3δtM + q4F + q5vkxδxF ]
n
i+ 1

2 ,k
(ϵ, i). (80)

The required discrete terms are constructed according to relations (42–44) and (55–60), and the coefficients (qj)1⩽j⩽5

are defined in Section 3.2.6. Second, as detailed in Section 3.3, the macroscopic quantities W are advanced from
time tn to tn+1 using:

W n+1
i = W n

i − ∆t

∆x

[
Φn

i+
1
2

−Φn

i− 1
2

]
+∆t

[
V −W

τ

]n+1

i

, (81)

where Φ denotes the macroscopic fluxes obtained as the moments the microscopic fluxes ϕ. Finally, the discrete
microscopic distribution F is updated according to the following numerical scheme:

Fn+1
i,k (ϵ, i) = Fn

i,k(ϵ, i)−
∆t

∆x

[
ϕn
i+

1
2 ,k

− ϕn
i− 1

2 ,k

]
(ϵ, i) +

∆t

2

[(
G− F

τ

)n

i,k

+

(
G− F

τ

)n+1

i,k

]
(ϵ, i). (82)

3.5 Discrete treatments of boundary conditions
Boundary conditions are fundamental components in numerical simulations. First, they need to accurately represent
the flow behavior at the boundaries of the simulation domain (inflow, outflow, body interactions, etc.). Second, the
implementation of these conditions is often challenging, sensitive, and requires careful attention, as it significantly
impacts the reliability and precision of the simulation results.

From a practical point of view, ghost cells are commonly employed in finite volume methods to implement
boundary conditions. In this framework, inflow, outflow, and symmetric flow conditions are relatively easy to
simulate. For inflow conditions, microscopic distributions and macroscopic quantities in ghost cells are set to inflow
equilibrium conditions. For outflow conditions, the states in the ghost cells are directly related to those of the
cells in the last real layers. Finally, symmetric conditions are reproduced by duplicating the real state through a
symmetric transformation in the corresponding ghost cell.

Undoubtedly, the most challenging boundary condition to implement is the gas-surface interaction. The first
reason is the complexity of modeling the gas-body interaction, which depends on factors such as the structure of
the solid surface layer, its roughness, the interaction between impacting gas molecules and solid molecules [9], and
physical processes we aim to model. The second reason concerns the numerical scheme behavior that must be
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preserved. Specific reconstruction techniques are required at the boundaries to maintain the accuracy of the scheme
[4] or to ensure its correct asymptotic behavior in the continuum regime [10].

Here, we focus solely on the diffuse reflection model. In this model, a gas particle colliding with a wall is reflected
according to the Maxwellian distribution (25) associated with a unitary mass density, and the wall temperature and
velocity. Formally, let Tw and uw represent the wall temperature and velocity, respectively, and let vn = (v−uw) ·n
be the inner product of the relative particle velocity to the wall velocity and the normal direction of the wall directed
into the gas. Moreover, the wall is assumed to do not move in the normal direction n, while it may still shift in
tangential direction (n · uw = 0). Then, at the interface xw, we have for the microscopic distribution representing
re-emitting particles:

F (t,xw,v|vn>0, ϵ, i) = ρw(t,x)M(v, ϵ, i), (83)

where the quantity ρw ensure the vanishing of the mass flux across the wall boundary:

ρw(t,xw) = −

(
+∞∑
i=0

∫
R+

∫
vn<0

vnF (t,xw,v, ϵ, i)dvdϵ

)(
+∞∑
i=0

∫
R+

∫
vn>0

vnM(v, ϵ, i)dvdϵ

)−1

. (84)

This model assumes that the re-emitted gas is in perfect equilibrium, with temperature Tw and velocity uw. In this
framework, all modal temperatures of the re-emitted gas are equal to Tw. In [40], only the translational temperature
is modeled to thermalized to Tw due to the assumed short interaction time between the gas and the wall. This
consideration is interesting but will not be the main focus here, as it concerns the fine modeling of the interaction
between the gas and the surface. The following treatment can, however, certainly be adapted to account for this
assumption.

At the discrete level, the difficulty lies in defining the numerical flux at the wall interface in such a way that it
corresponds both to the desired numerical method and modeling of the boundary. Commonly, the numerical flux
at the wall interface is defined in two parts, each corresponding either to the boundary modeling or the numerical
scheme, depending on the considered particle velocity:

ϕnw,k(ϵ, i) =

{
ϕn,outw,k (ϵ, i) if vkn < 0,

vknρ
n
wMk(ϵ, i) if vkn ⩾ 0.

(85)

In the previous expression, the subscript w denotes the wall location, vkn is defined as the inner product (vk−uw)·n,
and ρnw represents to the average mass re-emitted by the wall over [tn, tn+1]. This quantity is defined so as to enforce
a vanishing net mass flux across the wall during the time step:

ρnw = −
〈
ϕn,outw,k (ϵ, i)

〉
Vw+ ,ϵ,i

[
⟨vkxMk(ϵ, i)⟩Vw− ,ϵ,i

]−1

. (86)

In the above expression, ⟨·⟩Vw− ,ϵ,i and ⟨·⟩Vw+ ,ϵ,i refer to the continuous integration over the phase ϵ and i, and the
velocity quadrature rule integration respectively on negative and positive relative velocity vkx − uxw = vkx set.
With (85–86), the discrete treatment of the boundary condition is reduced to specifying the outgoing flux ϕn,outw,k .

In order to both conserve the second-order accuracy of UGKS and its asymptotic behavior in the continuum
regime, the idea is to build ϕn,outw,k of (85) in the same way as in (80). For the sake of simplicity, let us suppose
the wall at left of an interface located at xw = x1/2. Furthermore, although the mesh is assumed to be uniform
here, this boundary condition can be easily adapted to non-uniform meshes. [4]. Figure 4 provides with a visual
summary of our methodology explained here after. Since ϕn,out1/2,k would be used only with outgoing velocity, the
only microscopic terms required are Fn

1,k and δxFn
1/2,k. To define δxFn

1/2,k as a limited slope (42) while maintaining
second-order accuracy at the boundary, we define Fn

0,k for outgoing velocities such that the forward and backward
slope of F in cell 1 are equal [4]:

∀k s.t. vkx < 0,
Fn
1,k(ϵ, i)− Fn

0,k(ϵ, i)

∆x
=
Fn
2,k(ϵ, i)− Fn

1,k(ϵ, i)

∆x
. (87)

To define the equilibrium state at the interface, we first need its corresponding moments. In [10], the interface
velocity un

1/2 and temperature Tn
1/2 are set to the wall values uw and Tw, and the pressure pn1/2 at the interface

is assumed equal to the pressure in the first adjacent cell. Surely, this choice neglects the temperature jump and
velocity slip that exist even in the near-continuum regime. However, it only impacts the equilibrium terms of the
flux, and non-equilibrium effects are still represented and taken into account through microscopic terms. In [10],
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satisfying results from rarefied to continuum flows are obtained with this choice. Our methodology mainly differs
in constructing the equilibrium state at this interface. Here, a temperature jump and a slip velocity are considered
by constructing moments on the interface based on outgoing and reflected-incoming microscopic distributions at
time tn and located exactly at the wall interface. Firstly, the outgoing microscopic distribution (i.e. with vkx <0
here) is constructed by an extrapolation based on the two first layers of real cells:

∀k s.t. vkx < 0, Fn
1/2,k(ϵ, i) = Fn

1,k − ∆x

2

Fn
2,k(ϵ, i)− Fn

1,k(ϵ, i)

∆x
. (88)

Then the related incoming distribution (i.e. with vkx > 0 here) is deduced following a diffuse reflection:

∀k s.t. vkx > 0, Fn
1/2,k(ϵ, i) = ρ⋆1/2Mk(ϵ, i), (89)

where ρ⋆1/2 is defined so that the mass flux at time tn across the wall interface vanishes:

ρ⋆1/2 = −
〈
vkxF

n
1/2,k(ϵ, i)

〉
Vw+ ,ϵ,i

[
⟨vkxMk(ϵ, i)⟩Vw− ,ϵ,i

]−1

. (90)

Thus, the moments on interface are defined as usual using (38) and one can define the equilibrium state at the wall
interface.

Finally, since the macroscopic derivative term δ−x M is not used for outgoing velocities, the remaining terms to
be constructed are δ+xM and δtM . The first term is constructed as usual and the second is built using equations
(58–60) by assuming δxF

n
0,k = δxF

n
1,k for positive velocities, which does not compromise the second order of the

scheme.

vxk < 0

vxk > 0

•
Fn
1,k

Fn
1/2,k

•
Fn
2,k

•
Fn
1,k

Fn
1/2,kFn

0,k

Figure 4: Definition of ghost cells quantities for the UGKS. Figure adapted from [4].

As a result, this boundary treatment is second-order accurate for any Knudsen number. It prevents a decrease
in order at boundary [4] and its multi-scale approach is a key ingredient in ensuring the correct recovery of viscous
boundary layer effects in the Navier-Stokes asymptotic limit, as illustrated in [10].

3.6 The UGKS on the reduced model
In practice, the ϵ and i energy phases are ignored in the discretization by using reduced distribution techniques as
presented previously in Section 2.3. The same reducing operations can, in principle, be applied to the numerical
scheme (62) for F with any rotational and vibrational energy quadrature error since these energy phases were
not discretized. However, because of the nonlinearity of the TVD limiter, the slopes δxF cannot be rigorously
reduced, unlike all other terms of the flux. Nevertheless, in practice, this term is replaced by the limited slope of
reduced distributions. Indeed, in regions where the limiter does not really act, this reduction is rigorously valid. In
other regions, the primary purpose of this limiter is to suppress spurious oscillations before ensuring second-order
accuracy. The same mechanism is then reproduced with the reduced distributions f, g, and h which legitimizes the
following reduced flux expressions that are used in practice:

Fn
i+ 1

2 ,k
= vkx [q1Gtr + q2vkxδxMtr + q3δtMtr + q4f + q5vkxδxf ]

n
i+ 1

2 ,k
,

Gn
i+ 1

2 ,k
= vkx

[
q1[e

rel
rotGtr] + q2vkxδx[erot(Teq)Mtr] + q3δt[erot(Teq)Mtr] + q4g + q5vkxδxg

]n
i+ 1

2 ,k
,

Hn
i+ 1

2 ,k
= vkx

[
q1[e

rel
vibGtr] + q2vkxδx[evib(Teq)Mtr] + q3δt[evib(Teq)Mtr] + q4h+ q5vkxδxh

]n
i+ 1

2 ,k
.

(91)
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As presented, the construction of the reduced flux terms can be achieved by calculating analytically the internal-
energy integral of the terms of the original UGKS fluxes in (62). However, directly constructing the new terms
is both simpler and equally accurate. This is why the theoretical UGKS framework is generally applied directly
to reduced models rather than to complete distributions like F (t,x,v, ϵ, i). Indeed, the discrete microscopic terms
f, g, h, δxf, δxg, δxh are constructed in the same manner as in (41) and (43). For the macroscopic part, the pseudo-
equilibrium G and Maxwellian distributions associated with internal energy are not necessary. Consequently, the
complete pseudo-equilibrium G and Maxwellian terms in the original numerical flux are replaced by the product of
their translational counterparts with internal energies. The expression for the Maxwellian to consider is now Mtr =
exp(ηtr · αtr), where ηtr = (1,v, 12 |v|

2)⊤. In addition, the discrete spatial derivative terms δxMtr, δx[erot(Teq)],
and δx[evib(Teq)], as well as their temporal counterparts, are constructed analogously to δxM and δtM in Section
3.2.5, based on discrete derivatives of the conservative moments ρ, ρu, and E.

4 Numerical results
For efficient numerical simulations, the UGKS is implemented for the reduced model described in Section 3.6.
This approach dispenses with the discretization of the rotational and vibrational energy phases, ϵ and i, thereby
significantly reducing both the memory footprint and the computational cost while preserving accuracy. For one
and two-dimensional flows, the orthogonal velocity components are also omitted from the discretization through the
introduction of an additional reduced distribution function. This distribution accounts for the translational energy
associated with motion orthogonal to the computational domain. The resulting formulation is highly efficient,
requiring discretization only of the (t, x, vx) phases for 1D flows and (t, x, y, vx, vy) phases for 2D flows.

To ensure accurate simulations, the velocity set V has to be:

• large enough to encompass most of the reduced distribution functions in every spatial cell;

• fine enough to provide an accurate discretization of the reduced distribution functions in every spatial cell.

The UGKS can be implemented using locally adapted velocity grids, which improve the computational efficiency
[3]. However, for simplicity, the results presented here are obtained using a Cartesian velocity grid defined as
V = [vx,min, vx,max] for one-dimensional flows, and V = [vx,min, vx,max] × [vy,min, vy,max] for two-dimensional flows.
The velocity grid is constructed with a uniform spacing ∆vx or ∆vy in each direction, and the overall velocity
domain V is chosen so as to satisfy, for every cell center xc:

• vα,min ⩽ uα(xc)− 4
√
RsT (xc) and uα(xc) + 4

√
RsT (xc) ⩽ vα,max, for α = x, y;

• ∆vα ⩽
√
RsT (xc), for α = x, y.

For each test case, the bounds of V and the number of velocity points in each direction are specified.
The time step ∆t is constrained by a Courant-Friedrichs-Lewy (CFL) condition that depends on both the spatial

discretization and the discrete velocity set V. For a two-dimensional Cartesian spatial grid, this condition reads:

∆tmax
v∈V

(
|vx|
∆x

+
|vy|
∆y

)
< 1, (92)

and can be generalized to multi-dimensional curvilinear meshes. Equation (92) highlights that ∆t is not constrained
by the flow rarefaction, which is a necessary requirement for the scheme to be asymptotic preserving (AP). In the
following cases, the left-hand side of (92) is limited to less than a number named CFL, except for the first test case
where another condition on ∆t is applied.

For unsteady flows, the simulation is carried out up to a prescribed final time, specified for each case. For steady
flows, the computation is advanced until convergence is reached. Convergence is evaluated using the L2 norm for
the reduced mass distribution f . Specifically, convergence is considered achieved when the L2 norm of the difference
between two successive iterations, fn+1 and fn ,relative to that between f1 and f0, is less than 10−5.

The complexity of the numerical cases presented here increases progressively. In each case, the results are
compared with either analytical solutions, simulation results, or experimental data. First, the relaxation rate of
energy modes is examined using a bath relaxation approach. Subsequently, the 1D Couette flow is simulated to
assess the scheme ability to accurately recover the correct Prandtl number in a viscous flow. Following this, non-
equilibrium effects are investigated through the stationary shock flow problem. The classic Sod shock tube problem
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is then performed to attest both the robustness of handling different wave structures and the accurate simulation
of unsteady non-equilibrium flows. Afterward, a two-dimensional supersonic flow simulation is compared with
experimental data to evaluate the performance of the scheme in more realistic and complex scenarios. Finally,
a hypersonic flow around an infinite cylinder is simulated with UGKS to compare our approach with another
simulation code that resolves the ES-BGK model of Pfeiffer.

Finally, the van Leer limiter is employed in the simulation, and the viscosity µ is computed as: µ = µref (Ttr/Tref )
ω,

with µref , Tref and ω given for each test case.

4.1 Homogeneous relaxation of energies
In this first case, we focus on energy transfer phenomena. The gas is supposed to be spatially homogeneous, with no
interacting bounds, and initially away from equilibrium. The reduced ES-BGK model (31–33) is therefore simplified
as: 

∂tf = 1
τ (Gtr − f),

∂tg = 1
τ (e

rel
rotGtr − g),

∂th = 1
τ (e

rel
vibGtr − h).

(93)

Since density, momentum, and total energy are three collision invariants, they are conserved during the relax-
ation process toward equilibrium. Moreover, related macroscopic variables, such as flow velocity and equilibrium
temperature, are also conserved. The only effects observed are the homogenization of the translation, rotation and
vibration energy modes with characteristic times depending on the specific ES-BGK model considered: Andriès [2],
Dauvois [13] or Pfeiffer [26] as presented in Section 2.2. In any case, these energy exchanges are described by simple
relaxation differential equations, which can be analytically solved only for constant times τ and τC , vibrational
degree of freedom δ′, collision numbers Zrot and Zvib.

In case of non vibrating gas, using the ES-BGK model of Andriès et al. [2], we get:

Θ(t) = RsTtr(t)I + (Θ0 −RsT
0
trI)e

−t/(Prτ),

Ttr(t) = Teq + (T 0
tr − Teq)e

−t/(Zrotτ),

Trot(t) = Teq + (T 0
rot − Teq)e

−t/(Zrotτ).

(94)

In case of vibrating gas, the translational, rotational and vibrational temperatures undergo two relaxation
processes with two characteristics times λ− and λ+ such as: Ttr

Trot
Tvib

 (t) =

TeqTeq
Teq

+

Ct1

Cr1

Cv1

 e−t/λ− +

Ct2

Cr2

Cv2

 e−t/λ+ , (95)

where constants Cr1, ...Cv2 depend on the initial energy state. In the particular case of Dv = 3, δ = δ′ = 2, and
when the ES-BGK model of Pfeiffer et al. [26] is used, the characteristic times λ− and λ+ are related to Zrot, Zvib

and τC by:

[λ±]
−1

=
5

6

(
1

ZrotτC
+

1

ZvibτC

)
± 1

6

[
25

(
1

ZrotτC
− 1

ZvibτC

)2

+ 16
1

ZrotτC

1

ZvibτC

]1/2
(96)

These relations are invertible and can be used to express the modal energy relaxation times τrot = ZrotτC and
τvib = ZvibτC , in terms of the apparent relaxation times λ− and λ+:

[τrot]
−1

=
3

5

λ−1
− + λ−1

+

2
+

(3

5

λ−1
− + λ−1

+

2

)2

− 3

7
λ−1
− λ−1

+

1/2

(97)

[τvib]
−1

=
3

5

λ−1
− + λ−1

+

2
−

(3

5

λ−1
− + λ−1

+

2

)2

− 3

7
λ−1
− λ−1

+

1/2

(98)

Such relaxation problems are solved using the UGKS. First, the vibrational mode of the gas is deactivated,
and the ES-BGK model of Andriès et al. [2] is employed. This leads to the relaxation processes described in
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(94), which are obtained by assuming a constant relaxation time τ rather than the standard definition (24). This
relaxation time is therefore assigned an arbitrary value, as it is the characteristic time of the overall relaxation. The
characteristic times of the modal relaxations are related to the Prandtl number and Zrot, which are fixed to 0.71
and 5, respectively. The degrees of freedom are Dv = 3 and δ = 2, and the numerical time step ∆t is set to one
quarter of τ . Initially, the gas is assumed to have the following temperatures:

Θ0/Rs =

0.5
1.1

2.0

Teq, T 0
tr = 1.2Teq, T 0

rot = 0.7Teq. (99)

Figure 5 illustrates the relaxation of energies induced by the initial temperatures presented above. First, the
figure demonstrates a perfect match between the numerical data (point style) and the analytical expression (94)
(dashed lines). Second, by performing linear regressions on a semi-log scale, the characteristic decay times of the
deviations of the energy modes from equilibrium, as well as their associated regression errors, can be evaluated.
This yields estimates of Zrot for the translational and rotational curves, denoted Zrot,tr and Zrot,rot in Figure 5, and
estimates of the Prandtl number, denoted Prx,y,z, for each directional temperature curve. Here, the regression errors
are very low, indicating that exponential decays are well reproduced. Additionally, the post-simulation estimated
relaxation coefficients Prnum ≈ 0.70 and Znum

rot ≈ 5.0 agree well with the values imposed at the beginning of the
simulation. Consequently, the relaxation of energies is well reproduced by the relaxation term of the numerical
scheme.
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Figure 5: Relaxation of directional and internal temperatures toward the equilibrium temperature, described by
the ES-BGK model of Andriès et al. [2] (Pr = 0.71, Zrot = 5).

Then, the vibrational mode is enabled using the ES-BGK model of Pfeiffer et al. [26]. This results in relaxation
processes described in (95–98). The relaxation time τ is assigned a constant value for the same reason as before,
and the mean collision time τC is arbitrarily set to the constant τC = 3τ/2. The Prandtl number is fixed to 0.70,
Zrot and Zvib are set to 5 and 20 respectively and the degrees of freedom are Dv = 3 and δ = δ′ = 2. The numerical
time step ∆t is set to τ/10 until time t = 7τ and then set to 5τ until the end of the simulation. Initially, the gas is
assumed to have the following temperatures:

Θ0/Rs =

0.3
0.7

2.0

Teq, T 0
tr = Teq, T 0

rot = 1.6Teq, T 0
vib = 0.4Teq. (100)

Figure 6 illustrates the relaxation of energies induced by the initial temperatures presented above. As in the
previous case, the exponential decays of energy are well reproduced since numerical data perfectly match the ana-
lytical solution. Regressions are again performed to estimate the Prandtl, Zrot, and Zvib numbers, with the naming
conventions in Figure 6 identical to those previously used. These post-simulation estimated relaxation coefficients
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Figure 6: Relaxation of directional and internal temperatures toward the equilibrium temperature, described by
the ES-BGK model of Pfeiffer et al. [26] (Pr = 0.70, τC = 1.5τ , Zrot = 5, Zvib = 20).

are in good agreement with the values imposed at the beginning of the simulation, except for the estimation of Zvib

based on the evolution of Tvib (estimated at 2.6). This discrepancy is likely due to the concentration of numerical
points in the early time period (t/τ < 7), where the effect of vibrational relaxation through the Zvib parameter is
negligible compared to translational and rotational relaxation. Using a smaller time step would likely reduce the
discrepancy observed in the Zvib estimation.

4.2 Couette flow
In the Couette configuration, the flow is situated between two parallel, isothermal, infinite plates. One plate
is stationary, while the other moves with a finite velocity uw, as illustrated in Figure 7. In this configuration,
significant simplifications can be made. Indeed, owing to the invariance in the y- and z-directions, the steady
nature, and the planarity of the problem, the Compressible Navier-Stokes (CNS) equations under the continuum
assumption reduce to:

Continuity: x-Momentum: y-Momentum: Energy:
ux = 0, ∂xp = 0, ∂x(µ∂xuy) = 0, 0 = −∂xq + ∂x(µuy∂xuy).

Considering constant viscosity µ and constant thermal conductivity κ, Fourier’s law for the heat flux q, and no slip
boundary conditions, the flow can be theoretically solved within the continuum assumption as follows:

uy(x) =
x

L
uw, T (x) = Tw +

1

2

µ

κ

x(L− x)

L2
u2w, p(x) = cst. (101)

The Prandtl number can be identified in the parabolic coefficient of the temperature expression, using the specific
heat at constant pressure cp:

T (x) = Tw +
1

2

Pr
cp

x(L− x)

L2
u2w. (102)

Finally, a Knudsen number can be associated with the flow, defined as:

Kn =
µref

Lρ
√
RsTw

. (103)

To assess the effectiveness of incorporating the collision process into the characteristic method (39) used for
defining numerical fluxes, we introduce the KO2 scheme, which is formulated without these relaxation effects.
Namely, the KO2 scheme employs standard second-order upwind fluxes, as derived from the REA approach (see
[22]). This scheme naturally recovers the same behavior as UGKS in the free molecular regime. However, it behaves
differently in the continuum or near-continuum regimes, where the two schemes diverge significantly. Formally, this
scheme is expressed in the same way as the UGKS (80), simply by imposing q1 = q2 = q3 = 0, q4 = 1, and
q5 = −∆t/2.
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Tw = 273K
uw = 0ms−1

Tw = 273K
uw = 300ms−1

L = 1m

x

∝ Pr

Figure 7: Macroscopic profiles in a Couette flow.

To further investigate the precise formulation of the UGKS fluxes given in (80), two alternative versions are
considered in this specific test case. The first formulation corresponds to the UGKS flux of (80), denoted here as
UGKS (G), in which the equilibrium G is used as leading term of the equilibrium part. The second formulation,
referred to as UGKS (M), employs an alternative flux expression in which the leading equilibrium term G is replaced
by its Maxwellian counterpart M . This flux is expressed by:

ϕn,M
i+ 1

2 ,k
= vkx [q1M + q2vkxδxM + q3δtM + q4F + q5vkxδxF ]

n
i+ 1

2 ,k
(ϵ, i), (104)

which allows assessing the impact of the equilibrium representation on the overall flux behavior.
Simulations are conducted at different Knudsen numbers by varying the initial density of the flow. All configura-

tions are in the near-continuum regime, allowing for comparison with the analytical CNS solution (102) as presented
in Figure 8. The temperature profiles are thus expected to be parabolic, with the Prandtl number determining the
leading coefficient. Since the problem is planar, a reduced distribution technique allows us to avoid discretizing the
z-component of the particle velocities. The parameters of flows are listed in Table 1, and the ES-BGK model of
Andriès [2] is used since the vibrational mode of energy is not excited.

GAS
gas non real Rs 296.8 J kg−1 K−1

µ 1.656× 10−5 Pa s Pr 0.71
δ 2.0 Zrot 5.0

WALL
type diffuse L 1.0m
uw 300.0m s−1 Tw 273.0K

NUMERICAL PARAMETERS
spatial cells 25
velocity bounds [±1200]× [−1200,+1500]m s−1

velocity numbers 50× 50

Table 1: Parameters used in 1D Couette flows.

In Figure 8, comparisons of the UGKS (G), UGKS (M) and KO2 schemes with the CNS solutions at different
Knudsen numbers are presented. A simulation with the kinetic KO2 scheme and a finer mesh has been conducted
to illustrate the deviation of the CNS solution from the rarefied flow solutions. Indeed, the presented flows cannot
be accurately modeled using no-slip boundary conditions, as assumed in the derivation of the CNS solution (101).

First, Figure 8 demonstrates the capability of both UGKS and KO2 schemes to resolve flows for Knudsen
numbers associated with near-continuum conditions. However, it appears that UGKS (G) achieves better accuracy
than UGKS (M) and KO2 schemes on a same mesh. Indeed, the temperature profiles from UGKS (G) simulations
are closer to the CNS solutions and KO2 with a refined mesh (∆x/10). More precisely, as the Knudsen number
decreases, the KO2 and UGKS (M) predictions increasingly deviate, while the UGKS (G) predictions remain
accurate.

Second, using the temperature equation (102), it is possible to estimate the Prandtl number after each simulation
through a parabolic regression using the least squares method. Although this methodology may be criticized for
near-continuum flows where slip conditions affect the boundary values and the leading coefficient of the temperature
parabola, acceptable results can still be obtained. Figure 8 shows an excellent capability of UGKS (G) to simulate
a correct Prandtl number for a given mesh, whereas the KO2 scheme deviates as the Knudsen number decreases
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Figure 8: Comparison of UGKS (G), UGKS (M) and KO2 schemes with CNS solution in 1D Couette flow and their
Prandtl estimations using regressions (Pr=0.71, Zrot = 5.0).

unless the mesh is sufficiently refined. The same observation can be made with UGKS (M), which also requires a
fine mesh to guarantee accurate results.

This illustrates the advantage of the Asymptotic Preservation (AP) property in enabling UGKS [10] to recover
the Navier-Stokes solutions, unlike classical kinetic schemes such as KO2. While this property is obtained by
incorporating the relaxation of the mass distribution F toward its equilibrium within the flux expression, it critically
requires to correctly treat the discrete equilibrium counterpart in the numerical flux to maintain this AP property
as illustrated with the comparisons between UGKS (G) and UGKS (M). The results obtained in this test case
validate the choices made in Section 3.2.4, and justify the selection of the UGKS (G) formulation as the appropriate
expression of the UGKS.

4.3 Normal shock wave
In this third case, we are interested in steady and non-equilibrium flows. The 1D normal shock wave serves as a
standard reference in the study of internal relaxation processes. This type of flow is divided into three main regions:
the supersonic inflow, the associated outflow linked by the Rankine-Hugoniot relation, and the shock between them.
When the heat capacity ratio γ of the gas is constant across the shock, the Rankine-Hugoniot relation explicitly
links the downstream state to the upstream conditions of the gas as follows:

ρout
ρin

=
(γ + 1)Ma2

2 + (γ − 1)Ma2
,

uout
uin

=
ρin
ρout

,
pout
pin

= 1 +
2γ

γ + 1
(Ma2 − 1). (105)
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When γ is constant, the upstream Mach number can be considered here as the only macroscopic parameter influ-
encing the structure of the shock. Indeed, the shock thickness is a few mean free paths long for all Knudsen numbers
and is a similarity parameter in shock studies. The upstream mean free path is determined using the Variable Hard
Spheres (VHS) model [6], which defines it as:

λ =
2(5− 2ω)(7− 2ω)

15

√
1

2πRsTref

(
T

Tref

)ω− 1
2 µref

ρ
. (106)

The UGKS is compared to DSMC results [6] for a stationary shock of dinitrogen at Mach 1.71 without any
vibrational excitation. Due to Knudsen similarity, the only determining parameters are the index viscosity ω = 0.74,
the Prandtl number Pr = 0.71, and the collision number Zrot = 5. Finally, since the problem is fully 1D, a reduced
distribution technique allows us to discretize the particle velocities phase with only 20 points, accounting solely for
the x-component.
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Figure 9: Comparison of density and temperatures within a stationary shock of dinitrogen at Mach 1.71, simulated
using DSMC [6] and UGKS on different ES-BGK models.

The comparison of mass density and temperature modes is presented in Figure 9(a). Clearly, the mode separation
predicted by UGKS and DSMC differs significantly. In details, the ES-BGK model of Andriès et al. [2] does not
reproduce the same relaxation times of the energy modes as DSMC does. Indeed, according to (94), for this ES-
BGK model, the relaxation time of the rotational energy is τES,And

rot = Zrotτ , whereas for DSMC results used here,
it is τDSMC

rot = ZrotτC , where τC is the mean collision time, defined in the VHS model as:

τV HS
C =

(5− 2ω)(7− 2ω)

30

µ

p
. (107)

A sufficient condition to recover the same relaxation time of internal energy as DSMC [6] is to modify Zrot for this
ES-BGK model to Z ′

rot = ZrotτC/τ . The result is presented in Figure 9(b) and clearly shows better agreements.
However, one can notice the deviation of the ES-BGK results in the upstream region where the shock is a bit more
extended. This behavior is commonly observed with the ES-BGK class of models and should be related to the
independence of the time τ on higher moments of the microscopic distribution, the distribution itself [6] or particle
velocities [30].

4.4 Sod shock tube
The Sod shock tube problem is a classic 1D unsteady case used to validate numerical methods from rarefied dynamics
to fluid dynamics. It involves a tube divided, by a diaphragm, into two sections at different states of pressure and
density. Upon removal of the diaphragm, a shock wave propagates into the low-pressure region, a rarefaction wave
travels into the high-pressure region, and a contact discontinuity forms between them. This setup provides a robust

25



test for assessing the accuracy and stability of numerical schemes in capturing shock waves, contact discontinuities,
and rarefaction waves.

Here, the UGKS is tested on different ES-BGK models by simulating the classic Sod shock tube problem first
at a low Knudsen number and then in a transitional regime. Since the problem is fully 1D, a reduced distribution
technique allows us to take into account only the x-component of the particle velocities.

4.4.1 Low Knudsen number

The parameters for the first simulation are listed in Table 2. The model of Andriès [2] is firstly used and results are
compared with the exact solution of the Euler equations as shown in Figure 10. The exact solutions of the Euler
equation are provided by a program developed by Toro [37] and integrated into the NUMERICA library.
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Figure 10: Comparison of macroscopic quantities and numerical resolution in a Sod shock tube, computed in
continuum configuration with UGKS applied on ES-BGK and with exact solution of Euler equations [37].

According to Figure 10, and in comparison to the Euler solution, the plateau values and wave positions com-
puted by the UGKS are accurate for each flow region, consistent with the behavior of a diatomic molecule with a
constant specific heat ratio γ=7/5. This case confirms that the UGKS can effectively handle unsteady flows in the
continuum regime. Furthermore, Figure 10d shows the ratio ∆t/τ which is clearly greater than 1 in every cells.
This demonstrate the scheme ability to simulate continuum flow, even when the mesh is under-resolved (∆t > τ).
This capability is a key feature of the UGKS framework [43] to permit reasonable simulations of flow in continuum
regime.
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INITIAL CONDITIONS
ρL 1.0 kgm−3 ρR 0.125 kgm−3

uL 0.0 m s−1 uR 0.0 m s−1

pL 1.0 Pa pR 0.1 Pa

GAS
gas non real
δ 2.0
Rs 1.0 J kg−1 K−1

µ 5.0× 10−5 Pa s
Pr 0.71
Zrot 5.0

NUMERICAL PARAMETERS
length L 1.0 m
final time 0.15 s
spatial cells 100
velocity bounds [−8, 8]m s−1

velocity numbers 30

Table 2: Parameters used for the low-Knudsen 1D Sod flow.

4.4.2 Transitional Knudsen number
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Figure 11: Comparison of macroscopic quantities in a transitional Sod shock tube, computed with UGKS and
PIClas, both solving the ES-BGK model of Pfeiffer et al. [26].

The second Sod shock tube is performed with the ES-BGK model of Pfeiffer et al. [26], accounting for translational,
rotational and vibrational modes of energy. The parameters for this second simulation are listed in Table 3. The
results are compared with those obtained using the PIClas code [15, 34], which also solves this model through a
particle stochastic approach, see Figure 11. In these simulations, the PIClas code (version 3.3.1) was used with a
time step of ∆t = 1.0×10−5 s, different from that used in the UGKS simulations, and 40 million numerical particles,
each representing 1.0× 1015 real physical particles.

Since the Knudsen number is larger than previously and due to the shock, the flow is not in an equilibrium
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state. Figure 11d clearly shows that the modal temperatures differ. Furthermore, the solutions obtained with PIClas
exhibit excellent agreement with those computed using our deterministic UGKS-ES-BGK solver. This confirms that
UGKS is also well-suited for accurately capturing unsteady flows in non-equilibrium states.

INITIAL CONDITIONS
ρL 0.1 kgm−3 ρR 0.0125 kgm−3

uL 0.0 m s−1 uR 0.0 m s−1

pL 10.0 Pa pR 1.0 Pa

GAS (HS)
gas non real Pr Eucken (23)
Rs 10.0 J kg−1 K−1 Zrot 5.0
µref 1.0× 10−3 Pa s Zvib 20.0
Tref 10.0K T0 12.0K
δ 2.0

NUMERICAL PARAMETERS
length L 1.0 m
final time 0.015 s
spatial cells 1000
velocity bounds [−80, 80]m s−1

velocity numbers 30

Table 3: Parameters used for the 1D Sod flow including vibrational mode of energy.

4.5 Supersonic flow passing an infinite flat plate
This case is based on an experiment conducted by Tsuboi and Matsumoto [38] and depicted in Figure 12. In this
experiment, a flat plate is immersed in a supersonic near-continuum dinitrogen cold flow. The experimental set up
and the parameters for subsequent numerical comparisons are detailed in Table 4. A strong shock wave forms in
front of and beneath the wedge. Above the plate near the leading edge, a merged layer occurs before the separation
of the boundary layer and the weak shock. A lot of kinetic energy from the supersonic nature of the flow is converted
into thermal and internal energy both in the shock and also within the boundary layer due to viscous effects. The
internal energy is entirely associated with the rotational mode, since the reached temperature is too low compared
to the characteristic temperature of vibration T0 = 3371K to initiate significant excitation of the vibrational mode.

Strong shock

Weak
shock

Boundary
layer

Rarefaction

ux

T

Tw = 290K

Ma∞ = 4.89
λV SS
∞ ≈ 0.82mm

N2

T∞ = 116K

Figure 12: Illustration of the experiment No. 34 from Tsuboi and Matsumoto [38].

GAS (VSS)
gas N2 Tref 273.15K
δ 2.0 Rs 296.8 J kg−1 K−1

α 1.36 Pr 0.71
ω 0.74 Zrot 5.0
µref 1.656× 10−5 Pa s

INFLOW
λV SS
∞ 0.82 mm
ρ∞ 6.16× 10−5 kg m−3

Ma∞ 4.89
T∞ 116.0K

WALL
type diffuse
Tw 290.0K

Table 4: Numerical simulation conditions of the supersonic flow passing a flat plate.

For the computations, the velocity domain is reduced to 2D using a reduced distribution technique. The
computational domain in space is meshed using a 2D structured mesh all around the plate, as illustrated in Figure 13.
A total of 40×40 elements are used above the plate. The velocity grid is bounded within [−1200, 2200]×[−1700, 1500]
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Figure 13: Mesh used for the computation of the supersonic flow passing the flat plate.

(m s−1) and discretized with 25 points in both x and y-directions. Comparisons with experimental measurements of
rotational temperature, taken at 5 and 20 mm from the stagnation point on vertical lines, are presented in Figure
14.

The results provided by the ES-BGK model of both Andriès al. [2] and Pfeiffer et al. [26] are in good agreement
with the experimental data. The shape of the rotational temperature is well reproduced, although some discrepancies
arise due to uncertainties in accurately modeling the real relaxation processes involved. As seen with the stationary
shock problem, a simple replacement in Zrot can align the relaxation behavior with that of other authors. To match
the relaxation processes used by Bird [6] based on the ES-BGK model of Andriès [2], the required adjustments is
Z ′
rot = τCZrot/τ . This modifications significantly influence the profiles of rotational temperature, as illustrated in

Figure 14.
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Figure 14: Comparison of rotational temperature predictions between ES-BGK models and experimental data [38]
above the flat plate in the supersonic flow of dinitrogen.

4.6 Hypersonic flow passing an infinite cylinder
Finally, the last flow studied here is a two-dimensional hypersonic flow of dinitrogen around an infinite cylinder,
representative of atmospheric conditions at an altitude of 70 km [7]. Given the hypersonic nature of the flow,
a detached shock forms ahead of the cylinder, as illustrated in Figure 15. This shock is smooth, and the non-
equilibrium effects occurring within it are particularly noticeable due to the rarefaction of the flow. Additionally,
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the conversion of a major part of kinetic energy to thermal energy behind the shock results in a sufficient increase in
temperature for the vibrational mode of the particles to be excited. Consequently, to model these non-equilibrium
phenomena, we adopt the ES-BGK model developed by Pfeiffer et al. [26].

Shock

Stagnation
line

r = 4 cm

Tw = 1000K

Ma∞ = 12.0
λV SS
∞ ≈ 0.78mm

N2

T∞ = 217.45K

Figure 15: Illustration of the hypersonic flow of dinitrogen around an infinite cylinder.

The computational domain is reduced to two dimensions using a reduced distribution approach and discretized
with a structured 2D mesh surrounding a cylinder of radius 4 cm. The velocity space is similarly bounded and
discretized in both the x- and y-directions. Finally, the properties of the gas flow and numerical parameters are
summarized in Table 5.

GAS (VSS)
gas N2 Rs 296.8 J kg−1 K−1

δ 2.0 Pr Eucken (23)
α 1.36 Zrot 5.0
ω 0.74 Zvib 200.0
µref 1.656× 10−5 Pa s T0 3371 K
Tref 273.15 K

INFLOW
λV SS
∞ 0.78 mm
ρ∞ 7.48× 10−5 kg m−3

u∞ 3608 m s−1

T∞ 217.45 K

WALL
type diffuse
Tw 1000 K
r 4 cm

NUMERICAL PARAMETERS
spatial cells 350 normal × 100 azimutal
velocity bounds [−6000, 9500]× [±8000]m s−1

velocity numbers 55× 60

Table 5: Parameters for the UGKS simulation of the hypersonic flow of dinitrogen around the infinite cylinder.

To validate our implementation, we compare the macroscopic profiles computed along the stagnation line with
those obtained from three reference solvers: the open-source DSMC code SPARTA [35], the particle stochastic
ES-BGK solver PIClas (version 3.3.1) [15, 34], and the deterministic finite volume ES-BGK solver developed at
CEA, referred to as code K. [3]. Since theses codes do not model the same relaxation processes for internal energies,
we first consider a configuration excluding the vibrational energy mode. In this case, rotational and translational
degrees of freedom are fully excited, and it is possible to ensure consistent energy relaxations across solvers by
adjusting their respective rotational collision number Zrot, as done in Sections 4.3 and 4.5. Subsequently, a second
set of simulations includes vibrational energy and compares results between UGKS and PIClas since their energy
relaxation processes are both consistent with the same ES-BGK model.

Lastly, since our objective here is to assess the consistency of our UGKS implementation with the model of
Pfeiffer, we intentionally use a fine numerical resolution. The PIClas simulations are also run with a small time
step, ∆t = 2 × 10−8 s, and use 200 million numerical particles, each representing 10 billion real physical particles.
Comparisons between simulation results are performed along the stagnation line and are presented in Figures 16
and 17, corresponding to the non-vibrational and vibrational cases, respectively.
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4.6.1 Without the vibrational mode of energy

Good agreement can be observed between all compared codes for the non vibrating case as illustrated in Figure
16. The primary difference is the shock expansion predicted by ES-BGK based codes compared to SPARTA which
emulates the Boltzmann equation. This well-known behavior of BGK and ES-BGK models is generally attributed
to the independence of the relaxation time τ on higher moments of the microscopic distribution, the distribution
itself [6] or particle velocities [30]. Another difference appears in the peak translational temperature: while UGKS,
K., and SPARTA yield similar values (within 0.15%), PIClas slightly underpredicts this maximum, with a deviation
of −2.12% as compared to UGKS, even if the shapes of temperature profiles are well reproduced.
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Figure 16: Comparison of mass density, velocity and temperatures profiles along the stagnation line of a cylinder
in a hypersonic flow where the vibrational mode of energy is ignored, between UGKS, K., PIClas and SPARTA
simulations.

4.6.2 With the vibrational mode of energy
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Figure 17: Comparison of mass density, velocity and temperature profiles along the stagnation line of a cylinder in
a hypersonic flow where the vibrational mode of energy is considered, between UGKS and PIClas simulations.

The vibrational mode is then taken into account, and the UGKS implementation is only compared with PIClas,
since only both of them are consistent with the ES-BGK model of Pfeiffer. Unlike in the case without vibrational
energy, the mesh for the PIClas simulation must be carefully designed. In particular, it must be sufficiently refined
near the cylinder surface to accurately resolve the local mean free path. Simultaneously, it should be coarser in
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the free-stream region to avoid numerical artifacts caused by the quantization of vibrational energy, as discussed in
[7], which may occur when too few numerical particles are present per cell. Nevertheless, good agreement can be
obtained with an appropriate mesh, as illustrated in Figures 17 and 18. The temperature profiles from both UGKS
and PIClas simulations are in close agreement, with the main discrepancy observed at the shock location, where
the peak translational temperature predicted by PIClas deviates from UGKS by 1.71 %. Such small deviation was
primarily observed in the absence of vibration and seems to be related to PIClas. Except in this region, excellent
agreement can be observed all around the cylinder, as illustrated in Figure 18.

1

UGKS

PIClas

(a) Translation,

1

UGKS

PIClas

(b) Rotation,

1

UGKS

PIClas

(c) Vibration,

Figure 18: Comparison of temperature fields around the cylinder simulated with UGKS (above) and PIClas (below).

5 Conclusion
We proposed an extension of the Unified Gas-Kinetic Scheme (UGKS) to ES-BGK models that incorporates specific
diatomic energy modes like rotation and vibration. This adaptation extends the UGKS-ES-BGK framework from
monoatomic to diatomic gases using techniques similar to those employed in extending UGKS-BGK to Shakhov and
Rykov models. This work demonstrates that adapting UGKS to a reduced distribution equation that accounts for
additional energy phenomena can be accomplished with minimal difficulty. Therefore, it is possible to sequentially
introduce various energy effects without altering the existing scheme structure.

Moreover, the scheme has been validated across several test cases as energy relaxations or one-dimensional
problems, including viscous-driven and shock flows. The Couette flow illustrated the Asymptotic Preserving prop-
erty of the scheme and its advantage over classical kinetic schemes in capturing the correct Navier-Stokes viscous
effects without introducing excessive numerical diffusion. The low Knudsen number Sod shock tube demonstrated
the robustness of the scheme in unsteady flows, even when the mesh does not resolve the kinetic scale. Finally,
comparisons with results from experiments or from simulation codes like SPARTA or PIClas confirm the excellent
capability of the UGKS in solving the ES-BGK model for diatomic gases, including vibrational excitation, even in
two-dimensional configurations.

Acknowledgments
This work has been undertaken under the auspice of LRC ANABASE, which is a joined research laboratory between
Institut de Mathématiques de Bordeaux and CEA-CESTA devoted to the development of innovative numerical
methods for the simulation of complex fluid flows. Computer time for this study was provided by the computing
facilities of the MCIA (Mésocentre de Calcul Intensif Aquitain).

32



References
[1] P. Andriès, J.-F. Bourgat, P. le Tallec, and B. Perthame. “Numerical comparison between the Boltzmann

and ES-BGK models for rarefied gases”. In: Computer Methods in Applied Mechanics and Engineering 191.31
(2002), pp. 3369–3390. issn: 0045-7825. doi: 10.1016/S0045-7825(02)00253-0.

[2] P. Andriès, P. Le Tallec, J.-P. Perlat, and B. Perthame. “The Gaussian-BGK model of Boltzmann equation
with small Prandtl number”. In: European Journal of Mechanics - B/Fluids 19.6 (2000), pp. 813–830. issn:
0997-7546. doi: 10.1016/S0997-7546(00)01103-1.

[3] C. Baranger, J. Claudel, N. Hérouard, and L. Mieussens. “Locally refined discrete velocity grids for stationary
rarefied flow simulations”. In: Journal of Computational Physics 257 (2014), pp. 572–593. issn: 0021-9991.
doi: 10.1016/j.jcp.2013.10.014.

[4] C. Baranger, N. Hérouard, J. Mathiaud, and L. Mieussens. “Numerical boundary conditions in Finite Volume
and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries”. In: Mathe-
matics and Computers in Simulation 159 (2019), pp. 136–153. issn: 0378-4754. doi: 10.1016/j.matcom.
2018.11.011.

[5] P. L. Bhatnagar, E. P. Gross, and M. Krook. “A Model for Collision Processes in Gases. I. Small Amplitude
Processes in Charged and Neutral One-Component Systems”. In: Phys. Rev. 94 (3 May 1954), pp. 511–525.
doi: 10.1103/PhysRev.94.511.

[6] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Science Publications,
1994, pp. 1–476. isbn: 9780198561958.

[7] I. D. Boyd and T. E. Schwartzentruber. “Models for Nonequilibrium Thermochemistry”. In: Nonequilibrium
Gas Dynamics and Molecular Simulation. Cambridge Aerospace Series. Cambridge University Press, 2017,
pp. 252–310.

[8] J. Burt and I. Boyd. “Evaluation of a Particle Method for the Ellipsoidal Statistical Bhatnagar-Gross-Krook
Equation”. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. Jan. 2006. doi: 10.2514/6.2006-989.

[9] C. Cercignani. The Boltzmann Equation and Its Application. Vol. 67. Applied Mathematical Sciences. Springer
New York, NY, 1988, pp. 1–455. isbn: 978-0-387-96637-3. doi: 10.1007/978-1-4612-1039-9.

[10] S. Chen and K. Xu. “A comparative study of an asymptotic preserving scheme and unified gas-kinetic scheme
in continuum flow limit”. In: Journal of Computational Physics 288 (2015), pp. 52–65. issn: 0021-9991. doi:
10.1016/j.jcp.2015.02.014.

[11] S. Chen, K. Xu, and Q. Cai. “A Comparison and Unification of Ellipsoidal Statistical and Shakhov BGK
Models”. In: Advances in Applied Mathematics and Mechanics 7.2 (2015), pp. 245–266. doi: 10.4208/aamm.
2014.m559.

[12] C. K. Chu. “Kinetic-Theoretic Description of the Formation of a Shock Wave”. In: The Physics of Fluids 8.1
(Jan. 1965), pp. 12–22. issn: 0031-9171. doi: 10.1063/1.1761077.

[13] Y. Dauvois, J. Mathiaud, and L. Mieussens. “An ES-BGK model for polyatomic gases in rotational and
vibrational nonequilibrium”. In: European Journal of Mechanics - B/Fluids 88 (2021), pp. 1–16. issn: 0997-
7546. doi: 10.1016/j.euromechflu.2021.02.006.

[14] D. R. Chapman F. E. Lumpkin and C. Park. “A new rotational relaxation model for use in hypersonic
computational fluid dynamics”. In: 24th Thermophysics Conference. June 1989. doi: 10.2514/6.1989-1737.

[15] S. Fasoulas, C.-D. Munz, M. Pfeiffer, J. Beyer, T. Binder, S. Copplestone, A. Mirza, P. Nizenkov, P. Ortwein,
and W. Reschke. “Combining particle-in-cell and direct simulation Monte Carlo for the simulation of reactive
plasma flows”. In: Physics of Fluids 31.7 (July 2019), p. 072006. issn: 1070-6631. doi: 10.1063/1.5097638.

[16] M. A. Gallis and J. R. Torczynski. “Investigation of the ellipsoidal-statistical Bhatnagar–Gross–Krook kinetic
model applied to gas-phase transport of heat and tangential momentum between parallel walls”. In: Physics
of Fluids 23.3 (Mar. 2011), p. 030601. issn: 1070-6631. doi: 10.1063/1.3558869.

[17] L. H. Holway. “Kinetic theory of shock structure using an ellipsoidal distribution function”. In: Rarefied Gas
Dynamics, Volume 1 1 (1965), pp. 193–215.

[18] A. B. Huang, D. P. Giddens, and C. W. Bagnal. “Rarefied Gas Flow between Parallel Plates Based on the
Discrete Ordinate Method”. In: The Physics of Fluids 10.3 (Mar. 1967), pp. 498–502. issn: 0031-9171. doi:
10.1063/1.1762143.

33



[19] A. B. Huang and P. F. Hwang. “Test of statistical models for gases with and without internal energy states”.
In: The Physics of Fluids 16.4 (Apr. 1973), pp. 466–475. issn: 0031-9171. doi: 10.1063/1.1694368.

[20] J.-C. Huang, K. Xu, and P. Yu. “A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows II:
Multi-Dimensional Cases”. In: Communications in Computational Physics 12.3 (2012), pp. 662–690. doi:
10.4208/cicp.030511.220911a.

[21] K. Koura and H. Matsumoto. “Variable soft sphere molecular model for inverse-power-law or Lennard-Jones
potential”. In: Physics of Fluids A: Fluid Dynamics 3.10 (Oct. 1991), pp. 2459–2465. issn: 0899-8213. doi:
10.1063/1.858184.

[22] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics.
Cambridge University Press, 2002.

[23] S. Liu, P. Yu, K. Xu, and C. Zhong. “Unified gas-kinetic scheme for diatomic molecular simulations in all flow
regimes”. In: Journal of Computational Physics 259 (2014), pp. 96–113. issn: 0021-9991. doi: 10.1016/j.
jcp.2013.11.030.

[24] S. Liu and C. Zhong. “Investigation of the kinetic model equations”. In: Phys. Rev. E 89 (3 Mar. 2014),
p. 033306. doi: 10.1103/PhysRevE.89.033306.

[25] J. A. Lordi and R. E. Mates. “Rotational Relaxation in Nonpolar Diatomic Gases”. In: The Physics of Fluids
13.2 (Feb. 1970), pp. 291–308. issn: 0031-9171. doi: 10.1063/1.1692920.

[26] J. Mathiaud, L. Mieussens, and M. Pfeiffer. “An ES-BGK model for diatomic gases with correct relaxation
rates for internal energies”. In: European Journal of Mechanics - B/Fluids 96 (2022), pp. 65–77. issn: 0997-
7546. doi: 10.1016/j.euromechflu.2022.07.003.

[27] L. Mieussens. “A survey of deterministic solvers for rarefied flows”. In: AIP Conference Proceedings 1628.1
(Dec. 2014), pp. 943–951. issn: 0094-243X. doi: 10.1063/1.4902695.

[28] L. Mieussens. “Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics”.
In: Mathematical Models and Methods in Applied Sciences 10.08 (2000), pp. 1121–1149. doi: 10 .1142 /
S0218202500000562.

[29] L. Mieussens. “Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane
and Axisymmetric Geometries”. In: Journal of Computational Physics 162.2 (2000), pp. 429–466. issn: 0021-
9991. doi: 10.1006/jcph.2000.6548.

[30] L. Mieussens and H. Struchtrup. “Numerical comparison of Bhatnagar–Gross–Krook models with proper
Prandtl number”. In: Physics of Fluids 16.8 (Aug. 2004), pp. 2797–2813. issn: 1070-6631. doi: 10.1063/1.
1758217.

[31] R. C. Millikan and D. R. White. “Systematics of Vibrational Relaxation”. In: The Journal of Chemical Physics
39.12 (Dec. 1963), pp. 3209–3213. issn: 0021-9606. doi: 10.1063/1.1734182.

[32] J. G. Parker. “Rotational and Vibrational Relaxation in Diatomic Gases”. In: The Physics of Fluids 2.4 (July
1959), pp. 449–462. issn: 0031-9171. doi: 10.1063/1.1724417.

[33] M. Pfeiffer. “Extending the particle ellipsoidal statistical Bhatnagar-Gross-Krook method to diatomic molecules
including quantized vibrational energies”. In: Physics of Fluids 30.11 (Nov. 2018), p. 116103. issn: 1070-6631.
doi: 10.1063/1.5054961.

[34] M. Pfeiffer. “Particle-based fluid dynamics: Comparison of different Bhatnagar-Gross-Krook models and the
direct simulation Monte Carlo method for hypersonic flows”. In: Physics of Fluids 30.10 (Oct. 2018), p. 106106.
issn: 1070-6631. doi: 10.1063/1.5042016.

[35] S. J. Plimpton, S. G. Moore, A. Borner, A. K. Stagg, T. P. Koehler, J. R. Torczynski, and M. A. Gallis.
“Direct simulation Monte Carlo on petaflop supercomputers and beyond”. In: Physics of Fluids 31.8 (Aug.
2019), p. 086101. issn: 1070-6631. doi: 10.1063/1.5108534.

[36] E. M. Shakhov. “Generalization of the Krook kinetic relaxation equation”. In: Fluid Dynamics 3.5 (1968),
pp. 95–96. doi: 10.1007/BF01029546.

[37] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer Berlin, Heidelberg, Oct.
2010. isbn: 978-3-540-25202-3. doi: 10.1007/b79761.

[38] N. Tsuboi and Y. Matsumoto. “Experimental and Numerical Study of Hypersonic Rarefied Gas Flow over
Flat Plates”. In: AIAA Journal 43.6 (2005), pp. 1243–1255. doi: 10.2514/1.10950.

34



[39] O. Tumuklu, Z. Li, and D. A. Levin. “Particle Ellipsoidal Statistical Bhatnagar–Gross–Krook Approach for
Simulation of Hypersonic Shocks”. In: AIAA Journal 54.12 (2016), pp. 3701–3716. doi: 10.2514/1.J054837.

[40] Z. Wang, H. Yan, Q. Li, and K. Xu. “Unified gas-kinetic scheme for diatomic molecular flow with translational,
rotational, and vibrational modes”. In: Journal of Computational Physics 350 (2017), pp. 237–259. issn: 0021-
9991. doi: 10.1016/j.jcp.2017.08.045.

[41] P. Welander. “On the temperature jump in a rarefied gas”. In: Ark. Fys. 7 (1954), pp. 507–553.

[42] K. Xu. “A Gas-Kinetic BGK Scheme for the Navier–Stokes Equations and Its Connection with Artificial
Dissipation and Godunov Method”. In: Journal of Computational Physics 171.1 (2001), pp. 289–335. issn:
0021-9991. doi: 10.1006/jcph.2001.6790.

[43] K. Xu and J.-C. Huang. “A unified gas-kinetic scheme for continuum and rarefied flows”. In: Journal of
Computational Physics 229.20 (2010), pp. 7747–7764. issn: 0021-9991. doi: 10.1016/j.jcp.2010.06.032.

[44] K. Xu and J.-C. Huang. “An improved unified gas-kinetic scheme and the study of shock structures”. In:
IMA Journal of Applied Mathematics 76.5 (Mar. 2011), pp. 698–711. issn: 0272-4960. doi: 10.1093/imamat/
hxr002.

[45] K. Xu, M. Mao, and L. Tang. “A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow”. In:
Journal of Computational Physics 203.2 (2005), pp. 405–421. issn: 0021-9991. doi: 10.1016/j.jcp.2004.
09.001.

[46] Y. Zhu and K. Xu. The first decade of unified gas kinetic scheme. 2021. arXiv: 2102.01261 [physics.comp-ph].
url: https://arxiv.org/abs/2102.01261.

35


