TD n°10 : Réduction des endomorphismes symétriques, groupe linéaire

Exercice 1. 1. Démontrer le théorème spectral, c'est-à-dire que tout endomorphisme symétrique réel est diagonalisable en base orthonormée (en dimension finie).

- 2. Montrer que si A est symétrique définie positive et B est symétrique, alors il existe une matrice $P \in GL_n(\mathbf{R})$ telle que $A = PP^t$ et $B = PDP^t$ où D est une matrice diagonale.
- 3. Soient A et B deux matrices symétriques positives de $M_n(\mathbf{R})$. Montrer que $\det(A+B) \ge \det(A) + \det(B)$.

Exercice 2. Montrer que l'exponentielle définit une surjection de $\mathcal{A}_n(\mathbf{R})$ dans $SO_n(\mathbf{R})$. Cette application est-elle injective?

Exercice 3. Soit E un \mathbf{K} -espace vectoriel de dimension 2, et soit C l'ensemble des classes de conjugaison sous SL(E) des transvections de E. Pour $\rho \in \mathbf{K}^*$, on note T_{ρ} la transvection

$$\begin{pmatrix} 1 & \rho \\ 0 & 1 \end{pmatrix}$$
.

- 1. Montrer que T_{ρ} et $T_{\rho'}$ sont conjuguées si et seulement si $\rho'/\rho \in \mathbf{K}^{*2}$.
- 2. En déduire une bijection naturelle entre K^*/K^{*2} et C.
- 3. Que dire si $\mathbf{K} = \mathbf{C}, \mathbf{R}, \mathbf{F}_p, \mathbf{Q}$?

Exercice 4. Soit **K** un corps de caractéristique différente de 2. Montrer que les groupes $GL_n(\mathbf{K})$ et $GL_m(\mathbf{K})$ sont isomorphes si et seulement si m=n.

Exercice 5. Montrer que $GL_n(\mathbf{C})$ et $SL_n(\mathbf{R})$ sont connexes par arcs, mais que $GL_n(\mathbf{R})$ ne l'est pas.

Exercice 6. On rappelle qu'on appelle groupe dérivé d'un groupe G le sous-groupe engendré par les commutateurs, i.e. par les éléments de la forme $[a,b]=a^{-1}b^{-1}ab$ avec $a,b\in G$.

- 1. Montrer que $SL_n(K)$ est le groupe dérivé de $GL_n(K)$ si $n \geq 3$.
- 2. Montrer que $SL_2(\mathbf{F}_2)$ n'est pas le groupe dérivé de $GL_2(\mathbf{F}_2)$.
- 3. En regardant en fonction des cas les commutateurs $[I_2 + E_{12}, \text{Diag}(1/2, 1)]$ ou $[I_2 + \frac{a^2}{1-a^2}E_{12}, \text{Diag}(a, a^{-1})]$ pour un a bien choisi, montrer que $SL_2(K)$ est le groupe dérivé de $GL_2(K)$ dans tous les cas autres que $K = \mathbf{F}_2$.
- 4. Calculer le groupe dérivé de $SL_n(K)$ (on fera attention aux cas particuliers n=2 et $K=\mathbf{F}_2$ ou \mathbf{F}_3).

Exercice 7. 1. Quel est le sous-groupe de $GL_n(\mathbf{R})$ engendré par l'ensemble des matrices inversibles diagonalisables?

2. Quelles sont les matrices de $GL_n(\mathbf{K})$ s'écrivant comme un produit de matrices de trace nulle?