DM n°1

Dans ce DM, sauf mentionné, tous les anneaux et corps sont supposés unitaires commutatifs.

Exercice 1. [Un anneau principal non euclidien]

Soit $\alpha := \frac{1+i\sqrt{19}}{2}$. L'objectif de cet exercice est de prouver que l'anneau $\mathbb{Z}[\alpha]$ est principal mais non euclidien.

- 1. Montrer que l'anneau $\mathbb{Z}[\alpha]$ est isomorphe à l'anneau quotient $\mathbb{Z}[X]/(X^2-X+5)$.
- 2. On note N l'application envoyant un élément de $\mathbb{Z}[\alpha]\subset\mathbb{C}$ sur le carré de son module complexe.
 - (a) A l'aide de l'application N, déterminer l'ensemble des éléments inversibles de $\mathbb{Z}[\alpha]$.
 - (b) Montrer que si B est un anneau euclidien, il contient un élément b non inversible tel que la restriction à $B^{\times} \cup \{0\}$ de la projection naturelle $B \to B/(b)$ soit encore surjective. (Indication: Lorsque B n'est pas un corps, on pourra considérer un élément de stathme minimal.)
 - (c) Montrer qu'il n'existe pas de morphisme d'anneaux de $\mathbb{Z}[\alpha]$ vers $\mathbb{Z}/n\mathbb{Z}$ lorsque n vaut 2 ou 3.
 - (d) En conclure que $\mathbb{Z}[\alpha]$ n'est pas euclidien.
- 3. Montrer que pour tous éléments $a,b \in \mathbb{Z}[\alpha]$ avec $b \neq 0$, il existe alors une paire (q,r) d'éléments de $\mathbb{Z}[\alpha]$ telle que :

```
- r = 0 \text{ ou } N(r) < N(b);
```

- -2a = bq + r.
- 4. Montrer que l'idéal de $\mathbb{Z}[\alpha]$ engendré par 2 est maximal.
- 5. Montrer que $\mathbb{Z}[\alpha]$ est principal. (Indication : On pourra s'inspirer de la démonstration donnée pour les anneaux euclidiens.)

Exercice 2. Soit A un anneau. On dit que A est anti-noethérien si toute suite décroissante d'idéaux est stationnaire. On admet le résultat suivant : si il existe $\mathfrak{m}_1, ..., \mathfrak{m}_n$ des idéaux maximaux d'un anneau A tels que $\mathfrak{m}_1\mathfrak{m}_2...\mathfrak{m}_n=0$, alors A est noethérien si et seulement si A est anti-noethérien.

- 1. Montrer qu'un anneau anti-noethérien intègre est un corps, et plus généralement que tout idéal premier est maximal.
- 2. Soit A un anneau anti-noethérien. Montrer que le nilradical est nilpotent.
- 3. Soit A un anneau anti-noethérien. Montrer que A possède un nombre fini d'idéaux maximaux et que leur produit est nilpotent. (On utilisera le fait que le nilradical est l'intersection des idéaux premiers).
- 4. En déduire qu'un anneau anti-noethérien est noethérien. Inversement, montrer qu'un anneau noethérien dans lequel tout idéal premier est maximal est anti-noethérien.