TD N°10 : CORPS FINIS

Exercice 1. [Sous-corps d'un corps fini]

- 1. Soit **K** un sous-corps de \mathbf{F}_q . Montrer qu'il existe d divisant n tel que $\mathbf{K} \sim \mathbf{F}_{p^d}$.
- 2. Réciproquement, étant donné d un diviseur de n montrer qu'il existe un unique sous-corps de \mathbf{F}_q isomorphe à \mathbf{F}_{p^d} .
- 3. Dessiner un diagramme montrant les inclusions possibles entre \mathbf{F}_2 , \mathbf{F}_4 , \mathbf{F}_8 , \mathbf{F}_{16} , \mathbf{F}_{32} , \mathbf{F}_{64} , \mathbf{F}_{128} et \mathbf{F}_{256} .

Exercice 2. [Automorphismes des corps finis]

- 1. Soit L/K une extension de corps. On note Aut(L/K) l'ensemble des automorphismes de L dont la restriction à K est l'identité. Montrer que Aut(L/K) est un groupe.
- 2. Montrer que si l'extension L/K est finie et monogène, alors le groupe Aut(L/K) est fini de cardinal majoré par le degré d'extension [L:K].
- 3. Soient p un nombre premier et A un anneau de caractéristique p. Montrer que l'application

$$Frob_A: A \to A$$

$$x \mapsto x^p$$

est un endomorphisme de l'anneau A. On l'appelle l'endomorphisme de Frobenius de A.

- 4. Montrer que pour tout $n \geq 1$, $Frob_{\mathbf{F}_{p^n}}$ est un élément de $Aut(\mathbf{F}_{p^n}/\mathbf{F}_p)$.
- 5. Montrer que le groupe $Aut(\mathbf{F}_{p^n}/\mathbf{F}_p)$ est cyclique d'ordre n, dont $Frob_{\mathbf{F}_{n^n}}$ est un générateur.
- 6. Soit $\sigma \in Aut(\mathbf{F}_{p^n}/\mathbf{F}_p)$ un élément d'ordre k. Montrer que les points fixes de σ est un souscorps de \mathbf{F}_{p^n} isomorphe à $\mathbf{F}_{p^{n/k}}$

Exercice 3. [Polynômes irréductibles sur \mathbb{F}_p]

- 1. Montrer que $X^q X$ est scindé à racines simples dans \mathbb{F}_q .
- 2. Soit P un facteur irréductible de X^q-X . Montrer que le degré de P divise n.
- 3. Réciproquement, soit P un polynôme unitaire irréductible dans $\mathbb{F}_p[X]$ dont le degré divise n. Montrer que P est un facteur simple de $X^q X$.
- 4. Pour tout $d \in \mathbb{N}$ on note $\mathcal{I}(p,d)$ l'ensemble des polynômes unitaires irréductibles dans $\mathbf{F}_p[X]$ de degré d. Montrer que dans $\mathbf{F}_p[X]$ on a

$$X^{q} - X = \prod_{d|n} \prod_{P \in \mathcal{I}(p,d)} P$$

- 5. On note I(p,d) le cardinal de $\mathcal{I}(p,d)$. Montrer que $p^n = \sum_{d|n} I(p,d)$. En déduire que l'ensemble $\mathcal{I}(p,d)$ est non vide.
- 6. Montrer que $\frac{p^n-p^{\lfloor n/2\rfloor+1}}{n} \leq I(n,p) \leq \frac{p^n}{n}$ En déduire qu'un polynôme unitaire de degré n "assez grand" choisi au hasard a au moins une chance sur n d'être irréductible.

Exercice 4. [Clôture algébrique des corps finis]

Soit p un nombre premier. Soit $\bar{\mathbf{F}}_p$ la réunion de la chaîne croissante (cf. Exercice 1)

$$\mathbf{F}_p \subset \mathbf{F}_{p^2} \subset \mathbf{F}_{p^6} \subset \cdots \subset \mathbf{F}_{p^{n!}} \subset \cdots$$

- 1. Montrer que $\bar{\mathbf{F}}_p$ est un corps, qui est une extension algébrique de \mathbf{F}_p .
- 2. Montrer que pour tout $n \geq 1$, il existe un unique plongement $\mathbf{F}_{p^n} \to \bar{\mathbf{F}}_p$.
- 3. Montrer que $\bar{\mathbf{F}}_p$ est une clôture algébrique de \mathbf{F}_p .

Exercice 5. [Corps parfait]

Soit K un corps et $P \in K[X]$.

- 1. Montrer que si car(K) = 0, P' = 0 si et seulement si P est constant.
- 2. Montrer que si K est de caractéristique p>0, alors P'=0 si et seulement s'il existe $Q\in K[X]$ tel que $P=Q(X^p)$.
- 3. Une extension L/K est $s\acute{e}parable$ si c'est une extension algébrique et que le polynôme minimal sur K de tout élément dans L admet des racines distinctes dans L. Un corps K est dit parfait si toute extension finie de K est séparable.
 - (a) Montrer qu'un corps algébriquement clos est parfait.
 - (b) Montrer qu'un corps de caractéristique nulle est parfait.
 - (c) Montrer qu'un corps de caractéristique positive est parfait si et seulement si l'endomorphisme de Frobenius (cf. Exercice 2) est un isomorphisme.
 - (d) Montrer qu'un corps fini est parfait.