TD N°6 : GÉNÉRALITÉS SUR LES ANNEAUX

Exercice 1. 1. Soit A un anneau factoriel et K son corps des fractions, p un élément irréductible de A et κ le corps des fractions de A/(p). Soit $P = \sum_{i=0}^{n} a_i X^i \in A[X]$ tel que $p \nmid a_n$ et tel que la réduction modulo p de P est un polynôme irréductible de $\kappa[X]$. Montrer qu'alors P est irréductible dans K[X].

2. Montrer que le polynôme $X^3 - X + 2$ est irréductible dans $\mathbb{Z}[X]$.

Exercice 2. Montrer que l'anneau $\mathbb{C}[X,Y]/(Y-X^2)$ est principal.

- **Exercice 3.** 1. Soient A un anneau et $S \subset A$ est une partie de A stable par multiplication qui contient 1 mais ne contient pas 0. Notons E_S l'ensemble des idéaux disjoints avec S. Montrer que E_S est non-vide, et que tout élément maximal de E_S est un idéal premier.
 - 2. Montrer qu'un anneau intègre est factoriel si et seulement si tout idéal premier non-nul contient un élément premier.
 - 3. Soit A un anneau factoriel. Montrer que A est principal si et seulement si tout idéal premier non-nul est maximal.

Exercice 4. Pour tout entier $n \ge 1$, on note $U_n = \{e^{2ik\pi/n} \mid k \wedge n = 1\}$ l'ensemble des racines de l'unité *n*-ièmes primitives, et on définit le *n*-ième polynôme cyclotomique

$$\Phi_n(X) = \prod_{\zeta \in U_n} (X - \zeta) \in \mathbb{C}[X].$$

- 1. Montrer que le degré de $\Phi_n(X)$ est $\phi(n)$, l'indicatrice d'Euler de n.
- 2. Montrer que pour tout n on a

$$X^n - 1 = \prod_{d|n} \Phi_d(X),$$

et en déduire la formule $n = \sum_{d|n} \phi(d)$.

- 3. En déduire que $\Phi_n(X) \in \mathbb{Z}[X]$.
- 4. Pour n=p un nombre premier, calculer explicitement $\Phi_p(X)$ et montrer que celui-ci est irréductible.

Exercice 5. Le but de cet exercice est de résoudre dans \mathbb{Z} l'équation de Mordell : $y^2 = x^3 - 2$.

- 1. Si A est un anneau factoriel et a,b deux éléments de A premiers entre eux tels que $ab=c^n$ pour un certain $c\in A$ et $n\in \mathbb{N}$, montrer qu'alors il existe $u,v\in A^{\times}$ et $\alpha,\beta\in A$ tels que $a=u\alpha^n$ et $b=v\beta^n$.
- 2. Soit $(x,y) \in \mathbb{Z}^2$ une solution de l'équation de Mordell. Montrer que $y+i\sqrt{2}$ et $y-i\sqrt{2}$ sont premiers entre eux dans $\mathbb{Z}[i\sqrt{2}]$ (qui est un anneau factoriel).
- 3. En déduire toutes les solutions dans \mathbb{Z}^2 de l'équation de Mordell.

Exercice 6. Soient A un anneau noethérien et $n \in \mathbb{N}$. Le but de cet exercice est de montrer qu'il n'y a qu'un nombre fini d'idéaux premiers P de A tels que le cardinal A/P est inférieur ou égal à n.

- 1. Supposons par l'absurde qu'il y a une infinité de tels idéaux premiers. Montrer que A est infini.
- 2. Soit I un idéal maximal parmi ceux tels que l'anneau A/I possède une infinité de tels idéaux premiers. Montrer que I est premier.
- 3. En déduire que l'on peut supposer que A est intègre, et que tout quotient non trivial de A ne possède qu'un nombre fini de tels idéaux premiers.
- 4. Soient a_1, \dots, a_{n+1} des éléments distincts de A et $p = \prod_{i < j} (a_i a_j)$. Montrer que si P est un idéal premier qui ne contient pas p, alors #(A/P) > n.
- 5. Conclure.

Exercice 7. [Localisation d'un anneau intègre]

Soit A un anneau intègre de corps des fractions K. Si S est une partie de A stable par multiplication qui contient 1 mais ne contient pas 0, on pose

$$S^{-1}A:=\left\{\frac{a}{s},\ a\in A,\ s\in S\right\}\ .$$

- 1. Montrer que $S^{-1}A$ est un sous-anneau intègre de K.
- 2. Soit $\phi:A\to S^{-1}A$ l'inclusion canonique. Montrer qu'elle vérifie la propriété universelle suivante : pour tout morphisme d'anneaux $f:A\to R$ qui envoie les éléments de S sur des éléments inversibles, il existe un unique morphisme d'anneaux $f':S^{-1}A\to R$ tel que $f=f'\circ\phi$.
- 3. Montrer que l'application $I \mapsto \phi^{-1}(I)$ définit une injection des idéaux de $S^{-1}A$ vers ceux de A, qui envoie les idéaux premiers sur des idéaux premiers.
- 4. Soit $\mathcal{I}(A,S)$ l'ensemble des idéaux de A disjoints avec S. Montrer que si I est un élément maximal de $\mathcal{I}(A,S)$, alors I est un idéal premier.
- 5. Montrer que si A est principal (respectivement factoriel), alors $S^{-1}A$ est principal (respectivement factoriel).
- 6. En déduire que $\mathbb{C}[T,T^{-1}]$ est un anneau principal.
- 7. Montrer que si A est euclidien de stathme ν , alors $S^{-1}A$ est euclidien de stathme μ défini par

$$\mu(x) := \inf_{\substack{s \in S \\ sx \in A}} \nu(sx) .$$