TD 1: RELATIONS D'ÉQUIVALENCES

Exercice 1. Combien y a-t-il de relations d'équivalences différentes sur un ensemble à quatre éléments?

Exercice 2. Démontrer que l'intersection de deux relations d'équivalence sur un même ensemble E est encore une relation d'équivalence, mais que l'union de deux relations d'équivalence n'en est pas forcément une.

Exercice 3. On considère \mathbb{R}^2 muni de la relation suivante :

$$(a,b)\mathcal{R}(c,d) \Leftrightarrow a^2 + b^2 = c^2 + d^2$$

- 1. Montrer que c'est bien une relation d'équivalence et décrire la classe d'équivalence du couple (a,b).
- 2. Montrer que l'application $\mathbb{R}^2/\mathcal{R} \to [0; +\infty[$ définie par $(a,b) \mapsto a^2 + b^2$ est bien définie et est bijective.

Exercice 4. Montrer qu'il existe une bijection continue $f: \mathbb{R}/\mathbb{Z} \to S^1$, où S^1 est la sphère unité de \mathbb{R}^2 et \mathbb{R}/\mathbb{Z} est le quotient de \mathbb{R} par la relation d'équivalence $x\mathcal{R}y \Leftrightarrow x-y \in \mathbb{Z}$.

Exercice 5. On considère l'espace vectoriel $E = \mathbb{R}^2$ et F le sous-espace vectoriel engendré par le vecteur (3,8). Déterminer les éléments de l'espace quotient E/F.

Exercice 6. On considère $\mathbb{R}^2 \setminus \{0\}$ muni de la relation $x\mathcal{R}y \Leftrightarrow \exists \lambda \in \mathbb{R}^*$ tel que $x = \lambda y$. Montrer que c'est une relation d'équivalence. On notera $P^1(\mathbb{R})$ l'espace quotient.

Si $A \in GL_2(\mathbb{R})$, A définit un isomorphisme $A: R^2 \to \mathbb{R}^2$. En déduire une application $\tilde{A}: P^1(\mathbb{R}) \to P^1(\mathbb{R})$ et montrer qu'elle est bien définie.

On peut maintenant définir une application $A \mapsto \tilde{A}$, qui induit une relation d'équivalence sur $GL_2(\mathbb{R})$. Quelles sont ses classes d'équivalence?

Exercice 7. Soit V un espace vectoriel, et W un sous-espace vectoriel de V. Notons $\pi:V\to V/W$ la projection canonique. Soit $U\subset V$ un sous-espace vectoriel. Montrer que U est un supplémentaire de W dans V si et seulement si la restriction $\pi|_U:U\to V/W$ est un isomorphisme.

Exercice 8. Soit V un espace vectoriel de dimension finie, $u \in \text{End}(V)$, et $W \subset V$ un sous-espace stable par u. On note $u' \in \text{End}(W)$ la restriction de u à W, et $u'' \in \text{End}(V/W)$ le morphisme induit sur V/W. On commencera par montrer que ce morphisme induit est bien défini.

- 1. Soit e une base de V qui est la réunion d'une base e_W de W et d'une famille $e_{V/W}$ telle que $\pi(e_{V/W})$ est une base de V/W. Montrer que $\operatorname{Mat}_e(u)$ est de la forme $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ où $A = \operatorname{Mat}_{e_W}(u')$ et $C = \operatorname{Mat}_{\pi(e_{V/W})}(u")$.
- 2. En déduire que tr $u = \operatorname{tr} u' + \operatorname{tr} u''$, det $u = (\det u')(\det u'')$, et que $\chi_u = \chi_{u'}\chi_{u''}$.

Exercice 9. [Construction de \mathbb{R}]

Soit E l'ensemble des suites de Cauchy à valeurs dans \mathbb{Q} , et \mathcal{R} la relation sur E telle que $(u_n)_{n\in\mathbb{N}}\mathcal{R}(v_n)_{n\in\mathbb{N}}$ si et seulement si la suite $(u_n-v_n)_{n\in\mathbb{N}}$ tend vers 0.

- (a) Montrer que \mathcal{R} est une relation d'équivalence et que \mathbb{Q} s'injecte naturellement dans l'espace quotient E/\mathcal{R} .
 - (b) Montrer que E/\mathcal{R} a naturellement une structure de corps commutatif.
- (c) Si E est muni de la topologie de la convergence uniforme, montrer que E/\mathcal{R} muni de la topologie induite est un espace topologique séparé, qui admet une métrique naturelle pour laquelle il est complet et tel que \mathbb{Q} est dense dans E/\mathcal{R} .

Forme linéaire et dualité

Exercice 10. Soit E un espace vectoriel . Pour tout sous ensemble $G \in E^*$, notons $(G^*)^{\top} := \{x \in E | \forall f \in G; f(x) = 0\}$. Montrer que $(E^*)^{\top} = 0$ puis que l'application linéaire $\phi : E \to E^{**}$ qui envoie x a $(f \mapsto f(x))$ est injective. En déduire que si E est de dimension finie, alors $E \cong E^{**}$.

Exercice 11. [Un peu de dualité] Trouver un isomorphisme entre $(E/F)^*$ et un bon sous-ensemble de E^* .

Exercice 12. Soit k un corps et soit $E = k_n[X]$ l'ensemble des polynômes de degré au plus n sur k. On se donne (a_1, \dots, a_n) n éléments distincts de k et on note pour $i \in \{1, \dots, n\}$ $f_i : P \in E \mapsto P(a_i)$ la forme linéaire d'évaluation en a_i .

- 1. Montrer que (f_i) est une base de E^* .
- 2. Calculer la base de E dont elle est duale.