TD n°1: Anneaux, divisibilité et irréductibilité

Dans ce TD, sauf mentionné, tous les anneaux et corps sont supposés commutatifs.

Exercice 1. [Questions diverses]

- 1. Montrer que dans l'anneau $\mathbb{Z}[\sqrt{-5}]$, l'élément 2 est irréductible mais n'est pas premier.
- 2. Montrer que dans \mathbb{Z} , x est irréductible si et seulement si il est premier.
- 3. Montrer que dans un anneau intègre A, tout élément premier est irréductible. Qu'en est-il si A n'est plus supposé intègre?
- 4. Soient A un anneau et $a \in A$ un élément nilpotent. Montrer que 1+a est inversible dans A.
- 5. Soit A un anneau intègre. Montrer que les éléments inversibles de A[X] sont exactement les constantes inversibles dans A.
- 6. Exhiber un élément inversible de degré non nul dans $\mathbb{Z}/4\mathbb{Z}[X]$.

Exercice 2. 1. Montrer que, quelque soit le corps K, l'ensemble E des polynômes irréductibles unitaires de K[X] est infini.

- 2. Montrer que si K est fini ou dénombrable alors E est dénombrable.
- 3. Montrer que si K n'est pas dénombrable alors E ne l'est pas non plus.

Exercice 3. [Mise en jambes sur les morphismes d'anneaux...]

- 1. Soit A un anneau. Déterminer tous les morphismes d'anneaux $\mathbb{Z} \to A$, $\mathbb{Z}[X] \to A$, $\mathbb{Q} \to \mathbb{Q}$, puis $\mathbb{R} \to \mathbb{R}$.
- 2. Soit $n \geq 1$ un entier. Déterminer tous les morphismes d'anneaux $\mathbb{Z}^n \to \mathbb{Z}$ puis $\mathbb{Q} \to \mathbb{Z}$.
- 3. Soit G un groupe abélien noté additivement. Montrer que l'ensemble A des morphismes de groupes $G \to G$ est naturellement muni d'une structure d'anneau (non commutatif). A quel anneau classique est-il isomorphe lorsque $G = \mathbb{Z}/n\mathbb{Z}$ avec $n \geq 1$ entier?

Exercice 4. [Anneaux de valuation discrète]

Soit K un corps. Une valuation discrète sur K est une fonction surjective $v: K^* \longrightarrow \mathbb{Z}$ telle que pour tous $x, y \in K^*$:

$$v(xy) = v(x) + v(y)$$
 et $v(x+y) \ge \min(v(x), v(y))$.

- 1. Donner pour $K = \mathbb{Q}$ et tout premier p, une valuation discrète v_p sur \mathbb{Q} telle que $v_p(p) = 1$.
- 2. Montrer qu'à toute valuation discrète sur K, on peut associer une distance d ultramétrique sur K, c'est-à-dire telle que pour tous $x,y,z\in K$:

$$d(x, z) \le \max(d(x, y), d(y, z)).$$

Comment s'intersectent les boules pour cette distance? Calculer, pour la valuation v_2 de 1) et la distance correspondante, la somme $\sum_{n=0}^{+\infty} 2^n$.

- 3. Montrer que pour un corps K muni d'une valuation discrète v, $A := \{x \in K | v(x) \ge 0\}$ est un anneau tel que $A^* = v^{-1}(0)$. Un anneau ainsi obtenu est appelé anneau de valuation discrète. Dire quels sont les anneaux ainsi obtenus pour les exemples du 1).
- 4. Pour un anneau de valuation discrète A, une uniformisante de A est un élément π de A de valuation 1. Montrer que tout élément non-nul de A s'écrit de manière unique $a=\pi^n u$ avec $u\in A^*$.

5. En déduire que les idéaux de A sont exactement les idéaux de la forme $(\pi^n), n \in \mathbb{N}$.

Exercice 5. Soit $P(X) = \sum_{k=0}^{n} a_k X^k$ un polynôme primitif à coefficients dans \mathbb{Z} (i.e. les coefficients sont premiers entre eux dans l'ensemble) et soit p un entier premier ne divisant pas a_n .

- 1. Montrer que si la réduction modulo p du polynôme P(X) est irréductible dans $\mathbb{Z}/p\mathbb{Z}[X]$, alors P(X) est irréductible dans $\mathbb{Z}[X]$.
- 2. Supposons que pour tout p ne divisant pas a_n , la réduction modulo p n'est pas irréductible. Peut-on en déduire que P(X) est irréductible dans $\mathbb{Z}[X]$?

Exercice 6. Soit E l'ensemble des fonctions de $f : \mathbb{Z} \to \mathbb{Q}$ telles que $f(n) \in \mathbb{Z}$ pour n assez grand et $P = E \cap \mathbb{Q}[X]$.

- 1. Montrer que $P \neq \mathbb{Z}[X]$.
- 2. Soit $\Delta: E \to E$ l'application telle que $(\Delta f)(n) = f(n) f(n-1)$. Montrer que les assertions suivantes sont équivalentes :
 - (a) $f \in P$
 - (b) $\Delta f \in P$
 - (c) $\exists n \in \mathbb{N}, \Delta^n f = 0$

Quel est le plus grand entier d tel que $\Delta^d f \neq 0$?

- 3. Soit $P_i = \frac{1}{i!}X(X-1)\dots(X-i+1)$. Montrer que (P_i) forme une \mathbb{Q} -base de $\mathbb{Q}[X]$ ainsi qu'une \mathbb{Z} -base de P autrement dit telle que tout élément $f \in P$ s'écrit comme une somme $\sum n_i P_i$ avec les $n_i \in \mathbb{Z}$.
- 4. En déduire que si $f \in P$ est de degré d, alors $d!f \in \mathbb{Z}[X]$ et $f(n) \in \mathbb{Z}$ pour tout $n \in \mathbb{Z}$.

Exercice 7. [L'anneau des fonctions holomorphes]

Soit $\mathcal{H}(\mathbb{C})$ l'anneau des fonctions holomorphes dans tout le plan complexe.

- 1. Montrer que $\mathcal{H}(\mathbb{C})$ est un anneau intègre et déterminer son corps des fractions, et identifier les éléments inversibles.
- 2. Montrer qu'un élément $f \in \mathcal{H}(\mathbb{C})$ est irréductible si et seulement s'il admet un seul zéro et que celui-ci est de plus un zéro simple. En déduire que $\mathcal{H}(\mathbb{C})$ n'est pas factoriel.